

OPTIGA™ TPM Application Note

PKCS #11

Devices

- OPTIGA[™] TPM SLB 9670 TPM2.0
- OPTIGA[™] TPM SLI 9670 TPM2.0
- OPTIGA[™] TPM SLM 9670 TPM2.0

About This Document

Scope and purpose

This document explains how an OPTIGA[™] TPM SLx 9670 TPM2.0 can be integrated into a Raspberry Pi[®] to create a TPM-based PKCS #11 cryptographic token.

PKCS #11 is a Public-Key Cryptography Standard that defines a standard platform-independent API to access cryptographic services from tokens, such as hardware security modules (HSM) and smart cards. This document provides guidance on how to setup a TPM-based token on a Raspberry Pi[®].

The OPTIGA[™] TPM SLx 9670 TPM2.0 uses a SPI interface to communicate with the Raspberry Pi[®]. The OPTIGA[™] TPM SLx 9670 TPM2.0 product family with SPI interface consists of 3 different products:

- OPTIGA[™] TPM SLB 9670 TPM2.0 standard security applications
- OPTIGA[™] TPM SLI 9670 TPM2.0 automotive security applications
- OPTIGA[™] TPM SLM 9670 TPM2.0 industrial security applications

OPTIGA[™] TPM SLx 9670 TPM2.0 products are fully TCG compliant TPM products with CC (EAL4+) and FIPS certification. The OPTIGA[™] TPM SLx 9670 TPM2.0 products standard, automotive, and industrial differ with regards to supported temperature range, lifetime, quality grades, test environment, qualification, and reliability to fit the target applications requirements. An overview of all Infineon OPTIGA[™] TPM products can be found on Infineon's website [2][3]. More information on TPM specification can be found on Trusted Computing Group (TCG) in reference [4].

Intended audience

This document is intended for customers who want to increase the security level of their platforms using a TPM 2.0 and like to evaluate the implementation of TPM-based PKCS #11 cryptographic token for their target applications.

Table of contents

Table	e of contents	
List o	of figures	
List o	of tables	
Acro	nyms and Abbreviations	5
1	Prepare Raspberry Pi [®]	6
1.1	Prerequisites	6
1.2	Enable TPM	6
1.3	Install TPM Software	7
1.4	Setup Python3	9
1.5	Install PKCS #11 Software	9
2	Operation Guide	11
2.1	Environment Setup	
2.2	PKCS #11 Token Creation	
2.2.1	Start Blank	
2.2.2	Link Existing (Keys stored outside of a TPM)	
2.2.3	Link Existing (Keys stored in a TPM NV area)	
2.2.4	Link Existing (Key persisted in a TPM)	
2.3	OpenSC	
2.4	OpenSSL	
3	FAPI Backend	21
Refe	rences	22
Revis	sion history	23

OPTIGA™ TPM Application Note

PKCS #11

List of figures

List of figures

Figure 1	Infineon Iridium SLx 9670 TPM2.0 SPI Board on Raspberry Pi® 4	6
Figure 2	tpm2pkcs11-tool software dependencies1	1
Figure 3	tpm2ssl software dependencies1	1

OPTIGA™ TPM Application Note

PKCS #11

List of tables

infineon

List of tables

OPTIGA[™] TPM Application Note PKCS #11

Acronyms and Abbreviations

Acronyms and Abbreviations

Acronym	Definition
API	Application Programming Interface
CSR	Certificate Signing Request
ECC	Elliptic Curve Cryptography
FAPI	TCG Feature API
RSA	Rivest-Shamir-Adleman
SO	A Security Officer user
ТРМ	Trusted Platform Module
TSS	TCG TPM2 Software Stack

1 Prepare Raspberry Pi[®]

This section describes all the steps necessary for building a Raspberry Pi® bootable SD card image.

1.1 Prerequisites

- Raspberry Pi[®] 4
- Flash the Raspberry Pi[®] OS image (2021-01-11 release from [5]) on a micro-SD card (≥8GB)
 - OPTIGA[™] TPM (TPM2.0)
 - SLB 9670

•

- SLI 9670
- SLM 9670

Figure 1 Infineon Iridium SLx 9670 TPM2.0 SPI Board on Raspberry Pi[®] 4

1.2 Enable TPM

Insert the flashed SD card and boot the Raspberry Pi[®].

Open the configuration file in an editor:

Code Listing 1

001 \$ sudo nano /boot/config.txt

Insert the following lines to enable SPI and TPM.

Application Note

001
UUT

dtoverlay=tpm-slb9670

Save the file and exit the editor.

Reboot the Raspberry Pi[®] and check if TPM is activated.

Code Listing 3

001	\$ ls /dev grep tpm
002	tpm0
003	tpmrm0

1.3 Install TPM Software

Install the following software on the Raspberry Pi®:

Software	Link	Version
tpm2-tss	https://github.com/tpm2-software/tpm2-tss	3.0.3
tpm2-tools	https://github.com/tpm2-software/tpm2-tools	5.0
tpm2-abrmd	https://github.com/tpm2-software/tpm2-abrmd	2.3.3
tpm2-pkcs11	https://github.com/tpm2-software/tpm2-pkcs11	1.5.0

Install dependencies:

Code Listing 4

001	\$ sudo apt update
002	<pre>\$ sudo apt -y install autoconf-archive libcmocka0 libcmocka-</pre>
	dev procps iproute2 build-essential git pkg-config gcc
	libtool automake libssl-dev uthash-dev autoconf doxygen
	libgcrypt-dev libjson-c-dev libcurl4-gnutls-dev uuid-dev
	pandoc libglib2.0-dev libsqlite3-dev libyaml-dev

First time Git setup, insert your username and email.

Code Listing 5

001	\$ git configglobal user.name "your name"
002	<pre>\$ git configglobal user.email your-email@example.com</pre>

Download the Git repository pkcs11-optiga-tpm [1].

Code Listing 6

001	\$ cd ~
002	<pre>\$ git clone https://github.com/Infineon/pkcs11-optiga-tpm</pre>

Install TPM software stack:

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-tss.git</pre>
003	\$ cd tpm2-tss
004	\$ git checkout 3.0.3
005	\$./bootstrap
006	\$./configure
007	\$ make -j\$(nproc)
008	\$ sudo make install
009	\$ sudo ldconfig

Install TPM tools:

Code Listing 8

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-tools.git</pre>
003	\$ cd tpm2-tools
004	\$ git checkout 5.0
005	\$./bootstrap
006	\$./configure
007	\$ make -j\$(nproc)
008	\$ sudo make install
009	\$ sudo ldconfig

Install TPM access broker & resource manager:

Code Listing 9

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-abrmd.git</pre>
003	\$ cd tpm2-abrmd
004	\$ git checkout 2.3.3
005	\$./bootstrap
006	<pre>\$./configurewith-dbuspolicydir=/etc/dbus-1/system.d</pre>
007	\$ make -j\$(nproc)
008	\$ sudo make install
009	\$ sudo ldconfig

Configure D-Bus:

Code Listing 10

001	\$ sudo useraddsystemuser-group tss
002	\$ sudo pkill -HUP dbus-daemon
003	\$ sudo systemctl daemon-reload

Allow TPM device node to be accessed by tpm2-abrmd user 'tss'. Take note that this effect is not persistent.

Code Listing 11

	001	\$ sudo chown tss /dev/tpm0	
--	-----	-----------------------------	--

To verify that D-Bus is configured correctly:

001	\$	t.pm2	clear	-T	tabrmd:bus	name=com.intel.tss2.Tabrmd -c	α
001	т	Cpille	OTOUT	-			~ ~

Prepare Raspberry Pi[®]

Install TPM PKCS #11. Apply the patch "support-existing-TPM2-persistent-objects.patch" for section 2.2.4 to work.

Code Listing 13

001	\$ cd ~
002	<pre>\$ git clone https://github.com/tpm2-software/tpm2-pkcs11.git</pre>
003	\$ cd tpm2-pkcs11
004	\$ git checkout 1.5.0
005	<pre>\$ git am ~/pkcs11-optiga-tpm/patches/interoperability-with-</pre>
	existing-TPM2-persistent-objec.patch
006	\$./bootstrap
007	\$./configuredisable-fapi
008	\$ make -j\$(nproc)
009	\$ sudo make install
010	\$ sudo ldconfig

Setup Python3 1.4

Set Python 3.7 as default:

Code Listing 14

001	\$ sudo rm /usr/bin/python	
002	\$ sudo ln -s python3.7 /usr/bin/python	

To verify Python is set correctly:

Code Listing 15

001	\$ python -V	
002	Python 3.7.3	

Install Python libraries:

Code Listing 16

001	\$ pip3 install pyyaml
002	\$ pip3 install pyasn1-modules

Install PKCS #11 Software 1.5

Install dependencies:

Code Listing 17

001	\$	sudo	apt	install	libpcsclite-dev
-----	----	------	-----	---------	-----------------

Install OpenSC:

001	\$ cd ~
002	<pre>\$ git clone https://github.com/OpenSC/OpenSC.git</pre>
003	\$ cd OpenSC
004	\$ git checkout 0.21.0
005	\$./bootstrap
006	\$./configure
007	\$ make -j\$(nproc)

008	\$ sudo make install	
009	\$ sudo ldconfig	

Install OpenSSL PKCS #11 engine:

Code Listing 19

001	\$ cd ~
002	\$ git clone https://github.com/OpenSC/libp11.git
003	\$ cd libp11
004	\$ git checkout libp11-0.4.11
005	\$./bootstrap
006	\$./configure
007	\$ make -j\$(nproc)
008	\$ sudo make install
009	\$ sudo ldconfig

Check if the engine pkcs11.so is correctly installed in /usr/lib/arm-linux-gnueabihf/engines-1.1/.

2 Operation Guide

This section describes how OpenSC and OpenSSL can be used to interact with TPM-based PKCS #11 token.

The OpenSC software dependencies:

The OpenSSL software dependencies:

Figure 3 tpm2ssl software dependencies

2.1 Environment Setup

Make a copy of the sample configuration file (~/tpm2-pkcs11/misc/tpm2-pkcs11.openssl.sample.conf) and place it at ~/tpm2-pkcs11.openssl.conf. Update the engine path and tpm2-pkcs11 library path in the file:

- dynamic_path = /usr/lib/arm-linux-gnueabihf/engines-1.1/pkcs11.so
- MODULE_PATH = /usr/local/lib/libtpm2_pkcs11.so

Set abbreviations. Remember to update the path:

Code Listing 20

001	<pre>\$ alias tpm2pkcs11-tool='pkcs11-toolmodule</pre>
	/usr/local/lib/libtpm2_pkcs11.so'
002	<pre>\$ alias tpm2ssl='OPENSSL_CONF=~/tpm2-pkcs11.openssl.conf</pre>
	openssl'
003	<pre>\$ alias tpm2_ptool='~/tpm2-pkcs11/tools/tpm2_ptool.py'</pre>

Set environment variable:

Code Listing 21

001	\$ mkdir ~/pkcs11-store	
002	<pre>\$ export TPM2_PKCS11_STORE=~/pkcs11-store</pre>	

2.2 PKCS #11 Token Creation

There are two ways of creating a PKCS #11 token, to create a token from a blank TPM, or to create a token and link it with existing TPM objects. Find more information at [6].

2.2.1 Start Blank

Reset the TPM:

```
Code Listing 22
```

001 \$ tpm2 clear -c p

Initialize a store at path ~/pkcs11-store and provision the TPM:

Code Listing 23

001	\$ tpm2 ptool initpath ~/pkcs11-store	
-----	---------------------------------------	--

Create a TPM-based PKCS #11 token:

Code Listing 24

001	<pre>\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin</pre>
	label tpm-tokenpath ~/pkcs11-store

2.2.2 Link Existing (Keys stored outside of a TPM)

Option 1: Provision the TPM owner hierarchy:

Code Listing 25

(001	\$ tpm2 clear -c p
(002	\$ tpm2_createprimary -G ecc -c primary.ctx
(203	\$ <pre>tpm2_evictcontrol -c primary.ctx 0x81000001</pre>
(004	\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r
		rsakey.priv
(05	\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r
		ecckey.priv

Option 2: Provision the TPM platform hierarchy:

Code Listing 26

001	\$ tpm2 clear -c p
002	\$ tpm2_createprimary -C p -G ecc -c primary.ctx
003	<pre>\$ tpm2_evictcontrol -C p -c primary.ctx 0x81800001</pre>
004	\$ tpm2_create -G rsa2048 -C 0x81800001 -u rsakey.pub -1
	rsakey.priv
005	\$ tpm2_create -G ecc -C 0x81800001 -u ecckey.pub -r
	ecckev.priv

If platform hierarchy is used, the command tpm2_clear is not able to remove platform persistent handles. Instead, use the following commands:

Code Listing 27

001 \$ tpm2_evictcontrol -C p -c 0x81800001

Create a TPM-based PKCS #11 token associated with the TPM primary key. Example given here is using the primary key from the owner hierarchy, for the platform hierarchy change the handle to 0x81800001:

Code Listing 28

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
0.00	store
002	\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin
	Tabel chm-coken pach ~/ pkcsli-score

Link existing TPM objects (RSA and ECC key objects):

001	<pre>\$ tpm2_ptool linklabel tpm-tokenid 0key-label linkrsa2048userpin userpinpath ~/pkcs11-store</pre>
002	<pre>rsakey.pub rsakey.priv \$ tpm2_ptool linklabel tpm-tokenid 1key-label linkeccp256userpin userpinpath ~/pkcs11-store</pre>
	ecckey.pub ecckey.priv

Show linked key objects:

Code Listing 30

001	<pre>\$ tpm2pkcs11-toolslot 1list-objectsloginpin</pre>
	userpin

Reset the token:

Code Listing 31

001

\$ rm ~/pkcs11-store/tpm2 pkcs11.sqlite3

2.2.3 Link Existing (Keys stored in a TPM NV area)

Option 1: Provision TPM owner hierarchy:

Code Listing 32

0.01	¢ trang alagan a n
001	s upinz_crear -c p
002	\$ tpm2_createprimary -G ecc -c primary.ctx
003	\$ tpm2_evictcontrol -c primary.ctx 0x81000001
004	
005	### Create RSA keypair and store it in NV
006	<pre>\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r rsakey.priv</pre>
007	<pre>\$ tpm2_nvdefine -C o 0x1000000 -s `cat rsakey.priv wc -c` -a "ownerread ownerwrite"</pre>
008	\$ tpm2 nvwrite -C o 0x1000000 -i rsakey.priv
009	<pre>\$ tpm2_nvdefine -C o 0x1000001 -s `cat rsakey.pub wc -c` - a "ownerread ownerwrite"</pre>
010	\$ tpm2 nvwrite -C o 0x1000001 -i rsakey.pub
011	
012	### Create ECC keypair and store it in NV
013	<pre>\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r ecckey.priv</pre>
014	<pre>\$ tpm2_nvdefine -C o 0x1000002 -s `cat ecckey.priv wc -c` -a "ownerread ownerwrite"</pre>
001	\$ tpm2 nvwrite -C o 0x1000002 -i ecckey.priv
002	<pre>\$ tpm2_nvdefine -C o 0x1000003 -s `cat ecckey.pub wc -c` - a "ownerread ownerwrite"</pre>
003	\$ tpm2 nvwrite -C o 0x1000003 -i ecckey.pub

Option 2: Provision TPM platform hierarchy:

001	\$ tpm2_clear -c p
002	\$ tpm2_createprimary -C p -G ecc -c primary.ctx
003	\$ tpm2_evictcontrol -C p -c primary.ctx 0x81800001
004	—
005	### Create RSA keypair and store it in NV
006	<pre>\$ tpm2_create -G rsa2048 -C 0x81800001 -u rsakey.pub -r rsakey.priv</pre>
007	<pre>\$ tpm2_nvdefine -C p 0x1000000 -s `cat rsakey.priv wc -c` -a "platformcreate ppread ppwrite"</pre>
008	\$ tpm2 nvwrite -C p 0x1000000 -i rsakey.priv
009	<pre>\$ tpm2_nvdefine -C p 0x1000001 -s `cat rsakey.pub wc -c` - a "platformcreate ppread ppwrite"</pre>
010	\$ tpm2 nvwrite -C p 0x1000001 -i rsakey.pub
011	
012	### Create ECC keypair and store it in NV
013	<pre>\$ tpm2_create -G ecc -C 0x81800001 -u ecckey.pub -r ecckey.priv</pre>
014	<pre>\$ tpm2_nvdefine -C p 0x1000002 -s `cat ecckey.priv wc -c` -a "platformcreate ppread ppwrite"</pre>
015	\$ tpm2 nvwrite -C p 0x1000002 -i ecckey.priv
016	<pre>\$ tpm2_nvdefine -C p 0x1000003 -s `cat ecckey.pub wc -c` - a "platformcreate ppread ppwrite"</pre>
017	\$ tpm2_nvwrite -C p 0x1000003 -i ecckey.pub

If platform hierarchy is used, the command "tpm2_clear" is not able to remove platform persistent handles. Instead, use the following commands:

Code Listing 34

|--|

Create a TPM-based PKCS #11 token by associating it with the primary key. Example given here is using the primary key from the owner hierarchy, for the platform hierarchy change the handle to 0x81800001:

Code Listing 35

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
002	store \$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin
	label tpm-tokenpath ~/pkcsll-store

Link existing TPM objects (RSA and ECC key objects); for the platform hierarchy replace the parameter "-C o" with "-C p":

001	### Read RSA keypair from NV and link it to the PKCS #11 token
002	\$ tpm2 nvread -C o 0x1000000 -o rsakey.priv
003	\$ tpm2 nvread -C o 0x1000001 -o rsakey.pub
004	\$ tpm2_ptool linklabel tpm-tokenid 0key-label
	linkrsa2048userpin userpinpath ~/pkcs11-store
	rsakey.pub rsakey.priv
005	\$ tpm2 nvundefine -C o 0x1000000
006	\$ tpm2_nvundefine -C o 0x1000001

007	
008	### Read ECC keypair from NV and link it to the PKCS #11 token
009	\$ tpm2_nvread -C o 0x1000002 -o ecckey.priv
010	\$ tpm2 nvread -C o 0x1000003 -o ecckey.pub
011	\$ tpm2_ptool linklabel tpm-tokenid 1key-label
	linkeccp256userpin userpinpath ~/pkcs11-store
	ecckey.pub ecckey.priv
012	<pre>\$ tpm2_nvundefine -C o 0x1000002</pre>
013	<pre>\$ tpm2_nvundefine -C o 0x1000003</pre>

Show linked key objects:

Code Listing 37

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin
	userpin

Reset the token:

Code Listing 38

001	<pre>\$ rm ~/pkcs11-store/tpm2_pkcs11.sqlite3</pre>	
-----	---	--

2.2.4 Link Existing (Key persisted in a TPM)

Provision TPM owner hierarchy:

Code Listing 39

001	\$ tpm2 clear -c p
002	\$ tpm2_createprimary -G ecc -c primary.ctx
003	<pre>\$ tpm2_evictcontrol -c primary.ctx 0x81000001</pre>
004	\$ tpm2_create -G rsa2048 -C 0x81000001 -u rsakey.pub -r
	rsakey.priv -p keyauth
005	\$ tpm2_load -C 0x81000001 -u rsakey.pub -r rsakey.priv -c
	rsakey.ctx
006	\$ tpm2_evictcontrol -c rsakey.ctx 0x81000002
007	\$ tpm2_create -G ecc -C 0x81000001 -u ecckey.pub -r
	ecckey.priv
008	\$ tpm2_load -C 0x81000001 -u ecckey.pub -r ecckey.priv -c
	ecckey.ctx
009	<pre>\$ tpm2_evictcontrol -c ecckey.ctx 0x81000003</pre>

Create a TPM-based PKCS #11 token associated with the TPM primary key:

Code Listing 40

001	<pre>\$ tpm2_ptool initprimary-handle 0x81000001path=~/pkcs11-</pre>
	store
002	\$ tpm2_ptool addtokenpid 1sopin sopinuserpin userpin
	label tpm-tokenpath ~/pkcsll-store

Link existing TPM objects (RSA and ECC key objects):

001	<pre>\$ tpm2_ptool link-persistlabel tpm-tokenid 0key-label</pre>
	linkrsa2048userpin userpinpath ~/pkcs11-store
	0x81000002auth keyauth
002	<pre>\$ tpm2_ptool link-persistlabel tpm-tokenid 1key-label</pre>
	linkecc2048userpin userpinpath ~/pkcs11-store
	0x81000003

Show linked key objects:

Code Listing 42

001	<pre>\$ tpm2pkcs11-toolslot 1list-objectsloginpin</pre>
	userpin

Reset the token:

Code Listing 43

2.3 OpenSC

For simplicity, follow section 2.2.1 to initialize a PKCS #11 token before continuing.

Show available token:

Code Listing 44

001	<pre>\$ tpm2pkcs11-toollist-token-slots</pre>	
-----	---	--

Change user pin (from "userpin" to "upin"):

Code Listing 45

001	\$ tpm2pkcs11-toolslot 1loginpin userpin	change-pin
	new-pin upin	

Change user pin with SO pin (from "upin" to "userpin"):

Code Listing 46

001 \$ tpm2pkcs11-tool --slot 1 --init-pin --so-pin sopin --pin userpin

Show supported key types:

Code Listing 47

001 \$ tpm2pkcs11-toolslot 1list-mechanisms	
---	--

Create an RSA key object:

Code Listing 48

001	\$ tpm2pkcs11-toolslot 1id 00label rsa2048login
	pin userpinkeypairgenkey-type RSA:2048

Create an ECC key object:

001	<pre>\$ tpm2pkcs11-toolslot 1id 01label eccp256login</pre>
	pin userpinkeypairgenusage-signkey-type EC:secp256r1

Show created key objects:

Code Listing 50

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin	
	userpin	

Read the public component of the RSA key:

Code Listing 51

001	\$ tpm2pkcs11-toolslot 1loginpin userpinid 00
	type pubkeyread-object > rsa.pub.der
002	<pre>\$ openssl rsa -inform DER -outform PEM -in rsa.pub.der -pubin</pre>
	> rsa.pub.pem

Read the public component of the ECC key:

Code Listing 52

001	\$ tpm2pkcs11-toolslot 1loginpin userpinid 01
	type pubkeyread-object > ecc.pub.der
002	<pre>\$ openssl ec -inform DER -outform PEM -in ecc.pub.der -pubin ></pre>
	ecc.pub.pem

Generate random data:

Code Listing 53

001	\$ tpm2pkcs11-tool -	-slot 1generate-random 32 > data	
-----	----------------------	----------------------------------	--

RSA encryption and decryption:

Code Listing 54

001	<pre>\$ openssl rsautl -encrypt -inkey rsa.pub.pem -in data -pubin - out data.crypt</pre>
002	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpinid 00 decryptmechanism RSA-PKCSinput-file data.crypt output-file data.plain</pre>
003	\$ diff data data.plain

RSA signing and verification:

Code Listing 55

001	<pre>\$ tpm2pkcs11-toolslot 1id 00loginpin userpin signmechanism SHA256-RSA-PKCSinput-file dataoutput-</pre>
002	file data.rsa.sig \$ openssl dgst -sha256 -verify rsa.pub.pem -signature data.rsa.sig data

ECC signing and verification:

001	\$ tpm2pkcs11-toolslot 1id 01loginpin userpin
	signmechanism ECDSA-SHA1signature-format openssl
	input-file dataoutput-file data.ecc.sig
002	<pre>\$ openssl dgst -sha1 -verify ecc.pub.pem -signature</pre>
	data.ecc.sig data

Destroy RSA key object:

Code Listing 57

001	\$ tpm2pkcs11-toolslot 1loginpin userpindelete-
002	objecttype privkeyid 00 \$ tpm2pkcs11-toolslot 1loginpin userpindelete- objecttype pubkeyid 00

Destroy ECC key object:

Code Listing 58

001	\$ tpm2pkcs11-toolslot 1loginpin userpindelete-	
	objecttype privkeyid 01	
002	\$ tpm2pkcs11-toolslot 1loginpin userpindelete-	
	objecttype pubkeyid 01	

2.4 OpenSSL

To verify that the PKCS #11 engine is accessible:

Code Listing 59

```
        001
        $ openssl version

        002
        OpenSSL 1.1.1d 10 Sep 2019

        003
        $ openssl engine pkcs11 -t

        004
        (pkcs11) pkcs11 engine

        005
        [ available ]
```

Create RSA and ECC key objects:

Code Listing 60

001	<pre>\$ tpm2pkcs11-toolslot 1id 02label osslrsa2048login</pre>
	pin userpinkeypairgenkey-type RSA:2048
002	<pre>\$ tpm2pkcs11-toolslot 1id 03label ossleccp256login pin userpinkeypairgenusage-signkey-type</pre>
	EC:secp256r1

RSA signing and verification:

001	\$ echo "beefcafe" > data
002	\$ tpm2ssl dgst -engine pkcs11 -keyform engine -sign
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -out data.rsa.sig data
003	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -verify</pre>
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -signature data.rsa.sig data

ECC signing and verification:

Code Listing 62

001	\$ echo "beefcafe" > data
002	\$ tpm2ssl dgst -engine pkcs11 -keyform engine -sign
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -out data.ecc.sig data
003	<pre>\$ tpm2ssl dgst -engine pkcs11 -keyform engine -verify</pre>
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -signature data.ecc.sig data

RSA encryption and decryption:

Code Listing 63

001	\$ echo "beefcafe" > data
002	\$ tpm2ssl rsautl -engine pkcs11 -keyform engine -inkey
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -encrypt -in data -out data.crypt
003	\$ tpm2ssl rsautl -engine pkcs11 -keyform engine -inkey
	"pkcs11:token=tpm-token;object=osslrsa2048;pin-
	value=userpin" -decrypt -in data.crypt -out data.plain
004	\$ diff data data.plain

Generate a self-signed certificate:

Code Listing 64

001	\$ tpm2ssl req -engine pkcs11 -keyform engine -key
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -new -x509 -days 365 -subj '/CN=TPM CA/' -
	sha256 -out ca.crt.pem
002	### view the certificate
003	<pre>\$ openssl x509 -in ca.crt.pem -text -noout</pre>

Import a certificate:

Code Listing 65

001	<pre>\$ tpm2_ptool addcertlabel=tpm-tokenkey-label=ossleccp256</pre>
	path ~/pkcs11-store ca.crt.pem

Show imported certificates:

Code Listing 66

001	\$ tpm2pkcs11-toolslot 1list-objectsloginpin
	userpin

Read a certificate, use the Code Listing 66 to get the object id.

Code Listing 67

001	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpinread-object</pre>
	type certid <object id=""> cert.der</object>
002	\$ openssl x509 -inform der -in cert.der -out cert.pem
003	<pre>\$ diff cert.pem ca.crt.pem</pre>

Delete a certificate, use the Code Listing 66 to get the object id.

001	<pre>\$ tpm2pkcs11-toolslot 1loginpin userpindelete-</pre>
	objecttype certid <object id=""></object>

Generate a CSR:

Code Listing 69

001	\$ tpm2ssl req -engine pkcs11 -keyform engine -key
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -new -subj '/CN=TPM device/' -out csr.pem
002	### view the certificate
003	<pre>\$ openssl req -in csr.pem -text -noout</pre>

Sign the CSR:

001	\$ tpm2ssl x509 -engine pkcs11 -CAkeyform engine -CAkey
	"pkcs11:token=tpm-token;object=ossleccp256;pin-
	value=userpin" -req -CA ca.crt.pem -sha256 -set_serial 1 -in
	csr.pem -out crt.pem
002	### view the certificate
003	\$ openssl x509 -in crt.pem -text -noout

3 FAPI Backend

By default, PKCS #11 token data is stored in an SQLite database (it is referred to as the esysdb backend) and a Python tool is provided to manipulate the database. It is used for token creation and late binding of TPM keys to a token. Despite the usefulness of the tool, Python installation may not be ideal for low-end or low memory footprint devices.

Alternatively, the PKCS #11 token can be configured to utilize the FAPI (it is referred to as the fapi backend) from TSS instead of SQLite. Find the complete setup guide at [7]. The new guide supersedes this document except the examples from OpenSC (section 2.3) and OpenSSL (section 2.4).

References

- [1] <u>https://github.com/Infineon/pkcs11-optiga-tpm</u>
- [2] <u>https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-tpm2.0-linux/</u>
- [3] <u>http://www.infineon.com/tpm</u>
- [4] <u>https://trustedcomputinggroup.org/resource/tpm-main-specification/</u>
- [5] <u>https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-01-12/2021-01-11-raspios-buster-armhf.zip</u>
- [6] <u>https://github.com/tpm2-software/tpm2-pkcs11/blob/master/docs/INTEROPERABILITY.md</u>
- [7] https://github.com/Infineon/pkcs11-optiga-tpm/tree/main/fapi-backend

Revision history

Reference	Description
Revision 1.1, 20	21-10-18
	Add support for FAPI backend
Revision 1.0, 20	21-02-29
	Initial version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-18 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email:

 ${\bf csscustomerservice} @ {\bf infineon.com} \\$

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.