# In virtual env: pip3 install wordcloud matplotlib from wordcloud import WordCloud import matplotlib.pyplot as plt # Define the main word and related terms with weights for prominence words = { "CoreAI": 100, "TensorFlow": 60, "PyTorch": 60, "CUDA": 60, "OpenCV": 60, "Image Generation": 50, "Large Language Models": 50, "Natural Language Processing": 45, "Computer Vision": 45, "Reinforcement Learning": 40, "Neural Networks": 40, "Deep Learning": 45, "Machine Learning": 50, "Generative AI": 50, "Transfer Learning": 35, "Object Detection": 35, "Text-to-Image": 30, "Speech Recognition": 30, "Data Augmentation": 25, "Model Optimization": 25, "Semantic Segmentation": 25, "AI Ethics": 20, "Prompt Engineering": 30, "Self-Supervised Learning": 20, "Few-Shot Learning": 20, "Transformer Models": 35, } # Generate the word cloud wordcloud = WordCloud( width=1200, height=600, background_color='white', colormap='viridis' ).generate_from_frequencies(words) # Save the word cloud #wordcloud.to_file("wordcloud.png") # Display the word cloud plt.figure(figsize=(14, 7)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.tight_layout(pad=0) #plt.show() plt.savefig("wordcloud.png") plt.close()