Hexacon 2022

About Us

b @lyte

Security researcher & Co-founder

b @NeatMonster

Security researcher & Co-founder

b @the_impalabs
French offensive security company

Reverse engineering, vulnerability research, exploit dev elopment

Website b https://impalabs.com

Blog b https://blog.impalabs.com

Introduction

Bootchain

Hypervisor

Secure Monitor

Secure Kernel

Trusted OS

Trusted Applications

Conclusion

-_— ey ey’ e/ e/ e/ e

Android Device Architecture

| Access control to resources from
user space is enforced by the kernel
PROC PROC PROC
¥ Address space isolation

¥ Preemptive multitasking KERNEL

¥ Peripherals access restriction

| Single point of failure

¥ Breaching kernel defenses results

In full system compromise

Android Device Architecture

CPU virtualization

¥ Traditionally used to execute multiple operating

systems in parallel on the same device

¥ Leveraged on Android devices to enhance

system security instead

ARM virtualization extensions

¥ Additional privilege level

¥ Memory access restrictions

¥ Exceptions interception

Protects critical data structures

¥ Credentials, security contexts, page tables, etc.

at run time

PROC PROC

KERNEL

HYPERVISOR

PROC

Android Device Architecture

System-wide hardware separation

¥ Anuntrusted Normal World

Secure World

¥ Access to secure hardware resources from

non-secure software is prohibited

¥ Inter-world communications through the

Secure Monitor

TrustZone and Secure Boot are used to create a

Trusted Execution Environment
¥ Authentication (e.g. for encrypted filesystem)
¥ Mobile payment, secrets management, etc.

¥ Content management (DRM)

and a trusted

(TEE)

PROC PROC

KERNEL

HYPERVISOR

PROC

SECURE MONITOR

Android Device Architecture

Each stage cryptographically checks

next image is authorized to run

¥ Creates a Cha|n Of ’[I’US’[
root of trust.

¥ Starting from the

component

Prevents unauthorized or modified software from

executing on the device

OEMs implement additional features
¥ Anti-rollback mechanism
¥ Emergency boot over USB

¥ Bootimages encryption

that the

immutable

KERNEL

BOOTROM

Loads from UFS,

verifies & executes

HYPERVISOR

TRUSTZONE

Loads from USB,

verifies & executes

Security mechanisms

¥ Secure boot: prevents replacing or modifying

boot chain images

¥ Bootloader lock: prevents reflashing the

partitions or running a custom kernel

Bootstrapping challenges
¥ Allcritical partitions are encrypted
¥ CanOt talk directly to targeted components

¥ Countermeasures in kernel and userland

Getting control over the boot chain

¥ High entry cost: we need to find a

vulnerability first

Boot Chain

BOOTROM

KERNEL

Boot Chain

I P30 Lite (Kirin 710 chipset)
- BOOTROM
¥ Xloader is signed but not encrypted ,thus
can be retrieved from a firmware update o
¥ Founda vulnerability in its
implementation of XmOdemthe USB
recovery protocol
The next stage binaryOs base address is
not verified
Can be leveraged to modify Xloader
itself (all memory is RWX)
Shorting a test point on the device
KERNEL

activates the download mode feature

Boot Chain

| P40 Lite (Kirin 810 chipset) BOOTROM
¥ Xloaderis signed and encrypted o

¥ Butitis also affected by the

XMo d e rn/ulnerability that needs to

be exploited blindly

¥ Decryption key no longer stored in
fuses and is only accessible to the

crypto engine

Firmware images are retrieved

. . KERNEL
by using the device as an oracle

Boot Chain

BOOTROM
| P40 Pro (Kirin 990 chipset)
¥ Xloader is signed , encrypted , o
but not vulnerable to the
Xmode g
¥ Fastbootis split Into a privileged

and an unprivileged component

¥ Another vulnerability IS needed

to get control over the boot chain
KERNEL

Boot Chain

! Talk presented at B IaCkH at U SA 202:);]. Taszk Security Labs

¥ Revealed multiple Xloader and BootROM bugs

¥ Including the Xloader vulnerability that we had dis covered
| CVE-2021-22434 : Head Chunk Resend State Machine Confusion
¥ Internal state is not reset when sending an incorre ct payload address
¥ BootROM code execution can be achieved from this arbitrary write primitive
¥ Must be exploited blindly on the Kirin 990 chipset

Dump Xloader using the FIaSh PatCh and Breakpmm&the LPMCU

| Huawei OfixedO the BootROM bugs by burning a fuse t o disable the USB recovery mode

BOOTROM

Similarly to OC

Steps

Boot Chain

Send patched Xloader to the
BootROM
Force its execution by

overwriting a return address

Patches

HECK M300 presented at

Steps
I Send patched Fastboot to
Xloader
| Patches allow execution to
continue normally
XLOADER FASTBOOT
Patches
Remove the address I Change boot mode from
and length checks USB to UFS
Disable decryption and I Ignore the Android Verified
signature verification Boot failure

MOS EC 2021;/ Pangu Team

! Called

¥

Security Hypervisor

Huawei Hypervisor Execution Environment

Similar to uH/RKP on SamsungOs Exynos or

QualcommOs Snapdragon

! Main Security Features

¥

Prevents arbitrary changes to the kernel read-only

its page tables, SELinux structures, etc.

Keeps a read-only copy of tasksO information to det

privilege escalation on the next syscall or file access

Ensures only the pages belonging to the

modules code segment can be executed at EL1

Makes critical physical memory regions (e.g. sensor

secure npu, modem, etc.) inaccessible to ELO and EL1

Enables execute-only user space memory that is

unreadable from the kernel

(HHEE)

QHEE on

data,

ect

kernel and

hub,

CODE

CODE

CODE

PAGE

CODE CODE

CODE CODE

CODE CODE
Executable
Write-Mediated

CODE

CODE

CODE

CODE

RO

DATA

CODE

PAGE

CODE CODE

RO RO

DATA DATA

RO

CODE
DATA

Read-Only

Read-Write

CODE

RO

DATA

RO

DATA

Security Hypervisor

Virtual address translation is

extended with a second stage

¥ The VAis first translated into an

Intermediate Physical Address
¥ The IPAis then translated into a PA

It uses a second set of page tables

under the control of the hypervisor

¥ These page tables can apply

additional access control

The hypervisor also has its own page

tables for its virtual address space

VIRTUAL

MEMORY

TRANSLATION

TABLES

TTBRn_EL1

TRANSLATION

HYP (EL2)
TABLES

TTBRO_EL2

INTERMEDIATE

PHYSICAL MEMORY

TRANSLATION

TABLES

VTTBRO_EL2?

PHYSICAL

MEMORY

MEMORY

PERIPHERALS

MEMORY

PERIPHERALS

Security Hypervisor

54 53

XNJO0] Access

XNI[1] XN[O] Access

With FEAT_XNX Without FEAT_XNX

! Stage 2 permissions cannot distinguish between ELO and EL1 for:

¥ Read and write accesses

¥ Executability, if F EAT_X N Xnot implemented

! It is the main reason stage 1 page tables also need to be

controlled

EL1 and ELO Access

by the hypervisor

Security Hypervisor

! Initial processing

¥ Traps changes made to the TT B R 1_E I.aad SCT R L_E Iéglstem registers

¥ Performs a page table walk and ensures every descri ptor is sane and coherent
e.g. descriptors with the contiguous bit set actual ly point to contiguous memory
¥ Enforces ELO/EL1 distinction for read-write accesses and executability
By default, kernel pages are set non executable at EL 1 and non accessible at ELO

! Changes monitoring

¥ Kernel page tables are set as read-only in the second stage
Except when permissions can be enforced at previous table level (PXNTable/APTable)
¥ A write to a stage 1 descriptor or a translation fault during a page table walk raises an exception

Handled by the hypervisor to ensure modifications a re permitted and update stage 2 accordingly

Security Hypervisor

58 55

Attrs Description

! Hypervisor Software Attributes

¥ Bitfield stored in bits [58 "55] of a stage 2 descriptor
¥ Contains usage information about the underlying memory region
¥ Used to prevent disallowed changes to protected memory

e.g. making a OS read-only page writable again

! Rules enforced while modifying them

¥ Only unmarked descriptors can be marked

¥ o unmark a descriptor, the current marking must be provided

Security Hypervisor

Extensive reverse engineering ! ldentifying the attack surface
¥ Static analysis ¥ HVCand SMC handlers
68 KB raw binary ¥ Faulting memory accesses

AArch64 code ¥ Trapped system registers accesses

s SCTLR ELTCR ELL

No symbols ¥ Memory shared with the kernel

295 functions

~10 log strings

¥ Analysis can be augmented with information ! Comparing the security hypervisors of different

coming from external sources OEMs might highlight implementation flaws

HVC names from the kernel source code

Armv8-A Architecture Reference Manual

Security Hypervisor

data_ptr

head_size data_size

HEADER DATA

UUUu UuulHuudHuHHuuUHEuuuun

curr_off

| CVE-2021-39979

¥ Logging system use a control structure located in shared memory that is

accessible to the kernel
¥ Pointer, offset and sizes fields are all unchecked

¥ Wecan write log strings at any virtual address that is mapped into the hypervisor

Security Hypervisor

I Constrained write primitive

¥ The log string being written is not user-controlled
¥ Since the buffer is circular and written character by HEADER
character
Only the last byte will remain in memory if we set

the data size of the buffer to 1

1tOs always the new line character: \n (OxA)

I Linear heap allocator
¥ Heap region has a fixed base address and size

The current offset is stored in a global variable

malloc (uint64 _t size

¥ The allocation function assumes the offset value is

) (HEAP_SIZE heap_off
sane (smaller than the heap size)

0 ;

If it isnOt, an integer underflow happens and the pad

allocator returns out-of-bounds memory HEAP_ADDR

¥ Right after the heap is a kernel-accessible region

Security Hypervisor

Exploitation

Global Variables

Getting code execution

0x00000000

0x005BA400

0x12F14C00
heap_ptr Heap Region

0x134CF000

Security Hypervisor

! Getting code execution

0x005BA400

¥ Step 1 Fill up the heap to its maximum by 0100000000

triggering stage 2 page tables allocations
0x12F14CO00

0x134CF000

Security Hypervisor

Getting code execution

0x005BA4

¥ Step 1 Fill up the heap to its maximum by
triggering stage 2 page tables allocations
0x12F14CO00
¥ Step2: Use the constrained write primitive to

move the offset right past the end of heap

0x134CF000

Getting code execution

Security Hypervisor

¥ Step 1 Fill up the heap to its maximum by
triggering stage 2 page tables allocations
¥ Step2: Use the constrained write primitive to

move the offset right past the end of heap

¥ Step3: Trigger a last stage 2 page table

allocation that is made

because of the

out-of-bounds

integer underflow

S2 Page Table

0x12F14C00

0x134CF000

Getting code execution

Security Hypervisor

¥ Step 1 Fill up the heap to its maximum by
triggering stage 2 page tables allocations
¥ Step2: Use the constrained write primitive to

move the offset right past the end of heap

¥ Step3: Trigger a last stage 2 page table

allocation that is made

because of the

out-of-bounds

integer underflow

Security Hypervisor

Exploitation

Getting code execution
S2 Page Table

¥ Step 1: Fill up the heap to its maximum by Y1000
triggering stage 2 page tables allocations
¥ Step 2: Use the constrained write primitive to 0x12F02000

move the offset right past the end of heap

¥ Step 3: Trigger a last stage 2 page table 0x130FD000
allocation that is made out-of-bounds T
because of the integer underflow

¥ Step 4: Change the page table from the

. . HVC Handl
kernel to remap the hypervisor as read-write e

mov x1, #8
mov x0, x8

str x1, [x8]

Security Hypervisor

Exploitation

Getting code execution
S2 Page Table

¥ Step 1: Fill up the heap to its maximum by 0x12F00000
triggering stage 2 page tables allocations
¥ Step 2 Use the constrained write primitive to 0x12F02000

move the offset right past the end of heap

M

¥ Step 3: Trigger a last stage 2 page table 0x130FD000
allocation that is made out-of-bounds soreons
because of the integer underflow

¥ Step 4: Change the page table from the
kernel to remap the hypervisor as read-write Ve e

¥ Step 5: Patch the hypervisor memory and get

code execution at EL2 from EL1

e.g.targeting one of the HVC handlers

TrustZone

Overview

NORMAL WORLD SECURE WORLD

/dev/binder

ITeecService

libtee libvendor

/dev/hwbinder

ILibteecGlobal

Platdrv

* @tc_ns_socket

Shared

Non-Secure

Memory
Fs MISC RPMB SOCKET hmsysmgr hmfilemgr

* /dev/tc_ns_client
TEEK

Client API Secure Kernel

SECURE MONITOR

Forward to custom TEE OS Handler

TrustZone

Normal World Overview

NORMAL WORLD

Java applications & native processes Java Native

Applications Processes

¥ Main users of secure world features Idevibinder

ITeecService

¥ But not privileged enough to send requests to the Se cure
tee_auth_daemon
World
/dev/hwbinder
Use the kernel as a proxy ILibteecGlobal
Steps to send messages to the Secure World from userland (hieec@s0-senice
¥ Requests are received by the userland daemon teeCd
libteec_vendor
First go through te e_aUth_d AeMOR’ sava applications —
Shared
¥ And then forwarded to the kernel through the charact er device e

Memory

tc_ns_client

SOCKET

Implements the agents (filesystem, networking, etc.)
/devitc_ns_client
Provides a shared library to communicate with it
TEEK
Client AP Kernel Driver
¥ The kernel then sends the requests to the Secure Wor Id

through an SMC
SMC

Each interface has its own SELinux context to restrict access

TrustZone

Secure World Overview

SECURE WORLD

libtee

! Secure Monitor

¥ Handles SMCs and forwards requests to

the trusted OS

Platdrv

! Trusted OS
¥ Based on a micro-kernel architecture hmsysmgr hmfilemgr

¥ Trusted applications running on top of

privileged tasks and drivers

Secure Kernel

SECURE MONITOR

TEE-OS
Dispatcher

Forward to custom TEE OS Handler

Executes at EL3 ,the highest privilege level
¥ Performs privileged operations
critical hardware peripherals

e.g. efuses, power controls, RPMB, etc.

¥ Bridge between the Normal

Worlds

Forwards requests between the kernel and

the trusted OS

HuaweiOs implementation based on the

Trusted Firmware (ATF)
¥ Open source, probably heavily reviewed
Huawei implemented additional

¥ These handlers are more likely to be vulnerable

Secure Monitor

and manages

and Secure

ARM

runtime services

Introduction

SECURE MONITOR

TEE-OS
Dispatcher
Forward to custom TEE OS Handler

Secure Monitor

CVE-2021-39994

¥ Secure Monitor acts as a pass-through for the kernel to interact with
the Secure Element (SE)
struct
¥ Atresponse from the SE uses the Usel‘_d atatructure where the user uint32_t
controls: uint32_t
The address of use I’_d ata fhat contains the response metadata uint32_t
uint32_t
The address and size of the reponse data : User_d ata addgnd

} user_data;

user data.size

¥ Bounds check

uint32_t user_size;
The user-provided addresses for use r_d atand use r_d ata ad d I
must be in a specific world-shared memory buffer

void on_reply (uint32_t addr uint32_t
However, in one of the requests, the check is missing for
user d ata user_data.code AABBCC55

user_data.size min (size, user_size);
¥ Information about the SECs response is thus written at a user-

(check (user_data.addr, user_data.size))
controlled address

The response code OXAAB B CC55t offset 4

memcpy (user_data.addr, addr, user_data.size);

The response size in the range OXO'OXC at offset OxC

The response data address use I‘_d a.ta. addv\/hich is checked

Secure Monitor

Data overwritten using the SE

response metadata

Step 1: Use the response metadata to disable the check on the

0x40000000

shared memory region

0x10000000

¥ Allows copying the response data at an arbitrary

user data.addr

¥ Data isnOt controlled either, but gives us more opt ions

Secure Monitor

Data overwritten using the SE

response metadata

Step 1: Use the response metadata to disable the check on the

shared memory region

¥ Allows copying the response data at an arbitrary

user data.addr

¥ Data isnOt controlled either, but gives us more opt ions

Secure Monitor

Step 1: Use the response metadata to disable the check on the

shared memory region

¥ Allows copying the response data at an arbitrary

user data.addr

¥ Data isnOt controlled either, but gives us more opt ions
Step 2: Hijack a SMC handler pointer
¥ 1-byte overwrite by specifying a response size of 1
¥ Change an existing function pointer to an interesti ng gadget

BLR X2 N> arbitrary function call Arbitrary Call Gadget

LDR X2, [X2#0xB8]

0x14204A7C
CBNZ X2, loc_14204AA0

BLR X2

Secure Monitor

Step 1: Use the response metadata to disable the check on the

shared memory region

¥ Allows copying the response data at an arbitrary

user data.addr

¥ Data isnOt controlled either, but gives us more opt ions
Step 2: Hijack a SMC handler pointer
¥ 1-byte overwrite by specifying a response size of 1
¥ Change an existing function pointer to an interesti ng gadget

BLR X2 N> arbitrary function call Arbitrary Call Gadget

LDR X2, [X2#0xB8]

0x14204A7C
CBNZ X2, loc_14204AA0

BLR X2

Secure Monitor

Exploitation
Global Variables
Step 1: Use the response metadata to disable the check on the
¥ Allows copying the response data at an arbitrary
.))) Handler #1
¥ Data isnOt controlled either, but gives us more opt ions
Step 2: Hijack a SMC handler pointer]
¥ 1-byte overwrite by specifying a response size of 1
* SMC Handlers
¥ Change an existing function pointer to an interesti ng gadget L . ic
BLR X2 N> arbitrary function call
Step 3: Call a write gadget to create stable read and write 014204A7C oR e peroes

CBNZ X2, loc_14204AA0

primitives BR X

STR Wi, [X0]
CSINC WO, W21, WZR, NE
0x1420CF88 LDP X19, X20, [SP#0x10]
LDP X21, X22, [SP#0x20]
LDP X23, X24, [SP,#0x30]
LDP X29, X30, [SP]#0X50
RET

Secure Monitor

Exploitation
Global Variables
Step 1: Use the response metadata to disable the check on the
¥ Allows copying the response data at an arbitrary
user data.addr
A))) Handler #1
¥ Data isnOt controlled either, but gives us more opt ions
Step 2: Hijack a SMC handler pointer]
¥ 1-byte overwrite by specifying a response size of 1
SMC Handlers
¥ Change an existing function pointer to an interesti ng gadget L
BLR X2 N> arbitrary function call
Step 3: Call a write gadget to create stable read and write o14204A7C LR e Deroes

CBNZ X2, loc_14204AA0

primitives BR X

STR Wi, [X0]
CSINC WO, W21, WZR, NE

0x1420CF88 LDP X19, X20, [SP#0x10]
LDP X21, X22, [SP#0x20]
LDP X23, X24, [SP,#0x30]
LDP X29, X30, [SP]#0X50
RET

Step 1: Use the response metadata

shared memory region

¥ Allows copying the response
user data.addr

¥ Data isnOt controlled either, but gives us more opt
Step 2: Hijack a SMC handler pointer

¥ 1-byte overwrite by specifying a

¥ Change an existing function pointer to an interesti

BLR X2 N> arbitrary function call

Step 3: Call a write gadget to create stable read and write

primitives

Secure Monitor

to disable the check on the
data at an arbitrary

ions

response size of 1

ng gadget

Arbitrary Write

Arbitrary Read

0x14205E74

0x142013F4

Step 1: Use the response metadata

shared memory region

¥ Allows copying the response

user data.addr

¥ Data isnOt controlled either, but gives us more opt

Step 2: Hijack a SMC handler pointer
¥ 1-byte overwrite by specifying a
¥ Change an existing function pointer to an interesti

BLR X2 N> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives
Step 4: Double map the Secure Monitor because of WXN

¥ Locate the secure monitor page tables

¥ Add new entries where the memory is read-write

¥ Patch the code to gain code execution

Secure Monitor

to disable the check on the

data at an arbitrary

response size

ions

of 1

ng gadget

Arbitrary Write

Arbitrary Read

0x14205E74

0x142013F4

Step 1: Use the response metadata

shared memory region

¥ Allows copying the response

user data.addr

¥ Data isnOt controlled either, but gives us more opt

Step 2: Hijack a SMC handler pointer
¥ 1-byte overwrite by specifying a
¥ Change an existing function pointer to an interesti

BLR X2 N> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives
Step 4: Double map the Secure Monitor because of WXN

¥ Locate the secure monitor page tables

¥ Add new entries where the memory is read-write

¥ Patch the code to gain code execution

Secure Monitor

to disable the check on the

data at an arbitrary

response size

ions

of 1

ng gadget

Arbitrary Write

Arbitrary Read

0x14205E74

0x142013F4

Step 1: Use the response metadata

shared memory region

¥ Allows copying the response

user data.addr

¥ Data isnOt controlled either, but gives us more opt

Step 2: Hijack a SMC handler pointer
¥ 1-byte overwrite by specifying a
¥ Change an existing function pointer to an interesti

BLR X2 N> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives
Step 4: Double map the Secure Monitor because of WXN

¥ Locate the secure monitor page tables

¥ Add new entries where the memory is read-write

¥ Patch the code to gain code execution

Secure Monitor

to disable the check on the

data at an arbitrary

response size

ions

of 1

ng gadget

Arbitrary Write

Arbitrary Read

0x14205E74

0x142013F4

0x15000000

0x15001000

0x15002000

0x14000000

0x14001000

0x14002000

RW

RW

RW

Trusted OS

Huawel Trusted OS based on a micro-kernel

architecture
¥ Secure Kernel (S-EL1)
Responsibilities kept to the bare minimum

Critical operations are performed through an

API restricted to Managers in userland
¥ Processes (S-ELO)

Managers: privileged processes providing

the core functionality of the trusted OS

Tasks & Drivers: implement additional OS

services used by the trusted applications

Trusted Applications: Huawei and 3rd party

applications providing services to the REE

Trusted OS

Boot Process

SECURE

KERNEL

SYSTEM

MANAGER

FILE

MANAGER

TEEOS

TEEOS CPIO Archive
TASKS

FILEMGR RAMFS Archive

Secure Kernel

| Only performs low-level operations ,such
as:
¥ Physical memory allocation
¥ Inter-process communication
¥ Process scheduling
¥ Access control management
! Everything else is implemented in userland
| SVCsfor critical operations restricted to

the Managers

Capalbility-based OS

¥

Privileges are divided into distinct units called

capabilities

Provides fine-grained access to kernel

resources

Huawei Implementation

¥

Most likely inspired by selL4

Capalbilities system described in a

in 2019

All system resources are associated with a

capability

Capabilities are owned by a

node)

Capalbilities can be granted

from other CNodes

Secure Kernel

CNode

to and

patent

(capability

revoked

filed

Capability type examples

K K K K K K K K K

CNode

Thread

PMEM

Channel / Notification / Message
IRQCTRL / IRQHDLR

VSRoot

Timer

TEESMC

etc.

Secure Kernel

Capabillities Example

PROCESS A
CNODE
Main thread TH READ THREAD
CHANNEL VSROOT Address space PROCESS B

Grant
CNODE

Grant

PMEM Stack, heap, etc.
hmsysmgr
VS ROOT CHAN N E L communications

CHANNEL

Grant

Grant

Managers

¥

The only S-ELO processes allowed to ask the

secure kernel to perform critical operations

e.g. mapping physical secure memory

Can be considered as extensions

micro-kernel in userland

Managers

Overview

of the

Platdrv

hmsysmgr

SECURE WORLD

Secure Kernel

libtee

libvendor

hmfilemgr

File manager (hmfilemgr)

¥ Manages and exposes two virtual file

systems
RAMES
¥ Embedded archive
¥ Contains tasks binaries
TAFS

¥ Temporary storage for trustlets

and libraries

Managers

System manager (hmsysmgr)

¥ Implements most of the

fundamental features of the OS
Process creation
Virtual memory management
Access control

etc.

Communicate with other processes

through IPCs

Permissions of the calling process are

checked in the command handlers

Tasks & Drivers

Equivalent to the Init process on Unix-based

systems

Handle normal world commands
¥ Mailbox/shared memory registration
¥ Loading of trusted applications

Decryption with a private key OderivedO from

the provisioned key

Signature verification with a hardcoded

public key
¥ Session management

¥ Forwarding of commands to trusted applications

DRV_TIMER

¥ Manages secure timers

GATEKEEPER

¥ Gatekeeper implementation

KEYMASTER

¥ Keymaster implementation

PERMISSION_SERVICE
¥ Permissions system for RPMB,
SSA and TUI
PLATDRV
¥ Platform drivers

¥ Interrupts, crypto engine, secure

element, fingerprint sensor, etc.

Tasks & Drivers

| RPMB
¥ RPMB filesystem

¥ Uses a normal world agent

| SSA
¥ Trusted Storage API

¥ Uses a normal world agent

| TALOADER & TARUNNER

¥ glue between GlobalPlatform

and OS-level APIs

| TUl

¥ Trusted User Interface

implementation

Tasks & Drivers

! Vulnerability research ! Vulnerabilities identified
¥ IPC command handlers ¥ TUlTask
y Permissions system Heap buffer overflows
There is a library for implementing ¥ Platdrv Task

security access controls _ _
Arbitrary memory read/write

Tasks have credentials and security _
Non-secure physical memory read
contexts , that can be mapped to
. Heap buffer overflows
permissions

o . Heap pointer leak
Most permissions are static, but can PP

also be added dynamically ¥ Only specific tasks can reach the

Permissions are checked within the vulnerable IPC command handlers

IPC command handlers

Trusted Applications

Secure world userland applications

Developed by Huawel and 3rd parties to

provide services to the Normal World

Use the standard GlobalPlatform APIs

well as some proprietary extensions

Generally loaded from the Normal World

¥ Stored in the Android system/vendor

partitions or embedded in APKs

¥ Signed and encrypted

, AS

Trusted Applications

Trusted Applications Properties

¥ Single instance, multi session, instance keep alive , etc.
Create and Destroy I Open and Close Sessions I Command Invocation
¥ Manage the global state ¥ Manage the per-CA state ¥ Handles a request coming from a CA
: and sends back a response
¥ Declare the allowed CAs list g

Handler #1 Handler #n Handler #1 Handler #n Handler #1 Handler #n

Trusted Applications

| Trusted applications embed a list of authorized APK s/binaries
¥ APK . package name + signing public key

¥ Binaries . file path + user id + hash of code pages

| Chalin of trust
¥ The kernel is assumed to be uncompromised
¥ The kernel authenticates teeCd

¥ teeCdforwards Information about the binaries

Trusted Applications

| Design choices | Software Mitigations
. NX
¥ Secure functions (e.g. memecC py_S ¥
¥ RelRO
¥ Parameter buffers are copied to
prevent inter-world TOCTOU ¥ Stack cookies
. ¥ ASLR
¥ Robust and generic Parcel-based
system to handle data in a safe Used to be bypassable with an

manner arbitrary read

¥ O buffer si vV b The TA base address was written at a
utput butter sizes can only be

fixed address by the loader
reduced

Only works for the ELF sections,

¥ Etc. stack and heap are still randomized

Trusted Applications

Reverse engineering . ~40 trustlets,

mainly AArch32 ELF but some AArch64

The attack surface mostly boils down

to the command handlers

Fuzzing . developed a custom fuzzer

based on U”'COrn/AFL'l"l'

¥ Obstacles: stubbing the GP APIs,

ELF relocations, getting a backtrace

¥ Limitations: stateless, only I ow

hang|ng fFUIt&n be found

! Vulnerabilities

Unchecked parameter types

Stack & heap buffer overflows

Information leaks

OOB accesses

K K K K K

Race conditions (multi session

binaries only)

¥ Efc.

! Mostly In third party

TAS

Trusted Applications

| HWPSIRT-2021-63568

¥ cm d_u nwrapan be used to write

struct

buffer;

arbitrary data to any files in the

sec_storage data/PKdde: ot e

struct {

size;

secure file system

uint32_t
uint32_t
} value;

| HWPSIRT-2021-80349

} TEE_Param

y generate keybloBpies semi user-

. void sessionContext
controlled data into the output
uint32_t commandID
parameter p aral I l S [3] uint32_t paramTypes

TEE_Param params

¥ Should be a mem refbut there is a

code path where it can be a value

Trusted Applications

! Arbitrary read

V4 Write a OfakeO keyblob to the SFS using a

previously imported all-zeroes AES key

Trusted Applications

! Arbitrary read

V4 Write a OfakeO keyblob to the SFS using a

previously imported all-zeroes AES key

Trusted Applications

! Arbitrary read

V4 Write a OfakeO keyblob to the SFS using a

previously imported all-zeroes AES key

V4 cal CM d_g ETon the Ofaked keyblob to read

data from a user-controlled offset

(keyblob->magic 534554
keyblob->version
keyblob->keyblob_size keyblob_size) {
memcpy_s (

params| 1].memref.buffer,

params]| 1].memref.size,

keyblob keyblob->key_off,

keyblob->key_len);

Trusted Applications

! Arbitrary read

V4 Write a OfakeO keyblob to the SFS using a

previously imported all-zeroes AES key

V4 cal CM d_g ETon the Ofaked keyblob to read

data from a user-controlled offset

(keyblob->magic 534554
keyblob->version
keyblob->keyblob_size keyblob_size) {
memcpy_s (

params| 1].memref.buffer,

params]| 1].memref.size,

keyblob keyblob->key_off,

keyblob->key_len);

Trusted Applications

! Arbitrary read

V4 Write a OfakeO keyblob to the SFS using a Fake Keyblob

A
previously imported all-zeroes AES key E

V4 car CIM d_g €Ton the Ofaked keyblob to read

magic 0x534554

key_off 0x1C

data from a user-controlled offset

key_len 0x42

First read adjacent heap data to get a leak

of the objectOs address

Then you can read at arbitrary addresses,

and break ASLR in particular

Obj #1 Keyblob Obj #2 Obj #3 Obj #4 Obj #5

Uu00 - 0000

Uo00 - 0000

o 0000 0000
: o0 000U
U0000L0OY - 0000
00000000 0BU0

keyfoff —

Trusted Applications

Arbitrary read

¥

Write a OfakeO keyblob to the SFS using a

previously imported all-zeroes

Call

cm d_g ETon the Ofaked keyblob to read

data from a user-controlled offset

First read adjacent heap data to get a leak

of the objectOs address

Then you can read at arbitrary addresses,

and break ASLR in particular

Arbitrary write

Use it to overwrite a function pointer (e.g.
file operations structure) to create a better

arbitrary write primitive

Can also use it to call arbitrary functions

AES key

Open

Read

0x12345678

Oxdeadbeef

Conclusion

! All vulnerabilities were reported to H uawel B u g BO u nty P rOg FAf fixed in updates released prior to this presentation
! Well thought-out security architecture

¥ Defense-in-depth measures

¥ Privilege limitations and access control

¥ Robust implementations (secure coding practices)

¥ Mistakes can still happen, but are mitigated
! Binary encryption is a double edged-sword

¥ Harder for an attacker to get access and find bugs

¥ Butteams with the resources to break the encryption layer might be less likely to share their findings

! Upcoming blogposts with the missing details

¥ https://blog.impalabs.com

