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ABSTRACT 

The document reports the updates of the NEMO code as designed in the Milestone M8.4 
“Definition of the NEMO optimization strategy”. This document describes the main changes to the 
NEMO code included in the last revision NEMO v4.2 available in the NEMO git repository since 
March 2022. 
The most important developments regard the performance optimization through a redesign of the 
communication strategy for the halo update and the use of mixed precision in the NEMO model.  
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1 Executive Summary 

 
The developments carried out within the first three years of the IS-ENES3 project to improve 
NEMO performance have been fully integrated in the NEMO code and released with the 
official NEMO release 4.2.0.  
The NEMO site reports the changes of this release compared with the previous one 
(https://sites.nemo-ocean.io/user-guide/changes.html). With regard to the HPC developments 
performed within WP8 of the IS-ENES3 project and fully described in M8.4, the new release 
includes: 
 

1. A code cleanup to reduce the number of MPI communications 
2. Extension of the halo to reduce the frequency of MPI communications 
3. The integration of MPI3 collective neighboring communication for the halo exchange, 

a preliminary step to reduce the number of exchange where 5-points stencil is enough 
4. The mixed precision preparatory phase to speed up the model run by using the least 

number of significant bits possible. 
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2 Objectives 
The main objective of this document is to describe the development of the actions defined in 
Milestone 8.4 needed to carry out the performance optimization of the NEMO code proposed 
in the IS-ENES3 DoW for WP8-Task1. 
The proposed changes were discussed with the NEMO System Team and the HPC Working 
Group prior to their implementation in NEMO. The role of this group was to verify that the 
proposed optimization strategy matched the NEMO development strategy document 
(https://zenodo.org/record/1472458#.Y0rTFy0Ro_U). The activities were then included as 
actions in the NEMO development work plan 
(https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP). Development branches were created for the 
actions (https://forge.ipsl.jussieu.fr/nemo/browser#NEMO/branches), tested using the NEMO 
reference configurations and test cases, internally reviewed, and finally merged in the official 
4.2.0 release of NEMO. 
Section 2 reports the details of these developments and their code changes, while the last 
section introduces some actions planned for the future. 
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3 Code changes in NEMO v4.2 

 
3.1 MPI Communication cleanup (ticket #2607) 
The whole code has been revised in order to remove unnecessary communications. Some 
communications to update the halo of neighboring parallel processes are no longer needed, due 
to code evolution. For example, some communications performed before writing the output 
files have been deleted since the halo region is no longer included in these files. 
In other cases, this work was a prerequisite for the application of other optimizations. Some 
communications have been removed or moved earlier in the code by introducing an extended 
halo in lbc_lnk, the interface implementing MPI exchanges with neighboring processors in the 
NEMO code. This allows developers to reduce the frequency of communications by moving 
the communication outside of DO loops (where possible) and to implement other optimizations 
such as tiling or loop fusion. Moving the communications outside of DO loops requires a deep 
analysis of the algorithm implemented in each routine and, to date, has been performed on the 
Tracer Advection module (Changeset 14609), the Vertical Ocean Physics module (Changeset 
14601) and most of the Ocean Dynamics module routines (Changeset 14682). 
Following is an example of the analysis and implementation process that has been carried out 
on the code. Taking into consideration the original dyn_keg routine in Figure 1 (Hollingsworth 
scheme case, 1-point halo width), the horizontal kinetic energy zhke is computed on the inner 
domain (DO_3D( 0, 0, 0, 0, ... )) and its halo is then updated via an lbc_lnk. Finally, the whole 
array is used to update the velocities puu and pvv.  
 

 
Figure 1 - Original version of dyn_keg routine 

 
If a 2-point halo width is used, the lbc_lnk communication can instead be performed on the 
velocities puu and pvv before the first DO_3D. Their updated halo values can then be used for 
the computation of horizontal kinetic energy zhke in the range [2:jpi-1,2:jpj-1,1:jpk-1] 
(DO_3D( 1, 1, 1, 1, 1, jpkm1 )), which can then be used to update the velocities puu and pvv. 
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Figure 2 - Modified version of dyn_keg routine 

 
These changes, shown in Figure 2, do not alter results in the GYRE PISCES configuration, but 
produce different results in the ORCA2 ICE_PISCES reference configuration from time step 
23 onwards (REPRO84 test) compared with tests using a 1-point halo width, although 
restartability and reproducibility are preserved. 
This implies that the change in results is related to the NORTH FOLD treatment.  
It is worth recalling that the differences between the 1- and 2-point haloes are limited to the 
computation of values held in the first halo line. Indeed, in the 1-point halo case these values 
are received from the neighbor (or from the corresponding rank in north fold), while in the 2-
point halo case these values are computed locally.  
Considering an 8x4 domain decomposition with jpi=25 and jpj=39, in the original 1-point halo 
case the hdiv value for the halo point at (21i, 39j) on processor 29 is sent by processor 26 after 
computing its inner point at (3i, 37j). 
When a 2-point halo is instead used, the corresponding halo point at (22i ,40j) is directly 
computed by processor 29. 
So, it is expected that 
 

ℎ𝑑𝑖𝑣[22,40]𝑜𝑛	𝑝𝑟𝑜𝑐	29	(ℎ𝑎𝑙𝑜	2	𝑐𝑎𝑠𝑒) 	= 	ℎ𝑑𝑖𝑣[3,37]𝑜𝑛	𝑝𝑟𝑜𝑐	26	(ℎ𝑎𝑙𝑜	1	𝑐𝑎𝑠𝑒)  
 

Looking at the values of the u- and v-grid variables contributing to the calculation of the 
horizontal divergence hdiv at these points, it can be noted that they are arranged in a 
symmetric/mirrored way in the 2-point halo case compared to the 1-point halo case. Table 1 
reports the corresponding values along with the halo region.  
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Table 1 - Values contributing to the horizontal divergence hdiv in the 1- and 2-point halo 
cases 

 
 
More generally, it can be asserted that when we compute the values on the first line of the halo 
(which happens only in the 2-point halo case) the following changes happen when an 
expression is evaluated: 
 

•  For the U-grid fields:  
o  the sign changes 
o  index i turns to i-1 
o  index i-1 turns to i 
o  index j+1 turns to j-1 
o  index j-1 turns to j+1 

• For the V-grid fields: 
o  the sign changes 
o  index j turns to j-1 
o  index j-1 turns to j 
o  index i+1 turns to i-1 
o  index i-1 turns to i+1   

 
After applying these changes to the hdiv expression, the code changes as shown in Figure 3 and 
Figure 4. 
 

 
Figure 3 - Original expression for hdiv 
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Figure 4 - Equivalent expression for hdiv on the first halo row after altering indices to reflect 

the north folding 
 
For the case of hdiv the difference is only due to the order of floating-point operations, hence 
the loss of bit comparison between 1- and 2-point halo cases is acceptable. Such a situation 
should occur for all of the expressions in the code, hence the north folding algorithm should 
not be changed when a 2-point halo is used. Moreover, bit comparison is still guaranteed 
between 1- and 2-point haloes by appropriately using round brackets in the expression to force 
a consistent order of floating-point operations.  
It has been verified that by forcing the hdiv formula as shown in Figure 5 in both the original 
1-point halo code and modified 2-point halo code, the .stat files do not differ. 
 

 
Figure 5 - Modified hdiv expression that preserves bit comparison between 1- and 2-point 

haloes 
 
Since differences in the results due to a different order of the floating point operations can be 
considered acceptable, but at the same time a code modifications check was needed to ensure 
that bugs were not introduced, a new branch named 
ticket2607_r14608_halo1_halo2_compatibility has been created starting from the current trunk 
in order to: 

1. properly insert round brackets for those expressions that will be affected by the 
movement of the lbc_lnk communications. (The use of round brackets will produce an 
acceptable bit difference in the results without any other modification in the code) 

2. proceed with the lbc_lnk clean-up and movement, ensuring that the 1- and 2-point halo 
cases now produce the same results. 

 

3.2 Extra Halo extension (ticket #2366) 
The whole code has been changed in order to support an extended halo. It allows the developers 
to reduce the frequency of communications by moving the communication outside of DO loops 
(where possible) and to develop other optimizations such as tiling or loop fusion. As stated 
before, moving the communications outside of DO loops requires a deep analysis of the 
algorithm implemented in each routine and, to date, has been performed on the Tracer 
Advection module, the Vertical Ocean Physics module and most of the Ocean Dynamics 
module routines. The implementation of other optimizations, which are now feasible thanks to 
the extended halo, requires other developments (now in progress) before producing valuable 
benefits (i.e. tiling, loop fusion, etc..). 
 



Update of the NEMO code pag. 9 of 14 
 

3.3 Improvements using MPI3 (ticket #2496) 
A new halo update strategy, implemented through the MPI3 neighborhood collective 
communications, has been integrated in the LBC (Lateral Boundary Condition) NEMO library, 
so that both point-to-point and collective communications are supported for the halo exchange. 
Only the following few code files have been modified/added so that the implementation is not 
too invasive and does not require a code refactoring: 
 

• lbc_lnk_call_generic.h90, where the selection of the communication strategy is 
implemented through the nn_comm namelist parameter, as shown in Figure 6. 

 
 

The default communication strategy in the NEMO code is now based on the 
neighborhood collectives approach. However, the user can activate point-to-point 
exchange if the MPI version on the target system does not support neighborhood 
collectives, simply by setting the namelist nn_comm equal to 1. 
 

• lbclnk.F90, where the interfaces for the new communications are introduced 
 

• lbc_lnk_neicoll_generic.h90, where the collective neighborhood exchanges are 
implemented. The graph topology is preferred over cartesian topology (both described 
in the Milestone M8.4) in order to maintain the same strategy for both 5-point and 9-
point stencils. Moreover, land-point domains exclusion is handled due to the flexibility 
of graph topology. Two different communicators (Figure 7) are created in the 
mpp_ini_nc routine (lib_mpp.F90) to support exchanges with and without the 4 corners.  
 

 
Figure 7 - MPI communicators used to use 5-point and 9-point stencils 

  
A unique collective (Figure 8) is used instead of 4 point-to-point communications to 
exchange halo points with neighbors. Send and receive buffers are filled taking into 
account which processes are exchanging data. 
 

 
Figure 8 - MPI3 collective communication used to exchange halo data 

 
A specific treatment is required when the parallel processes layout has just two 
rows/columns. In those cases, an MPI bug causes the order of exchanged data to be 

Figure 6 - Selection of point-to-point or collective communication strategy 
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reversed, so that the order of destination processes also has to be reversed, as shown in 
Figure 9. 
 

 
Figure 9 - Reordering of the destination processes to fix the MPI3 bug 

 
The choice between 5-point and 9-point stencils requires a deep analysis of the code in 
order to understand whether the update of each domain point depends on the corner 
points. Where data dependencies allow developers to use a 5-point stencil, the 
communication call includes as its last parameter ld4only which means only east-west-
north-south exchanges are needed. In this case, mpi_nc_com4 is used to perform the 
halo update, as shown in Figure 10. 
 

 
Figure 10 - Choice of the communicator to exchange data with the right neighbors 

 
The Tracer Advection module has been fully analyzed in order to identify which halo 
updates are satisfied by a 5-point stencil. These communications have been changed by 
adding the ld4only parameter, as shown in Figure 11. 
 

 
Figure 11 - Call to lbc_lnk performing the halo exchange when the 5-point stencil is enough 

 
Accuracy tests included in the NEMO SETTE package have been successfully executed 
on different HPC systems to verify the output reproducibility. 
 
 

3.4 Mixed precision preparatory phase 
3.4.1 AutoRPE refactorization 
There has been a complete refactorization of the AutoRPE code aimed at improving its 
portability: actual runs on platforms other than MareNostrum4, the Barcelona Supercomputing 
Center HPC, are planned in the next months. With this goal in mind, a great effort has been 
made to improve the code readability and workflow. The run time of the analysis phase has 
been reduced thanks to a study of the interdependencies among variables. 
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Figure 12 - The binary search tree produced when running a precision analysis on ~1900 
variables. Each square represents a run: in green are depicted those runs that produced an 
output differing from the double precision results by less than a set threshold, in red the ones 
that didn’t. 
 

 
Figure 13 - Graph of all the variables taken into account in one of the analyses performed in 
the last year at BSC. The yellow variables are those that must retain double precision. 
 
Initially, all the variables considered in the analysis were independently studied. This means 
that if, for example, a thousand variables were considered, the tree of the binary search 
algorithm could hypothetically have up to a thousand leaves. As seen in Figure 12, this can 
require a huge number of simulations to be run. In order to reduce this number, we started 
analyzing the relation between actual arguments and dummy arguments. 
 
Consider the following: 
 

real(dp) :: actual_arg1 
real(dp) :: actual_arg2 
call my_sbr(actual_arg1, actual_arg2) 

 
subroutine my_sbr(dummy_arg_1, dummy_arg_2) 
    real(dp) , intent(in) :: dummy_arg_1 
    real(dp) , intent(out) :: dummy_arg_2 
    [...] 
end subroutine 
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In this case, we can say that the type of actual_arg2 is bound to the type of dummy_var_2. This 
definition is somewhat too strict, as it does not take into account the existence of interfaces. 
When a subroutine or a function has an interface for double/single precision reals, the actual 
argument is bound to two different dummy arguments. The dummy argument that will be used 
depends on the value of the working precision. Using this definition of  “bound variables” in 
Figure 13, we analyzed all the variables that were taken into account when producing a mixed 
precision version of NEMO v4.2, and showed in a graph their dependencies (Figure 13). We 
can see several clusters of different dimensions with the yellow dots representing the results of 
the analysis, i.e. those variables that must retain double precision (dp). Since once a variable in 
a cluster is dp then all other variables in the cluster must also be dp, there is no need to study 
all of the variables independently.  
 

 
Figure 14 - Once the concept of clustering is considered, the number of runs is visibly 
reduced. Clustering implies that certain groups are not further subdivided when the run 
fails, but also suggests a different way of dividing variables in the analysis. 
 
 
We thus introduced the concept of clustering in the analysis, meaning that certain runs will 
contain only those variables belonging to a cluster. Once a particular run fails, it will no longer 
be subdivided as with the other runs (the squares in Figure 14). In this way we are able to reduce 
the number of total runs in the binary search by about 10% (Figure 14). We have been able to 
further reduce the time of each run by speeding up the test to decide if a certain configuration 
is good or not, just by optimizing the size of the file we use for the comparison. Before, we 
were reusing results from a 30-year spinup run, while now we are producing custom small files 
that are very fast to load into memory.  
 
3.4.2 Support for the new git repository 
The workflow has also been adapted to run with the official NEMO Git repository, which 
replaced the SVN repository used up to December 2021. We created a mixed precision branch, 
called “dev_mixed_precision” where we proceeded to fix all lines of code that deviated from 
the official NEMO coding guidelines. This resulted in minor changes to around 30 files, such 
as adding intent to dummy arguments or adding the name of the subroutine after the statement 
END SUBROUTINE. We also added the definition of a new precision, the quadruple precision, 
since it is now needed in debugging control routines. In line with these changes, we also 
produced a document called “NEMO developer’s guidelines” where we explain these and other 
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rules in detail. Adhering to these rules would not only ease the pressure on the parsing phase 
of the AutoRPE tool, but also improve the readability and maintainability of the NEMO code 
itself.  
 
3.4.3 Testing 
Since we worked hard on the usability of the tool, we have now agreed with CMCC and IPSL 
to hold a training session on the AutoRPE tool. At the end of the training, we expect to have 
the tool tested on platforms available at CMCC. This will provide feedback on AutoRPE 
needed to release it publicly, providing the users with a reasonably free-of-bugs and portable 
version of the tool. We also expect to learn from this experience how to make the AutoRPE 
tool easier to deploy for inexperienced users. 
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4 Perspectives and conclusions 
Changes implemented in the NEMO code due to IS-ENES3 activities need further 
improvements during the next period.  
With regard to the extended halo management, the increase in halo size reduces the exchange 
frequency and is a prerequisite for other code changes, but has the drawback of increasing the 
computational domain size. Valuable benefits in terms of performance can be achieved when 
other developments, such as tiling and loop fusion (already in progress), are completed. 
As preliminary tests reported in M8.4 show, the integration of MPI3 neighboring collective 
communications improves computational performance when a 5-point stencil is sufficient for 
halo exchanges. A full analysis of the code is therefore needed to identify whether further 
exchanges with corners can be avoided. To date, this analysis has been performed on the Tracer 
advection module, which is the most expensive one. 
Finally, future tests of the AutoRPE tool on the CMCC platform will provide additional 
information on its portability, so that it can be officially released as a NEMO utility. 
In conclusion, we can say that the work funded by the IS-ENES3 project has resulted in 
important changes to the NEMO code, but has also laid the foundations for future developments 
that would benefit from the work done. 
 
 
 


