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...have vast datasets from
satellites, networked
sensors, computer
simulations, etc.

ESA-DEVELOPED
EARTH OBSERVATION MISSIONS

Need actionable
information on climate
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Four examples

1. Sea ice forecast — CNNs out-performs dynamical forecast and
linear trend at lead of 2 months & above.

2. Heatwave forecast— combine past observations & climate
simulations to improve forecasts of extremes

3. Ocean forecast — explore physical basis for data-driven
models

4. Hydrological forecast —improve flood forecasts



Example 1: seasonal sea ice forecast
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National Snow and Ice Data Center

Background: Arctic sea ice has a strong season cycle
(summer melt reaching minimum extent in September).
Also a strong downward trend over recent decades.
Currently physics-based dynamical models and simple
statistical forecasts.

Goal: Forecast sea ice for next six months using data-
driven deep learning approach. Has implications for NH
weather and may be useful for ecosystem management.

Approach: Slice of climate variable at specific

time/altitude and sea ice satellite data both analogous to
images input to CNNs.

Tom Andersson et al.



Example 1: seasonal sea ice forecast

Input: Sea ice concentration (SIC), 11 climate variables, statistical SIC forecast -> 50
channel input to ensemble of U-Net networks.

Task: Classification into open-water (SIC £ 15%); marginal ice (15% < SIC < 80%), and full
ice (SIC 2 80%)

Approach: feature-extracting
encoding path downsamples input
data, decoding path upsamples the
data. Pre-train with CMIP6, train
with 1979-2011, validate with
2012-2017, test 2018-2020.

432x432x50 158 128 432x432x3x6

Output: 6mth forecast, 3 SIC classes

3x3 convolution + ReLU [7] batch norm [l 2x2 downsample [ll] 2x2 upsample == concal tenation ==P» temp scale + softmax

Tom Andersson et al.



Example 1: seasonal sea ice forecast

a Model performance comparison
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Results: for 2020, predicted ice edge
is close to observed and within
predicted edge region

Confident ice
region

Ice edge
region

Confident open-
water region

mmm Observed ice edge 3
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Example 2: heatwave forecast

Egypt heatwave death toll rises as
temperatures reach 46C

Goal: Generate city-scale projections of extreme
temperature by postprocessing climate model simulation at
specific location that can then be used to access risk through
supply chains, transport routes etc.

More than 60 people have died this week, and another 580 are in hospital for

Labour productivity, infrastructure, transport and mortality
all impacted by extreme heat.

TR
R| MBI Challenge: Raw output from climate models has systematic errors
mmm@ that need accounting for in a way that is sensitive to extremes,
IR IR “bias correction”.
TN TN MAMAR
TR IR IR Input: Climate model data and observations (reanalysis).
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Example 2: heatwave forecast
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Demonstration of bias correction (Chicago)

Approach: Learn statistical relationship
from past (“historical”) data, then apply
to future simulations.

Biases often affect variance / tails, so
correct for bias in different quantiles
separately. Use 31-day window so
seasonally evolving bias correction
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Example 2: heatwave forecast

Approach: Instead of explicitly calculating bias at each quantile for each month, find
cevp Quantile, day of year) + uncertainty range

(learn) function mapping f: Ty(observed) = J (T

London, CMCC-CM
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extremes better represented
with GPs & skill increased

Risa Ueno, Tim Summers, et al.



Example 3: ocean forecast
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Rachel Furner, et al.



Example 3: ocean forecast

Goal: predict daily mean change in ocean
temperature for any single grid cell, based
on variables at surrounding locations at
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Assess physical basis, i.e. interpretability
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Approach: linear regressor with 7, S, u, u*, training | € .|~ validation
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polynomials.

Model is trained by minimising least
squares errors with ridge regularisation.

Rachel Furner, et al.




Example 3: ocean forecast

(a)

U Current

V Current

U Bolus Velocities
V Bolus Velocities
W Bolus Velocities
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Results: coefficients show density & interaction between
temperature at grid pt & surrounding grid pts most used
(advection & diffusion related to temp grad).

Impact of withholding density is small. Withholding
currents has greatest impact.

All physically meaningful.
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Example 4: hydrological forecast

Flow (m3/s)
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Assume flow, Y, as a function catchment descriptors, 8_i, and of climatic variables, ¥ _i

Y = f(91,92,...,9n,l,[)1,¢2;---:wn)

For a given catchment, the catchment descriptors are stationary. If these variables form the input space, X, then let
Y be described by a Gaussian Process, with mean function, u, and covariance function, K.

Y = f(Rt' Rt—l,...,t—7' T'H' V|61' 82' e Hn’ l)bli '1[}2' T lpn—lO)

The climatic variables assumed to be most relevant are rainfall, R_t, antecedent rainfall, R_(t-n), temperature, T,

relative humidity, H, and windspeed, V.
Y ~ gP(u(x),K(x,x"))

Robert Rouse



Extend further to account for correlated risks & map to data on impacts

Egypt heatwave death toll rises as
temperatures reach 46C

More than 60 people have died this week, and another 580 are in hospital for

heat exhaustion

buildings

Cairo (pop. 8m) on verge of energy
crisis

Design/regulations for:

e sustainable urban drainage
* thermal comfort in

[uncertainties important]
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What will future demand be for air
conditioning?

How will this impact the energy
network?
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How vulnerable
is a country or
system to
climate
disruption?
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Conclusion:

Still early days, but data-driven approaches across a wide-range of climate problems
show great promise in terms of predictive capability.
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