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ABSTRACT 
 

The document describes the work carried out during the first period of the project in terms of 
performance analysis and optimisation of the NEMO model. In particular, the authors emphasise the 
need to automatize the performance profiling and define some implementation strategies designed to 
reduce scalability bottlenecks and the time to solution of the target ocean model. The work is perfectly 
integrated into the NEMO development strategy plan, which highlights the issues to be addressed in 
the medium term for the NEMO model, and it contributes to address these issues by defining some 
optimisations techniques. 
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1. Objectives 

In the context of WP8 which aims at developing models and tools able to produce more 
accurate and reliable simulations of the Earth climate system, the objective of this task is to 
improve NEMO computational performance for the execution of high-resolution and 
complex simulation. This is also in accordance with the NEMO development strategy 
document [1], where making NEMO efficiently executed on different architectures is 
defined as one of the main objectives in the five-year period 2018-2022. 
This report is aimed at defining a methodology to automatically profile NEMO, in order to 
understand the main bottlenecks to performance efficiency. Moreover, some solutions to 
well-known performance issues are suggested and evaluated, also showing the impact that 
they could have on the NEMO performance. The activities proposed by CMCC and Met 
Office as internal partners of the NEMO Consortium, alongside BSC as external 
contributor, aim to analyse the NEMO computational performance and describe (i) a 
methodology to evaluate which parts of the NEMO code can be safely executed in single-
precision and (ii) two complementary strategies to reduce the communication time.  

 
2. Methodology and Results 

 Analysis of NEMO computational performance 
In order to address NEMO optimisation, which is the main goal of this task, a complete 
study of the model as numerical and computational code is needed to understand the main 
bottlenecks of the model and how to appropriately exploit the possible optimizations to be 
performed during the project. Additionally, NEMO is undergoing significant changes due 
to the introduction of new developments (such as a completely new ICE module) and some 
optimizations coming from other projects such as the final implementation (through 
ESiWACE21) of the mixed precision approach, based on the methodology established in 
this task (Section 2.3) or tiling implementation (through IMMERSE2). For this reason, the 
main task performed at the Barcelona Supercomputing Center (BSC) during this period has 
been to study the model and develop methodologies which facilitate work in terms of 
optimizations and evaluation for the second period of the project (and also in the future), 
while collaborating on very specific profiling actions, as the scalability of the new BENCH 
test case or the evaluation of NEMO in the context of the Performance Optimisation and 
Productivity Centre of Excellence in HPC (POP) Center of Excellence3. This section 
presents a methodology used to automatize the profiling analysis of NEMO to understand 
the main bottlenecks of the ocean model, not only for a specific version of NEMO, but also 

 
1 https://www.esiwace.eu 
2 https://immerse-ocean.eu 
3 https://pop-coe.eu 
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for any version released in the future, including changes coming from other developments 
and projects. This automatic profiling analysis produces a complete study about the 
computational performance of the model using the BSC Performance Tools4, dramatically 
minimizing the work done by the developers and users. 

A methodology to automatically profile the NEMO code 

Understanding the cause of parallelization overhead and inefficient computation of a 
numerical model can be more difficult than it seems. Modern processors and compilers are 
complex machines that use many strategies in order to do computations as fast as possible, 
and usually it is not straightforward to see how a change in the code would translate into 
actual execution. If understanding the performance of a sequential program can be hard 
enough, things get even more complicated when the program exploits parallelism; and 
when programs try to exploit supercomputers with thousands of cores instead of just several 
cores, understanding how computations take place can almost be impossible without the 
proper tools and methods. At the same time, understanding the main problems of a model 
from a computational point of view is crucial in order to know how the model uses 
computational resources and to find ways to improve it. For this reason, the use of profiling 
analysis tools such as the BSC tools, Vampire or V-Tune is especially critical for these 
studies. 
However, these tools require expertise and their use have some limitations. Almost every 
year changes in the code or changes in the hardware where scientists run their simulations 
force us to develop a specific benchmark which could exploit properly the profiling tools 
to produce useful results. Additionally, it is not clear how to compare the results collected 
across the years, since no systematic methodology is usually applied. 
Having a strategy, agreed upon beforehand, would enable us to consistently profile the 
performance of a code. We are talking about a methodology which could be used to obtain 
a deeper insight into the model behaviour while reducing the extra work from experts or to 
compare the impact of different features in the code on different hardware.  
With this purpose, at BSC, we have developed an automatic profiling tool that is able to 
automatically deploy, compile and analyse a given model, controlled through some input 
parameters. 
This tool aims to be flexible enough to be used with different codes, and on different 
platforms. It is still in the tuning phase, i.e. understanding what kind of information we need 
to be able to build a record of BSC codes’ performance, and for the moment it can be used 
just on MareNostrum4 with NEMO. Once the parameter file is filled, mainly with paths to 
Git repositories and to the script fulfilling the compile step, the analysis is run, and a report 
is produced. 

 
4 https://tools.bsc.es/ 
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The report is a latex text file, filled with tables and plots with info as reported in Figure 1. 
For writing the rest of the report we highly rely on the BSCTOOLS suite, using heavily 
Paraver or Paramedir to extrapolate data. This methodology will be available for the 
community along with the optimizations planned for the second part of the project. The 
users will be able to use this methodology, at least in a simplified version, which should 
portable enough.  
 

 

 

 
Figure 1 - Report example on BENCH configuration 

 
Apart from the scripts to launch automatically BSC Tools and collect the profiling results, 
a specific configuration for NEMO was developed. However, we thought that the typical 
ORCA or GYRE configurations could not be the best ones for a profiling analysis. 
During the process of setting up this new automatic profiling methodology, the BSC took 
part in specific NEMO optimization undertakings, that also allowed us to receive updates 
on the model necessities and get useful for the methodology.  
In 2019, a non-intrusive instrumentation of the NEMO code was created by E. Maisonnave 
and S. Masson at the LOCEAN Laboratory, in Paris [2], with the aim of giving information 
about the MPI communications cost and structure of the model. The main goal was to 
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identify which developments have to be prioritized for the model to enhance its scalability: 
a new NEMO configuration, called BENCH, was specifically developed for the purpose, 
offering an easy way to make performance measurements, and hoping to simplify future 
benchmark activities related to computing efficiency.  
We studied if this configuration could be used as a valid tool to get insight into NEMO 
performance, and then proceeded to use the BENCH test to study some of NEMO most 
known bottlenecks: I/O and the north fold. Additionally, we took the chance to investigate 
a topic that is gaining popularity among NEMO developers: the variability of time required 
to perform a timestep and how it influences NEMO performance, obtaining directions on 
how to avoid or mitigate such behaviour. 
The results state that this test can accurately represent the computing performance of 
NEMO itself, giving a correct way of interpreting data that may save the experts working 
on optimization tasks from struggling with the choice of a configuration to assess, or the 
search for input data as example. We also reported a study that illustrates how completely 
filling the nodes leads to a loss in performance due to a sort of noise in the time steps 
duration and explained how this can be related to the need of leaving some space free for 
the operating system to work. 
With respect to the I/O evaluation, we found out that, when running on an ORCA12 
configuration using XIOS in server mode, the time steps involved in output operations will 
slow down with respect to a computation-only one, from six to twelve times. But, it is 
probably worth exploring additional configurations, because the frequency we used for 
dumping the output on files was probably too high. Finally, it seems that the north fold 
extra communications become a burden for the model only at a high number of cores, a 
region where communications are in general already the bottleneck. In this sense, it is a 
further remark of the fact that whichever attempt to enhance the parallel performance 
should necessarily target this topic. 
Apart from the preliminary analysis done through the new methodology, in 2020, the 
NEMO System Team made a request for the POP H2020 Center of Excellence to analyse 
the main bottlenecks of the NEMO code using also the BENCH test case. The Earth 
Sciences department of the BSC collaborated to the deployment and configuration of 
NEMO v4.0.2 in MareNostrum4 for this particular case, also guiding the set-up of the tests 
and assessing on the scales relevant to the case. This work led to interesting conclusions 
regarding the communications overhead that can be exploited in this project or in any other 
attempt to improve NEMO efficiency. In particular, the north fold was again identified as 
one of the main stoppers to the model scalability, and the final report suggested working on 
the dynamic solver granularity as a way to reduce waits in the execution. 
Final results using the new methodology for profiling analysis will be presented before the 
end of the project, in order to explain the optimizations that BSC will implement for NEMO 
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and to provide a complete computational evaluation of the model once the major changes 
in the forthcoming 4.2 version are implemented. 

Performance of the Met Office Global Ocean 8 (GO8) configuration. 

Concerning the performance analysis and in particular the I/O operations profiling, at Met 
Office the GO8 configuration was investigated for a three NEMO ORCA (global grid) 
resolutions ORCA012 (1/12th degree), ORCA025 (1/4deg) and ORCA1 (1deg), including 
sea ice but excluding the biogeochemistry module. For all configurations, the impact of the 
diagnostics load on model execution was investigated. Each configuration was executed 
one time.   
The model configuration was based on NEMO version 4. The runs for ORCA1 and 
ORCA025 were using 6 XIOS servers, ORCA12 – 36 XIOS servers. All configurations 
used single file output for diagnostics. 
Table 1, Table 2 and Table 3 show results from a series of runs aimed to investigate the 
impact of diagnostic workload, basic diagnostics in the configuration (Basic) and those 
required by CMIP6 (CMPI6) on model execution time. Timing information generated by 
NEMO (timing.output) was used, and this information includes also 
initialization/finalization time; and XIOS diagnostic file. The execution time was split into 
the time to run ocean (OCE), Sea Ice (SI3) and XIOS client time (XIOS).  Increasing 
diagnostic workload resulted in an increase of execution time for ocean component by 
~15% and increase in XIOS time by 40-60% depending on model resolution. This increase 
in time is associated with the need to derive/calculate new diagnostics in the model and 
next to perform temporal averaging and an additional operation in XIOS. 
 

Table 1 - The impact of diagnostic workload on model execution time for ORCA1 configuration 

Number of CPUs 
(XY parallel 

decomposition) 

OCE [s] SI3 [s] XIOS [s] 

 Basic CMIP6 Basic CMIP6 Basic CMIP6 
2 (2x1) 5222 5993 1197 1193 789 1173 
4 (2x2) 2820 322 643 651 407 611 
6 (3x2) 2047 2337 455 457 295 435 
12 (4x3) 1403 1620 287 284 173 273 
28 (6x5) 883 1031 176 174 92 147 
34 (6x6) 898 1010 160 158 95 133 
48 (9x6) 633 726 109 109 69 103 
70 (10x8) 443 505 82 80 56 95 

156 (16x12) 196 229 43 42 42 54 
322 (24x18) 111 128 24 29 31 49 
444 (28x22) 91 107 25 21 34 38 
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608 (33x26) 81 99 19 22 26 45 
754 (36x30) 74 87 17 17 26 35 
890 (42x31) 77 83 18 19 32 35 

 
Table 2 - The impact of diagnostic workload on model execution time for ORCA025 configuration 

Number of CPUs 
(XY parallel 

decomposition) 

OCE [s] SI3 [s] XIOS [s] 

 Basic CMIP6 Basic CMIP6 Basic CMIP6 
164 (14x15) 6511 7475 1427 1416 602 912 
346 (20x24) 2940 3417 576 578 316 494 
528 (26x29) 1985 2291 367 368 227 343 
702 (30x34) 1549 1778 276 279 186 280 
892 (36x37) 1221 1398 217 231 161 246 
1072 (37x44) 1034 1174 176 203 149 215 
1430 (45x49) 816 968 154 173 124 203 
1794 (49x57) 667 776 124 152 115 173 

 
Table 3 - The impact of diagnostic workload on model execution time for ORCA12 configuration 

Number of CPUs 
(XY parallel 

decomposition) 

OCE [s] SI3 [s] XIOS [s] 

 Basic CMIP6 Basic CMIP6 Basic CMIP6 
3440 (80x70) 6242 7095 1156 1173 789 1264 
4338 (88x81) 5079 5814 889 905 776 1229 
6148 (111x93) 3667 4330 617 620 673 1059 
7054 (112x106) 3364 3916 587 594 594 962 
9748 (134x123) 2554 3112 409 489 530 897 

 
A detailed profiling on time spent running the ocean, sea-ice and I/O component shows (Table 
4) that NEMO is the most expensive part of the system – taking between 70% and 76% of total 
execution time, SI3 takes ~15% and XIOS between 7 and 25% depending on resolution and 
number of processors used. The data shows that with increasing number of processors relative 
execution time for NEMO and SI3 is decreasing and for XIOS is increasing. 
 

Table 4 - Relative execution time for OCE, SI3 and XIOS 

Resolution OCE [%] SI3 [%] XIOS [%] 
 

ORCA1 72-60 16-14 11-25 
ORCA025 76-72 17-13 7-15 
ORCA12 76-73 14-12 10-15 
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 New communication strategies in NEMO 

As reported in the previous section and in the NEMO development strategy document, one 
of the main bottlenecks for NEMO scalability is the time spent performing 
communications, used to update Lateral Boundaries Conditions. Point to point 
communications are used by NEMO routines to update the halo region before performing 
computation on the generic point using values of its neighbours. Two complementary 
strategies are here proposed by CMCC to reduce the communication frequency and the 
communication time. In particular, the MPI3 standard defines new neighbourhood 
collective communications instead of multiple point to point exchanges to perform the halo 
update. On the other side, the frequency of exchanges can be reduced by increasing the 
dimension of the halo region.  

MPI3 neighbourhood collectives 

Lateral boundaries exchange: p2p vs collective communications 
 

NEMO performs Lateral Boundaries Condition (LBC) update by using four point to 
point MPI communications at north, south, east and west for each MPI domain. NEMO 
completes east-west exchange before performing north-south communications. The 
order of the exchanges allows us to preserve both 5-point and 9-point stencils. Indeed, 
as shown in Figure 2, the bottom right corner of P0 internal domain (bounded in red) is 
indirectly received from southern-eastern process P4 through exchanges performed by 
the two processes with P1. 
 

 
Figure 2 - NEMO LBC update. In the picture we assume to have a 3x3 grid of processes. 
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NEMO supports the exclusion of computation on land domains through a pre-
processing analysis which allows reducing the number of MPI processes allocated at 
runtime. A new communication strategy should support this feature to preserve 
performance efficiency.  
MPI3 neighbourhood collectives [3] provide a way to have sub-communicators used to 
perform collective communications.  
Two topologies, Cartesian and Graph, are supported and graphically represented in 
Figure 3. In the case of a Cartesian communicator, a neighbourhood communication 
involves the nearest neighbours in all directions (north, south, east and west). The 
neighbourhood communication for a generic process (yellow coloured) on a Cartesian 
topology includes only the processes that are in green. In the case of Graph topology, 
the communicator can also involve other processes not directly linked to the target 
process.  

 
 

 
Figure 3 - MPI3 neighbourhood collective communications topologies 

 
Even if NEMO works on a Cartesian grid, Graph topology is recommended to preserve 
both 5 and 9-point stencils. Neighbourhood communications allow us to support land 
domain exclusion and communications with eastern and western exchanges when 
periodicity is not activated by simply excluding the interested processes from the sub-
communicator. 
The implementation of the new communication strategy only requires changes to the 
LBC module. Indeed, a parameter in the lbc_lnk* calls allows the choice between 5 and 
9-point stencils, depending on data dependencies in NEMO routines. During the 
initialization step, two different sub-communicators are defined in order to support the 
two different exchanges. A single MPI message is needed to be built for all neighbours 
instead of 4 different messages, as shown in Figure 4, before calling the collective 
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communication, while the received message is used to update the halo region, following 
the order of the neighbours in the sub-communicator.  
 
 

 
Figure 4 - MPI messages exchanged with current P2P communications (left side) and MPI3  

neighbourhood collectives (right side) 
 

Approach evaluation 
 
The new communication strategy has been tested by using a mini-app approach: two 
computational kernels have been extracted from NEMO and used as test cases. They 
are the Flux Corrected Transport tracer advection scheme and the computation of ice 
velocities from EVP rheology, two of the main relevant routines from the computational 
point of view. The data dependencies are satisfied by the 5-point stencil in the first case 
while the 9-point stencil is needed to perform computation in the second case.  
The new MPI3 neighbourhood collective communications have been integrated into the 
mini-apps and a performance comparison with the standard MPI2 point-to-point 
communications has been made. Tests have been performed on a domain size of 
3000x2000x31 grid points, by increasing the number of cores up to 2016. This is the 
limit for the submission queue on Zeus, the CMCC machine where scalability tests have 
been executed, based on Intel Xeon Gold 6154 18-cores processors at 3.0 GHz. Each 
computing node includes 2 processors and 96GB of main memory. 
Table 5 and Figure 5 show the gain in communication time for the use case 1 using a 5-
point stencil. The improvement is not the same when communications with processes 
on the diagonal are activated (9-point stencil is needed), as shown in Table 6 and Figure 
6, however, a modest gain is still achieved. Five repetitions have been executed for each 
use case and the average response time has been reported. The response time variability 
is lower than 9%, for both 5 and 9-point stencil. 
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Table 5 - P2P vs Neighbourhood collectives communication time (5-point stencil) 

      MPI3 P2P   
#MPI 
procs 

Horizontal 
domain size 

Vertical 
domain size 

communication 
time 

communication 
time 

Gain (%) 

504 107 111 8.67 10.26 15.48 
720 83 100 7.50 8.64 13.12 

1008 83 72 5.91 7.53 21.51 
1440 75 56 5.17 6.76 23.47 
2016 54 56 3.55 5.17 31.33 

 

 
Figure 5 - P2P vs Neighbourhood collectives communication time (5-point stencil) 

 
Table 6 - P2P vs Neighbourhood collectives communication time (9-point stencil) 

      MPI3 P2P   
#MPI 
procs 

Horizontal 
domain size 

Vertical 
domain size 

communication 
time 

communication 
time 

Gain (%) 

504 107 111 8.25 8.44 2.22 
720 83 100 6.88 7.32 5.97 

1008 83 72 5.13 6.27 18.22 
1440 75 56 4.27 5.04 15.39 
2016 54 56 3.70 3.78 1.94 
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Figure 6 - P2P vs Neighbourhood collectives communication time (9-point stencil) 

 

Extended halo management 

Even if the halo size could be parametrised in NEMO, the parallel algorithm in NEMO 
routines is designed to work with a halo size set to 1 row/column. This means that a 
new communication is needed whenever the algorithm computes the generic point using 
its neighbours. The analysis of some NEMO routines shows how the exchange of more 
than one row/column of halo would allow moving communications outside the routine, 
preserving data dependencies and reducing communication frequency. 
As an example, if we consider the MUSCL (Monotonic Upstream Scheme for 
Conservative Laws) advection schema, the neighbours access pattern is shown in Figure 
7. 
 

 
Figure 7 - Neighbours access pattern within the MUSL advection scheme in NEMO 

 
In the target kernel, the horizontal advective fluxes are computed in two steps, each one 
characterised by the above described access pattern. Then, a communication is needed 
before each computation region in order to update the halo. Increasing the halo size up 
to 2 allows us to move communications before the first computation step, then outside 
the computational kernel, as shown in Figure 8. 
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Figure 8 - Code refactoring for managing extended halo in MUSCL advection scheme 
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Figure 9 - Extended halo exchange 

 
A wider halo size reduces the frequency of message exchanges whilst it increases the 
message size at each exchange, as shown in Figure 9. It allows us to adopt some 
optimisation strategies (i.e. loop fusion, tiling, etc.) to improve the locality. 
However, the management of the extended halo size requires addressing the following 
issues: 
 

1. the management of the existing input files by deleting the global halo 
2. changing the code to handle a parametric number of halo rows/columns. These 

changes impact on both the DO LOOPS indexes within the routines and LBC 
module, particularly on the north-fold exchanges 

3. restart and output files management (read and write operations) in order to 
avoid saving halo information 

4. analysis of the parallel algorithm in each kernel to identify in which routines 
the exchange can be moved outside by increasing the halo size. 

 
The approach has been implemented and evaluated on the MUSCL advection scheme. 
The main advantage introduced by a wider halo trades between a reduction of the 
frequency of the halo exchanges, hence we reduce the communications latency and the 
“synchronization” points, with an increase in the computational overhead since each 
process has to compute itself the values itself on part of the halo region. However, the 
extended halo opens the way for further optimizations that can be applied after moving 
the halo exchange outside the computational kernels (further optimizations, which are 
not part of the IS-ENES3 project, include loop fusion or tiling as described in the 
NEMO development strategy plan). Nevertheless, the use of a wider halo somehow 
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improves some kernels as in the case of the MUSCL advection scheme; Figure 10 shows 
the gain in the execution time comparing the original version and the new one with halo 
extended to 2 lines and the communication moved outside the computing region.  
 

 
 
Figure 10 - Execution time improvement (%) of extended halo version compared with original one 

 
 Mixed precision in NEMO code 

We present in this section an automatic methodology (auto-RPE) which could be used for 
any model (included NEMO) to test the precision of the variables, evaluate which ones 
could reduce their precision and validate the results in scientific terms, through a battery of 
tests which are executed using a workflow manager. 

Auto-RPE: the new methodology to produce mixed precision models 

The idea of speeding up computational models by using the least number of significant bits 
possible has been around during many years. In Baboulin et al. 2009 the authors suggest 
that by using single-precision (32-bit) floating point numbers instead of the de facto 
standard double-precision (64-bits), the performance of many algorithms might be 
enhanced while maintaining the accuracy. In Váňa et al. 2017, it is shown that by means of 
this approach the atmospheric model IFS obtained an average gain in computational 
efficiency by approximately 40%. When trying to use the same approach on NEMO we 
observed that although the performance gains were of a similar magnitude, the outcomes 
of the simulations were sensibly different. This result suggested that optimizing the 
numerical precision would be a very valuable optimization on the one hand, whereas on the 
other hand it would be necessary to first identify where single precision was insufficient to 
safely reduce the numerical precision used in NEMO. Finally, working only for NEMO to 
reduce the precision could be a waste of time and not interesting enough for the weather 
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and climate community, so a general methodology that could be applied to other models 
seemed to be more convenient. 
However, determining which parts of a code are precision sensitive is not straightforward. 
Relying on expert knowledge to point out the most suspicious regions can be insufficient 
given that some of the issues can be really hidden and not intuitive. Moreover, it does not 
represent a robust method which can be scrutinized and reviewed [4]. Instead, we intended 
to develop a method which could be used to identify sensitive regions even without a deep 
field knowledge. The idea behind the method in progress is to define when we consider that 
the results are accurate and automatically find which configuration minimizes the numerical 
precision used while achieving it.  
In summary, the new method on development, AutoRPE (Automatic Reduced Precision 
Emulator) is a python tool designed to allow the optimization of numerical precision in 
FORTRAN codes. 
It was originally developed to work with the ocean model NEMO, although we aspire to 
make it usable with other FORTRAN codes. A general sketch of how the tool works is 
described by the following points: 
 

• Analysis of the pre-processed sources, and storage of all the information about: 
variables, functions, subroutines and modules used in the code. 

• Substitution of REAL variables with custom RPE type. 
• Through the coupling with a workflow manager a series of simulations is run, driven 

by a search algorithm that discriminates between good and bad results. Eventually 
a list of variables is produced, with information on the precision each of them needs 
to retain. 

• Automatic implementation of the changes needed in the original code in order to 
have a working mixed precision binary, following the prescription given by the 
analysis. 

 
The new methodology will use ensemble executions and statistical techniques to ensure 
that the chaotic nature of climate systems is took into account. Additionally, the 
collaboration with the main model developers will be mandatory to propose different 
configurations witch cover most of the variables included in the model. 
 

 
3. Deviation and difficulties overcome 

During the reporting period, there were not any particular deviations which prevented the 
performance of scheduled activities and the achievement of the main objectives. Instead, 
some of the designed optimisations that have already been discussed within the NEMO 
HPC-WG and the NEMO System Team during the first year of the IS-ENES3 project, have 
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been partially scheduled in the NEMO Workplan 2020, as well as developed and integrated 
into the NEMO code. 
Due to COVID-19 emergency, collaboration among the partners involved in task 8.1 has 
been performed through online meetings without any particular deviation. 

 

4. Next steps 
During the last two years of the project, development and integration actions of the two 
optimisations on communications will be fully integrated and tested within the NEMO 
code. In particular, the support to both the new communication strategies has been already 
integrated, while during the next year the use will be extended to the whole code. The 
evaluation of the performance improvement will be completed by using the automatic 
performance tool. Other optimisations of the main bottlenecks (I/O and communications at 
the north pole) will be addressed.  
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