

IS-ENES3 Milestone M8.4
Definition of NEMO optimization strategy

Reporting period: 01/07/2020 – 31/12/2021

Authors: Italo Epicoco, Silvia Mocavero, Francesca Mele, Mario Acosta, Stella Paronuzzi, Oriol
Tintó, Miguel Castrillo, Miroslaw Andrejczuk, Mike Bell

Reviewer(s): Uwe Fladrich, Eric Maisonnave

Release date: 25/01/2021

ABSTRACT

The document describes the work carried out during the first period of the project in terms of
performance analysis and optimisation of the NEMO model. In particular, the authors emphasise the
need to automatize the performance profiling and define some implementation strategies designed to
reduce scalability bottlenecks and the time to solution of the target ocean model. The work is perfectly
integrated into the NEMO development strategy plan, which highlights the issues to be addressed in
the medium term for the NEMO model, and it contributes to address these issues by defining some
optimisations techniques.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 824084

 2

Table of contents

1. Objectives ... 3

2. Methodology and Results ... 3

 Analysis of NEMO computational performance .. 3

A methodology to automatically profile the NEMO code ... 4

Performance of the Met Office Global Ocean 8 (GO8) configuration. 7

 New communication strategies in NEMO .. 9

MPI3 neighbourhood collectives .. 9

Extended halo management .. 13

 Mixed precision in NEMO code ... 16

Auto-RPE: the new methodology to produce mixed precision models 16

3. Deviation and difficulties overcome ... 17

4. Next steps ... 18

5. Reference .. 18

 3

1. Objectives

In the context of WP8 which aims at developing models and tools able to produce more
accurate and reliable simulations of the Earth climate system, the objective of this task is to
improve NEMO computational performance for the execution of high-resolution and
complex simulation. This is also in accordance with the NEMO development strategy
document [1], where making NEMO efficiently executed on different architectures is
defined as one of the main objectives in the five-year period 2018-2022.
This report is aimed at defining a methodology to automatically profile NEMO, in order to
understand the main bottlenecks to performance efficiency. Moreover, some solutions to
well-known performance issues are suggested and evaluated, also showing the impact that
they could have on the NEMO performance. The activities proposed by CMCC and Met
Office as internal partners of the NEMO Consortium, alongside BSC as external
contributor, aim to analyse the NEMO computational performance and describe (i) a
methodology to evaluate which parts of the NEMO code can be safely executed in single-
precision and (ii) two complementary strategies to reduce the communication time.

2. Methodology and Results

 Analysis of NEMO computational performance
In order to address NEMO optimisation, which is the main goal of this task, a complete
study of the model as numerical and computational code is needed to understand the main
bottlenecks of the model and how to appropriately exploit the possible optimizations to be
performed during the project. Additionally, NEMO is undergoing significant changes due
to the introduction of new developments (such as a completely new ICE module) and some
optimizations coming from other projects such as the final implementation (through
ESiWACE21) of the mixed precision approach, based on the methodology established in
this task (Section 2.3) or tiling implementation (through IMMERSE2). For this reason, the
main task performed at the Barcelona Supercomputing Center (BSC) during this period has
been to study the model and develop methodologies which facilitate work in terms of
optimizations and evaluation for the second period of the project (and also in the future),
while collaborating on very specific profiling actions, as the scalability of the new BENCH
test case or the evaluation of NEMO in the context of the Performance Optimisation and
Productivity Centre of Excellence in HPC (POP) Center of Excellence3. This section
presents a methodology used to automatize the profiling analysis of NEMO to understand
the main bottlenecks of the ocean model, not only for a specific version of NEMO, but also

1 https://www.esiwace.eu
2 https://immerse-ocean.eu
3 https://pop-coe.eu

 4

for any version released in the future, including changes coming from other developments
and projects. This automatic profiling analysis produces a complete study about the
computational performance of the model using the BSC Performance Tools4, dramatically
minimizing the work done by the developers and users.

A methodology to automatically profile the NEMO code

Understanding the cause of parallelization overhead and inefficient computation of a
numerical model can be more difficult than it seems. Modern processors and compilers are
complex machines that use many strategies in order to do computations as fast as possible,
and usually it is not straightforward to see how a change in the code would translate into
actual execution. If understanding the performance of a sequential program can be hard
enough, things get even more complicated when the program exploits parallelism; and
when programs try to exploit supercomputers with thousands of cores instead of just several
cores, understanding how computations take place can almost be impossible without the
proper tools and methods. At the same time, understanding the main problems of a model
from a computational point of view is crucial in order to know how the model uses
computational resources and to find ways to improve it. For this reason, the use of profiling
analysis tools such as the BSC tools, Vampire or V-Tune is especially critical for these
studies.
However, these tools require expertise and their use have some limitations. Almost every
year changes in the code or changes in the hardware where scientists run their simulations
force us to develop a specific benchmark which could exploit properly the profiling tools
to produce useful results. Additionally, it is not clear how to compare the results collected
across the years, since no systematic methodology is usually applied.
Having a strategy, agreed upon beforehand, would enable us to consistently profile the
performance of a code. We are talking about a methodology which could be used to obtain
a deeper insight into the model behaviour while reducing the extra work from experts or to
compare the impact of different features in the code on different hardware.
With this purpose, at BSC, we have developed an automatic profiling tool that is able to
automatically deploy, compile and analyse a given model, controlled through some input
parameters.
This tool aims to be flexible enough to be used with different codes, and on different
platforms. It is still in the tuning phase, i.e. understanding what kind of information we need
to be able to build a record of BSC codes’ performance, and for the moment it can be used
just on MareNostrum4 with NEMO. Once the parameter file is filled, mainly with paths to
Git repositories and to the script fulfilling the compile step, the analysis is run, and a report
is produced.

4 https://tools.bsc.es/

 5

The report is a latex text file, filled with tables and plots with info as reported in Figure 1.
For writing the rest of the report we highly rely on the BSCTOOLS suite, using heavily
Paraver or Paramedir to extrapolate data. This methodology will be available for the
community along with the optimizations planned for the second part of the project. The
users will be able to use this methodology, at least in a simplified version, which should
portable enough.

Figure 1 - Report example on BENCH configuration

Apart from the scripts to launch automatically BSC Tools and collect the profiling results,
a specific configuration for NEMO was developed. However, we thought that the typical
ORCA or GYRE configurations could not be the best ones for a profiling analysis.
During the process of setting up this new automatic profiling methodology, the BSC took
part in specific NEMO optimization undertakings, that also allowed us to receive updates
on the model necessities and get useful for the methodology.
In 2019, a non-intrusive instrumentation of the NEMO code was created by E. Maisonnave
and S. Masson at the LOCEAN Laboratory, in Paris [2], with the aim of giving information
about the MPI communications cost and structure of the model. The main goal was to

 6

identify which developments have to be prioritized for the model to enhance its scalability:
a new NEMO configuration, called BENCH, was specifically developed for the purpose,
offering an easy way to make performance measurements, and hoping to simplify future
benchmark activities related to computing efficiency.
We studied if this configuration could be used as a valid tool to get insight into NEMO
performance, and then proceeded to use the BENCH test to study some of NEMO most
known bottlenecks: I/O and the north fold. Additionally, we took the chance to investigate
a topic that is gaining popularity among NEMO developers: the variability of time required
to perform a timestep and how it influences NEMO performance, obtaining directions on
how to avoid or mitigate such behaviour.
The results state that this test can accurately represent the computing performance of
NEMO itself, giving a correct way of interpreting data that may save the experts working
on optimization tasks from struggling with the choice of a configuration to assess, or the
search for input data as example. We also reported a study that illustrates how completely
filling the nodes leads to a loss in performance due to a sort of noise in the time steps
duration and explained how this can be related to the need of leaving some space free for
the operating system to work.
With respect to the I/O evaluation, we found out that, when running on an ORCA12
configuration using XIOS in server mode, the time steps involved in output operations will
slow down with respect to a computation-only one, from six to twelve times. But, it is
probably worth exploring additional configurations, because the frequency we used for
dumping the output on files was probably too high. Finally, it seems that the north fold
extra communications become a burden for the model only at a high number of cores, a
region where communications are in general already the bottleneck. In this sense, it is a
further remark of the fact that whichever attempt to enhance the parallel performance
should necessarily target this topic.
Apart from the preliminary analysis done through the new methodology, in 2020, the
NEMO System Team made a request for the POP H2020 Center of Excellence to analyse
the main bottlenecks of the NEMO code using also the BENCH test case. The Earth
Sciences department of the BSC collaborated to the deployment and configuration of
NEMO v4.0.2 in MareNostrum4 for this particular case, also guiding the set-up of the tests
and assessing on the scales relevant to the case. This work led to interesting conclusions
regarding the communications overhead that can be exploited in this project or in any other
attempt to improve NEMO efficiency. In particular, the north fold was again identified as
one of the main stoppers to the model scalability, and the final report suggested working on
the dynamic solver granularity as a way to reduce waits in the execution.
Final results using the new methodology for profiling analysis will be presented before the
end of the project, in order to explain the optimizations that BSC will implement for NEMO

 7

and to provide a complete computational evaluation of the model once the major changes
in the forthcoming 4.2 version are implemented.

Performance of the Met Office Global Ocean 8 (GO8) configuration.

Concerning the performance analysis and in particular the I/O operations profiling, at Met
Office the GO8 configuration was investigated for a three NEMO ORCA (global grid)
resolutions ORCA012 (1/12th degree), ORCA025 (1/4deg) and ORCA1 (1deg), including
sea ice but excluding the biogeochemistry module. For all configurations, the impact of the
diagnostics load on model execution was investigated. Each configuration was executed
one time.
The model configuration was based on NEMO version 4. The runs for ORCA1 and
ORCA025 were using 6 XIOS servers, ORCA12 – 36 XIOS servers. All configurations
used single file output for diagnostics.
Table 1, Table 2 and Table 3 show results from a series of runs aimed to investigate the
impact of diagnostic workload, basic diagnostics in the configuration (Basic) and those
required by CMIP6 (CMPI6) on model execution time. Timing information generated by
NEMO (timing.output) was used, and this information includes also
initialization/finalization time; and XIOS diagnostic file. The execution time was split into
the time to run ocean (OCE), Sea Ice (SI3) and XIOS client time (XIOS). Increasing
diagnostic workload resulted in an increase of execution time for ocean component by
~15% and increase in XIOS time by 40-60% depending on model resolution. This increase
in time is associated with the need to derive/calculate new diagnostics in the model and
next to perform temporal averaging and an additional operation in XIOS.

Table 1 - The impact of diagnostic workload on model execution time for ORCA1 configuration

Number of CPUs
(XY parallel

decomposition)

OCE [s] SI3 [s] XIOS [s]

 Basic CMIP6 Basic CMIP6 Basic CMIP6
2 (2x1) 5222 5993 1197 1193 789 1173
4 (2x2) 2820 322 643 651 407 611
6 (3x2) 2047 2337 455 457 295 435
12 (4x3) 1403 1620 287 284 173 273
28 (6x5) 883 1031 176 174 92 147
34 (6x6) 898 1010 160 158 95 133
48 (9x6) 633 726 109 109 69 103
70 (10x8) 443 505 82 80 56 95

156 (16x12) 196 229 43 42 42 54
322 (24x18) 111 128 24 29 31 49
444 (28x22) 91 107 25 21 34 38

 8

608 (33x26) 81 99 19 22 26 45
754 (36x30) 74 87 17 17 26 35
890 (42x31) 77 83 18 19 32 35

Table 2 - The impact of diagnostic workload on model execution time for ORCA025 configuration

Number of CPUs
(XY parallel

decomposition)

OCE [s] SI3 [s] XIOS [s]

 Basic CMIP6 Basic CMIP6 Basic CMIP6
164 (14x15) 6511 7475 1427 1416 602 912
346 (20x24) 2940 3417 576 578 316 494
528 (26x29) 1985 2291 367 368 227 343
702 (30x34) 1549 1778 276 279 186 280
892 (36x37) 1221 1398 217 231 161 246
1072 (37x44) 1034 1174 176 203 149 215
1430 (45x49) 816 968 154 173 124 203
1794 (49x57) 667 776 124 152 115 173

Table 3 - The impact of diagnostic workload on model execution time for ORCA12 configuration

Number of CPUs
(XY parallel

decomposition)

OCE [s] SI3 [s] XIOS [s]

 Basic CMIP6 Basic CMIP6 Basic CMIP6
3440 (80x70) 6242 7095 1156 1173 789 1264
4338 (88x81) 5079 5814 889 905 776 1229
6148 (111x93) 3667 4330 617 620 673 1059
7054 (112x106) 3364 3916 587 594 594 962
9748 (134x123) 2554 3112 409 489 530 897

A detailed profiling on time spent running the ocean, sea-ice and I/O component shows (Table
4) that NEMO is the most expensive part of the system – taking between 70% and 76% of total
execution time, SI3 takes ~15% and XIOS between 7 and 25% depending on resolution and
number of processors used. The data shows that with increasing number of processors relative
execution time for NEMO and SI3 is decreasing and for XIOS is increasing.

Table 4 - Relative execution time for OCE, SI3 and XIOS

Resolution OCE [%] SI3 [%] XIOS [%]

ORCA1 72-60 16-14 11-25
ORCA025 76-72 17-13 7-15
ORCA12 76-73 14-12 10-15

 9

 New communication strategies in NEMO

As reported in the previous section and in the NEMO development strategy document, one
of the main bottlenecks for NEMO scalability is the time spent performing
communications, used to update Lateral Boundaries Conditions. Point to point
communications are used by NEMO routines to update the halo region before performing
computation on the generic point using values of its neighbours. Two complementary
strategies are here proposed by CMCC to reduce the communication frequency and the
communication time. In particular, the MPI3 standard defines new neighbourhood
collective communications instead of multiple point to point exchanges to perform the halo
update. On the other side, the frequency of exchanges can be reduced by increasing the
dimension of the halo region.

MPI3 neighbourhood collectives

Lateral boundaries exchange: p2p vs collective communications

NEMO performs Lateral Boundaries Condition (LBC) update by using four point to
point MPI communications at north, south, east and west for each MPI domain. NEMO
completes east-west exchange before performing north-south communications. The
order of the exchanges allows us to preserve both 5-point and 9-point stencils. Indeed,
as shown in Figure 2, the bottom right corner of P0 internal domain (bounded in red) is
indirectly received from southern-eastern process P4 through exchanges performed by
the two processes with P1.

Figure 2 - NEMO LBC update. In the picture we assume to have a 3x3 grid of processes.

 10

NEMO supports the exclusion of computation on land domains through a pre-
processing analysis which allows reducing the number of MPI processes allocated at
runtime. A new communication strategy should support this feature to preserve
performance efficiency.
MPI3 neighbourhood collectives [3] provide a way to have sub-communicators used to
perform collective communications.
Two topologies, Cartesian and Graph, are supported and graphically represented in
Figure 3. In the case of a Cartesian communicator, a neighbourhood communication
involves the nearest neighbours in all directions (north, south, east and west). The
neighbourhood communication for a generic process (yellow coloured) on a Cartesian
topology includes only the processes that are in green. In the case of Graph topology,
the communicator can also involve other processes not directly linked to the target
process.

Figure 3 - MPI3 neighbourhood collective communications topologies

Even if NEMO works on a Cartesian grid, Graph topology is recommended to preserve
both 5 and 9-point stencils. Neighbourhood communications allow us to support land
domain exclusion and communications with eastern and western exchanges when
periodicity is not activated by simply excluding the interested processes from the sub-
communicator.
The implementation of the new communication strategy only requires changes to the
LBC module. Indeed, a parameter in the lbc_lnk* calls allows the choice between 5 and
9-point stencils, depending on data dependencies in NEMO routines. During the
initialization step, two different sub-communicators are defined in order to support the
two different exchanges. A single MPI message is needed to be built for all neighbours
instead of 4 different messages, as shown in Figure 4, before calling the collective

 11

communication, while the received message is used to update the halo region, following
the order of the neighbours in the sub-communicator.

Figure 4 - MPI messages exchanged with current P2P communications (left side) and MPI3

neighbourhood collectives (right side)

Approach evaluation

The new communication strategy has been tested by using a mini-app approach: two
computational kernels have been extracted from NEMO and used as test cases. They
are the Flux Corrected Transport tracer advection scheme and the computation of ice
velocities from EVP rheology, two of the main relevant routines from the computational
point of view. The data dependencies are satisfied by the 5-point stencil in the first case
while the 9-point stencil is needed to perform computation in the second case.
The new MPI3 neighbourhood collective communications have been integrated into the
mini-apps and a performance comparison with the standard MPI2 point-to-point
communications has been made. Tests have been performed on a domain size of
3000x2000x31 grid points, by increasing the number of cores up to 2016. This is the
limit for the submission queue on Zeus, the CMCC machine where scalability tests have
been executed, based on Intel Xeon Gold 6154 18-cores processors at 3.0 GHz. Each
computing node includes 2 processors and 96GB of main memory.
Table 5 and Figure 5 show the gain in communication time for the use case 1 using a 5-
point stencil. The improvement is not the same when communications with processes
on the diagonal are activated (9-point stencil is needed), as shown in Table 6 and Figure
6, however, a modest gain is still achieved. Five repetitions have been executed for each
use case and the average response time has been reported. The response time variability
is lower than 9%, for both 5 and 9-point stencil.

 12

Table 5 - P2P vs Neighbourhood collectives communication time (5-point stencil)

 MPI3 P2P
#MPI
procs

Horizontal
domain size

Vertical
domain size

communication
time

communication
time

Gain (%)

504 107 111 8.67 10.26 15.48
720 83 100 7.50 8.64 13.12

1008 83 72 5.91 7.53 21.51
1440 75 56 5.17 6.76 23.47
2016 54 56 3.55 5.17 31.33

Figure 5 - P2P vs Neighbourhood collectives communication time (5-point stencil)

Table 6 - P2P vs Neighbourhood collectives communication time (9-point stencil)

 MPI3 P2P
#MPI
procs

Horizontal
domain size

Vertical
domain size

communication
time

communication
time

Gain (%)

504 107 111 8.25 8.44 2.22
720 83 100 6.88 7.32 5.97

1008 83 72 5.13 6.27 18.22
1440 75 56 4.27 5.04 15.39
2016 54 56 3.70 3.78 1.94

 13

Figure 6 - P2P vs Neighbourhood collectives communication time (9-point stencil)

Extended halo management

Even if the halo size could be parametrised in NEMO, the parallel algorithm in NEMO
routines is designed to work with a halo size set to 1 row/column. This means that a
new communication is needed whenever the algorithm computes the generic point using
its neighbours. The analysis of some NEMO routines shows how the exchange of more
than one row/column of halo would allow moving communications outside the routine,
preserving data dependencies and reducing communication frequency.
As an example, if we consider the MUSCL (Monotonic Upstream Scheme for
Conservative Laws) advection schema, the neighbours access pattern is shown in Figure
7.

Figure 7 - Neighbours access pattern within the MUSL advection scheme in NEMO

In the target kernel, the horizontal advective fluxes are computed in two steps, each one
characterised by the above described access pattern. Then, a communication is needed
before each computation region in order to update the halo. Increasing the halo size up
to 2 allows us to move communications before the first computation step, then outside
the computational kernel, as shown in Figure 8.

 14

Figure 8 - Code refactoring for managing extended halo in MUSCL advection scheme

 15

Figure 9 - Extended halo exchange

A wider halo size reduces the frequency of message exchanges whilst it increases the
message size at each exchange, as shown in Figure 9. It allows us to adopt some
optimisation strategies (i.e. loop fusion, tiling, etc.) to improve the locality.
However, the management of the extended halo size requires addressing the following
issues:

1. the management of the existing input files by deleting the global halo
2. changing the code to handle a parametric number of halo rows/columns. These

changes impact on both the DO LOOPS indexes within the routines and LBC
module, particularly on the north-fold exchanges

3. restart and output files management (read and write operations) in order to
avoid saving halo information

4. analysis of the parallel algorithm in each kernel to identify in which routines
the exchange can be moved outside by increasing the halo size.

The approach has been implemented and evaluated on the MUSCL advection scheme.
The main advantage introduced by a wider halo trades between a reduction of the
frequency of the halo exchanges, hence we reduce the communications latency and the
“synchronization” points, with an increase in the computational overhead since each
process has to compute itself the values itself on part of the halo region. However, the
extended halo opens the way for further optimizations that can be applied after moving
the halo exchange outside the computational kernels (further optimizations, which are
not part of the IS-ENES3 project, include loop fusion or tiling as described in the
NEMO development strategy plan). Nevertheless, the use of a wider halo somehow

 16

improves some kernels as in the case of the MUSCL advection scheme; Figure 10 shows
the gain in the execution time comparing the original version and the new one with halo
extended to 2 lines and the communication moved outside the computing region.

Figure 10 - Execution time improvement (%) of extended halo version compared with original one

 Mixed precision in NEMO code

We present in this section an automatic methodology (auto-RPE) which could be used for
any model (included NEMO) to test the precision of the variables, evaluate which ones
could reduce their precision and validate the results in scientific terms, through a battery of
tests which are executed using a workflow manager.

Auto-RPE: the new methodology to produce mixed precision models

The idea of speeding up computational models by using the least number of significant bits
possible has been around during many years. In Baboulin et al. 2009 the authors suggest
that by using single-precision (32-bit) floating point numbers instead of the de facto
standard double-precision (64-bits), the performance of many algorithms might be
enhanced while maintaining the accuracy. In Váňa et al. 2017, it is shown that by means of
this approach the atmospheric model IFS obtained an average gain in computational
efficiency by approximately 40%. When trying to use the same approach on NEMO we
observed that although the performance gains were of a similar magnitude, the outcomes
of the simulations were sensibly different. This result suggested that optimizing the
numerical precision would be a very valuable optimization on the one hand, whereas on the
other hand it would be necessary to first identify where single precision was insufficient to
safely reduce the numerical precision used in NEMO. Finally, working only for NEMO to
reduce the precision could be a waste of time and not interesting enough for the weather

 17

and climate community, so a general methodology that could be applied to other models
seemed to be more convenient.
However, determining which parts of a code are precision sensitive is not straightforward.
Relying on expert knowledge to point out the most suspicious regions can be insufficient
given that some of the issues can be really hidden and not intuitive. Moreover, it does not
represent a robust method which can be scrutinized and reviewed [4]. Instead, we intended
to develop a method which could be used to identify sensitive regions even without a deep
field knowledge. The idea behind the method in progress is to define when we consider that
the results are accurate and automatically find which configuration minimizes the numerical
precision used while achieving it.
In summary, the new method on development, AutoRPE (Automatic Reduced Precision
Emulator) is a python tool designed to allow the optimization of numerical precision in
FORTRAN codes.
It was originally developed to work with the ocean model NEMO, although we aspire to
make it usable with other FORTRAN codes. A general sketch of how the tool works is
described by the following points:

• Analysis of the pre-processed sources, and storage of all the information about:
variables, functions, subroutines and modules used in the code.

• Substitution of REAL variables with custom RPE type.
• Through the coupling with a workflow manager a series of simulations is run, driven

by a search algorithm that discriminates between good and bad results. Eventually
a list of variables is produced, with information on the precision each of them needs
to retain.

• Automatic implementation of the changes needed in the original code in order to
have a working mixed precision binary, following the prescription given by the
analysis.

The new methodology will use ensemble executions and statistical techniques to ensure
that the chaotic nature of climate systems is took into account. Additionally, the
collaboration with the main model developers will be mandatory to propose different
configurations witch cover most of the variables included in the model.

3. Deviation and difficulties overcome

During the reporting period, there were not any particular deviations which prevented the
performance of scheduled activities and the achievement of the main objectives. Instead,
some of the designed optimisations that have already been discussed within the NEMO
HPC-WG and the NEMO System Team during the first year of the IS-ENES3 project, have

 18

been partially scheduled in the NEMO Workplan 2020, as well as developed and integrated
into the NEMO code.
Due to COVID-19 emergency, collaboration among the partners involved in task 8.1 has
been performed through online meetings without any particular deviation.

4. Next steps
During the last two years of the project, development and integration actions of the two
optimisations on communications will be fully integrated and tested within the NEMO
code. In particular, the support to both the new communication strategies has been already
integrated, while during the next year the use will be extended to the whole code. The
evaluation of the performance improvement will be completed by using the automatic
performance tool. Other optimisations of the main bottlenecks (I/O and communications at
the north pole) will be addressed.

5. Reference
[1] https://www.nemo-ocean.eu/wp-
content/uploads/NEMO_Development_Strategy_Version2_2018-2022.pdf
[2] https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-
2019.pdf
[3] Using MPI, 3rd Edition, by William Gropp, Ewing Lusk, and Anthony Skjellum,
published by MIT Press, 2014; ISBN 9780262527392.
[4] Tintó Prims, O., M.C. Acosta, A.M. Moore, M. Castrillo, K. Serradell, A. Cortés and
F.J. Doblas-Reyes (2019). How to use mixed precision in ocean models: exploring a
potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6. Geoscientific
Model Development, 12, 3135-3148, doi:10.5194/gmd-12-3135-2019.

