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• A scalable deep learning framework to perform convolution on the spherical 
unstructured grids commonly used by NWP and climate models  

• Working on native spherical unstructured grid is:
- computationally more efficient than previous approaches
- provide similar / better results than modelling on planar projections of the data

Data-driven weather forecasting  
• WeatherBench Challenge (Rasp et al., 2020)
❑ Provide a standardized dataset to benchmark DL models

Objective of our work 

https://github.com/pangeo-data/WeatherBench


Previous solutions – “2D / image projection” 



Method

1. Compute spectral projections of the data 

🡪 Spherical Harmonic transform (SHT)

2. Convolution correspond to multiplication in the spectral domain

3.    Inverse SHT transforms 

SHT disadvantages

• Computational cost: O(n2)

• For isolatitude sampling (i.e. equiangular, gaussian grids) cost can be reduced to  O(n3/2)

• It’s a global operation. Need to access all nodes and induce high communication on HPC.

A possibility – Classical spherical convolutions



•

DeepSphere – Graph-based spherical 
convolutions

Advantages
• No need to compute the Spherical Harmonic transform (SHT)
• The convolution operation scales linearly with number of grid nodes: O(n)
• Convolutions on a sub-region of a sphere cost the number of nodes involved

A weighted average of 
neighboring pixels



Scalability



Spherical grids



Model variables
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Autoregressive training

AR settings 
Forecast cycle: 6h
Input k: [-18h,-12h,-6h]
Output k: [0h]
AR iterations: 6



t + Δt t + 2Δt t + 3Δt

Autoregressive training

AR settings 
Forecast cycle: 6h
Input k: [-18h,-12h,-6h]
Output k: [0h]
AR iterations: 6



Loss function = L(   ,   )
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How predictions look like …



How predictions look like …



Planar vs. Cylinder vs. Sphere



Spherical samplings



Spatial skill summary
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Modelling strategies



• Bias-correction, downscaling, post-processing of NWP model output

• Classification tasks (i.e. feature detection, segmentation, … )

• Emulation of climate model outputs 

• Stochastic space-time realizations 

• Model (i.e. PDE) error correction

• Model component emulation

• …. 

Foreseen applications
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