

IS-ENES3 Milestone M8.1
A set of unit tests for XIOS

Reporting period: 01/01/2019 – 30/06/2020

Authors: Y. Wang, Y. Meurdesoif

Reviewer: G. Lister

Release date for review: 18/12/2019

Final date of issue: 10/01/2020

ABSTRACT

This project has received funding from the European

Union’s Horizon 2020 research and innovation

program under grant agreement No 824084

XIOS has been developed for several years and is widely used in climate models. However,

the complexity of XIOS source code has given both users and developers more and more

difficulties to debug and to maintain the consistency of XIOS. That is why we focused on our

current work on the development of a set of unit tests and to check any development

regressions automatically. In this milestone report, we present the automation procedure of

compiling XIOS and the unit tests for checking XIOS functionalities. A web page is also

developed for easy and direct view of the compiling status and test results of XIOS for the

most recent revisions.

2

Table of contents

1. Objectives .. 2

2. Description of work: Methodology and Results ... 2

3. Difficulties overcome .. 4

4. Next steps .. 4

1. Objectives

Given the complexity of XIOS codes and its developments, it has become urgently important that

the XIOS developers have a set of unit tests to ensure the non-regression of XIOS after each code

modification. The main objective of the current work is to enable the automation of XIOS

compilation and functionalities.

In another words, our work is to develop a mechanism to automatically launch the compile and

then the set of unit tests of XIOS whenever a modification is applied on the XIOS source code. We

also need to develop a simple web page to view the status of the compilation and the output of the

unit tests. This web page will help us to easily and directly trace the development of XIOS. Also,

we can spot any regression with the help of unit tests.

2. Description of work: Methodology and Results

We started by developing the set of unit tests. Each of these unit tests is targeted to check one given

algorithm/functionality of XIOS. Each test has a reference result. When a unit test is launched after

some source code modifications, the newly generated result will be compared with the reference.

If no difference is shown, it means that no regression is observed and the new modification is

validated. On the contrary, if the output result is different than the reference, we then have two

possible conclusions. The first possibility is that the new modification of the XIOS source code

introduced an error or a bug. The second possible situation is that the modification improved the

performance or numerical accuracy of XIOS and the new output is valid and should be used to

update the reference result. It is the XIOS developers’ responsibility to investigate and to identify

which conclusion should be kept.

3

What is worth mentioning is that these unit tests are flexible and configurable via external files.

For example, we can test the zoom functionality of XIOS for the Gaussian grid and use the two-

level-server mode by simply defining the grid type to be “Gaussian” and set the two-level-server

to “True” in the configuration file of the zoom test. This mechanism is very useful especially when

XIOS developers are asked to debug XIOS used by other users. Very often we encounter the

situation where XIOS plugged within other models raises errors or has non-expected results. For

most cases, it is difficult for an XIOS developer to reproduce the same error thus very time-

consuming to debug. With the help of the unit tests, we can configure the external files to approach

the target scenario without the knowledge of the model. Then we can work locally to find out

whether or not the error or non-expected results come from XIOS and to find solutions if necessary.

In the second phase, we focused on the compilation of XIOS on different architectures. The idea is

similar to that of the unit tests. We want to check if the building process of XIOS is consistent. This

is essentially useful when using XIOS on a new architecture, switching to a different compiler, or

building with different libraries. The building of XIOS is also configured by an external file in

which we define the architecture used in XIOS “--arch” argument and the compile mode

(production or debug mode). All compiler information along with the library modules is defined in

the .arch file.

Two plain text reports are generated after the compile step and the unit tests. In the third phase of

our work, we developed a web interface to view these reports. We developed some Python and

JavaScript programs to translate the plain reports into JavaScript-type files that can be loaded by

the main web page. The web page can be consulted via any web browser at the XIOS wiki page

(https://forge.ipsl.jussieu.fr/ioserver/wiki) under the “XIOS Test Suite” tab1. For the moment, on

the web page, we have two tables: one for the compile status of XIOS and one for the unit tests

status of several revisions.

In the compile table (the upper table), each cell shows the building status of one revision of XIOS

on a given machine (Irène and Jean-zay for the moment). Within the cell, the row label is the name

of the “arch” and the column label the build mode. In the test table (the lower table), we show the

overall status of the XIOS tests for a given revision and on a given machine (Irène and Jean-Zay

for now). Each cell represents detailed information and can be revealed by clicking on the text.

With all three components (XIOS compilation, XIOS unit tests, and web interface) accomplished,

we worked on the automation mechanism. First of all, all build and test reports are generated and

stored on the machines locally. We need to make them visible through the web page. In other words,

1 https://vesg.ipsl.upmc.fr/thredds/fileServer/work/p86yann/XIOS_TEST_SUITE/xios_report.html

https://forge.ipsl.jussieu.fr/ioserver/wiki
https://vesg.ipsl.upmc.fr/thredds/fileServer/work/p86yann/XIOS_TEST_SUITE/xios_report.html

4

we have to lodge these JavaScript files on-line. On Irène, it is managed with the help of Thredds.

On Jean-Zay, the files are lodged on the server of Forge.

The automation procedure is then controlled by Cron which is a time-based job scheduler in Unix-

like computer operating systems. We use Cron to schedule the XIOS compile job and unit test job

to run periodically at fixed times, dates, or intervals. For example, the cron script can be called

every hour. If during the previous hour an XIOS commit is done, then the newer version of XIOS

source code will be updated, afterwards, the compile job will be launched, and then the unit tests

will be launched. XIOS developers will receive an email notification at the end of the cron script

and can check the web page for newly added information.

We mention here that all the work related to the automation is lodged in the XIOS SVN repository2.

The executable program (generic_testcase.exe) is generated by the source code

generic_testcase.f90 located at XIOS/trunk/src/test/. The compilation scripts, the unit tests files,

and the web page html files are all stored in the folder XIOS/trunk/xios_test_suite.

3. Difficulties overcome

The automation process as well as the web page report were originally planned to be generated

and maintained by Jenkins. However, it was not available on Jean-Zay nor on Irène. That is why

we designed our own automation mechanism and the web interface. Though it took us some time

for the development, the fact that we are not dependent on a third-party library gives us more

freedom.

4. Next steps

The next steps of our work on the XIOS unit tests consists of adapting the user-defined configure

file to a more hierarchical form. Take the compile phase configuration file as example, we define:

 arch=X64_Irene_arch1, X64_Irene_arch2

 mode=prod, debug

With this input, we will have 4 different configurations in total for compiling XIOS. However, one

may not be interested in compiling XIOS with X64_Irene_arch2 in debug mode. To do so under the

current circumstances, we have to define two different files: a file containing:

 arch=X64_Irene_arch1

 mode=prod, debug

and another file with:

2 http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

5

 arch=X64_Irene_arch2

 mode=prod

These two files have to be given to the automation procedure manually and sequentially which

destroys the interest of automation. With a hierarchical form, we will have more freedom in

defining the configuration file. For example, we can write in the file:

 arch=X64_Irene_arch1, mode=prod, debug

 arch=X64_Irene_arch2, mode=prod

Thus we will still have only one configuration file and everything can go on automatically.

The same ideas apply to the external file used for configuring the unit tests of XIOS. We may want

to continue the test if and only if certain unit tests succeed. For example, we can have two

functionalities A and B where B is a derivative of A. If A cannot pass the test, then it will be useless

to test B and the test job should stop here. For the moment, all tests are considered to be

independent so the status of one test have no influence on the rest of the tests. The tests dependency

will be managed with the hierarchical input files.

We will also work on improving the configuration possibilities of the test phase. We will increase

the number of configuration variables (which is 7 at the moment for the unit tests part) in order to

make XIOS more flexible and adaptive to much more complex situations.

An important issue related to the increasing number of configurations lies in the launch mode of

the unit tests job. For the moment, all the unit tests are launched one after the other. However,

when we increase the number of configurations, and the number of unit tests themselves, this mode

of job launch will no longer be appropriate. We want independent tests be executed in parallel

while keeping the dependent tests in sequential mode.

As the development of XIOS goes on, we may introduce new algorithms and functionalities. So one

part of our future work is to regularly update the unit tests.

