

JASMIN: Infrastructure to support a diverse range of scientific use cases

ISENES3 Virtual workshop on requirements for a fast and scalable evaluation workflow, May 2021

Ag Stephens, Philip Kershaw, Matt Pritchard and the STFC-CEDA and STFC-SCD Teams

Overview

- CEDA and JASMIN
- Scientific use cases
- Topics:
 - Storage
 - Compute
 - Data transfer/migration
 - Cloud
- Bringing it all together

CEDA: Overview

- Centre for Environmental Data Analysis
- Mission: to provide data and information services for environmental science
- ~30 staff
- CEDA:
 - >20Pb of environmental data
 - Catalogue and data access services
 - ~67,000 users (~20k active users)
- JASMIN

https://www.ceda.ac.uk/

JASMIN: Purpose

Supports data analysis for (NERC) environmental science community

• Large scale, data-intensive science

Designed for performance

Tailored to needs of academic community

Compute co-located with the data

- CEDA Archive data (curated)
- Group Workspaces (self-managed, not curated)

Flexible compute capabilities

- Interactive and batch compute
- JASMIN Cloud provides autonomy, scalability

JASMIN: numbers

- >40 Petabytes high performance storage
- >13,000 computing cores
- High-performance network design
- ~50 Private cloud 'tenants', to enable flexible usage
- Dedicated high memory and data transfer machines
- GPU cluster to be installed

User needs for "big-data" platform

- Access to any software packages...that we might need
- A stable unchanging software environment...for the duration of my project (and when we come back and re-run later)
- Access to unlimited processing capability...at the exact time we are ready to run
- Access to unlimited storage...in case we need it
- Tools to manage all kinds of workflows across such a platform

JASMIN: Scientific use cases

- 1. Interactive login (small)
- Notebook (small)
- Notebook on CaaS (medium)
- 4. Batch via login (medium/large)
- 5. Batch and multi-step workflows (large)
- External Cloud interactions (including Object Store) (medium/large)

JASMIN Services

JASMIN Services

JASMIN Storage SSD

Transfer cache: temporary

Issues related to storage

- File-systems mounted across entire platform
- Heterogeneous file-system storage:
 - SSD, SOF, PFS different properties/strengths/weaknesses
- Limitations on parallel writes
- Small-file (<64Kb) support: e.g. software environments
- Optimising use of storage media for large workflows:
 - Very significant impacts on efficiency
- When to use tape and object store?

The case for object storage

Traditional File Systems (POSIX)

- Access model is limiting user management fixed to operating system – if you don't have a JASMIN id, you can't access it
- Strain on this model scaling with large file systems

Object Store

- Access is by HTTP so data can potentially be accessed from anywhere
- Provides a way to share data between the External Cloud and other parts of JASMIN
- Naturally scales

CMIP6 in the JASMIN Object Store

- We have developed a tool for converting our CMIP6 holdings to Zarr format written in the JASMIN Object Store.
- Processed as each ESGF Dataset:
 - One variable, model, expt, ensemble
 - All files in a time series
- Zarr files save "chunks" (i.e. sub-arrays) as individual objects.
- Notebook interface uses Intake-ESM catalog, Xarray, Matplotlib (PANGEO stack)
- Available to JASMIN users
- ~70Tb loaded so far
- Prototype stage at present

JASMIN Services

Natural Environment Research Council

Information

community cloud

storage types

CaaS

JASMIN Compute

JASMIN Notebook Service


```
In [ ]: print('hello')
         # Then press: Shift+Enter - which executes the cell and move to the next one.
                                      If there isn't one below, it creates a new one for you.
         # Or press: Ctrl+Enter - which executes the cell (and stays focussed on the current cell).
         # Or press: Alt+Enter - which executes the cell and creates a new one for you.
In [ ]: # In fact, you don't need "print"
         You can include any Python that you might run in a script or interactive session.
In [ ]: ZERO = 273.15
         def convert_temp(celsius):
             Convert temperature (celsius) to temperature (kelvin).
             Return: temperature in Kelvin
             kelvin = celsius + ZERO
             return kelvin
         Having defined a function, we can call it later in the Notebook:
In [ ]: if convert temp(0) != 273.15:
             'That function is bad'
            print('It works!')
         NOTE: we can't run a function in a cell that hasn't been run yet.
In [ ]: say hello()
In [ ]: def say hello():
```

A Jupyter Notebook is an interactive programming environment that runs in a web browser.

The JASMIN Notebook Service that allows you to:

- Define, edit and run code (in Python)
- Access a common (Jaspy) software environment
- Access data in the CEDA Archive and in your Group Workspaces
- Access data in the JASMIN Object Store

Software on JASMIN

- Software is provided on analysis/batch/notebooks
- Compile / build / install software
- Restricted and server-specific software
- Data movement software

https://help.jasmin.ac.uk/article/273-software-on-jasmin

Python2.7 & others Python3.7 & others

Issues related to batch compute

- Provide a heterogeneous batch environment:
 - Standard nodes: 16 core, 128Gb RAM
 - 1Tb nodes: 48 core, 1024Gb RAM
 - 2Tb nodes: 48 core, 2048Gb RAM
 - And others...
- Scheduler (SLURM) needs tuning to enable:
 - Prioritisation for major (funded/high-priority) projects
 - Fair-share for general use
- NOTE: users will look for ways of subverting the scheduler rules

User workflows

Workflow tools - Rose/Cylc

On JASMIN, we have installed Rose/Cylc (Met Office/NIWA):

- very good for multi-step workflows
- Includes a graphical interface
- talks to LOTUS
- sophisticated workflow management (retries etc)
- dedicated server

Encouraging good practice

JASMIN Services

JASMIN: data transfer and migration

Issues related to data transfer and migration

- Use the best tool for the job
- Use the best transfer protocol
- Use the best server/service
- Incremental backup is required:
 - But hard to provide
 - Requires walking of the file-system (expensive because of parallel disk management of file-system metadata)
- Important question: "Do you need to move the data at all?"
- Can we reduce volumes using WPS subsetting, opendap etc?

JASMIN Services

JASMIN: cloud

JASMIN: cloud

Benefits of CaaS

- Dedicated clusters for your project
 - No competing for job slots with other users
- Clustering software like Kubernetes and Slurm is difficult to configure
 - Let CaaS do it for you!
- Cluster manager still gets root access
 - Apply customisations on top of CaaS-managed clusters
- Your users do not have to be JASMIN users
 - CaaS provides an identity management portal for your tenancy
 - Identities are integrated across all clusters in a tenancy
- Supports additional functionality
 - Use Kubernetes to build services for end users
 - Run a Jupyter notebook platform for your project

Issues related to cloud compute

Background:

- Compute-as-a-Service (CaaS) environments in JASMIN Cloud
- Users running PANGEO and other Notebook environments
- Local storage and access to the JASMIN Object Store

Requirements:

- Provide scalable clusters for processing e.g. enabling Dask for high-performance parallel data access and processing
 - In reality: resource implications to meet a range of different usage modes

Common use case: Data Analysis and Sharing

Customisation and Environments

My code - I can control it ⊙

Operating System - I can access a limited set of functionality from

JASMIN Infrastructure – fixed set of services providing resources that I can use

Customisation Evolution

Cluster-as-a-Service

- custom environments from building blocks
- On top of JASMIN Cloud

Manage-your-own Sci Analysis VMs

- Dynamic but fixed configuration
- **Uses JASMIN Cloud**

Sci Analysis VMs

static resources

Per user resources

Bringing it all together: DTEP Climate Impact Explorer

Summary

- In the last decade, JASMIN has gone from an idea to a major platform in the UK scientific computing landscape
- Co-location of data and code is key
- Providing a variety of storage and processing solutions:
 - meets the needs of many users
 - requires significant effort (and therefore funding) to maintain/develop
- Tensions when supporting scientific users:
 - Must be flexible/scalable: we want to facilitate cutting-edge science
 - Must be pragmatic: users will generate requirements + find loopholes
- The future:
 - Mix of POSIX, object store and tape
 - Mix of traditional batch and new scalable processing (cloud)
 - More solutions that don't need to access the files until required: improved search and lazy evaluation

Thank you!

Research Council

Email - ag.stephens@stfc.ac.uk

GitHub - @agstephens

Websites:

- www.ceda.ac.uk
- www.jasmin.ac.uk

