Imperial College

David Ham

Abstracting the hardware

Imperial College

Abstracting the hardware

Engineering climate models for the hardware revolution.

David A. Ham*? Graham R. Markall® Florian Rathgeber!
Paul H.J. Kelly> Carlo Bertolli® Mike B. Giles* Gihan R. Mudalige®

!Department of Earth Science and Engineering, Imperial
2Grantham Institute for Climate Change, Imperial
3Department of Computing, Imperial
4Oxford-Man Institute of Quantitative Finance
®Oxford e-Research Centre

David Ham

Abstracting the hardware

The Free Lunch Is Over

10,000,000
Dual-Core Itanium 2
1,000,000
Intel CPU
:Inte, il
100,000
10,000
Pentium
1,000

100

- 4
4
LY

N

[}
.

-./ A s W o Clock Speed (VH2)
os® APower (W)
@ Perf [Clock (LP)

I I I
°
1970 1975 1980 1985 1990 1995 2000 2005 2010

Image from Sutter, H., 2005, updated 2009. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb s Journal 30 (3), 16-20

Imperial College
London

The future according to NVIDIA

mEnswsnEwsEnEnnsfl
e e —

Image from Glasowsky, P. N., 2009. NVIDIA's fermi: The first complete GPU computing architecture. Tech. rep.,

NVIDIA
=] F = = £ DA

David Ham

Abstracting the hardware

Imperial College
London

The future according to NVIDIA

nstruction Cache

o s] [o sevoaur

|

[
[
[
‘ Registr File (52,768 x 3258)

CuDACore I8 (1]

==)

=
R)

| 64K Shared Moy L1 Coche

[Tform Gache

Image from Glasowsky, P. N., 2009. NVIDIA's fermi: The first complete GPU computing architecture. Tech. rep.,

NVIDIA

David Ham

Abstracting the hardware

Imperial College
London

The future according to Intel

VECTOR VECTOR VECTOR VECTOR
IA CORE IANCORE ... | IACORE IA CORE

INTERPROCESSOR NETWORK

COHERENT COHERENT COHERENT COHERENT
CACHE CACHE - CACHE CACHE

COHERENT COHERENT COHERENT COHERENT
CACHE CACHE CACHE CACHE
ans

INTERPROCESSOR NETWORK

VECTOR VECTOR VECTOR VECTOR
IACORE | IACORE . IA CORE IA CORE

FIXED FUNCTION LOGIC

wv)
w
S
w
(o
w
'_
=
o
=
o
=
©
>
(o g
o
oz
w
=

Schematic of the proposed Intel Many Integrated Core
architecture.

David Ham

Abstracting the hardware

Imperial College

Different layers of paralellism.

GPU Intel MIC
Inter-node Inter-node

Inter—@

Inter-warp I
Inter-thread I

HEANR

Inter-thread I
AVX Vector I

David Ham

Abstracting the hardware

Imperial College

Disruptive changes to the programming model.

v

(very) fine grain parallelism.

» multiple layers of parallelism.

» intrusive changes in low-level code.
» data layout changes necessary.

» compute is cheap, data is expensive.
» difficult to debug.

David Ham

Abstracting the hardware

Imperial College

Disruptive changes to the programming model.

v

(very) fine grain parallelism.

» multiple layers of parallelism.

» intrusive changes in low-level code.
» data layout changes necessary.

» compute is cheap, data is expensive.
» difficult to debug.

And what is optimal will change often!

David Ham

Abstracting the hardware

Imperial College

Finite element assembly, a brief reminder

/QvL(u)dX/quc\lX

Me be

David Ham

Abstracting the hardware

Imperial College

Disruptive code changes: memory layout

}

>

(@)
bR N N Py B
TN |01 |

[1]2]3]4]5]

David Ham

Abstracting the hardware

Imperial College

Disruptive changes: global assembly

/QvL(u)dX/quc\lX

Me be

David Ham

Abstracting the hardware

Imperial College

Local matrix approach

We can write the global assembly operation as:
M= ATMEA (1)
b=ATbf (2)

The local matrix approach consists of actually executing this
sequence every time Av is calculated:

t=Av t' = M°t y=A"t".
) o ,
Stage 1 Stage 2 Stage 3

Cantwell, C. D., Sherwin, S. J., Kirby, R. M., Kelly, P. H. J., 2010. From h to p efficiently: strategy selection for
operator evaluation on hexahedral and tetrahedral elements. Computers & Fluids

David Ham

Abstracting the hardware

Imperial College

Trade-off between iteration count and method

64 1 1 1

---v--- Poisson 3rd order, CUDA (NVIDIA Tesla C1060) LMA

---a--- Poisson 3rd order, CUDA (NVIDIA Tesla C1060) assemble

—v— Poisson 3rd order, PETSc (Intel EB400 3GHz, single core) LMA

32 | —4— Poisson 3rd order, PETSc (Intel EB400 3GHz, single core) assemble
Poisson 1st order, CUDA (NVIDIA Tesla C1060) LMA

Poisson 1st order, CUDA (NVIDIA Tesla C1060) assemble

Poisson 1st order, PETSc (Intel EB400 3GHz, single core) LMA
Poisson 1st order, PETSc (Intel E8400 3GHz, single core) assemble

Runtime [s]

Number of iterations

David Ham

Abstracting the hardware

Imperial College

The proof of the pudding

2D Advection diffusion equation.

6000 T T T T T T T T
v
5000 | 4
X "'X\x—-—x"X\ S SEMAR S SN %0
4000 f T x A R VI
3000 | 4

NVIDIA GTX480, CUDA, LMA - Heoon
2000 + NVIDIA GTX280, CUDA, LMA —--x--—- A
AMD 5870, OpenCL, LMA ———

Intel Xeon E5620, MPI Baseline =)
1000 +]

= = S S O I O Y O O < S 12 =kal

Normalised throughput

David Ham

Abstracting the hardware

Imperial College

The problem

User Requirements
» Programmability: matching skills to tasks.
» Performance portability.
» Durability of programming effort.
Reality of new platforms
» Hard to program. Developers must have huge skill sets.
» Performance is not portable.

» Constant changes in hardware invalidate previous effort.

David Ham

Abstracting the hardware

Imperial College

A solution: don't programme your model

Form PDE I

| Create discrete form I

write code I

parallelise I
compile I

David Ham

Abstracting the hardware

Imperial College

A solution: don't programme your model

Form PDEI @

| Create discrete form I |Write weak form in high level language I

write code I | generate parallel kernel functions I

parallelise I | generate parallel execution plan I
compile I compile I

David Ham

Abstracting the hardware

Imperial College

Multilayer abstractions for PDEs

User code written in C/Fortran

Very high level user code written in PDE Form o :
Parameterisations and discretisations not expressible in UFL

v

Unified Form Language
| ManyCore Form Compiler (MCFC) |

~

OP2: parallel operation abstraction layer.

!

Transformation and optimisation framework.
Schedules the operations for parallel execution using techniques
including domain decomposition, colouring and reordering.

/ N\ \

MPI + CIFortran + AVX MPI+ OpenCL. H

MPI + CUDA

NVIDA GPU Multicore CPU AMD GPU NVIDA GPU Maxeler FPGA

David Ham
Abstracting the hardware

Imperial College

Unified Form Language

Consider Poisson’s equation in weak form:

phi=TestFunction(Psi)
. psi=TrialFunction(Psi)
/Véb'deXZ/sbde lhs=dot (grad (phi) ,grad(psi))*dx
@ @ rhs=phixf*dx
Psi=solve(lhs,rhs)

UFL was developed by Marten Alnaes and Anders Logg for the
FEniCS project.

David Ham

Abstracting the hardware

Imperial College

Slightly less trivial example: C-grid linear shallow
water equations

V = FunctionSpace(mesh, 'Raviart—Thomas’', 1)
H = FunctionSpace(mesh, 'DG’, 0)

W = VxH

(v, q) = TestFunctions (W)

(u, h) = TrialFunctions (W)

M_u = inner(v,u)*xdx

M_h = gxhxdx

Ct = —inner(avg(u),jump(q,n))=*dS

C = cx*x*x2xadjoint(Ct)

F = fxinner(v,as_vector([—u[1],u[0]]))=dx
A = assemble (M_u+M_h+0.5xdt «(C—Ct+F))

A_r = M_.u+M_h—0.5xdt x(C—Ct+F)

David Ham

Abstracting the hardware

Imperial College

Slightly less trivial example: C-grid linear shallow
water equations

Maths as code. The divergence and pressure gradient:

/qV-udV:—/ u-n(gt —q7)dS
Q re
c2/v-Vhdvzc2/ (h* —h7)n-vdS
Q re
become:

Ct = —inner(avg(u),jump(q,n))*dS
C = cxx2xadjoint (Ct)

David Ham

Abstracting the hardware

Imperial College

Side note: UFL + libadjoint = automatic adjoints

> Automatically differentiating UFL code is as easy as
formulating the continuous adjoint.

» Libadjoint facilitates adjoint models by recording the forward
model via annotation the solution of linear systems in the
source code.

» Using UFL these annotations can be automated.

Farrell, P. E. and Funke, S. W. and Ham, D. A. A new approach
for developing discrete adjoint models, Submitted to ACM
Transactions on Mathematical Software

David Ham

Abstracting the hardware

Imperial College

The OP2 Layer
Kernel API

» Specify innermost loops such as integral over one (low order)
element.

» Only aware of local assembly operations.
» Written in C++ or Fortran
Global API
» Specifies relationship of local problem to global.

» Specifies parallel operations without specifying order.

David Ham

Abstracting the hardware

Imperial College

Sa

su

en

David Ham

The OP2 API

mple Kernel

broutine rhs_kernel(rhs, f, vol)

I Locally assembled RHS

double precision, dimension(3), intent(inout)
! RHS function

double precision, dimension(3,2), intent(in)
! Element volume

double precision :: vol

integer i,j
!l Local actions in terms of f(i,j), rhs(i)

d subroutine rhs_kernel

Abstracting the hardware

rhs

Imperial College

The OP2 API

op_set :: elements,linear_dofs
op-dat :: rhs_dat, f_dat, vol_dat
op_-map :: e2linear

I'l Initialisation of set sizes and map data.

call op_par_loop(rhs_kernel , elements, &
op-arg(rhs_dat, e2v, OP_ALL, OP.INC), &
op-arg(f.dat, e2v, OP_ALL, OP.READ), &
op.arg(vol_dat, OP.ID, —1, OP_READ))

David Ham
Abstracting the hardware

Imperial College

What's actually happening?

» Prototype codes and compilers work (and give results shown
here).

» Significant effort at Imperial Computing and ESE, and Oxford
to

» produce the compiler from UFL to OP2
» expand the OP2 prototype to full capacity, including MPI.
» make OP2 ready to support Hydra (Rolls Royce Turbine code)

» Significant buy-in already from Rolls, EPSRC and NERC.
» Currently working on shallow water prototype for Gung-Ho

» BAe systems are also interested.

David Ham

Abstracting the hardware

Imperial College

Overview

» The hardware landscape is changing, fast.

» Writing scientific software is labour-intensive, error-prone and
not performance portable.

» This is far worse on emerging massively parallel architectures.

» Conventional software engineering prevents computational
scientists and computer scientists working on the same
problem.

» Code generation offers us a way out.

This research is supported by EPSRC, NERC, Rolls Royce, the Technology Strategies Board and the UK Met Office.
Giles, M., Mudalige, G., Sharif, Z., Markall, G., Kelly, P., 2011a. Performance analysis and optimization of the op2
framework on many-core architectures. The Computer Journal

Markall, G. R., Ham, D. A., Kelly, P. H. J., 2010. Towards generating optimised finite element solvers for gpus from
high-level specifications. Procedia Computer Science 1 (1), 1815 — 1823, ICCS 2010

Giles, M., Mudalige, G., Sharif, Z., Markall, G., Kelly, P., 2011b. Performance Analysis of the OP2 Framework on
Many-core Architectures. ACM SIGMETRICS Performance Evaluation Review

David Ham

Abstracting the hardware

Imperial College

Two level colouring

David Ham
Abstracting the hardware

Imperial College

Optimal CPU behaviour

500 — 500 —
OpenMP Threads | s OpenMP Threads | s
OpenMP Threads 2 mmm— OpenMP Threads 2 mmm—
OpenMP Threads 4 - OpenMP Threads 4 Emmmm
400 OpenMP Threads 8 [| 400 OpenMP Threads 8 [|
OpenMP Threads 16 ——] I OpenMP Threads 16 ——]
3 300 I |] - 3 300 I] - -
El El
H H
z, L
g 200 £ 200
100 4 100
0

64 128 256 512 1024 64 128 256 512 1024
Partition size Partition size
(a) Intel Xeon E5462 (Penryn) (b) Intel Xeon E5540 (Nehalem)

Flow past an airfoil: nonlinear inviscid flow with C grid finite
volume discretisation.

Effect of changing partitioning and thread count on 8-core Intel
machines of different processor generations.

David Ham

Abstracting the hardware

Imperial College

Optimal GPU behaviour

70 — 70 —
Block Size 64— Block Size 64—
128 — 128 —
60 192 oo {60 192 m—
256 mm— 256
s 384 === 50 384 ===
512 512 /)
ER) ERY
H H
2 30 2 30
£ £
20 20
10 10
0 0
64 128 256 64 128 256 512 1024
Partition size Partition size
(a) GTX260 (b) Tesla C2050

Flow past an airfoil: nonlinear inviscid flow with C grid finite
volume discretisation.

Effect of changing partitioning and block size on GPUs of different
processor generations.

. E
David Ham
Abstracting the hardware ! \

Imperial College

The OP2 layer

op_par_loop_6(adt_calc,”adt_calc”, cells,
p_X, 0,pcell, 2,"float” ,OP_READ,
p_X, 1,pcell, 2,"float” ,OP_READ,
p_X, 2,pcell, 2,"float” ,OP_READ,
p_Xx, 3,pcell, 2,"float” ,OP_READ,
p.q, —1,0P.ID, 4," float” ,OP_READ,
p-adt,—1,0P_.ID, 1,"float” ,OP.WRITE);

David Ham

Abstracting the hardware

Imperial College

Conclusions

» The hardware landscape is changing, fast.

» Writing scientific software is labour-intensive, error-prone and
not performance portable.

» Code generation offers us a way out.

David Ham

Abstracting the hardware

