
Parallel I/O in climate and NWP

Luis Kornblueh

with contributions from
Deike Kleberg and Uwe Schulzweida, MPI for Meteorology

Mathias Pütz, CRAY
Christoph Pospiech, IBM

Thomas Jahns, Moritz Hanke, Mathis Rosenhauer and Jörg Behrens,
DKRZ

and
Yann Meurdesoif, Arnaud Caubel, Sebastian Masson, IPSL

Max-Planck-Institut
 für Meteorologie

Scaling optimization result for echam6, T63L47

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24

Power6 nodes

Scaling

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 2 / 16

Classical root I/O explains scaling

0 3000 6000 9000 12000 15000

total

model

output

12875

7500

5375

Runtime [s]

Model part

classical root I/O

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 3 / 16

Atmospheric and Oceanographic Data

Requirements

I long term metadata and data storage

I standardization

I compression

Solutions
I WMO GRIB standard

I lowest entropy data subsampling

I two stage compression: lossy entropy based and lossless
compression of resulted image (CCSDS recommendation
based, DKRZ implemented libaec, replaces szip) — metadata
uncompressed!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 4 / 16

I/O improvements possible

Improvement by additional packing of the BDS data

Resolution GRIBZip2d grib-aec gzip (external)

Source Frauenhofer MPI-M GNU

T42 L19 2.32 2.13 2.06

T63 L31 1.85 1.78 1.35

T106 L60 5.17 4.75 3.81

T213 L31 3.09 3.06 2.41

mean 3.03 2.93 2.15

Remark

netCDF stores 4 byte, grib in average 2 byte — compression ratio
given with respect to the later.

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 5 / 16

I/O improvements possible

Improvement by additional packing of the BDS data

Resolution GRIBZip2d grib-aec gzip (external)

Source Frauenhofer MPI-M GNU

T42 L19 2.32 2.13 2.06

T63 L31 1.85 1.78 1.35

T106 L60 5.17 4.75 3.81

T213 L31 3.09 3.06 2.41

mean 3.03 2.93 2.15

Remark

netCDF stores 4 byte, grib in average 2 byte — compression ratio
given with respect to the later.

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 5 / 16

A transposition problem

Problem
I model decomposition is based on one- or two-dimensional

horizontal slicing

I storage unit of model data is based on vertical slicing

I requires transpose and data gathering

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 6 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

Solution strategy

1. decompose I/O in a way that all variables are distributed over
the collector/concentrator PEs (I/O PEs)

2. store each compute PEs data in buffers to be collected by
collector PEs (I/O PEs) — buffer should reside in RDMA
capable memory areas

3. instead of doing I/O, copy data to buffer and continue
simulation

4. collectors collect their respectable data (gather) via one-sided
(RDMA based) MPI calls and do the transpose

5. compress each individual record

6. write ... sort of

First five steps runs fine, but the last one makes a lot of
trouble!

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 7 / 16

File writing in ECHAM TO-BE

I After calculating one I/O timestep the compute processes copy their data to a
buffer and go on calculating till the next I/O timestep.

I I/O processes fetch the data using MPI one sided communication.

I Gather and transpose of the data is based on callback routines supplied by the
model.

Most important property

Compute processes are not disturbed by file writing.

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 8 / 16

Known difficulties

I single offload step requires large memory on offload-node
(requires eventually changes for Linux cluster and Cray XT
architecture type machines, and maybe for IBM BlueGene)

I generates network jitter (RMA access to all compute nodes
concurrent with computing nodes internal communication)

I filesystem jitter due to system bottlenecks (eg. blizzard@dkrz:
total bandwidth 30 GB/s, 2 GB/s per node, but 256 nodes)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 9 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

What to optimize?

Search strategy

1. get to know your systems I/O capabilities!

2. measure the I/O bandwidth achieved

3. build a test case for your I/O library

4. profile your testcase

5. track down to offending level

6. check selected counters for offending code part

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 10 / 16

I/O capabilities

An example: DKRZ

I 256 compute nodes, 12 file server, 6 PB filesystem, 4 HPSS
server, 60 PB tape archive

I total I/O bandwidth to disk 30 GB/s

I per node max. I/O bandwidth 2 GB/s

I 1600 users

I max. 96 concurrent post-processing jobs

I unknown number of production jobs

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 11 / 16

Analysis for optimization strategy

Caution: assembler reading required

I understand roughly how your CPU works

I need to read assembler (not that bad, feels like using a pocket
calculator), you get an idea what the compiler is doing

I compare code of different optimization levels

I try to find the patterns, you would expect for fast code

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 12 / 16

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

Runtime [s]

Model part

cdi I/O

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 13 / 16

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

12875

7500

5375

Runtime [s]

Model part

cdi I/O root I/O

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 13 / 16

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

12875

7500

5375

Runtime [s]

Model part

cdi I/O root I/O

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 13 / 16

Real application improvements

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5
 0

 100

 200

 300

 400

 500

 600

Fo
re

ca
st

 y
ea

rs
 p

er
 d

ay

O
ut

pu
t t

im
e

[s
]

Nodes

SMT init y/d
SMT sio y/d
SMT pio y/d
SMT sio IO
SMT pio IO

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 14 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

Some recommendations on data handling

I do not duplicate data

I compress domain specfic, data only to allow fast metadata
access

I keep large files, maybe use containers

I use the precision customized for your problem (information
entropy tells you how much bits needed)

I never, ever move data per se (copy), always combine with
data reduction or other transformations needed

I move second level data away from the HPC production
machine

I develop a new concept replacing file systems by something
more science problem aware (data blocks, neighborhood
relations, meta data associated with, raw disk block usage)

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 15 / 16

What to do with this?

Courtesy: Nathanael Hübbe, University of Hamburg, DKRZ

Max-Planck-Institut
 für Meteorologie

Kornblueh et al.– Parallel I/O in climate and NWP 16 / 16

CEA/DSM/LSCE – Yann Meurdesoif 01/02/13 1

XIOS

¶U
¶ t

+2Ω ´ U=.

Yann Meurdesoif(LSCE-IPSL), A. Caubel, S. Masson

CEA/DSM/LSCE – Yann Meurdesoif

XIOS - Motivation

 XIOS stands for XML – IO – SERVER
 Library developed at IPSL and dedicated to IO management of climate model.

 Management of output diagnostic, history file.
 Temporal post-processing operation (averaging, max/min, instant, etc…)
 Spatial post-processing operation.

 Rewrote in C++ and improved as a part of the IS-ENES project.
 ~ 35 000 code lines under SVN : http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

CEA/DSM/LSCE – Yann Meurdesoif

XIOS main goals

 Flexibility
 Simple IO management in the code

 Minimize calling subroutines related to IO definition (file creation, axis and dimensions management, adding
and output field…)
 Minimize arguments of IO calls.

 Ideally : output a field requires only an identifier and the data.
 CALL send_field(“field_id”, field)

 Outsourcing the output definition in a XML file
 Hierarchical management of definition with inheritance concept
 Simple and more compact definition, avoid unnecessary repetition

 Changing IO definitions without recompiling
 Everything is dynamic, XML file is parsed at runtime.

 Performance
 Targeted for large core simulation (> ~10 000) on climate coupled model.
 Writing data must not slow down the computation.

 Simultaneous writing and computing based on asynchronous call.
 Using one or more “server” processes dedicated exclusively

 to the IO management.
 Asynchronous transfer of data from clients to servers.
 Asynchronous data writing by each server.

 Use of parallel file system (Netcdf4-HDF5 format).
 Simultaneous writing in a same single file by all servers
 No more post-processing rebuild of the files

01/02/13 3

CEA/DSM/LSCE – Yann Meurdesoif

Communication protocol

Use buffer to smooth large peaks of data flow (monthly or daily output)
 Several messages can be concatenated in one MPI call

Client Side protocol : use double buffer
one for message transferring, one for buffering

Server side protocol
Using circular buffer
 Received requests can be processed

at the same time as a new request is transferring

01/02/13 4

CEA/DSM/LSCE – Yann Meurdesoif

IO Layer

For now, output layer uses only NETCDF4/HDF5 parallel library.
optionally netcdf3 can be used, but without parallel support

 2 modes are possible : "one_file" or "multiple_file"

"Multiple_file" mode
One per XIOS servers
 rebuilding phase is needed at post-processing

"One_file" mode
All XIOS servers write simultaneously in a single file
Uses MPI/IO to aggregate file system bandwidth

Achieving good performance with netcdf4/hdf5/MPI_IO layer is very challenging
 strong file system dependence
 a lot of recipes to avoid very bad performance, a lot of work done.

XIOS embeds an improved netcdf4 parallel library for improved performance
 netcdf compilation is managed by XIOS.

02/01/13 5

CEA/DSM/LSCE – Yann Meurdesoif

NEMO test case on Curie tier0 computer (S. Masson)

Very huge configuration : 1/12th degrees global
 GYRE 144 : 4322x2882x31 , up to 8160 cores
6 day simulation (2880 time steps), hourly means output : 300s run, ~1.1 Tb
3.6 Gb/s, 13 Tb/hour, 312 Tb/day, 9.4 Pb/month (real time)

File system capability : Lustre 150 Gb/s (global) theoretically
In practice with an optimal MPI/IO simple parallel write test-case in a single file

 must tune the number of OSTs used
 peak ~ 20 Gb/s, average 10 Gb/s

With NETCDF4/HDF5/MPI_IO layer on an ideal test case
 only MPI_IO call : ~ 8 Gb/s
 whole < 5 Gb/s average

02/01/13 6

CEA/DSM/LSCE – Yann Meurdesoif

Multiple file mode

Works fine, good scaling up to 8160 cores

02/01/13 7

CEA/DSM/LSCE – Yann Meurdesoif

One file mode

More challenging, recents results...
Gyre 144, daily mean output
 8160 NEMO, 32 XIOS : works almost perfectly

 +1.5% for IO < OS jitter
Gyre 144, 6 hourly mean output
8160 NEMO, 32 XIOS

 +5% for IO
Gyre 144, hourly mean output
1024 NEMO, 16 XIOS

 +5% for IO
8160 NEMO, 128 XIOS

 Extreme testcase, close to NEMO strong scalability limit.
 Close to filesystem capability bandwidth.
 + 15-20% for IO
 Netcdf bandwith could be improved ?
 Maybe network jitter between NEMO MPI and client-server-lustre IO communication?

02/01/13 8

