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Need actionable 
information on climate 
risk…

…have vast datasets from 
satellites, networked 
sensors, computer 
simulations, etc.

Past emissions
Low future emissions
High future emissions



Four examples

1. Sea ice forecast – CNNs out-performs dynamical forecast and 
linear trend at lead of 2 months & above.

2. Heatwave forecast – combine past observations & climate 
simulations to improve forecasts of extremes

3. Ocean forecast – explore physical basis for data-driven 
models

4. Hydrological forecast – improve flood forecasts



Example 1: seasonal sea ice forecast

Background: Arctic sea ice has a strong season cycle 
(summer melt reaching minimum extent in September). 
Also a strong downward trend over recent decades. 
Currently physics-based dynamical models and simple 
statistical forecasts. 

Goal: Forecast sea ice for next six months using data-
driven deep learning approach. Has implications for NH 
weather and may be useful for ecosystem management. 

Approach: Slice of climate variable at specific 
time/altitude and sea ice satellite data both analogous to 
images input to CNNs.

Tom Andersson et al.



Example 1: seasonal sea ice forecast

Input: Sea ice concentration (SIC), 11 climate variables, statistical SIC forecast -> 50 
channel input to ensemble of U-Net networks.

Task: Classification into open-water (SIC ≤ 15%); ​marginal ice (15% < SIC < 80%), and ​full 
ice (SIC ≥ 80%) 

Tom Andersson et al.

Approach: feature-extracting 
encoding path downsamples input 
data, decoding path upsamples the 
data. Pre-train with CMIP6, train 
with 1979-2011, validate with 
2012-2017, test 2018-2020.

Output: 6mth forecast, 3 SIC classes



Example 1: seasonal sea ice forecast

Tom Andersson et al.

Assessment: out-performs dynamical forecast and linear 
trend at lead of 2 months & above.

Results: for 2020, predicted ice edge 
is close to observed and within 
predicted edge region



Example 2: heatwave forecast

Goal: Generate city-scale projections of extreme 
temperature by postprocessing climate model simulation at 
specific location that can then be used to access risk through 
supply chains, transport routes etc.

Labour productivity, infrastructure, transport and mortality 
all impacted by extreme heat.

Risa Ueno, Tim Summers, et al.

Challenge: Raw output from climate models has systematic errors 
that need accounting for in a way that is sensitive to extremes, 
“bias correction”.

Input: Climate model data and observations (reanalysis).



Example 2: heatwave forecast

Risa Ueno, Tim Summers, et al.

Approach: Learn statistical relationship 
from past (“historical”) data, then apply 
to future simulations.

Biases often affect variance / tails, so 
correct for bias in different quantiles 
separately. Use 31-day window so 
seasonally evolving bias correction



Example 2: heatwave forecast

Risa Ueno, Tim Summers, et al.

Approach: Instead of explicitly calculating bias at each quantile for each month, find 
(learn) function mapping f: Tq(observed) = f (Tq(GCM), quantile, day of year) + uncertainty range

extremes better represented 
with GPs & skill increased



Example 3: ocean forecast

Rachel Furner, et al.
Simple model of Southern Ocean

Wind forcing & temperature/salinity 
restoration at surface. GM 
parameterization.

Overturning circulation.



Example 3: ocean forecast

Rachel Furner, et al.

training validation

Goal: predict daily mean change in ocean 
temperature for any single grid cell, based 
on variables at surrounding locations at 
the current time step. 

Assess physical basis, i.e. interpretability

Approach: linear regressor with T, S, u, u*,
SSH, lat, lon, depth & 2nd order 
polynomials. 

Model is trained by minimising least 
squares errors with ridge regularisation. 



Example 3: ocean forecast

Rachel Furner, et al.

Results: coefficients show density & interaction between 
temperature at grid pt & surrounding grid pts most used 
(advection & diffusion related to temp grad). 

Impact of withholding density is small. Withholding 
currents has greatest impact.

All physically meaningful.

Additional 
error when 
currents 
withheld



Assume flow, 𝑌, as a function catchment descriptors, 𝜃_𝑖, and of climatic variables, 𝜓_𝑖

For a given catchment, the catchment descriptors are stationary. If these variables form the input space, 𝐱, then let 
Y be described by a Gaussian Process, with mean function, 𝜇, and covariance function, 𝐾.

The climatic variables assumed to be most relevant are rainfall, 𝑅_𝑡, antecedent rainfall, 𝑅_(𝑡−𝑛), temperature, 𝑇, 
relative humidity, 𝐻, and windspeed, 𝑉.

Example 4: hydrological forecast

𝑌 = 𝑓(𝑅𝑡, 𝑅𝑡−1,...,𝑡−7, 𝑇,𝐻, 𝑉|𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝜓1 , 𝜓2 , . . . , 𝜓𝑛−10)

𝑌 = 𝑓(𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝜓1 , 𝜓2, . . . , 𝜓𝑛)

𝑌 ∼ 𝒢𝒫(𝜇(𝐱),𝐾(𝐱, 𝐱′)) Robert Rouse



Extend further to account for correlated risks & map to data on impacts

Cairo (pop. 8m) on verge of energy 
crisis

• What will future demand be for air 
conditioning?

• How will this impact the energy 
network?

Design/regulations for:

• sustainable urban drainage
• thermal comfort in 

buildings

[uncertainties important]

How vulnerable 
is a country or 
system to 
climate 
disruption? 
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Conclusion:

Still early days, but data-driven approaches across a wide-range of climate problems 
show great promise in terms of predictive capability.


