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Exascale NWP at ECMWF
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From the Scalability Programme to
Destination Earth

Petor Bauer, Tiag wtino, Nils Wodi

his article rocalls the origins of ECMWF's

Scalability Programme eight years ago and

how it helped to prepare ECMWF for the
EU-funded Destination Earth initiative, which
emerged through a considerable effort from some of
the leading scientists in the field of weather and
climate prediction and computational science.
The Scalability Programme was designed to adapt In the past
weather prediction codes to emerging computing o
paradigms, and Destination Earth is an nitiative to
dovelop a highly accurate digital twin of our planet.
Both initiatives iustrate how fruitful international
collaboration can be, but they also highlight the
challenges for devising and implementing large and
ambitious programmes supporting the digital
revolution of Earth system science.
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Key Points;

+ Aunique simulation with 14 km
average grid spacing is presented
o model development and process
evaluation

The 1.4 km simulation shaws
remarkable fidelity with respest

tor the well ated simulation

a0 9 ki with parametrized deep
convection
Switching off deep comvection

At a to coarse resolution (9 kim)
generates oo strong convective
gravity waves
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A Baseline for Global Weather and Climate
Simulations at 1 km Resolution
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Toan Hadade', Sam Hatfield! ", Olivier Iffrig' ", Philippe Lopez', Pedro Maciel'”,
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Abstract nan attempt to advance the understanding of the Earth's weather and climate by
representing deep convection explicitly, we present a global, four-menth simulation (Novemnber 2018 to
February 2019) with ECMWF's hydrostatic Integrated Forecasting System (IFS) at an average grid spacing
of 1.4 km. The impact of explicitly simulating deep convection on the atmospheric circulation and its
vartability is assessed by comparing the 1.4 km simulation to the equivalent well-tested and calibrated
global simulations at 9 km grid spacing with and without parametrized deep convection. The explicit
simulation of deep convection at 1.4 km results in a realistic large-scale circulation, better representation of
convective storm activity, and stronger convective gravity wave activity when compared to the 9 km
simulation with parametrized deep convection. Comparison of the 1.4 km simulation to the 9 km
simulation without parametrized deep convection shows that switching off deep convection
parametrization at a (oo coarse resolution (i.e., 9 km}) generates (oo strong convective gravity waves. Based
on the li d available, imp; to the Madden-Julian Oscillation or tropical

itation are not observed at 1.4 km, suggesting that other Earth system model components and/or
nteraction are important for an accurate representation of these processes and may well need
adjusting at deep convection resalving resolutions, Overall, the good agreement of the 1.4 km simulation
with the 9 km simulation with parametrized deep convection is remarkable, despite one of the most
fundamental parametrizations being turned off at 1.4 km resolution and despite no adjustments being
made to the remaining parametrizations.

Wedi et al., 2020




Current HPC activities at ECMWF

Machine Peak perf. | Hardware Toolchain
(PFLOP/S)

CCA/CCB (Cray XC40) Operations (old) CPU (Intel) Cray
AA/AB/AC/AD (Atos Operations (new) 30 CPU (AMD) + Intel + NVHPC
BullSequana XH2000) GPU (Nvidia)

JUWELS Booster nextGEMS 70 GPU (Nvidia) NVHPC
Summit INCITE 200 GPU (Nvidia) NVHPC
LUMI-G (test nodes) Benchmarking 550 GPU (AMD) CCE/ROCm
Frontier INCITE (provisional) 1500 GPU (AMD) TBC

Fugaku Benchmarking 500 CPU (ARM) Fujitsu




Towards a fully single-precision Earth-system model

Neutral impact Positive impact

Saving of Increase in
computational cost computational cost

through through higher
implementation of vertical resolution

single precision of ENS

https://www.ecmwf.int/en/about/media-centre/news/2021/
forecast-upgrade-innovates-single-precision-and-ensemble-resolution




A zoo of number formats

FP64 “double precision”

FP32 “single precision”

FP16 “half precision”

bfloatl6

“TF32” (effectively 19-bit)

sign exponent significand

sign exponent significand

sign exponent significand

sign exponent significand

sign exponent significand



A zoo of number formats
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sign exponen
FP16 “half precision”  HEREEEEREEEEREES



Half-precision spectral transforms

Error w.r.t. observations

NH Z500, TCO1279

—— double-precision (64 bit) y
— = half-precision (16 bit)
-+ Tensor Core (32/16 bit)

100
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Forecast lead time (days)

Skill of forecasts using half-precision
Legendre transforms compared with double
precision
Hatfield et al. 2019, https://doi.org/10.1145/3324989.3325711

Legendre transforms of the IFS a good target for
half precision

« Bottleneck at high resolution

« Compact code

« Algorithmically simple — series of GEMMs

Preliminary software emulation studies (Hatfield et
al. 2019):

« Half precision can be used in Legendre transforms even up
to TCO1279 (9 km globally) resolution

« Necessary to rescale inputs/outputs, as before



The first half-precision CPU: Fujitsu A64FX
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ECMWEF/R-CCS collaboration

 Initiated between R-CCS and ECMWF in
January 2021

* R-CCS: Hirofumi Tomita, Seiya Nishizawa,
Tsuyoshi Yamaura

« ECMWEF. Sam Hatfield, Peter Dueben

» Modest budget: ~20,000 node-hours/year

Key questions:
V aa
- ECMWF « How easy is it to port existing weather and

climate codes to ARM? (focusing on Fugaku)
« How can FP16 limitations (low range, large
rounding errors) be accommodated by
algorithmic changes?
 What FP16 speed-up can be realised in real
world applications?

) O
arzn R-CCS
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Familiarising with system

Testing spectral transform dwarf with FP16
Negotiating IFS license for RIKEN

Fixing MP1/OpenMP pinning problem
Testing FP16 Legendre transforms

Porting the IFS to Fugaku

Performing benchmarking and scalability tests



Weak scalability on Fugaku
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Weak scalability on Fugaku
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Weak scalability on Fugaku
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Weak scalability on Fugaku
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Half-precision Legendre transforms
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Half-precision Legendre transforms in the IFS

Reference (FP32)

2>

« Baroclinic wave test case
« 500 hPa vorticity after 10 days, TCO399L137 resolution (~25 km)
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Half-precision Legendre transforms in the IFS

Reference (FP32) FP16 experiment

> =

« Baroclinic wave test case
« 500 hPa vorticity after 10 days, TCO399L137 resolution (~25 km)
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Future work

Scaling up

« Continue scaling: TCO3999 (2.5 km), TCO7999 (1.25 km)
 Direct comparison with Summit
 (Budget permitting) High-resolution coupled forecast

Half precision

- Keep debugging
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