

Efficient Ensemble Data Assimilation

For Earth System Models with the Parallel Data

Assimilation Framework (PDAF)

Lars Nerger, Qi Tang, Longjiang Mu, Dmitry Sidorenko

Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven, Germany

Overview

- Coupled Data Assimilation
- PDAF Parallel Data Assimilation Framework
- Combining coupled model and PDAF
- Example: AWI Climate Model (ECHAM6 & FESOM)

Coupled Models and Coupled Data Assimilation

Coupled models

- Several interconnected compartments, like
 - Atmosphere and ocean
 - Ocean physics and biogeochemistry (carbon, plankton, etc.)
 - Atmosphere, Land surface, subsurface

Coupled data assimilation

- Assimilation into coupled models
 - Weakly coupled: separate assimilation in the compartments
 - **Strongly coupled**: joint assimilation of the compartments
 - Use cross-covariances between fields in compartments
 - Plus various "in between" possibilities ...

 1.85×1.85

Ensemble Kalman Filters & Particle Filters

- → Use ensembles to represent state and uncertainty
- → Propagate ensemble using numerical model
- \rightarrow Use observations to update ensemble
- → EnKFs are current 'work horse'

Nerger and Hiller, Comp & Geosci., 2013

PDAF provides methods for each of the steps

PDAF - Parallel Data Assimilation Framework

- a program library for ensemble data assimilation
- provides support for parallel ensemble forecasts
- provides filters and smoothers fully-implemented & parallelized (EnKF, LETKF, LESTKF, NETF, PF ... easy to add more)
- easily useable with (probably) any numerical model (coupled to e.g. NEMO, MITgcm, FESOM, HBM, MPI-ESM, SCHISM/ESMF)
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- Usable for real assimilation applications and to study assimilation methods
- ~470 registered users; community contributions

Open source: Code, documentation, and tutorial available at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Combining coupled model and PDAF

Example for assimilation into coupled model: AWI-CM

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for cross-domain assimilation ("strongly-coupled")

AWI-CM: Sidorenko et al., Clim Dyn 44 (2015) 757

Augmenting a Model for Data Assimilation

Model

single or multiple

executables

coupler might be

separate program

FESOM

ECHAM

Framework

Augmenting a Model for Data Assimilation

Requirements on the Coupler

- Coupling to PDAF bypasses model coupler
 - Provides direct access to model fields and mesh information
 - Should be compatible with any coupler
- Coupler has to support ensemble integrations
 - Run several model instances concurrently
 - Example OASIS3-MCT (version in AWI-CM)
 - uses MPI_COMM_WORLD → need to be replaced
 - Current version allows to specify 'commworld'

 1.85×1.85

Framework

MPI Process setup

0	1	2	3	4	5	
0	1	2	3	0	1	Set by OASIS3-MCT

Color legend: MPI_COMM_WORLD COMM_FESOM COMM_ECHAM

MPI Processes – setup for ensemble run

Color legend:						
MPI_COMM_WORLD	COMM_CPLMOD					
COMM_FESOM	COMM_COUPLE					
COMM_ECHAM	COMM_FILTER					

Communicators for ensemble run (ensemble size 3)

Nerger et al., GMD (2020), doi:10.5194/gmd-13-4305-2020

MPI Processes – typical setup for assimilation

Communicators for AWI-CM (single model instance)

Color legend:							
MPI_COMM_WORLD	COMM_CPLMOD						
COMM_FESOM	COMM_COUPLE						
COMM_ECHAM	COMM_FILTER						

Communicators for ensemble run (ensemble size 3)

2 compartment system – weakly coupled DA

Lars Nerger et al. - Ensemble DA for ESMs with PDAF

2 compartment system – strongly coupled DA

Lars Nerger et al. – Ensemble DA for ESMs with PDAF

Implementing the Ensemble Filter Analysis Step

case-specific call-back routines (implement for each compartment model)

Analysis operates on state vectors (all fields in one vector)

Numerical results

Data Assimilation Experiments

Model setup

Global model

 $\approx 180 \text{ km}$

- ECHAM6: T63L47
- FESOM: resolution 30-160km

Data assimilation experiments

- Observations
 - Satellite Sea surface temperature
 - Temperature and salinity profiles (EN4)
- Updated: ocean (SSH, T, S, u, v, w)

atmosphere {T;surf. P, vorticity, divergence, humidity, wind velocity)

- Assimilation method: Ensemble Kalman Filter (LESTKF)
- Ensemble size: 46
- Simulation period: year 2016, daily assimilation update
- Run time: ~4h, fully parallelized using 12,000 processor cores

Online and Offline Coupling - Efficiency

Offline-coupling is simple to implement but can be very inefficent

Example:

Timing from atmosphere-ocean coupled model (AWI-CM) with daily analysis step:

Model startup:	95 s
Integrate 1 day:	33 s
Model postprocessing:	14 s

Analysis step: 1 s

Online and Offline Coupling - Efficiency

Offline-coupling is simple to implement but can be very inefficent

Example:

Timing from atmosphere-ocean coupled model (AWI-CM) with daily analysis step:

Model startup: Integrate 1 day: Model postprocessing:

Analysis step: 1 s

Restarting this model is ~3.5 times more expensive than integrating 1 day

95 s,

33 s

14 s⁴

 \rightarrow avoid this for data assimilation

Lars Nerger et al. – Ensemble DA for ESMs with PDAF

overhead

Execution times (weakly-coupled, DA only into ocean)

MPI-tasks (each model instance)

- ECHAM: 72
- FESOM: 192
- Vary ensemble size
- Increasing integration time with growing ensemble size (11%; more parallel communication; worse placement)
- some variability in integration time over ensemble tasks

Important factors for good performance

- Need optimal distribution of programs over compute nodes/racks (here set up as ocean/atmosphere pairs)
- Avoid conflicts in IO (Best performance when each AWI-CM task runs in separate directory)

Nerger et al., GMD (2020), doi:10.5194/gmd-13-4305-2020

Strongly and weakly coupled DA

- Coupled DA of sea surface temperature
 - Effect throughout the atmosphere
 - Strongly coupled: reduced errors in Arctic troposphere compared to weaky
 - (currently analyzing results in detail)

Summary

- Efficient assimilative coupled model
 - by combining of coupled model with PDAF ("online-coupling")
 - bypass the model coupler
 - avoid excessive file IO
 - avoid model restarts
- Resulting model is run like original model
 - with more processes and additional options
- Strongly coupled DA can be easily implemented
 - → Making it efficient is the real issue
- PDAF is open source (http://pdaf.awi.de)

References

http://pdaf.awi.de

- Nerger, L., Hiller, W. (2013). Software for Ensemble-based Data Assimilation Systems -Implementation Strategies and Scalability. Computers and Geosciences, 55, 110-118. <u>doi:10.1016/j.cageo.2012.03.026</u>
- Nerger, L., Tang, Q., Mu, L. (2020). Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: Example of AWI-CM. Geoscientific Model Development, 13, 4305–4321, <u>doi:10.5194/gmd-13-4305-2020</u>
- Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., Nerger, L. (2020) Improving the ocean and atmosphere in a coupled ocean-atmosphere model by assimilating satellite sea surface temperature and subsurface profile data. Q. J. Royal Metorol. Soc., in press <u>doi:10.1002/qj.3885</u>
- Mu, L., Nerger, L., Tang, Q., Losa, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., Goessling, H. F. (2020) Towards a data assimilation system for seamless sea ice prediction based o the AWI climate model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001937 <u>doi:10.1029/2019MS001937</u>

Strongly coupled: Parallelization of analysis step

We need innovation: **d** = **Hx** - **y**

Observation operator H links different compartments

- Compute part of **d** on process 'owning' the observation
- 2. Communicate **d** to processes for which observation is within localization radius

In PDAF:

achieved by changing the communicator for the filter processes (i.e. getting a joint state vector decomposed over the processes)

