

This document is produced under the EC contract 228203.

 1

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

WP7/JRA1

Deliverable 7.5 – Reference implementations of IO server combined with

Parallel I/O

Abstract:

This document describes the development and testing of two approaches to improve the

performance of I/O for climate and weather models. The first development is called XIOS which

has been released with the latest release of the NEMO ocean model. The second development is

called CDI-pio and has been demonstrated within an early version of the ECHAM6 model. For both

developments, work is underway to demonstrate that they can be used in a range of different

models.

Grant Agreement Number: 228203 Proposal Number: FP7-INFRA-2008-1.1.2.21

Project Acronym: IS-ENES

Project Co-ordinator: Dr Sylvie JOUSSAUME

Document Title:
Reference implementations of IO server

combined with Parallel I/O
Deliverable: D 7.5

Document Id N°: Version: 1 Date: March 4th 2013

Status: Final

Filename:

Project Classification: Public

Document Authors

Verification Authority

Project Approval

Yann Meurdesoif CNRS-IPSL(1)

Thomas Jahns DKRZ (4)

Luis Kornblueh DKRZ (4)

Steve Mullerworth (Executive

summary only)

METOFFICE (10)

This document is produced under the EC contract 228203.

 2

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Executive Summary
Work on IO within JRA1 of the IS-ENES project envisaged a review of a range of existing IO

technology (D7.3) and, additionally, development of existing and new technology to meet existing

and future needs of climate models. At the beginning of the project, the two main techniques were

referred to as parallel IO (writing multiple files in parallel, or writing an individual file using output

from multiple processors), and IO server (writing data from the model to independent IO processes,

which allows the model to continue its integration while the file contents are still being written to

disk). In principle the two techniques can beneficially be used together.

At the beginning of the project, different partners were researching and implementing different

techniques and it was envisaged that within the lifetime of the project, aspects of the two techniques

could have been combined together. In practice, two main approaches have been considered under

the umbrella of this work package both including parallel IO and IO server but responding to different

needs. These are:

 The further development of an IO server system, using parallel IO functionality of NetCDF, at
CNRS-IPSL which has generated the XIOS system that was released with the latest version of
NEMO

 A review and trialling of existing parallel IO packages at DKRZ (D7.1), which has resulted in
extending the existing CDI serial IO library for parallel IO with IO servers.

At the same time, the Met Office was implementing its own IO server system and envisaged sharing

its experiences with the other partners and trialling the software that was being developed.

To this end, two activities took place to try and combine techniques:

 An IO workshop took place, and work plans to combine approaches were discussed.

 The Met Office explored the use of XIOS as a complement to the Met Office's own IO server
developments.

In practice, developing and demonstrating the approaches chosen at each individual partner

institution was significantly more time-consuming than was envisaged at the start of the project,

which reduced resources available for collaboration. Furthermore, at the time XIOS was explored at

the Met Office, the application was not fully developed, so implementing it in the Met Office model

turned out to be too difficult.

That said, the XIOS server can be considered as fulfilling the deliverable objectives, as it is an IO

server implementing parallel IO. The XIOS server is being tested within the NEMO model at a number

of different institutions and on a number of different computing platforms.”

This document briefly discusses the potential complementarities between the two approaches being

taken. Then two further main sections describe each approach (XIOS IO server followed by CDI-pio

parallel IO based system) in more detail as well as the results of tests.

This document is produced under the EC contract 228203.

 3

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Are XIOS and CDI-pio complementary?

There is some agreement among the partners that the CDI-PIO integration developed at DKRZ can

complement the XIOS server developed at CNRS-IPSL by being integrated at the lowest level of the

XIOS system, and this combination may be very beneficial in future computing platforms.

However, the two systems are targeting some different requirements. For example, CDI-pio favours

GRIB format files. When combined with compression, this format typically results in a 1/6th reduction

in storage when compared to similar NetCDF output files and is therefore suited for archival

purposes. However, it is not well adapted for application-level restart. XIOS favours NetCDF format

files, which are better suited for sharing of individual data sets and more widely used within the

climate community, but it does not yet support any succinct format like GRIB directly. NetCDF is also

better supported by many post-processing applications.

As emphasized in D7.3, only XIOS uses external configuration files. This makes the Application

Programming Interface (API) that is used by the climate models simpler. In addition, it makes

changing of the output configuration easier and possibly faster, because the model might not have to

be recompiled, if only the external files have to be adjusted.

In terms of implementing a new IO system within an existing model, both XIOS and CDI-pio require

changes to the workflow of an experiment besides changes to the model source code (setup of the

XML description files for XIOS for example). However, the CDI-pio API is a compatible extension of

the CDI API and thus requires very little change to existing workflows including CDI. XIOS also does

support some post-processing for which there are currently no plans within CDI-pio.

XIOS

Yann Meurdesoif: CNRS-IPSL

Motivation
Management of output files and diagnostics from climate simulations is becoming a source of

growing concern. The increase in complexity of models, resolution of models and number of

variables output by models results in the writing and storing of growing data volumes and challenges

model performance.

The motivation for the development of XIOS arose from experiences with the IO libraries used by the

IPSL models. During CMIP5 (Climate Model Intercomparison Project 5), these Earth system models

had to deliver more than 800 output variables, each one associated with a large amount of metadata

(name, description, unit, associated grid, associated files, etc.). Diagnostic operations on these

variables also needed to be performed (such as time average). The management of metadata within

the code unnecessarily overloaded I/O library calls, affecting the clarity and readability of the code.

For performance reasons it was also necessary to keep many indices (handles) related to variable

definitions or files, and organise the code so that I/O calls are concentrated in few portions of code.

All these aspects harmed the modularity of the models. In addition, each change in the definition of

This document is produced under the EC contract 228203.

 4

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

the choice of outputs or metadata involved recompiling the model. All this demonstrated the lack of

flexibility of I/O libraries used for the outputs of our models.

In addition, the available libraries did not offer parallelism management. Each MPI process over a

computational subdomain wrote its output in a separate file, corresponding to its portion of domain.

The reconstruction of the global file was done later in the post-processing stage. At the resolutions of

our models, the time needed to generate local files during the simulation and to reconstruct the

global file post-processing was becoming large, increasing the cost of the post-processing workflow.

This method remains usable for simulations using up to O (100) processes. Beyond, the overload of

the file system results in prohibitive rebuild times. Beyond O (1000) process, it becomes impossible

to manage our outputs by this method.

XIOS (XML-IO-Server) is a new tool developed at CNRS-IPSL dedicated to managing files and output

diagnostics climate simulation models. It addresses the problems of flexibility and performance

mentioned above.

To improve flexibility, XIOS greatly simplifies the method for defining outputs from a model by

describing them in an XML file, parsed at runtime. By implementing concepts of inheritance hierarchy

within the syntax of the XML, definitions are much more compact and non-redundant. Sending fields

at each time step from code then requires no more than 2 arguments: the identifier field (string)

name which relates to an externally held field definition such as those defined by the CF convention,

and the address of the field data in memory. The metadata for the resulting output field can be

determined from the identifier field combined with the post-processing choices requested in the

XML file.

To improve performance, a proportion of the processors used to run the model are set up to run as

“IO servers” exclusively dedicated to file operations. Data are transferred from client processes

(models) to server processes through asynchronous communications, allowing concurrency of

computing, data transfer and write access to the file system. In addition, through the sequence of

layers NETCDF4/HDF5/MPI-IO libraries, we exploit the parallelism of the computer file system. First,

by aggregating the bandwidth of the system file, we are able to write a much larger volume of data

for the same period of time. Second, server processes simultaneously write their data into a single

parallel file, avoiding the costly rebuild phase in post-processing.

This document is produced under the EC contract 228203.

 5

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

XIOS is written in C + + and is currently made of about 35,000 lines of code available in SVN from the

site: http://forge.ipsl.jussieu.fr/ioserver.

Figure 1 : XIOS clients / servers sketch

XML features
The XML file, written by the model user, contains the description of all fields to be written and their

associations to different output files. As the XML file is parsed at runtime, changing an XML definition

does not require a model modification or recompilation. We present here a brief description of the

various features of XML definitions.

Elements

There are several types of tags "elements" used to define the properties of different objects handled:

 <context>: This element defines the context of outputs. The definitions within each context

are independent from the definitions in other context, for example, enabling the separation

of the definitions for two different models. Identical identifiers can be reused in different

contexts.

 <axis>, <domain>, <grid>: These elements define respectively the vertical axes, the horizontal

areas and grids that are associated with fields. Horizontal areas contain information on the

global domain and on local domains. A 3D grid is defined by the combination of a horizontal

area and a vertical axis. Currently, only regular longitude-latitude grid or curvilinear grids are

supported. In both cases, indexed grids (for instance to write only land points) are also

supported.

 <field>: This element, through its attributes, sets the properties of an output field. Values

relating to the field id are output from the model. XIOS processes the values in accordance

with the field request, and outputs the result to a file or to multiple files.

 <file>: This item defined an output file, with a given output frequency, containing the various

fields that are included as child elements of the XML hierarchy.

This document is produced under the EC contract 228203.

 6

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Figure 2 : Minimalist XML file example: output the netcdf file “output_file.nc” contains daily averaging of the field
“field_A”

Inheritance

Each family member is organized hierarchically; each child inherits the attributes of its parents, while

having the opportunity to redefine the values of inherited attributes for its own use.

 root element (eg <field_definition>) : entry point definitions for an item type. May contain

elements or groups of simple elements.

 Item group (eg <field_group>): allows the user to define attributes that will be transmitted to

child elements. May contain groups of elements or single elements of the same family.

 Single element (eg <field>): Set an element, which inherits the attributes of its parents.

Figure 3 : example of inheritance from parents elements to child

Management schedules and durations

XIOS supports different calendars: Gregorian, Julian, 360 days, 365 days, 366 days. Date format is

(example): "2012-02-7 15:30: 00." XIOS also supports several time units that can be combined: year

(y), months (mo), day (d), minute (mi) and second (s). Example: "1mo 1.5h 30s 2d".

Post-processing operation

This document is produced under the EC contract 228203.

 7

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

XIOS can perform diagnostics such as time averaging and extremes over a given period. These

operations are defined through the field attribute "operation" that allows the values "once, instant,

average, maximum, minimum". Field values are extracted at each time step, averaged and then

written to the file depending on the output frequency (file attribute "freq_output").

XIOS can also combine different field values using standard arithmetic operations to create new

fields. These combinations also work on averaged fields.

All these operations usually attributed to post-processing are now made during the simulation and

benefits from the parallelism of the models.

Figure 4 : example of a new field "C" created by combination of 2 fields "A" and "B"

Fortran interface
XIOS has an API that allows complementing of the XML definition within Fortran codes. The

interoperability between Fortran and C + + is based on the Fortran 2003 that standardizes exchanges

with C. Attributes of the different elements can be added, especially when their value is known only

at runtime (resolution, details of longitudes, latitudes mesh, etc.).

Figure 5 : example of a call setting attribute of a field element

The whole tree of the XML file can also be created or complemented from Fortran, adding groups of

parents or child elements.

At each time step, the field values are transferred to XIOS through the Fortran interface. XIOS offers a

minimalist interface that requires two arguments: a string and the address field of the table, such as:

Client – server feature
XIOS has the ability to dedicate MPI processes (servers) to the I/O tasks. This option is activated

dynamically by setting the parameter "using_server = true" in the parameter list. To provide this

functionality, we chose to provide an independent binary process so as to preserve the

independence of the model components and as a way to be less intrusive. So, the binary

"xios_server.exe" must be started as MPMD with other binaries, as a component model. The main

advantages of operating in server mode are, i) to collect data to be written on a small number of

servers in order to reduce the number of requests to the file system, and avoid saturation. Ii) servers

This document is produced under the EC contract 228203.

 8

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

are asynchronous : they operates the writing tasks in parallel to model processes, minimizing the

impact on simulation time.

Interaction with model components

XIOS has been designed for use as part of a coupled model. Each component of the model, identified

by a string, initializes the XIOS library through the Fortran interface. XIOS sets the global MPI

communicator (MPI_COMM_WORLD) and sends back a new communicator to each model. XIOS can

inter-operate with the OASIS coupler, which is considered as a component model. Then, at any time,

each code can initialize one or more contexts. Each context will be associated with an inter-

communicator enabling it to exchange messages with the "pool" of XIOS servers.

Figure 6 : interaction between the XIOS library, the OASIS coupler and the component models in the IPSL Earth system
model.

Data distribution

On the client side, the field distribution of each process comes from the domain decomposition set

by the model parallelization. On the server side we chose to distribute the data fields to optimize the

disk operation. So data are organized as shown in Figure 7, i.e. contiguous in memory so as to have

larger block to write on disk, and evenly distributed for a good load balancing. Each client sends its

data to one or more servers, each server receiving data from one or more clients, while ensuring the

transfer of asynchronous messages.

Figure 7 : data distribution between model domains of clients and servers. On the client side, data distribution is driven
by the model and, on the server side, the distribution is driven by optimal disk operation, i.e. are evenly distributed and

memory contiguous.

This document is produced under the EC contract 228203.

 9

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Transport layer

Traditionally, models require writing outputs at regular intervals (hourly outputs, daily, monthly ...).

The pattern of access to the file system therefore presents very marked peaks following output

frequencies. To smooth these peaks that periodically saturate the file system, XIOS buffers data sent

to servers in order to distribute the writing operations uniformly in time throughout the simulation.

The data are sent from clients to servers without synchronization; only calls MPI non-blocking point

to point communications (MPI_Issend, MPI_IRecv MPI_Test, MPI_IProbe) are used when transferring

messages. On the client side, a double buffer mechanism is used: while messages are being

transferred from the first buffer, it stores the data in the second buffer, then interchange roles of the

two buffers once the data from the first buffer is completely transmitted.

Figure 8 : client side buffer management

On the server side, circular buffers are used. MPI transfers data from the client to the server. Then

while the server is processing this data and writing it to disk, further transfers of data can be received

from the client.

Figure 9 : server side buffer management

If the data stream sent is greater than the processing capacity of a server, the buffer fills up first on

the server side. Once full, it will no longer accept data from the clients until some data has been

processed, freeing some space in the buffer. On the client side, if the buffer becomes full, XIOS

This document is produced under the EC contract 228203.

 10

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

enters a blocking mode, and will only stop blocking requests when some space is released in the

buffers. In this case it is necessary to add servers to ensure the concurrency of writing and

calculation. A set of diagnosis allows the user to properly set the number of servers.

I/O layer

The format of the output files XIOS currently relies on NETCDF4 format that builds itself on HDF5

format. However, the output layer in XIOS is highly modular, and another output format can be easily

implemented. There are two output modes. In mode "multiple_file", each server writes the data of

its own domain. The use of a library of parallel writing is therefore not required but a phase of post-

processing is needed to rebuild the global file. The mode "one_file" uses parallel versions of HDF5

libraries and NETCDF4 (based on MPI-IO) to simultaneously write the output to a unique file, deleting

the rebuild phase. The aggregated bandwidth of the file system is less effective than when writing

files independently as in "multiple_file".

Reference implementation and results

The NEMO consortium (6 laboratories in France and Europe) has officially adopted XIOS. XIOS will be

part of the next official release 3.5 of NEMO, currently in beta version. The integration of XIOS in all

components of the IPSL Earth system model IPSL (NEMO, LMDZ, ORCHIDEE, INCA) has begun and will

take effect in mid-2013. CNRM (Météo-France) has also initiated a collaboration to bring XIOS in all

components of their Earth system model (NEMO, ARPEGE, GELATO, SURFLEX) (IS-ENES 2 EU,

CONVERGENCE French ANR). Finally, the regional atmospheric model MAR (developed by LGGE,

Grenoble) uses XIOS to manage its outputs.

To validate the client / server functionalities and performances, XIOS has been extensively tested

during the PULSATION Project (http://www.locean- ipsl.upmc.fr/ ~pulsation/anr/welcome.html).

This project sets up a coupling between NEMO (for the ocean) and WRF (for the atmosphere) at a

very high resolution in the equatorial zone (9km), with nested models. This project received a grant

of 22 million hours in the call for PRACE Tier-0 on machine. This allowed us to test the performance

of NEMO-XIOS on very high resolution (1/12th ° overall) – see Figure 10:

 Tier0 Curie (1.6 PFlops) Lustre file system (150 Gbyte/s peek- theorically)

 Gyre 144, 4000x3000x31 grid on 8160 cores

 6 days simulated, i.e. 2880 time steps: ~ 300 s

 Hourly outputs: 1.1 Tera byte for 6 days simulated, in 3 files

The configuration chosen for testing is voluntarily ambitious and constitutes an extreme case in

terms of output volume. In fact, such a simulation produces 312 Tb per day, or 9.7 Tb per month.

In mode "multiple_file", i.e. a file server XIOS with 128 servers, scalability is perfect up to more than

8000 cores and allows even a super-linear regime due to cache effects.

This document is produced under the EC contract 228203.

 11

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Figure 10 : Performance data obtained on the Curie supercomputer

In mode "one_file" (a single global file), the main challenge is to aggregate enough bandwidth from

the parallel file system to have a writing time less than the time of calculation. On the Lustre file

system, and using netcdf4 in parallel, we were able to aggregate approximately 5 Gb / s.

Depending on different output frequencies, we obtain the following results:

 8160 NEMO,16 XIOS, daily output: : + 1.5% due to I/O

 8160 NEMO, XIOS 16, 6 hours outputs : + 5% due to I/O

 8160 NEMO, 128 XIOS, hourly outputs : + 15% due to I/O

For six-hour and daily outputs, the impact of I/O is less than or close to the normal fluctuations of the

calculation time of the machine. Analysis of test cases with hourly outputs shows that we are very

close to the maximum bandwidth obtained in simple NetCDF parallel outputs benchmarks. In

addition, the file system shares the same network bandwidth as MPI communications, so we suspect

an impact of file operations on the model communications. Nevertheless, a 15% impact on the

computation time is quite reasonable compared to the amount of data written in this extreme

scenario.

This study of extreme cases shows that XIOS is a viable solution for managing large amounts of data

for future releases of high-resolution Earth system models.

This document is produced under the EC contract 228203.

 12

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

CDI-pio

Thomas Jahns and Luis Kornblueh: DKRZ

1 Introduction
Based on the analyses of parallel computing systems conducted within the IS-ENES project and prior

work, a number of challenges for current and potential future I/O patterns used in parallel climate

simulation codes (referred to as model later) were identified.

A common architecture for parallel I/O implementations is a functional decomposition, where some

processes compute (parts of) the simulation data (compute tasks), while others are tasked with

handling I/O (I/O servers). This kind of architecture avoids implementation issues that occur, when

too many processes open files simultaneously and access very small amounts of data. Since the

optimal data decompositions for I/O and computation are usually very different, it also offloads the

necessary transposition from the compute tasks, freeing up time to progress the simulation. And last,

since data usually needs some conversion before writing, this can also be removed from the main

loop of compute tasks. Since the number of I/O servers can typically be determined at program start,

this also allows for tuning of an unchanged simulation binary relative to the level of detail of written

simulation data (e.g. using fewer I/O server processes, when only monthly and more, if daily or even

shorter interval value snapshots are required).

CDI-pio's design realizes the above transposition while attending to additional requirements and

retaining close compatibility with the established CDI API (Climate Data Interface). CDI so far

supported multi-thread, single-process semantics only, i.e. multi-threaded operations are possible,

but MPI-I/O is not.

The current state of CDI-pio is an evolution of work begun by Deike Kleberg and Luis Kornblueh in the

context of the ScalES project at Max-Planck-Institute for Meteorology in Hamburg.

2 The design of CDI-pio

2.1 Requirements
A survey of current practices and promising technologies available in modern HPC systems led to the

following list of requirements:

 Data must be written in formats suitable for long term archival:

o File formats need to be well standardized.

o Data must be compressed for economical storage.

 The computation must progress in balance.1

1
 Load-imbalance is too broad a topic to cover here, therefore it must suffice to state that it has to be avoided

when possible.

This document is produced under the EC contract 228203.

 13

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

 Hence the computation must not be disturbed by the communication with I/O.

 Parallel writing must match the operating system software requirements. This especially

means data must be decomposed in a fashion matching the file layout.

2.2 Solutions in CDI-pio
CDI-pio supports the NetCDF and GRIB1 file formats, GRIB2 and several legacy formats currently

supported by the serial CDI API are to be ported later.

The preferred data format is WMO GRIB standard, a well-documented, very concise, record-

structured data format.

GRIB features lossy lowest entropy data subsampling, a compression scheme which occurs in two

stages: lossy entropy based reduction of data (i.e. only a specified number of significant binary digits

is preserved) and subsequent lossless entropy compression following the method of Rice2.

NetCDF is supported in all possible installation variants (single task, MPI parallel, classic and HDF5

disk formats) but must rely on site-specific NetCDF-tuning for performance (e.g. must be linked to an

I/O extension library matching the parallel filesystem).

Data is transferred to I/O server processes via RDMA. See Figure 11. This mechanism has two

benefits:

1. Congestion of the communication system is avoided as data is transferred to I/O servers only

as fast as the servers can receive it.

2. RDMA can potentially avoid disturbance of the CPUs serving compute tasks, because the

transfer can be offloaded to the communication network hardware.

2
 R. F. Rice (1971) and R. Plaunt, , "Adaptive Variable-Length Coding for Efficient Compression of Spacecraft

Television Data, " IEEE Transactions on Communications, vol. 16(9), pp. 889–897, Dec. 1971.

http://dx.doi.org/10.1109/TCOM.1971.1090789
http://dx.doi.org/10.1109/TCOM.1971.1090789

This document is produced under the EC contract 228203.

 14

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

Figure 11: Data transfer in a parallel program employing CDI-pio I/O server tasks for output. The data decomposed into
small chunks on the compute tasks is gathered by variable on I/O tasks with one task gathering one or more variables. All
I/O then collectively write to the resulting on-disk file.

3 State of implementation
CDI is a C library with a thin Fortran interface layer (i.e. without dependence on the Fortran run-time

library). All the CDI-pio additions required for parallel I/O were implemented in C. The corresponding

extensions to the Fortran interface functions were introduced in a manner that retains compatibility

with the interface for single-task programs, which is under simultaneous active development. Hence

CDI-pio can be seamlessly used in C/C++ and Fortran programs, with little migration effort required

for programs already adapted for the CDI API.

CDI-pio solves the transposition problem described in the introduction via the generic YAXT3 data

redistribution library and thus supports arbitrary data decompositions on the compute tasks. Since

data prepared for output on the model tasks is only copied to a local RDMA-enabled buffer at first,

no extraneous communication or synchronization and consequently no loss in parallel efficiency is

introduced. Currently the relevant long-term archive formats NetCDF and GRIB are supported, where

parallel I/O for NetCDF files is contingent on the provision of corresponding NetCDF libraries (parallel

NetCDF for classic XDR-based formats and parallel HDF5 + parallel NetCDF 4.x for the more recent

HDF5-based format). Support for parallel I/O with legacy formats available via single-task CDI is

pending.

3
 YAXT is a library developed at DKRZ based on work from the ScalES project. See

https://www.dkrz.de/redmine/projects/yaxt/ for developer access and

https://redmine.dkrz.de/doc/yaxt/html/index.html for documentation.

https://www.dkrz.de/redmine/projects/yaxt/
https://redmine.dkrz.de/doc/yaxt/html/index.html

This document is produced under the EC contract 228203.

 15

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

4 Results
Measurements of run-time were (among others) taken for ECHAM6, running for 1 year of simulation,

with a T127L95 grid on DKRZ blizzard using 32 IBM p575 nodes in ST mode with 16 MPI tasks per

node and 2 OpenMP threads per task. For the decomposition4 with nproca=32 and nprocb=16,

nproma=72 was chosen.

The removal of work from the main loop of the compute tasks results in an almost total reduction of

time spent on waiting on I/O by compute tasks as shown in figure 12. The total run-time is reduced

from 12875 seconds to 8173 s and while computation time is slightly increased from 7500 s to 8053 s

(supposedly because of IBM PE requiring some CPU action for RDMA to occur, but some increase is

to be expected because of increased memory congestion caused by interfering RDMA access) time

spent in the output routines shrinks almost 45-fold from 5375 s to 120 s.

Figure 12: Employing parallel I/O via CDI-pio significantly reduces total run-time by virtue of almost complete elimination
of waiting on I/O as previously witnessed for single-task root I/O for ECHAM6 (see text for specifics of configuration)

5 Applying CDI-pio
CDI-pio is part of recent CDI distributions (versions 1.5.6 and up) available for download from the CDI

site.5

The documentation in the CDI C/Fortran manuals at:

https://code.zmaw.de/projects/cdi/documents

4
 nproc[ab] [ab]-division of earth, nproma: internal vector length; See ECHAM6 user’s guide for description of

technical settings.

5
 https://code.zmaw.de/projects/cdi/files

https://code.zmaw.de/projects/cdi/documents
https://code.zmaw.de/projects/cdi/files

This document is produced under the EC contract 228203.

 16

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General Assembly

shows how to program the core data model of CDI. The CDI-pio manual also details necessary

extensions to perform parallel I/O.

Users not yet using CDI would add, for example, calls to declare output meta-data (like grid sizes and

types), variables to write, and file open/write just like is currently done for serial output with CDI.

CDI-pio fits within the SPMD model; therefore the application must initiate parallel I/O with a call

(pioInit) to declare the number of tasks to use as I/O servers.

Later running requires no changes to pre-existing workflows involving the adapted model with the

possible exception to use more tasks then.

First attempts are underway to include CDI-pio in other models of the European community. The

Irish Centre for High-End Computing is trying to introduce first the serial CDI interface into EC-Earth.

In a second step this should be extended to the parallel version, which requires a few additional calls

only.

A prototype version of ECHAM6 that uses a preliminary version of CDI-pio exists. Efforts to port all of

MPI-ESM (of which ECHAM is a component model) and the ICON model to the most recent version of

CDI-pio for inclusion into the released versions are on-going.

