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Climate System: 
spatio-temporal, multi-scale, multi-physics, high-dimensional & chaotic …

2

X: large/slow-scale variables
The main variables of interest

Y: small/fast-scale variables
Influence the spatio-temporal variability of X

Microphysics



Large-scale processes

ሶ𝑿 = 𝐅(𝑿)

solved numerically at O(100)km resolutions

http://www-personal.umich.edu/~cjablono/
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Traditional approach:
Coarse-resolution numerical solver + physics-based subgrid-scale (SGS) model

Closure for SGS processes

𝒀 = 𝐏(𝑿)

http://www-personal.umich.edu/~cjablono/


Large-scale processes

ሶ𝑿 = 𝐅(𝑿)

solved numerically at O(100)km resolutions

http://www-personal.umich.edu/~cjablono/
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Data-driven closure for SGS processes

𝒀 = 𝑵𝑵(𝑿)

ML-based approach:
Coarse-resolution numerical solver + data-driven subgrid-scale (SGS) model

http://www-personal.umich.edu/~cjablono/
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Using ML for weather/climate modeling: 

Questions, challenges & opportunities

• Best ways to use ML? 

• How to choose the ML method?

• Dealing with poor (high-quality) data regimes

• Incorporating physics/PDEs’ properties

• Interpretability

• Generalization (i.e., extrapolation)

• Instability: blow-up in coupled (ML+numerical solver) models



Test case: 2D Turbulence

Direct numerical simulation (DNS) 
Re=32000; grid=2048 x 2048𝜕𝜔

𝜕𝑡
+ 𝐽 𝜔, 𝜓 =

1

Re
∇2𝜔

∇2𝜓 = −𝜔



7

Large-Eddy Simulation (LES)

Re=32000
DNS grid = 2048 x 2048 , time step = ∆𝑡
LES grid = 256 x 256, time step = 10∆𝑡

𝜕𝜔

𝜕𝑡
+ 𝐽 𝜔,𝜓 =

1

Re
∇2𝜔

𝜕ഥ𝜔

𝜕𝑡
+ 𝐽 ഥ𝜔, ത𝜓 =

1

Re
∇2 ഥ𝜔 + 𝐽 ഥ𝜔, ത𝜓 − 𝐽 𝜔, 𝜓

Π: SGS term

physics-based parameterization: Smagorinsky’s model (1963) Π = 𝜐𝑒∇
2 ഥ𝜔

data-driven parameterization (DD-P): Π = 𝑁𝑁(ഥ𝜔, ത𝜓)

Guan, Chattopadhyay, Subel &
Hassanzadeh, Stable a posteriori LES of
2D turbulence with convolutional neural
networks: backscattering analysis and
generalization to higher Re via transfer
learning, under review arXiv: 2102.11400



Major shortcoming of many physics-based models:
Only diffusive, not accounting for backscattering

𝑇 = Π ∇2 ഥ𝜔

𝑇DSMAG = 𝜐𝑒 ∇
2 ഥ𝜔 ∇2ഥ𝜔 ≥ 0

(Dynamic Smagorinsky, Germano et al. 1991)

ഥ𝜔 𝑇FDNS 𝑇DMSAG

+10

-10

Forward transfer
(form resolved to 
unresolved scales)

Backscattering
(form unresolved to 
resolved scales)

𝑇: subgrid-scale transfer
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Non-local DD-P using CNNs

10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

Training dataset:

From 7 DNS runs 
started from random 

initial conditions

Validation dataset:

From 3 DNS runs 
started from random 

initial conditions

Testing dataset:

From 5 DNS runs 
started from random 

initial conditions
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A priori (offline) test of DD-P

Forward transfer
(form large to small scales)

Backscattering
(form small to large scales)

+10

-10

𝑇FDNS 𝑇DMSAG𝑇CNN 𝑇ANN

Maulik et al. 
2019 JFM

SMAG DSMAG ANN CNN

Correlation 
coefficient 𝑐

0.55 0.55 0.86 0.93

ቊ
Π 𝑇 > 0
0 𝑇 ≤ 0

“online ≠ offline”
Stephan Rasp
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𝑁 500 1000 10000 30000 50000

𝑐 0.78 0.83 0.90 0.92 0.93

𝑐𝑇>0: diffusion 0.84 0.89 0.93 0.93 0.96

𝑐𝑇<0: backscatter 0.56 0.71 0.82 0.85 0.90

Fate Unstable Unstable Unstable Stable Stable

Stability of a posteriori (coupled) LES model?

A priori accuracy of the CNN-based DD-P & the fate of coupled LES run
as a function of the numer of training samples, 𝑁

• Backscattering is harder to learn data drivenly
when the training set is small

• Speculation: Disproportionally low accuracy for backscattering 
is the reason for instabilities 
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Accuracy of a posteriori (online) LES with DD-P

FDNS LES-CNN

LES-ANN LES-SMAG
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Accuracy of a posteriori (online) LES with DD-P
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DD-P does not generalize to higher Re

LES resolution: 256 x 256
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Generalization to higher Re via transfer learning

Layers 1−8: Fixed

(trainedwith 𝑁 samples fromRe)
Re−train with

0.01𝑁
samples from higher Re

Chattopadhyay, Subel &

Hassanzadeh, Data-driven

super-parameterization

using deep learning:

Experimentation with multi-

scale Lorenz 96 systems

and transfer learning. J.

Advances in Modeling
Earth Systems (2020)
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Generalization to higher Re via transfer learning

LES resolution: 256 x 256
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Generalization to higher Re & different grid resolution 
via transfer learning + auto-encoder

Re N grid resolution

Base CNN 8000 50,000 256 x 256

Transfer learned CNN 128000 500 512 x 512



1D Stochastically forced Burgers turbulence

𝜕𝑢

𝜕𝑡
+
1

2

𝜕𝑢𝑢

𝜕𝑥
=

1

Re

𝜕2𝑢

𝜕𝑥2
+ 𝑓 𝑥, 𝑡

𝜕 ത𝑢

𝜕𝑡
+
1

2

𝜕ത𝑢 ത𝑢

𝜕𝑦
=

1

Re

𝜕2 ത𝑢

𝜕𝑦2
+ ҧ𝑓 + Π(𝑦)

- Stable a posteriori LES after data augmentation

- Generalization to 10x Re using transfer learning

Π 𝑦 = ANN(ത𝑢)
Subel, Chattopadhyay, Guan & Hassanzadeh, Data-driven 

subgrid-scale modeling of forced Burgers turbulence using 

deep learning with generalization to higher Reynolds 

numbers via transfer learning, Physics of Fluids (2021)

𝑢 𝑥

18



19

Stable, accurate & generalizable SGS modeling for LES

Takeaway:
- Stability: might require large training sets
- Transfer learning: large training sets required only from a base system 

- Reduce the required size of the training set
- Data augmentation
- Include physics constraints 

- Better understanding of the relationship 
between a priori accuracy & a posteriori stability

- Online training?

- Add memory to the SGS model

- Further explore the power of transfer learning 
(e.g., between setups)

- More complex test cases
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Chattopadhyay A., Nabizadeh E. & Hassanzadeh P., Analog forecasting of extreme-causing

weather patterns using deep learning, Journal of Advances in Modeling Earth Systems, 2020

Chattopadhyay A., Mustafa M., Hassanzadeh P., Bach E. & Kashinath K., Towards physically

consistent data-driven weather forecasting: Integrating data assimilation with equivariance-

preserving deep spatial transformers, under review at Geoscientific Model Development

Chattopadhyay A., Hassanzadeh P. & Subramanian D., Data-driven prediction of a multi-scale

Lorenz 96 chaotic system using machine learning methods: Reservoir computing, artificial

neural network, and long short-term memory network, Nonlinear Processes in Geophysics,

2020

Papers on data-driven forecasting
http://pedram.rice.edu/publications/



21


