
IS-ENES3 Deliverable D8.5
Update of the NEMO code

Authors: Italo Epicoco (CMCC), Silvia Mocavero (CMCC), Francesca Mele
(CMCC), Stella Paronuzzi (BSC), Mario Acosta (BSC), Miguel Castrillo (BSC)

Reviewer: Daley Clavert (MetOffice)

Release date: 15/11/2022

ABSTRACT

The document reports the updates of the NEMO code as designed in the Milestone M8.4
“Definition of the NEMO optimization strategy”. This document describes the main changes to the
NEMO code included in the last revision NEMO v4.2 available in the NEMO git repository since
March 2022.
The most important developments regard the performance optimization through a redesign of the
communication strategy for the halo update and the use of mixed precision in the NEMO model.

Dissemination Level
PU Public X
CO Confidential, only for the partners of the IS-ENES3 project

Revision table
Version Date Name Comments
1.0 28/10/2022 Italo Epicoco First version sent to internal reviewer
2.0 09/11/2022 Calvert Daley Comments and improvements
3.0 11/11/2022 Italo Epicoco Final version

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 824084

Update of the NEMO code pag. 2 of 14

Table of contents

1 Executive Summary ... 3

2 Objectives ... 4

3 Code changes in NEMO v4.2 .. 5

3.1 MPI Communication cleanup (ticket #2607) .. 5

3.2 Extra Halo extension (ticket #2366) ... 8

3.3 Improvements using MPI3 (ticket #2496)... 9

3.4 Mixed precision preparatory phase ... 10

3.4.1 AutoRPE refactorization ... 10

3.4.2 Support for the new git repository ... 12

3.4.3 Testing ... 13

4 Perspectives and conclusions .. 14

Update of the NEMO code pag. 3 of 14

1 Executive Summary

The developments carried out within the first three years of the IS-ENES3 project to improve
NEMO performance have been fully integrated in the NEMO code and released with the
official NEMO release 4.2.0.
The NEMO site reports the changes of this release compared with the previous one
(https://sites.nemo-ocean.io/user-guide/changes.html). With regard to the HPC developments
performed within WP8 of the IS-ENES3 project and fully described in M8.4, the new release
includes:

1. A code cleanup to reduce the number of MPI communications
2. Extension of the halo to reduce the frequency of MPI communications
3. The integration of MPI3 collective neighboring communication for the halo exchange,

a preliminary step to reduce the number of exchange where 5-points stencil is enough
4. The mixed precision preparatory phase to speed up the model run by using the least

number of significant bits possible.

Update of the NEMO code pag. 4 of 14

2 Objectives
The main objective of this document is to describe the development of the actions defined in
Milestone 8.4 needed to carry out the performance optimization of the NEMO code proposed
in the IS-ENES3 DoW for WP8-Task1.
The proposed changes were discussed with the NEMO System Team and the HPC Working
Group prior to their implementation in NEMO. The role of this group was to verify that the
proposed optimization strategy matched the NEMO development strategy document
(https://zenodo.org/record/1472458#.Y0rTFy0Ro_U). The activities were then included as
actions in the NEMO development work plan
(https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP). Development branches were created for the
actions (https://forge.ipsl.jussieu.fr/nemo/browser#NEMO/branches), tested using the NEMO
reference configurations and test cases, internally reviewed, and finally merged in the official
4.2.0 release of NEMO.
Section 2 reports the details of these developments and their code changes, while the last
section introduces some actions planned for the future.

Update of the NEMO code pag. 5 of 14

3 Code changes in NEMO v4.2

3.1 MPI Communication cleanup (ticket #2607)
The whole code has been revised in order to remove unnecessary communications. Some
communications to update the halo of neighboring parallel processes are no longer needed, due
to code evolution. For example, some communications performed before writing the output
files have been deleted since the halo region is no longer included in these files.
In other cases, this work was a prerequisite for the application of other optimizations. Some
communications have been removed or moved earlier in the code by introducing an extended
halo in lbc_lnk, the interface implementing MPI exchanges with neighboring processors in the
NEMO code. This allows developers to reduce the frequency of communications by moving
the communication outside of DO loops (where possible) and to implement other optimizations
such as tiling or loop fusion. Moving the communications outside of DO loops requires a deep
analysis of the algorithm implemented in each routine and, to date, has been performed on the
Tracer Advection module (Changeset 14609), the Vertical Ocean Physics module (Changeset
14601) and most of the Ocean Dynamics module routines (Changeset 14682).
Following is an example of the analysis and implementation process that has been carried out
on the code. Taking into consideration the original dyn_keg routine in Figure 1 (Hollingsworth
scheme case, 1-point halo width), the horizontal kinetic energy zhke is computed on the inner
domain (DO_3D(0, 0, 0, 0, ...)) and its halo is then updated via an lbc_lnk. Finally, the whole
array is used to update the velocities puu and pvv.

Figure 1 - Original version of dyn_keg routine

If a 2-point halo width is used, the lbc_lnk communication can instead be performed on the
velocities puu and pvv before the first DO_3D. Their updated halo values can then be used for
the computation of horizontal kinetic energy zhke in the range [2:jpi-1,2:jpj-1,1:jpk-1]
(DO_3D(1, 1, 1, 1, 1, jpkm1)), which can then be used to update the velocities puu and pvv.

Update of the NEMO code pag. 6 of 14

Figure 2 - Modified version of dyn_keg routine

These changes, shown in Figure 2, do not alter results in the GYRE PISCES configuration, but
produce different results in the ORCA2 ICE_PISCES reference configuration from time step
23 onwards (REPRO84 test) compared with tests using a 1-point halo width, although
restartability and reproducibility are preserved.
This implies that the change in results is related to the NORTH FOLD treatment.
It is worth recalling that the differences between the 1- and 2-point haloes are limited to the
computation of values held in the first halo line. Indeed, in the 1-point halo case these values
are received from the neighbor (or from the corresponding rank in north fold), while in the 2-
point halo case these values are computed locally.
Considering an 8x4 domain decomposition with jpi=25 and jpj=39, in the original 1-point halo
case the hdiv value for the halo point at (21i, 39j) on processor 29 is sent by processor 26 after
computing its inner point at (3i, 37j).
When a 2-point halo is instead used, the corresponding halo point at (22i ,40j) is directly
computed by processor 29.
So, it is expected that

ℎ𝑑𝑖𝑣[22,40]𝑜𝑛	𝑝𝑟𝑜𝑐	29	(ℎ𝑎𝑙𝑜	2	𝑐𝑎𝑠𝑒) 	= 	ℎ𝑑𝑖𝑣[3,37]𝑜𝑛	𝑝𝑟𝑜𝑐	26	(ℎ𝑎𝑙𝑜	1	𝑐𝑎𝑠𝑒)

Looking at the values of the u- and v-grid variables contributing to the calculation of the
horizontal divergence hdiv at these points, it can be noted that they are arranged in a
symmetric/mirrored way in the 2-point halo case compared to the 1-point halo case. Table 1
reports the corresponding values along with the halo region.

Update of the NEMO code pag. 7 of 14

Table 1 - Values contributing to the horizontal divergence hdiv in the 1- and 2-point halo
cases

More generally, it can be asserted that when we compute the values on the first line of the halo
(which happens only in the 2-point halo case) the following changes happen when an
expression is evaluated:

• For the U-grid fields:
o the sign changes
o index i turns to i-1
o index i-1 turns to i
o index j+1 turns to j-1
o index j-1 turns to j+1

• For the V-grid fields:
o the sign changes
o index j turns to j-1
o index j-1 turns to j
o index i+1 turns to i-1
o index i-1 turns to i+1

After applying these changes to the hdiv expression, the code changes as shown in Figure 3 and
Figure 4.

Figure 3 - Original expression for hdiv

Update of the NEMO code pag. 8 of 14

Figure 4 - Equivalent expression for hdiv on the first halo row after altering indices to reflect

the north folding

For the case of hdiv the difference is only due to the order of floating-point operations, hence
the loss of bit comparison between 1- and 2-point halo cases is acceptable. Such a situation
should occur for all of the expressions in the code, hence the north folding algorithm should
not be changed when a 2-point halo is used. Moreover, bit comparison is still guaranteed
between 1- and 2-point haloes by appropriately using round brackets in the expression to force
a consistent order of floating-point operations.
It has been verified that by forcing the hdiv formula as shown in Figure 5 in both the original
1-point halo code and modified 2-point halo code, the .stat files do not differ.

Figure 5 - Modified hdiv expression that preserves bit comparison between 1- and 2-point

haloes

Since differences in the results due to a different order of the floating point operations can be
considered acceptable, but at the same time a code modifications check was needed to ensure
that bugs were not introduced, a new branch named
ticket2607_r14608_halo1_halo2_compatibility has been created starting from the current trunk
in order to:

1. properly insert round brackets for those expressions that will be affected by the
movement of the lbc_lnk communications. (The use of round brackets will produce an
acceptable bit difference in the results without any other modification in the code)

2. proceed with the lbc_lnk clean-up and movement, ensuring that the 1- and 2-point halo
cases now produce the same results.

3.2 Extra Halo extension (ticket #2366)
The whole code has been changed in order to support an extended halo. It allows the developers
to reduce the frequency of communications by moving the communication outside of DO loops
(where possible) and to develop other optimizations such as tiling or loop fusion. As stated
before, moving the communications outside of DO loops requires a deep analysis of the
algorithm implemented in each routine and, to date, has been performed on the Tracer
Advection module, the Vertical Ocean Physics module and most of the Ocean Dynamics
module routines. The implementation of other optimizations, which are now feasible thanks to
the extended halo, requires other developments (now in progress) before producing valuable
benefits (i.e. tiling, loop fusion, etc..).

Update of the NEMO code pag. 9 of 14

3.3 Improvements using MPI3 (ticket #2496)
A new halo update strategy, implemented through the MPI3 neighborhood collective
communications, has been integrated in the LBC (Lateral Boundary Condition) NEMO library,
so that both point-to-point and collective communications are supported for the halo exchange.
Only the following few code files have been modified/added so that the implementation is not
too invasive and does not require a code refactoring:

• lbc_lnk_call_generic.h90, where the selection of the communication strategy is
implemented through the nn_comm namelist parameter, as shown in Figure 6.

The default communication strategy in the NEMO code is now based on the
neighborhood collectives approach. However, the user can activate point-to-point
exchange if the MPI version on the target system does not support neighborhood
collectives, simply by setting the namelist nn_comm equal to 1.

• lbclnk.F90, where the interfaces for the new communications are introduced

• lbc_lnk_neicoll_generic.h90, where the collective neighborhood exchanges are
implemented. The graph topology is preferred over cartesian topology (both described
in the Milestone M8.4) in order to maintain the same strategy for both 5-point and 9-
point stencils. Moreover, land-point domains exclusion is handled due to the flexibility
of graph topology. Two different communicators (Figure 7) are created in the
mpp_ini_nc routine (lib_mpp.F90) to support exchanges with and without the 4 corners.

Figure 7 - MPI communicators used to use 5-point and 9-point stencils

A unique collective (Figure 8) is used instead of 4 point-to-point communications to
exchange halo points with neighbors. Send and receive buffers are filled taking into
account which processes are exchanging data.

Figure 8 - MPI3 collective communication used to exchange halo data

A specific treatment is required when the parallel processes layout has just two
rows/columns. In those cases, an MPI bug causes the order of exchanged data to be

Figure 6 - Selection of point-to-point or collective communication strategy

Update of the NEMO code pag. 10 of 14

reversed, so that the order of destination processes also has to be reversed, as shown in
Figure 9.

Figure 9 - Reordering of the destination processes to fix the MPI3 bug

The choice between 5-point and 9-point stencils requires a deep analysis of the code in
order to understand whether the update of each domain point depends on the corner
points. Where data dependencies allow developers to use a 5-point stencil, the
communication call includes as its last parameter ld4only which means only east-west-
north-south exchanges are needed. In this case, mpi_nc_com4 is used to perform the
halo update, as shown in Figure 10.

Figure 10 - Choice of the communicator to exchange data with the right neighbors

The Tracer Advection module has been fully analyzed in order to identify which halo
updates are satisfied by a 5-point stencil. These communications have been changed by
adding the ld4only parameter, as shown in Figure 11.

Figure 11 - Call to lbc_lnk performing the halo exchange when the 5-point stencil is enough

Accuracy tests included in the NEMO SETTE package have been successfully executed
on different HPC systems to verify the output reproducibility.

3.4 Mixed precision preparatory phase
3.4.1 AutoRPE refactorization
There has been a complete refactorization of the AutoRPE code aimed at improving its
portability: actual runs on platforms other than MareNostrum4, the Barcelona Supercomputing
Center HPC, are planned in the next months. With this goal in mind, a great effort has been
made to improve the code readability and workflow. The run time of the analysis phase has
been reduced thanks to a study of the interdependencies among variables.

Update of the NEMO code pag. 11 of 14

Figure 12 - The binary search tree produced when running a precision analysis on ~1900
variables. Each square represents a run: in green are depicted those runs that produced an
output differing from the double precision results by less than a set threshold, in red the ones
that didn’t.

Figure 13 - Graph of all the variables taken into account in one of the analyses performed in
the last year at BSC. The yellow variables are those that must retain double precision.

Initially, all the variables considered in the analysis were independently studied. This means
that if, for example, a thousand variables were considered, the tree of the binary search
algorithm could hypothetically have up to a thousand leaves. As seen in Figure 12, this can
require a huge number of simulations to be run. In order to reduce this number, we started
analyzing the relation between actual arguments and dummy arguments.

Consider the following:

real(dp) :: actual_arg1
real(dp) :: actual_arg2
call my_sbr(actual_arg1, actual_arg2)

subroutine my_sbr(dummy_arg_1, dummy_arg_2)
 real(dp) , intent(in) :: dummy_arg_1
 real(dp) , intent(out) :: dummy_arg_2
 [...]
end subroutine

Update of the NEMO code pag. 12 of 14

In this case, we can say that the type of actual_arg2 is bound to the type of dummy_var_2. This
definition is somewhat too strict, as it does not take into account the existence of interfaces.
When a subroutine or a function has an interface for double/single precision reals, the actual
argument is bound to two different dummy arguments. The dummy argument that will be used
depends on the value of the working precision. Using this definition of “bound variables” in
Figure 13, we analyzed all the variables that were taken into account when producing a mixed
precision version of NEMO v4.2, and showed in a graph their dependencies (Figure 13). We
can see several clusters of different dimensions with the yellow dots representing the results of
the analysis, i.e. those variables that must retain double precision (dp). Since once a variable in
a cluster is dp then all other variables in the cluster must also be dp, there is no need to study
all of the variables independently.

Figure 14 - Once the concept of clustering is considered, the number of runs is visibly
reduced. Clustering implies that certain groups are not further subdivided when the run
fails, but also suggests a different way of dividing variables in the analysis.

We thus introduced the concept of clustering in the analysis, meaning that certain runs will
contain only those variables belonging to a cluster. Once a particular run fails, it will no longer
be subdivided as with the other runs (the squares in Figure 14). In this way we are able to reduce
the number of total runs in the binary search by about 10% (Figure 14). We have been able to
further reduce the time of each run by speeding up the test to decide if a certain configuration
is good or not, just by optimizing the size of the file we use for the comparison. Before, we
were reusing results from a 30-year spinup run, while now we are producing custom small files
that are very fast to load into memory.

3.4.2 Support for the new git repository
The workflow has also been adapted to run with the official NEMO Git repository, which
replaced the SVN repository used up to December 2021. We created a mixed precision branch,
called “dev_mixed_precision” where we proceeded to fix all lines of code that deviated from
the official NEMO coding guidelines. This resulted in minor changes to around 30 files, such
as adding intent to dummy arguments or adding the name of the subroutine after the statement
END SUBROUTINE. We also added the definition of a new precision, the quadruple precision,
since it is now needed in debugging control routines. In line with these changes, we also
produced a document called “NEMO developer’s guidelines” where we explain these and other

Update of the NEMO code pag. 13 of 14

rules in detail. Adhering to these rules would not only ease the pressure on the parsing phase
of the AutoRPE tool, but also improve the readability and maintainability of the NEMO code
itself.

3.4.3 Testing
Since we worked hard on the usability of the tool, we have now agreed with CMCC and IPSL
to hold a training session on the AutoRPE tool. At the end of the training, we expect to have
the tool tested on platforms available at CMCC. This will provide feedback on AutoRPE
needed to release it publicly, providing the users with a reasonably free-of-bugs and portable
version of the tool. We also expect to learn from this experience how to make the AutoRPE
tool easier to deploy for inexperienced users.

Update of the NEMO code pag. 14 of 14

4 Perspectives and conclusions
Changes implemented in the NEMO code due to IS-ENES3 activities need further
improvements during the next period.
With regard to the extended halo management, the increase in halo size reduces the exchange
frequency and is a prerequisite for other code changes, but has the drawback of increasing the
computational domain size. Valuable benefits in terms of performance can be achieved when
other developments, such as tiling and loop fusion (already in progress), are completed.
As preliminary tests reported in M8.4 show, the integration of MPI3 neighboring collective
communications improves computational performance when a 5-point stencil is sufficient for
halo exchanges. A full analysis of the code is therefore needed to identify whether further
exchanges with corners can be avoided. To date, this analysis has been performed on the Tracer
advection module, which is the most expensive one.
Finally, future tests of the AutoRPE tool on the CMCC platform will provide additional
information on its portability, so that it can be officially released as a NEMO utility.
In conclusion, we can say that the work funded by the IS-ENES3 project has resulted in
important changes to the NEMO code, but has also laid the foundations for future developments
that would benefit from the work done.

