# AI Trading System - LLM Context File > A 90-day experiment building an autonomous AI trading system with Claude Opus 4.5. > Real failures, real fixes, 60+ documented lessons for AI agents and humans. > **Blog**: https://igorganapolsky.github.io/trading/ ## Quick Context - **Phase**: R&D Day 50/90 | **Mode**: Paper Trading (Alpaca) | **Budget**: $100/mo - **Strategy**: Phil Town's Rule #1 + Options (CSPs, covered calls) - **AI Stack**: Claude Opus 4.5, ChromaDB RAG, PyTorch RL - **Win Rate**: 50% (live) | **Portfolio**: ~$100k paper ## Core Documentation - [AGENTS.md](AGENTS.md): Universal AI agent instructions (start here) - [README.md](README.md): Project overview and setup - [.claude/CLAUDE.md](.claude/CLAUDE.md): Claude-specific extended instructions - [docs/RETROSPECTIVE.md](docs/RETROSPECTIVE.md): 90-day journey blog ## Critical Lessons (Read These First) - [ll_051_calendar_awareness](/rag_knowledge/lessons_learned/ll_051_calendar_awareness_critical_dec19.md): AI kept saying "tomorrow" on Friday - [ll_054_rag_not_used](/rag_knowledge/lessons_learned/ll_054_rag_not_actually_used_dec17.md): Built RAG but never queried it - [ll_055_workflow_failures](/rag_knowledge/lessons_learned/ll_055_gitignore_breaks_workflow_commits_dec20.md): 4-failure cascade in CI/CD - [ll_052_no_crypto](/rag_knowledge/lessons_learned/ll_052_no_crypto_trading_dec19.md): Removed all crypto references ## Architecture - [docs/architecture.md](docs/architecture.md): System design and data flow - [docs/r-and-d-phase.md](docs/r-and-d-phase.md): Current R&D strategy and goals - [docs/verification-protocols.md](docs/verification-protocols.md): Data verification requirements ## Trading Strategy - [docs/trading-strategy-guidelines.md](docs/trading-strategy-guidelines.md): Core trading rules - [docs/profit-optimization.md](docs/profit-optimization.md): Cost optimization strategies - [src/strategies/](src/strategies/): Strategy implementations ## Risk Management - [src/safety/](src/safety/): Risk management and circuit breakers - [docs/risk-management.md](docs/risk-management.md): Risk management protocols ## Source Code - [src/orchestrator/](src/orchestrator/): Main trading orchestrator entry point - [src/agents/](src/agents/): Multi-agent system components - [src/ml/](src/ml/): Machine learning models - [src/rag/](src/rag/): RAG knowledge system - [src/backtesting/](src/backtesting/): Strategy backtesting ## Tests - [tests/unit/](tests/unit/): Fast unit tests - [tests/safety/](tests/safety/): Safety and risk tests - [tests/integration/](tests/integration/): Integration tests ## Knowledge Base - [rag_knowledge/lessons_learned/](rag_knowledge/lessons_learned/): Past mistakes and solutions - [rag_knowledge/decisions/](rag_knowledge/decisions/): Architecture decisions ## Configuration - [config/](config/): Configuration files - [pyproject.toml](pyproject.toml): Python project configuration - [requirements.txt](requirements.txt): Python dependencies ## State Files - [data/system_state.json](data/system_state.json): Current system state - [claude-progress.txt](claude-progress.txt): Session progress tracking - [feature_list.json](feature_list.json): Feature completion status ## Optional - [CONTRIBUTING.md](CONTRIBUTING.md): Contribution guidelines - [docs/ai-agent-adaptation-plan.md](docs/ai-agent-adaptation-plan.md): AI agent improvement modes