
Hurricane Irene/NASA GOES-13 satellite
image/August 26, 2011

CW2020

September 21, 2020

Robert Oehmke NCAR

Ryan O’Kuinghttons NCAR

Peggy Li NASA

Gerhard Theurich NRL

 Ben Koziol NCAR
Hurricane Irene/NASA GOES-13 satellite image/August 26, 2011

ESMF
Regridding
Update

Topics
• Brief overview of ESMF Regridding

• Updates on:
– Extrapolation
– New optimization capabilities useful for regridding
– Other new regridding features
– Integration of Mesh-Oriented datABase (MOAB) mesh library
– Bit-for-bit testing
– Upcoming features in next release (8.1.0)

This talk describes ESMF as of tag: ESMF_8_1_0_beta_snapshot_27

High-performance
Interpolation weight matrix is generated in
parallel in 3D space and applied in parallel

Wide range of supported grids
Logically rectangular connected tiles,
unstructured meshes, observational data
streams (point cloud), 2D and 3D, global and
regional grids, Cartesian and spherical
coordinates

Multiple interpolation methods
Bilinear,
higher-order patch recovery[1][2],
first-order conservative,
nearest neighbor,
second-order conservative[3]

Options
Masking, multiple pole treatments,
straight or great circle distance
measure, extrapolation

Multiple interfaces

- Fortran API - generate and
apply weights during a
model run

- Python API - generate and
apply weights using ESMPy

- Standalone tools - generate
and apply weights from grid
files using ESMF command
line utilities

ESMF Regridding Overview
Fast, flexible, regridding engine with many options

https://www.earthsystemcog.org/projects/esmf/

https://earthsystemcog.org/projects/esmf/

Extrapolation
• Fills destination locations that aren’t filled by an initial regridding

• Important because:
– Having a gap is common due to mismatched masking, grid coverage, etc.
– Before users would need to do a lot of work to implement their own solution
– More efficient because it reuses parts of the regridding setup
– Extrap. weights are incorporated into regridding weights, so there isn’t a change in

user’s typical regridding flow. Makes it easy to experiment with

• Four types:
– Nearest neighbor - closest point is used. Useful when jumping across mesh gaps
– Inverse dist. weighted avg. - blend of N closest points. Useful for smoother results
– Creep fill - destination data is spread a given number of neighbor levels into unmapped

areas through the structure of the mesh. Useful for flowing around obstacles
– Creep fill plus nearest destination - like creep fill, but then any remaining unmapped

points are filled by mapping to closest filled location (either regridded or creeped)

Extrapolation Examples

Source Grid and Field Dest: Without Extrapolation

Dest: Nearest Neighbor

Dest: Inverse Dist. Weighted Avg.

Dest: Creep Fill

Dest: Creep Fill with Nearest

Masked Area

• RouteHandle* I/O:
– Routehandles can be written/read from a file to improve initialization speeds

• This can be much faster than even reading precomputing regridding weights
– Only works when routeHandle is written/read for the same number of procs/distribution
– Useful for cases like short production runs where the same distribution is used repeatedly

and initialization time can be a large part of the total run time

• VM Epochs:
– Improve communication speed by allowing the user to tell ESMF to internally collect a set

of routeHandle communication (e.g. ESMF_FieldRegrid()) and send them in one piece
– Works for any “wild mix of routeHandles” (e.g. different distributions, different

operations,...)
– However, currently only works when send/receive processors are disjoint
– Useful to trade memory (extra buffer space) for time (faster communication speed)

New Regridding Related Optimization Capabilities

* A RouteHandle is an ESMF class used to apply sparse matrix multiply operations
(e.g. regridding). They contain precomputed information, etc. in order to make a repeated sparse
matrix multiply as efficient as possible.

VM Epoch Example

● Sparse mat. mul. of 191 Fields (total levels 1196) from forecast component to write component
● Forecast component on 405 processors. Write component on 27 processors.
● Run on Hera at NOAA (Cray Compute Cluster/2.4 Ghz Intel SkyLake/2.4 GB per core)
● Compiled with -O2, intel/18.0.5.274, impi/2018.0.4

• Dynamic masking:
– User can mask or otherwise alter what happens to dst. value during application of

regridding
– Routehandle / regridding weights stay the same
– User sets function that is triggered for specific destination or source values, function can

then alter the destination value
– Useful for cases where usable source locations change frequently (e.g. ice)

• Destination status Field:
– Gives an indication of what happened to each destination location during weight generation
– Fills integer Field the same size as destination Field with flags indicating states like

successfully mapped, source masked, destination masked, extrapolated, etc.
– Useful for debugging and when a destination Field needs to be modified based on

regridding behavior

• Full Mesh get capability:
– Allows user to get full information about an ESMF Mesh
– Useful for regridding because user can create a modified version of an input Mesh
– For example, a recent case where a user needed to extend a 2D Mesh provided by one

component to a 3D one in the mediator to allow regridding with a 3D field line grid

Other New Regridding Related Functionality

Integration of
Mesh-Oriented datABase (MOAB)
• Important because: ESMF regridding is an essential capability for major modeling

codes. It must be: maintainable, highly efficient/scalable for future grids, and
anticipate new capabilities for future science requirements

• Underneath ESMF regridding is a custom built 3D finite element code to provide
low level capabilities like representing points, cells, connections, etc.

• The goal is to replace that with a new externally developed code (MOAB) to:
– Get new capabilities:

• More efficient representation of some types of cells (e.g. >4 sides)
• Representation of data on edges, higher-order elements, ...
• More flexible/efficient internal fields for coords, masking, etc. ...

– Get to share community benefits of an externally developed library (as others
get to do with ESMF)

– Get improved efficiency in some areas (e.g. memory use for large meshes)

• ESMF and MOAB are a good match. ESMF provides high level data structures
and abstractions for model coupling, while using MOAB for some of its low level
internal mesh representation needs.

Status of MOAB Integration
Currently finished capabilities:

• Can optionally create an ESMF_Mesh built on MOAB internally
• Can compute ESMF regridding weights using MOAB for conservative, bilinear,
nearest-neighbor, using most options (e.g. masking), and most extrapolation.

• Reconciling a MOAB mesh (so it can be used in multi-component system)

To do:
• Patch, 2nd order conservative, and creep fill extrapolation
• More testing, and then even more testing…

User perspective on integration:
• MOAB is an internal capability, so no user code changes will be required
• MOAB builds automatically with ESMF, so does not add another dependency
• Will give users/application groups a lot of time to verify correctness:

– ESMF 8.1.0 - MOAB off by default, but can be switched on for testing
– ESMF 8.2.0 - MOAB on by default, but can be switched off
– ESMF 8.3.0 - Native (non-MOAB) implementation no longer supported

Bit-For-Bit Testing
• Important because: Answer changes are a big deal for operational

models, so we want to let them know when ESMF answers have
changed and why

• Bit-for-bit changes are uncommon, but they may happen due to bug
fixes or improvements (e.g. in accuracy)

• Our new testing watches for any change in regridding weights as
development progresses

• The testing is done using regrid weight generation application:
– Bit-for-bit checks between new weights and baseline versions
– Run nightly on three platforms:

• Cheyenne (NCAR), Discover (NASA), Hera (NOAA)
– Comparisons done on 165 regrid cases (model grids/methods/options)

• Bit-for-bit changes during development are now tracked along with
explanation/justification:
– We hope to have a page with this information available to users soon

• Changes across a release are now reported as part of release output

• Dynamic creep fill (requested by US Navy):
– Fills all reachable locations without needing to specify num. levels
– This is a significant improvement over current approach which requires a

manual process to determine the creep-fill depth

• Improved regridding diagnostic/debugging output:
– Important because: It saves time, by allowing users to find subtle errors quickly

• Finding these kinds of errors can often hold up development for a long time
– New parameter that allows user to easily turn on more expensive checks:

• Folded grid, self intersecting cells, non unique mesh ids, etc…
• Too expensive to run in operations, but useful for diagnosing problems

– Goal is to give users more ability to diagnose regridding issues themselves

• Completed MOAB version of Mesh/regridding

Anticipated March 2021
Scheduled for Next Release (ESMF 8.1.0)

1. Khoei S.A., Gharehbaghi A. R. The superconvergent patch recovery technique
and data transfer operators in 3d plasticity problems. Finite Elements in
Analysis and Design, 43(8), 2007.

2. Hung K.C, Gu H., Zong Z. A modified superconvergent patch recovery method
and its application to large deformation problems. Finite Elements in Analysis
and Design, 40(5-6), 2004.

3. Meurdesoif Y., Kritsikis E., Aechtner M., Dubos T. Conservative interpolation
between general spherical meshes. Geoscientific Model Development, 10,
2017.

References

Thanks!

If you have questions or requests
ask me or email:

esmf_support@ucar.edu

mailto:esmf_support@ucar.edu

Extra Slides

Start of Extra Slides

Analytic field:
F = 2+cos(lon)^2 * cos(2*lat)

Second-Order Conservative

Source:
10 degree uniform global

Destinations:
2 degree uniform global

First-Order
Conservative

Second-Order
Conservative

This regrid method preserves the integral of a field
across regridding, but uses the source gradient to give
smoother results than first order.
Important because: Gives smoother results for
conservative regridding, NASA/GMAO requested this to
regrid ocn/atm fluxes in GEOS.

Second-order Conservative Regrid Method
• Destination cell value is combination of values of intersecting

source cells modified to take into account source cell gradient:
 d = ∑(si+∇si∙(csi-cd))
 Where:

 d = destination value si = intersecting source cell value
 cd = destination centroid csi= intersecting source cell centroid
 ∇si = intersecting source cell gradient

• Requires a wider stencil and more computation, so more
expensive in terms of memory and time than first-order

• Preserves integral of field across interpolation, but gives smoother
results than first-order (especially when going from coarser to
finer grids)

! create source and destination grids
srcGrid = ESMF_GridCreateCubedSphere(...)
dstGrid = ESMF_GridCreate1PeriDim(...)

! Create Fields to hold data
srcFld = ESMF_FieldCreate(srcGrid,...)
dstFld = ESMF_FieldCreate(dstGrid,...)

! compute regrid weight matrix
call ESMF_FieldRegridStore(srcFld, dstFld, routehandle, ...)

! loop over time
do t=1,...

 ! compute new srcFld

 ! apply regrid weight matrix in parallel
 call ESMF_FieldRegrid(srcFld, dstFld, routehandle,...)
enddo

! release resources
call ESMF_FieldRegridRelease(routehandle, ...)

Regrid operation
computed in two phases

The first phase computes an
interpolation weight matrix
which is efficiently stored in
an ESMF_RouteHandle.

The weights only need to be
computed once.

The second phase applies the
weight matrix to a source
field resulting in a destination
field.

This same pattern is used for
other operations such as
redistribution and halo.

Typical code pattern for executing an ESMF
communications operations. Once computed, a
RouteHandle can be reused for multiple calls.

Generation and Application of
Regrid Weights

A Python API to ESMF
regridding and related
classes

Transforms data from one grid
to another by generating and
applying remapping weights.

Supports structured and
unstructured, global and
regional, 2D and 3D grids,
created from file or in memory,
with many options.

Fully parallel and highly scalable.

Visit the ESMPy home page for
user documentation and
installation instructions:

create source and destination grid and mesh

grid = ESMF.Grid(filename=grid1,

filetype=ESMF.FileFormat.SCRIP, …)

mesh = ESMF.Mesh(filename=grid2,

iletype=ESMF.FileFormat.ESMFMESH, ...)

create source and deestination fields

srcfield = ESMF.Field(grid, name='srcfield', ...)

dstfield = ESMF.Field(mesh, name='dstfield', ...)

create object to regrid data from the source to the

destination field

regrid = ESMF.Regrid(srcfield, dstfield,

regrid_method=ESMF.RegridMethod.CONSERVE,

unmapped_action=ESMF.UnmappedAction.IGNORE)

Loop over time

for t in range[...]

 # Fill source field

 ...

 # perform the regridding from source to

destination field

 stfield = regrid(srcfield, dstfield)

Python Interface
Access to parallel ESMF regridding from Python

https://www.earthsystemcog.org/projects/esmpy/

https://www.earthsystemcog.org/projects/esmpy/

ESMF_RegridWeightGen

Reads in two NetCDF grid files and
outputs a NetCDF file containing
interpolation weights.

Input formats: SCRIP, ESMFMESH, UGRID,
GRIDSPEC

Output format: SCRIP weight file

Arguments for interp. method, pole
treatment, regional grids, ignore
unmapped points and degenerate cells.

$ mpirun -np 4 ./ESMF_RegridWeightGen

-s src.nc \ # source grid file

-d dst.nc \ # destination grid file

-m conserve \ # interpolation method

-w w.nc # output weight file

ESMF_Regrid

Generates and applies interpolation
weights from a source to destination
grid file.

Formats: GRIDSPEC for structured grids
and UGRID for unstructured. Currently
limited to 2D grids.

Arguments for interp. method, pole
treatment, regional grids, ignore
unmapped points and degenerate cells.

$ mpirun -np 4 ./ESMF_Regrid \

-s simple_ugrid.nc \ # source file

-d simple_gridspec.nc \ # dest. file

 --src_var zeta \ # source

variable

--dst_var zeta # dest. variable

File-based Regridding
Command line tools work on NetCDF files

MOAB vs. Native Mesh Memory Example

Memory Use for Square Latitude-longitude Grids

(Measured on Cheyenne (NCAR HPC platform) using MOAB 4.9.2 and ESMF version
ESMF_8_0_0_betasnapshot_25. Both were compiled with Intel 17.0.1.)

Grid
A structured representation of a region
consisting of one or more logically
rectangular tiles (e.g., a uniform global grid
or a cubed sphere grid)

Mesh
An unstructured representation of a region
including 2D polygons with any number of
sides and 3D tetrahedra and hexahedra

LocStream
A set of disconnected points such as
locations of observations

Supported Geometries

Performance

Source: cubed sphere grid (~25 million cells)
Destination: uniform latitude longitude grid (~17 million cells)
Platform: IBM iDataPlex cluster (Yellowstone at NCAR)

