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BSC Departments

Earth

Sciences

To develop and implement global and
regional state-of-the-art models for short-
term air quality forecast and long-term
climate applications

Performance Team

* Provide HPC Services (profiling, code audit, ...) to find main
bottlenecks of our operational models

* Research and apply new computational methods for current and
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Atmospheric models

Atmospheric models are a mathematical representation of atmospheric
water, gas, and aerosol cycles.
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Atmospheric models

Atmospheric models are a mathematical representation of atmospheric
water, gas, and aerosol cycles.
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Resolution of chemical processes can take up to 80%
of the time execution!
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State of the art - KPP GPU

e Kinetic PreProcessor ( KP P) IS a Configuration Median CPU  Median acce- Performance
. . exec time lerated exec over
analysis tool to solve chemical (s) time (s) CPU
mechanlsms u5|ng Rosenbrock Intel Xeon X5650 + M2070 4.502 0.999 4.50x
Intel Xeon E5-2680 v3 + K80 1.476 0.283 5.21x
methOdS IBM POWERS + P100 3.040 0.149 20.40x
Configuration MPI Processes CPU exec  Accelerated Performance
. . d I d . h time (s) exec time (s) over CPU
¢ KP P IS WId€E y US€ea in t € 2 x 6-core Intel Xeon X5650+ 2 MPI processes 5199 2358 2.27 x
. . 2 x NVIDIA M2070 12 MPI processes 1388 1368 1.01 x
atmospheric community
2 x 12-core Intel E5-2680 v3+4+ 4 MPI processes 7362 3384 2.7 %
2 x NVIDIA K80 24 MPI processes 1756 1473 1.19 %
. 2 x 10-core IBM POWERS + 4 MPI processes 2294 918 2.50 x
e The GPU version for the EMAC 4 x NVIDIA P100 20 MPI Processes 814 437 1.86 x
climate model achieves u p to 20x Michail Alvanos and Theodoros Christoudia, GPU-accelerated atmospheric

. . chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model, 2017
speedup against CPU single-core
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CAMP: Chemistry Across Multiple Phases
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Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022
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CAMP: Chemistry Across Multiple Phases

10 reactions
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Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022
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CAMP CPU Solver

e CAMP uses the Backward Differentiation Formula (BDF) from CVODE, which is a
solver for ordinary differential equation (ODE) systems.

e BDF requires a linear solver package. The default option is the KLU algorithm for
the CPU execution, while it also has a CUDA version of the Biconjugate Gradient
(BCG) algorithm.

Y,

Atmospheric S
model A'J - Linear
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Block-cells (GPU parallelization strategy)

e Block-cells assigns each
atmospheric cell to a GPU
thread block

e Uses as many threads as
chemical species

Traditional Atmospheric
Block-cells

approach model

GPU/MPI Domain GPU

1 T 1 T 1 T

Threads 1 L Cells 1 2 Thread blocks

NO threads = N° Cells 1 T 1 T
. ] 1
Chemical species Threads

N° threads = N° Species

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop

Barcelona
Supercomputing
COI"O(



Introduction | Background | Implementation | Test environment | Results | Conclusions

Block-cells (GPU parallelization strategy)

e Higher occupancy than
traditional approaches (more
threads computing data)

e 34x speedup against CPU
single-thread for the CAMP BCG
linear solver

Traditional Atmospheric
Block-cells
approach model
GPU/MPI Domain GPU
1 T 1 T 1 T
Threads 1 i Cells k : Thread blocks
N° threads = N° Cells 1 T 1 T

Threads

Chemical species

N° threads = N° Species

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop
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Communicating data between threads

e All communications are Start

performed at thread block level

An example: A thread triggers

an error due to a negative

Sync thread block
(shared memory)

concentration SiicEass
The error is shared between the
other threads in the block by

using shared memory
GPU BDF convergence loop
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Hardware
e CTE-POWER cluster:

o 2 xIBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4
threads/core, total 40 cores per node)

O0 4 x GPU NVIDIA V100 (Volta) with 16GB HBM?2.

o Compilers: GCC version 6.4.0 and NVCC version 10.2
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Software configuration

Architecture Parallel resources Parallelization
language
CPU 1,40 MPI
GPU N° of different chemical concentrations (species x CUDA
cells)

e The evaluation is performed over the code included in the most external loop in
BDF. The code related to previous initializations is excluded.

e Chemical mechanism: Gas phase chemistry from Carbon bond 2005 (CBO5) |
Chemical species: 156 | Cells (ODE systems): 100-10,000 | GPU Shared memory
size per block: 256 | CVODE absolute tolerance: 0.01% | BCG tolerance: 1.0e-30
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Speed-up

GPU BDF vs 1 MPI CPU Base version

40
e Up to 35x speedup in average vs

single-thread

35

30

e Standard deviation around 2

Speedup BDF loop [Mean and o]
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Speed-up against 40 processes

1 MPI GPU BDF vs 40 MPI CPU Base version

e 1.2x speed-up against a fully CPU node

-
N

(40 MPI processes)

%
o

® Since there’s no communication

between threads, we estimate 4.8x
speed-up using the full GPU resources

in a node (4 GPUs) - Ongoing work

Speedup BDF loop [Mean and o]
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Kernel profiling

e Some optimizations already

Variable

performed (like adjusting the Occupancy Per ¥

number of registers per thread) b
Active Threads
Occupancy

e The register usage is likely Worps

Threads/Block

preventing the kernel from fully e
utilizing the GPU S

Registers
Registers/Thread
Registers/Block

e This usage is mostly produced by

Shared Memory

the algorithm definition, which

Shared Memory/Block

computes big data like the Jacobian et
matrix
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Conclusions

Our Block-cells strategy increase the GPU parallel threads against traditional
implementations (N2 Threads = N2 Cells)

The CUDA BDF loop performs up to 35x times faster than CPU single-thread
o 1.2x speed-up against CPU using the fully resources node.

o Since the load is independent between threads, we estimate up to 4.8x
speedup using 4 GPUs per node.

The kernel profiling suggests a limitation on the performance by memory
Our approach can be used in more chemical applications thanks to the versatility of

the CAMP module.
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Future work

e Add multi-device functionality to compute up to 4 GPus per node.
e Balance load between CPU and GPU architectures.

e Integrate our implementation inside an atmospheric model.
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