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The Free Lunch Is Over
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Image from Sutter, H., 2005, updated 2009. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb s Journal 30 (3), 16-20
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The future according to NVIDIA
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The future according to NVIDIA
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The future according to Intel
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Schematic of the proposed Intel Many Integrated Core
architecture.
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Different layers of paralellism.

GPU Intel MIC
Inter-node Inter-node

Inter—@

Inter-warp I
Inter-thread I

HEANR

Inter-thread I
AVX Vector I
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Disruptive changes to the programming model.

v

(very) fine grain parallelism.

» multiple layers of parallelism.

» intrusive changes in low-level code.
» data layout changes necessary.

» compute is cheap, data is expensive.
» difficult to debug.
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Disruptive changes to the programming model.

v

(very) fine grain parallelism.

» multiple layers of parallelism.

» intrusive changes in low-level code.
» data layout changes necessary.

» compute is cheap, data is expensive.
» difficult to debug.

And what is optimal will change often!

David Ham

Abstracting the hardware



Imperial College

Finite element assembly, a brief reminder
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Disruptive code changes: memory layout
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Disruptive changes: global assembly

/QvL(u)dX/quc\lX

Me be
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Local matrix approach

We can write the global assembly operation as:
M= ATMEA (1)
b=ATbf (2)

The local matrix approach consists of actually executing this
sequence every time Av is calculated:

t=Av t' = M°t y=A"t".
) o ,
Stage 1 Stage 2 Stage 3

Cantwell, C. D., Sherwin, S. J., Kirby, R. M., Kelly, P. H. J., 2010. From h to p efficiently: strategy selection for
operator evaluation on hexahedral and tetrahedral elements. Computers & Fluids
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Trade-off between iteration count and method
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The proof of the pudding

2D Advection diffusion equation.
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The problem

User Requirements
» Programmability: matching skills to tasks.
» Performance portability.
» Durability of programming effort.
Reality of new platforms
» Hard to program. Developers must have huge skill sets.
» Performance is not portable.

» Constant changes in hardware invalidate previous effort.
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A solution: don't programme your model

Form PDE I

| Create discrete form I

write code I

parallelise I
compile I
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A solution: don't programme your model

Form PDEI @

| Create discrete form I |Write weak form in high level language I

write code I | generate parallel kernel functions I

parallelise I | generate parallel execution plan I
compile I compile I
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Multilayer abstractions for PDEs

User code written in C/Fortran

Very high level user code written in PDE Form o :
Parameterisations and discretisations not expressible in UFL

v

Unified Form Language
| ManyCore Form Compiler (MCFC) |

~

OP2: parallel operation abstraction layer.

!

Transformation and optimisation framework.
Schedules the operations for parallel execution using techniques
including domain decomposition, colouring and reordering.

/ N\ \

MPI + CIFortran + AVX MPI+ OpenCL. H

MPI + CUDA

NVIDA GPU Multicore CPU AMD GPU NVIDA GPU Maxeler FPGA
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Unified Form Language

Consider Poisson’s equation in weak form:

phi=TestFunction(Psi)
. psi=TrialFunction(Psi)
/Véb'deXZ/sbde lhs=dot (grad (phi) ,grad(psi))*dx
@ @ rhs=phixf*dx
Psi=solve(lhs,rhs)

UFL was developed by Marten Alnaes and Anders Logg for the
FEniCS project.
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Slightly less trivial example: C-grid linear shallow
water equations

V = FunctionSpace(mesh, 'Raviart—Thomas’', 1)
H = FunctionSpace(mesh, 'DG’, 0)

W = VxH

(v, q) = TestFunctions (W)

(u, h) = TrialFunctions (W)

M_u = inner(v,u)*xdx

M_h = gxhxdx

Ct = —inner(avg(u),jump(q,n))=*dS

C = cx*x*x2xadjoint(Ct)

F = fxinner(v,as_vector([—u[1],u[0]]))=dx
A = assemble (M_u+M_h+0.5xdt «(C—Ct+F))

A_r = M_.u+M_h—0.5xdt x(C—Ct+F)
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Slightly less trivial example: C-grid linear shallow
water equations

Maths as code. The divergence and pressure gradient:

/qV-udV:—/ u-n(gt —q7)dS
Q re
c2/v-Vhdvzc2/ (h* —h7)n-vdS
Q re
become:

Ct = —inner(avg(u),jump(q,n))*dS
C = cxx2xadjoint (Ct)
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Side note: UFL + libadjoint = automatic adjoints

> Automatically differentiating UFL code is as easy as
formulating the continuous adjoint.

» Libadjoint facilitates adjoint models by recording the forward
model via annotation the solution of linear systems in the
source code.

» Using UFL these annotations can be automated.

Farrell, P. E. and Funke, S. W. and Ham, D. A. A new approach
for developing discrete adjoint models, Submitted to ACM
Transactions on Mathematical Software
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The OP2 Layer
Kernel API

» Specify innermost loops such as integral over one (low order)
element.

» Only aware of local assembly operations.
» Written in C++ or Fortran
Global API
» Specifies relationship of local problem to global.

» Specifies parallel operations without specifying order.

David Ham
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The OP2 API

mple Kernel

broutine rhs_kernel(rhs, f, vol)

I Locally assembled RHS

double precision, dimension(3), intent(inout)
! RHS function

double precision, dimension(3,2), intent(in)
! Element volume

double precision :: vol

integer i,j
!l Local actions in terms of f(i,j), rhs(i)

d subroutine rhs_kernel

Abstracting the hardware
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The OP2 API

op_set :: elements,linear_dofs
op-dat :: rhs_dat, f_dat, vol_dat
op_-map :: e2linear

I'l Initialisation of set sizes and map data.

call op_par_loop(rhs_kernel , elements, &
op-arg(rhs_dat, e2v, OP_ALL, OP.INC), &
op-arg(f.dat, e2v, OP_ALL, OP.READ), &
op.arg(vol_dat, OP.ID, —1, OP_READ))

David Ham
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What's actually happening?

» Prototype codes and compilers work (and give results shown
here).

» Significant effort at Imperial Computing and ESE, and Oxford
to

» produce the compiler from UFL to OP2
» expand the OP2 prototype to full capacity, including MPI.
» make OP2 ready to support Hydra (Rolls Royce Turbine code)

» Significant buy-in already from Rolls, EPSRC and NERC.
» Currently working on shallow water prototype for Gung-Ho

» BAe systems are also interested.

David Ham
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Overview

» The hardware landscape is changing, fast.

» Writing scientific software is labour-intensive, error-prone and
not performance portable.

» This is far worse on emerging massively parallel architectures.

» Conventional software engineering prevents computational
scientists and computer scientists working on the same
problem.

» Code generation offers us a way out.

This research is supported by EPSRC, NERC, Rolls Royce, the Technology Strategies Board and the UK Met Office.
Giles, M., Mudalige, G., Sharif, Z., Markall, G., Kelly, P., 2011a. Performance analysis and optimization of the op2
framework on many-core architectures. The Computer Journal

Markall, G. R., Ham, D. A., Kelly, P. H. J., 2010. Towards generating optimised finite element solvers for gpus from
high-level specifications. Procedia Computer Science 1 (1), 1815 — 1823, ICCS 2010

Giles, M., Mudalige, G., Sharif, Z., Markall, G., Kelly, P., 2011b. Performance Analysis of the OP2 Framework on
Many-core Architectures. ACM SIGMETRICS Performance Evaluation Review
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Two level colouring
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Optimal CPU behaviour
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Flow past an airfoil: nonlinear inviscid flow with C grid finite
volume discretisation.

Effect of changing partitioning and thread count on 8-core Intel
machines of different processor generations.
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Optimal GPU behaviour
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Flow past an airfoil: nonlinear inviscid flow with C grid finite
volume discretisation.

Effect of changing partitioning and block size on GPUs of different
processor generations.
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The OP2 layer

op_par_loop_6(adt_calc,”adt_calc”, cells,
p_X, 0,pcell, 2,"float” ,OP_READ,
p_X, 1,pcell, 2,"float” ,OP_READ,
p_X, 2,pcell, 2,"float” ,OP_READ,
p_Xx, 3,pcell, 2,"float” ,OP_READ,
p.q, —1,0P.ID, 4," float” ,OP_READ,
p-adt,—1,0P_.ID, 1,"float” ,OP.WRITE);
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Conclusions

» The hardware landscape is changing, fast.

» Writing scientific software is labour-intensive, error-prone and
not performance portable.

» Code generation offers us a way out.
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