{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Elastix\n", "\n", "This notebooks show very basic image registration examples with on-the-fly generated binary images." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from itk import itkElastixRegistrationMethodPython\n", "from itk import itkTransformixFilterPython\n", "import itk\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Image generators" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def image_generator(x1, x2, y1, y2):\n", " image = np.zeros([100, 100], np.float32)\n", " image[y1:y2, x1:x2] = 1\n", " image = itk.image_view_from_array(image)\n", " return image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Affine Test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Create test images\n", "fixed_image_affine = image_generator(25,75,25,75)\n", "moving_image_affine = image_generator(1,71,1,91)\n", "\n", "# Import Default Parameter Map\n", "parameter_object = itk.ParameterObject.New()\n", "default_affine_parameter_map = parameter_object.GetDefaultParameterMap('affine',4)\n", "parameter_object.AddParameterMap(default_affine_parameter_map)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Call registration function\n", "result_image_affine, result_transform_parameters = itk.elastix_registration_method(\n", " fixed_image_affine, moving_image_affine,\n", " parameter_object=parameter_object,\n", " log_to_console=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualization Affine Test" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABqwAAAIoCAYAAAAcOsp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxMElEQVR4nO3deZhld10n/vcnXUmQIIRFIpskSn4ggwIaWUQYBBxAQILDsMgSEMVHQUHE3Rn4zYwPoAyCCM5EYAjLsBiRXRDDMjijwbDMAMmAEQiEHVlkgKz9mT/uafumuqr7dndVfW9VvV7Pc586y/ee86k+fdOf3PdZqrsDAAAAAAAAoxwzugAAAAAAAAB2N4EVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwArYdqrqqVXV0+uuo+sBAHamuX7jnaNr2UhV9ai53+1Ro+sBADgaVXXyXG/z4tH1AEdOYAVLaO4f2bVeX6+qj1fV66rqZ6vqhNH1LpuqOnEKtZ5aVaePrgcAGOcQfdVar2ePrhkA4Eit0ds89zDe++zV79/MWgFWE1jB9nONJCcn+YkkZyY5v6ruOLSi5XNikqdMr9OHVgIAAAAwzkOr6rhDDaqqY5M8bAvqAVjXyugCgEN6wKr5aya5bZJHJLluku9K8uaquk13X7TVxQEAbCOr+6q1/MO+ie6uTawFAGAzXZHZd7/XTXK/JH92iPH3TXK9Ve/dFrr7E0n0bbADbJv/8MBu1d2vXWPxS6rqaUneleQWmV1R9DtJfnbrKgMA2F7W6asAAHaif8js7lqnJnlUDh1YPWr6+dEkneTmm1UYwHrcEhC2qe7+QpInzy36iVG1AAAAALB0zpp+3quqTlpvUFV9R5J7r3oPwJYTWMH29u656etX1bUONriq7lhVf1xV51fVV6vqkqr6ZFW9qqruc6idVdWeqnpEVb2hqj41vf9b0/T7quplVXVGVZ2wxns/MT2w8xML7Gfhsaved/L0QNCPzy0+Y50Hqp98ONsGAHafub7hnWuse8GiDzOvqifPjf3LqlrzljVH26vNbee+U7/2uWkbn6iql3vuKQDsOi9Jsjezu2wd7PlUD09y7DT2JYezg6q6fVWdWVUfqaqvV9U3quofquqsqrrbQd73mrn+6PsW2M9KVX1+Gv/5qlqZW3fy3LZevM7737lvzNyyh1TV26ae6dKquqiqXlxVt1jwdz+pqn5v6t2+UVVfrqr3VNWvVNXVpzFH9B0X7FZuCQjb26Wr5q+W5GurB00B0guTPHiNbdxkej2oqt6U5KHd/fU1tnG9JG9O8kNrbOPG0+u2mTVAX0vy2oV/CwCA7ecJSe6c5P9L8viqekt3v2n1oKq6bZLfnWa/lOSM7u5VY466V5u2s2fazhmrVt10ej2kqn4zyRcW+xUBgO2suz9VVW9Pco/M+oNnrTN0X+9wTndfvM65NVcxBUbPz9qPp/ju6fXIqnp1kkd197dWjXlp9j9f9OFJfv0Qu/xXSa4/Tb+iu684ZJHrqKqrJXlFktNXrfquzP4sHlJVD+juvzjINn40s9ssXntu8dUz+97shzI7gXrhE46AGYEVbG//Ym760qzx5UNVHZ/kr5LcYVr0D0leleSCJJcnuVmSR2b2Zct9kry2qn6su/eu2tSfZH9YdWFm/7B/NMm3klwzs3sb3yXJ7Y/6tzpyX8is2bl+kv8yLXtHkj9cZywAwBHp7m9U1U8l+ZvMzkh+UVV9f3d/ft+Y6czaVyQ5blr06O7+7Px2NrBXS2Y9z74vnC7L7JY+f53Z2dK3S/KYJM+IE4sAYDd5cWaB1fdX1Q909/vmV04n19x6buyiXprkIdP0JZn1Hf8zyZVJTsus7/j2JA9Kcq2quveqk3belOTLSa6T5KFV9RurT+pZ5eGr9n00XpRZWPXeJK9M8skk18vsJOwfTnJ8kpdV1c27+0ur31xVt0zyxswCqiR5f5KXJbk4yUmZnYR0p8x6Ot+/w2HwgYHt7Tfnpv92nX/Yn579X4D8fpLfWn0WSlX9XpIXZPZlyN2SPDbJf55bf/0k959mz0ty1+7+xloFVdVNj+D32BDd/c3MvsQ5eW7xJz1gHQDYDN393qr67SS/l9kJM2et+jLm2dn/wPLndfcb19jMUfdq05g7J/mFafarSe7R3e+dG/KyqnpeknfmwLOJAYCd6zVJ/imzk40fleR9q9Y/avr5tSR/vsgGq+rB2R9WfT7J3br7/LkhL6+qZ2d2EvEpSe6ZWZ/yvH0DuvuyqvrTJD+X2dXkd53Gr7W/a2T/91IXrOpxjsRDM7sC/t/Of5dWVf85s6umTs8sSPvpzPq81f5L9odVz0/yi6tOJnpuVT01yVOOsk7YdTzDCraZqvr2qrpLVb0+yQPnVj19jbE3yP4vLl7T3b+21iXT3X15kp9J8rFp0ZNWDfnuJPuuB/9v64VV07Yu6u6LFvttAAC2zjrPtZx/vfgINvvMzK6QSmZfxjxx2tdPZv8tcj6U5Mlr1LNRvVqS/Mrc9BPX+iKnuz8ybQcA2CWmW/G9epp9aFUdu2/dNP1T0+yr17ht33rmb9/36FVh1b79XpRZqLUvEPrV6fbF8+avlHp41veT2R8QvWzBGg/m7d39O6tP/J5Cp1+dW3TP1W+sqtOS/Mg0+6Ekv7TWle/d/dQk79qAWmFXEVjBklv9RUpmZ8W8K8n95oY9qbvfssbbH5T9t6B55sH2M30R8qpp9tRVVyl9c256/jaEAAC72vRFxyMzez5Vkjxtel7Bn0zzl2T23KlL1nj7hvRq020F7z3Nfj4H+SJnes7WBQfbFwCw47x4+nm9XPX7pPtNy+bHHNTUg9x2mv3gwZ7z1N3vSfL2afamSX5w1fr/kf0n5Pzr6dlSa9kXZnWSly9S5yE8Z70V3X1hkk9Ns7dcY8j956af191XHsl+gLW5JSBsb+9P8sju/tA66+88N33jqjr9ENubf1Dk9yb5xDT94SSfSXLDJI+p2dM3/yTJe9Z5fgIAwDJ6wCHWf/JINtrdn62qn07y+syeeTB/679f3YJe7dbZH3y96xBfnCTJOdP7AYBdoLv/R1X9fZJTM3ve5WumVY+afn60u//ngpu73dz0Xy4w/i+T3H2avn2S96xa//Ik/zbJtTIL0P50fuV0Rfrdptl3b9Bdff72EOs/ndltCq+9xrrT5qbXvIXhnHceRk1ABFawHcx/sfJtSU7O7CGQ/yKzM1oeX1W/sE5wdPLc9KvXWH8w//yPcndfWVU/l9l9fI/L7B6+P53kq1X1N5k9zPutG3APYQCATbOZz7Xs7jdU1fOz/xZ/SfLG7v6jg7zt5LnpI+7VMjupaJ8LF3jvImMAgJ3lrCT/Mcm9q+o7Mnv0w73n1i3qBnPTH11g/PyYG6yx/mWZBVbJ7EqqP121/qFJ9t1K8KXZGF86xPpLp5/Hr7Fuvu/62Brr/1l3f6WqvprkxIUrg13OLQFhyXX3a+der+jupyX5viTPnYb8XGYNx1qudRS7Pm5+ZnpI+O2SvDbJ5dPiEzNrbn43yXlV9cGqutdR7BMAYDv7yKr5sw8xfqN6tWvMTX9z9cA1rPs8UgBgx3pJkr1Jjs0sGHp4Zhcz7J3WLerb56YX6Sn+7zrvTZJ090eTnDvN3ruqrrNqyL7bAV6SA8OsI3KUdws6Yfp5xXTL5kPRd8FhEFjBNjQ9K+GXk5w3Lfr1qrr9GkP3NQWdZE9312G8XrzGfv9Xdz8gyXUzC6r+Q2bP09r3D/Stkry5qh52lL+i/zYBANtKVd0qyTNWLX5WVd3oIG/bqF5t/ougq+fQTjj0EABgJ+nuT2X/86QeldmtAZPknO6++DA29fW56UV6ivkTa76+zph9V04dm+TB+xZW1fdm//Oy3tDdX1u0yE20L4BaqapjFxiv74LD4Eth2KamZxM8aZo9Jms/qPvT089KcrAvSw5331/v7rd097/r7rtmdkn3H8zt61lVtWfV2/ZdTn1cDmJ6Ptbqs2kAAJbW9IDwVyTZ96Dwfc+FuE6Sl1bVev/ftVG92mfmpm+2wPhFxgAAO8+Lp5/fP73mly3qs3PTpy4wfn7MZ9YZ86rsPxn64XPLHzE3/bIF9rUV5n+H7z7YwKq6dtwOEA6LwAq2se5+d/Y/4PFHqurHVw1519z0v9rEOv6xu5+U/Vd8XT8HNi1fnX5e7xBnoNwqR3/2yfyl3XWU2wIAOJTfz6yHSZIzkzwwyVun+R9N8mvrvG+jerX/leSyafpfrnHi0Gp3P8R6AGBnek2Sf5qb/1qSPz/MbbxnbvrHFhg/3+O8Z60B3f2lJG+ZZn+4qk6ZTmj+qWnZPyb5i8Osc7OcNzf9o4cYe9dNrAN2JIEVbH9Pm5t+yqp1r8z+Ly9+vao2+zLkT8xNr6xad/7089gkdz7INn5pA+qYvy2OS68BgE1TVfdJ8vhp9iNJfnm6ffOjknxxWv7vq+q0Nd6+Ib1ad1+a5M3T7EnZ/+XOWvXeO8n3Hsl+AIDtrbu/leTZmT0z6twkz56WHc42PpHkfdPsratq3dBq6n/uNs1elOS9B9n0S+emH57Zd0c3neZfueDzorbC6+amH3eIE4WesNnFwE4jsIJtrrvflv3/4N9u/iqr6f7Ez51mT03yhqr6zvW2VVXHVNU9qup3Vi2/Z1U9oarWfTB4Vd0s+8+s+b9J/mHVkLfMTf+Hqjp+jW38TJKfWW8fi+ruL2d2llCS3GY6KwcAYENV1UlJXjTNXpbkod39zSTp7s8lefS07tgk/211ILVRvdrkP81NP6eqbrPG+09N8sJD/mIAwI7V3U/p7jtMr6ce4Wbmn9t5VlXdYvWAqvquzE7O2ff98+9Pj7dYzxuy/7uch+WqtwZcltsBprvPS/LX0+ytkvzhWrd/rqqnJvmXW1ga7Airr4AAtqenJTl7mn5q9p9hmyS/meQ2md365UeTfKyq/izJ32R21u9xSb4zya0zC5y+M8k5Sf7j3DZukNkZOL9XVe/I7CycjyX5ZpLrJfmhJA/K/quZ1jpD57VJLszsmQk/nOTvquqFmd379zuTnJ7ZWTfvTvI9SW542H8KV/X2JA+YtvWqqnpN9t+WMEnedbhnEQEA7DOdEHNWZrdCTpLf7u73z4/p7jdV1R9ldgXWqUn+MMljVm1qI3q1dPdfV9Xzk/xCkmsn+duqOiuzL1T2JrndtO8TMuvLTj+a3x8A2L26+9VV9YAkD8nsO6P3VdWLM+tfrkxyWmZ9xzWnt/xlkucfYpuXVNXZ0/tunuSUadWF3f23G/5LHJ2fS/J3Sa6eWe91x6p6WZKLM7va/cFJ7pTZn8d3Zfas0r1rbwqYJ7CCneHPM7sFzc2T/FBV3ae735Qk3X35dNXVf0ry80m+LbOzVB6+3say/wHg+/T087gk95xea+nMvohZfWvCdPelVfWQJG/L7EuU78ssBJt3bpJ/ndk/+kfr3ye5V2a/77+ZXvNOyVVvYQgAcDiemP090V/lqlc4zfvVzJ5fcKskP11Vf9Hd+0402qhebZ9fSvLtmT2g/Pgkj51e++zN7HlaX4zACgA4Oo/I7A47P5NZ//Lz02u1s5M8crpl8qG8NPtP7jlubtlS6e7zq+q+mT0T7MQkt51e8z6UWXD1N9P817esQNjG3BIQdoDu3purXo79lFXrL+vuX0xyiyRPzywY+mKSKzK7SurjmV2V9VtJvr+7z1i1i5ckuX2S387sEu0Lk3wjs7NmvpbkA0n+KMkPdvcTp3rWqvO9mQVVz522cUmSr2T2j/fjkty5u7+41nsPV3d/IMkPJnlBZmHeNzdiuwAAVXXr7H+O6D8mOWO9L2G6+5IkD82s70mSM6vqJqvGHG2vtm87V3b3I5PcL8mbpm1cmuSTSV6R5Ee6+/eP6JcGAJjT3Vd0988muWNmtxze913RtzLrXV6W5O7d/W8O4w43/z2zZ13NW5rbAc7r7ndk1rs9M7Pvnb6V2Z19zkvy5My+R7s4yXWmt3x566uE7acWC7cBAAAAAIBFVNX3Jfnf0+wfdvcTRtYD24ErrAAAAAAAYGM9fm76HcOqgG1EYAUAAAAAAAuqqjtX1brfrVfV47L/WaKfTvLGLSkMtjm3BAQAAAAAgAVV1YVJrpbkL5K8P7Nnhx6b5HuSPCDJbeeG36+7BVawAIEVAAAAAAAsaAqsvucQw76V5Ge7++VbUBLsCEcVWFXVvZI8J8meJC/o7qcfbPxxdXxfLScc8f4AgM13Sb6Ry/rSGl0HeicA2A70TstB3wRspStzRS7PZdmbK7M3e9PZmySpVI7JMdmTY3Nsjs8xnsgDB/h6vvKl7v6OtdatHOlGq2pPkucl+bEkFyf5u6p6fXefv957rpYTcvtj7nGkuwQAtsC5e/9qdAlMrpYTcvu6++gyAICDOLfPGV0C0TcBwHbxV332ReutO5qI93ZJLuzuj3X3ZUlemeT+R7E9AAAAAAAAdqGjCaxulORTc/MXT8uuoqoeW1XnVdV5l+fSo9gdAMDOp3cCAFiMvgkAdpZNv4lmd5/Z3ad192nH5vjN3h0AwLamdwIAWIy+CQB2liN+hlWSTye5ydz8jadlAAAAADDUWz/zgdElAOxY97zhbUaXwA50NFdY/V2SU6vqlKo6LslDkrx+Y8oCAAAAAABgtzjiK6y6+4qqenyStybZk+RF3f3hDasMAAAAAACAXeFobgmY7n5zkjdvUC0AAAAAAADsQkdzS0AAAAAAAAA4agIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUIcMrKrqJlX1jqo6v6o+XFVPmJZfp6reVlV/P/289uaXCwAAAAAAwE6zyBVWVyT5le6+ZZI7JHlcVd0yyW8kOae7T01yzjQPAAAAAAAAh+WQgVV3f7a73zdNfz3JBUlulOT+Sc6ahp2V5PRNqhEAAAAAAIAdbOVwBlfVyUlum+TcJCd192enVZ9LctI673lskscmydVy9SMuFABgN9A7AQAsRt8EADvLIrcETJJU1TWS/FmSJ3b3P82v6+5O0mu9r7vP7O7Tuvu0Y3P8URULALDT6Z0AABajbwKAnWWhwKqqjs0srHp5d79mWvz5qrrBtP4GSb6wOSUCAAAAAACwkx0ysKqqSvLCJBd097PmVr0+yRnT9BlJXrfx5QEAAAAAALDTLfIMqzsleUSSD1bVB6Zlv5Xk6UleXVWPSXJRkgdtSoUAAAAAAADsaIcMrLr7r5PUOqvvvrHlAAAAAAAAsNss9AwrAAAAAAAA2CwCKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGGpldAHsHnuuc+0DF+7tA5f13iPfyVrbOwrdR7i9vUfxO6xdyMZub6PrW+WI/9wOxwYf6zUdzd/FDdRb8buuveMx+wXYhd76mQ+MLgHYBPe84W1GlwAAANuGK6wAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMNTK6ALYmfaceOIBy978wbcfsOy/X3Lge/f25ueoV6Y2fR+LuHILfte17F2SrHpZjkMy5lhsxXFY6/faU3sPWHbL4z5/wLJffPDPH7DsmA989IBley9Z44Ncy3NsAQAAAIDltxzfWgMAAAAAALBrCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhloZXQA7VO89YNGHL/vWAcvOv+RmByy7Uo4Km2pPDvx8nnjMNw9YVlf2VpQDAAAAACAZAAAAAAAAYCyBFQAAAAAAAEMJrAAAAAAAABhKYAUAAAAAAMBQK6MLYPe4vA/MRy/vA/8KXpk6YNme9KbUBDvdWp+ntRZd1ns2vxgAAAAAgHW4wgoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQ62MLgCArbW3nasAAAAAACwX31oCAAAAAAAwlMAKAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEMJrAAAAAAAABhKYAUAAAAAAMBQAisAAAAAAACGElgBAAAAAAAw1MroAgBYUt2jKwAAAAAAdglXWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgqJXRBbBDlSwUAAAAAABYjFQBAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEOtjC6A3ePK1OgSAAAAAACAJeQKKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgqJXRBQCwpLpHVwAAAAAA7BKusAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUCujCwBgvD21d3QJAAAAAMAu5gorAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDLRxYVdWeqnp/Vb1xmj+lqs6tqgur6lVVddzmlcm2c0wd+AIAAAAAAFjD4Vxh9YQkF8zNPyPJH3T3zZJ8JcljNrIwAAAAAAAAdoeFAququnGS+yR5wTRfSe6W5OxpyFlJTt+E+gAAAAAAANjhFr3C6tlJfi3J3mn+ukm+2t1XTPMXJ7nRWm+sqsdW1XlVdd7lufRoagUA2PH0TgAAi9E3AcDOcsjAqqrum+QL3f3eI9lBd5/Z3ad192nH5vgj2QQAwK6hdwIAWIy+CQB2lpUFxtwpyU9U1Y8nuVqSayZ5TpITq2plusrqxkk+vXllArDl9h56CAAAAADARjjkFVbd/ZvdfePuPjnJQ5K8vbsfluQdSR44DTsjyes2rUoAAAAAAAB2rEWfYbWWX0/ypKq6MLNnWr1wY0oCAAAAAABgN1nkloD/rLvfmeSd0/THktxu40sCAAAAAABgNzmaK6wAAAAAAADgqAmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGGpldAEALKfqHl0CAAAAALBLuMIKAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEOtjC6AHapqdAUAAAAAAMA24QorAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMNTK6AIAWFLdoysAAAAAAHYJV1gBAAAAAAAwlMAKAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEMJrAAAAAAAABhKYAUAAAAAAMBQAisAAAAAAACGElgBAAAAAAAwlMAKAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEMJrAAAAAAAABhqZXQB7B5XpkaXAAAAAAAALCFXWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgqJXRBbBDlSwUAAAAAABYjFQBAAAAAACAoQRWAAAAAAAADCWwAgAAAAAAYCiBFQAAAAAAAEOtjC4AgCXVPboCAAAAAGCXcIUVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADDUQoFVVZ1YVWdX1f+pqguq6o5VdZ2qeltV/f3089qbXSwAAAAAAAA7z6JXWD0nyVu6+xZJbp3kgiS/keSc7j41yTnTPAAAAAAAAByWQwZWVXWtJHdJ8sIk6e7LuvurSe6f5Kxp2FlJTt+cEgEAAAAAANjJFrnC6pQkX0zyX6vq/VX1gqo6IclJ3f3Zacznkpy01pur6rFVdV5VnXd5Lt2YqgEAdii9EwDAYvRNALCzLBJYrST5gSR/3N23TfKNrLr9X3d3kl7rzd19Znef1t2nHZvjj7ZeAIAdTe8EALAYfRMA7CyLBFYXJ7m4u8+d5s/OLMD6fFXdIEmmn1/YnBIBAAAAAADYyQ4ZWHX355J8qqpuPi26e5Lzk7w+yRnTsjOSvG5TKgQAAAAAAGBHW1lw3C8meXlVHZfkY0kenVnY9eqqekySi5I8aHNKBAAAAAAAYCdbKLDq7g8kOW2NVXff0GoAAAAAAADYdRZ5hhUAAAAAAABsGoEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChVkYXAMB4e9IHLty79XUAAAAAALuTK6wAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMNTK6ALYoY6p0RUAAAAAAADbhCusAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFArowsAYDlV9wHLDlwCAAAAAHD0XGEFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGColdEFsDNV1ULjjqm9Byy7svdsdDkAAAAAAMASc4UVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIZaGV0ArLYnPboEOGrH1N7RJcz0geclrFXb0tQLAAAAAOxKrrACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFArowtg99iTXmPZ3gOW7V0jRz2mDhw3wlr1bkfH1IHHYpltxz/3PUvyd3Ytx6zx53nNunRAJQAAAAAAM66wAgAAAAAAYCiBFQAAAAAAAEMJrAAAAAAAABhKYAUAAAAAAMBQK6MLYGe64gtfOmDZv7vLTx44cO/exTa46LjuBYctNu7AOhZ8X29svVtSyxHu44j/LJMNP65HtY81d7vJx+cojk0vevwX3O/Lc5M1Bn50se1VHXktAAAAAABxhRUAAAAAAACDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhloZXQA7VO89YNGVn/vCgEK2wBq/Kyy1WvBcBX+3AbbMPW94m9ElAAAAwFCusAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUCujC2D36CsuH10CAAAAAACwhFxhBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIYSWAEAAAAAADCUwAoAAAAAAIChBFYAAAAAAAAMJbACAAAAAABgKIEVAAAAAAAAQwmsAAAAAAAAGEpgBQAAAAAAwFACKwAAAAAAAIZaKLCqql+uqg9X1Yeq6hVVdbWqOqWqzq2qC6vqVVV13GYXCwAAAAAAwM5zyMCqqm6U5JeSnNbdt0qyJ8lDkjwjyR90982SfCXJYzazUAAAAAAAAHamRW8JuJLk26pqJcnVk3w2yd2SnD2tPyvJ6RteHQAAAAAAADveIQOr7v50kmcm+WRmQdXXkrw3yVe7+4pp2MVJbrTW+6vqsVV1XlWdd3ku3ZiqAQB2KL0TAMBi9E0AsLMsckvAaye5f5JTktwwyQlJ7rXoDrr7zO4+rbtPOzbHH3GhAAC7gd4JAGAx+iYA2FkWuSXgPZJ8vLu/2N2XJ3lNkjslOXG6RWCS3DjJpzepRgAAAAAAAHawRQKrTya5Q1Vdvaoqyd2TnJ/kHUkeOI05I8nrNqdEAAAAAAAAdrJFnmF1bpKzk7wvyQen95yZ5NeTPKmqLkxy3SQv3MQ6AQAAAAAA2KFWDj0k6e6nJHnKqsUfS3K7Da8IAAAAAACAXWWRWwICAAAAAADAphFYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDrYwuAAAAAAA22j1veJvRJQAAh8EVVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDCawAAAAAAAAYSmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGAogRUAAAAAAABDVXdv3c6qvpjkoiTXS/KlLdsxB+NYLAfHYXk4FsvBcRjrpt39HaOLQO+0pByL5eA4LA/HYjk4DmPpnZbAXN+U+EwsC8dheTgWy8FxWB6OxVjr9k5bGlj9806rzuvu07Z8xxzAsVgOjsPycCyWg+MAV+UzsTwci+XgOCwPx2I5OA5wVT4Ty8FxWB6OxXJwHJaHY7G83BIQAAAAAACAoQRWAAAAAAAADDUqsDpz0H45kGOxHByH5eFYLAfHAa7KZ2J5OBbLwXFYHo7FcnAc4Kp8JpaD47A8HIvl4DgsD8diSQ15hhUAAAAAAADs45aAAAAAAAAADCWwAgAAAAAAYKgtD6yq6l5V9ZGqurCqfmOr979bVdVNquodVXV+VX24qp4wLb9OVb2tqv5++nnt0bXuBlW1p6reX1VvnOZPqapzp8/Fq6rquNE17gZVdWJVnV1V/6eqLqiqO/pMjFFVvzz9t+lDVfWKqrqazwXM6J3G0DstF73TctA7LQd9E6xP3zSO3mm56J2Wg95pOeidtpctDayqak+S5yW5d5JbJnloVd1yK2vYxa5I8ivdfcskd0jyuOnP/jeSnNPdpyY5Z5pn8z0hyQVz889I8gfdfbMkX0nymCFV7T7PSfKW7r5Fkltndkx8JrZYVd0oyS8lOa27b5VkT5KHxOcC9E5j6Z2Wi95pOeidBtM3wfr0TcPpnZaL3mk56J0G0zttP1t9hdXtklzY3R/r7suSvDLJ/be4hl2puz/b3e+bpr+e2X8gb5TZn/9Z07Czkpw+pMBdpKpunOQ+SV4wzVeSuyU5exriOGyBqrpWkrskeWGSdPdl3f3V+EyMspLk26pqJcnVk3w2PheQ6J2G0TstD73TctA7LRV9E6xN3zSQ3ml56J2Wg95pqeidtpGtDqxulORTc/MXT8vYQlV1cpLbJjk3yUnd/dlp1eeSnDSqrl3k2Ul+Lcneaf66Sb7a3VdM8z4XW+OUJF9M8l+ny+RfUFUnxGdiy3X3p5M8M8knM2savpbkvfG5gETvtBT0TsM9O3qnZaB3WgL6JjgofdOS0DsN9+zonZaB3mkJ6J22ny1/hhVjVdU1kvxZkid29z/Nr+vuTtJDCtslquq+Sb7Q3e8dXQtZSfIDSf64u2+b5BtZdRm2z8TWmO7XfP/MmrkbJjkhyb2GFgUw0TuNpXdaKnqnJaBvApad3mksvdNS0TstAb3T9rPVgdWnk9xkbv7G0zK2QFUdm1nT8PLufs20+PNVdYNp/Q2SfGFUfbvEnZL8RFV9IrPbE9wts/vZnjhdlpr4XGyVi5Nc3N3nTvNnZ9ZI+ExsvXsk+Xh3f7G7L0/ymsw+Kz4XoHcaSu+0FPROy0PvtBz0TbA+fdNgeqeloHdaHnqn5aB32ma2OrD6uySnVtUpVXVcZg84e/0W17ArTferfWGSC7r7WXOrXp/kjGn6jCSv2+radpPu/s3uvnF3n5zZ3/+3d/fDkrwjyQOnYY7DFujuzyX5VFXdfFp09yTnx2dihE8muUNVXX36b9W+Y+FzAXqnYfROy0HvtDz0TktD3wTr0zcNpHdaDnqn5aF3Whp6p22mZlcebuEOq348s3up7knyou7+3S0tYJeqqh9J8u4kH8z+e9j+Vmb3E351ku9KclGSB3X3l4cUuctU1V2TPLm771tV353ZmS/XSfL+JA/v7ksHlrcrVNVtMnsI6XFJPpbk0ZkF+T4TW6yq/v8kD05yRWafgZ/J7P7BPhfsenqnMfROy0fvNJ7eaTnom2B9+qZx9E7LR+80nt5pOeidtpctD6wAAAAAAABg3lbfEhAAAAAAAACuQmAFAAAAAADAUAIrAAAAAAAAhhJYAQAAAAAAMJTACgAAAAAAgKEEVgAAAAAAAAwlsAIAAAAAAGCo/wfg5AGcDNwMpQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "# Plot images\n", "fig, axs = plt.subplots(1,3, sharey=True, figsize=[30,30])\n", "plt.figsize=[100,100]\n", "axs[0].imshow(result_image_affine)\n", "axs[0].set_title('Result', fontsize=30)\n", "axs[1].imshow(fixed_image_affine)\n", "axs[1].set_title('Fixed', fontsize=30)\n", "axs[2].imshow(moving_image_affine)\n", "axs[2].set_title('Moving', fontsize=30)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "ITKTestEnvDebug", "language": "python", "name": "itktestenvdebug" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 4 }