
Optimal superposition trees restoration in
symbolic regression

Radoslav Neychev, Innokenty Shibaev, Vadim Strijov

Moscow Institute of Physics and Technology

IDP-2020, Moscow, Russia

1 / 16

Optimal superposition trees restoration

Goal: Provide an approach to simple and easy to interpret
regression models generation
Proposed solution:
I Predict the computational graph adjacency matrix with

classifier
I Fix the predicted adjacency matrix to meet the arity

constraints (if necessary)
I Restore the superposition tree from the predicted adjacency

matrix

Method: The proposed approach to superposition tree
restoration based on Prize-Collecting Steiner Tree algorithm

2 / 16

Literature overview

I Fast PCST implementation
Hegde C., Indyk P., Schmidt L. A fast, adaptive variant of the
Goemans-Williamson scheme for the prize-collecting Steiner tree
problem, Workshop of the 11th DIMACS Implementation Challenge.
Providence, Rhode Island, 2014

I Approximate k-MST algorithm
Chudak F. A., Roughgarden T., Williamson D. P. Approximate k-MSTs
and k-Steiner trees via the primal-dual method and Lagrangean
relaxation, Mathematical Programming, 2004

I Generation of models easy to be interpreted
A.M.Bochkarev, I.L.Sofronov, V.V.Strijov, Generation of
expertly-interpreted models for prediction of core permeability, Systems
and Means of Informatics, 2017.

I Weight Agnostic Neural Networks as computational graphs
Adam Gaier and David Ha, Weight Agnostic Neural Networks, 2019

3 / 16

Problem

There given

I Set of basic functions g1, . . . , gl
I Family of generative superpositions
F = {f : f = sup(g1, . . . , gl)}, fi ∈ F ∀i

I Collection of datasets A = {A1, . . . ,AN}
homogeneous w.r.t. the family of
generative superpositions F

Superposition representation

Directed weighted graph G = (V ,E) with
colored vertices vi and special vertex r . Edge
ei ∈ E ei is assigned with a weight
w(ei) = ci ∈ [0, 1], vertex vi ∈ V is assigned
with color t(vi) = ti ∈ N. Graph is
represented with adjacency matrix.

f (x) = ln(x) + x +
sin(x · exp(x))

∗

+

ln
x

sin

x
·

x
exp

x

4 / 16

Computational graph and adjacency matrix
ar f (.) ∗ + ln sin · exp x
1 ∗ 0 1 0 0 0 0 0
3 + 0 0 1 1 0 0 1
1 ln 0 0 0 0 0 0 1
1 sin 0 0 0 0 1 0 0
2 · 0 0 0 0 0 1 1
1 exp 0 0 0 0 0 0 1

Adjacency matrix

ar f (.) ∗ + ln sin · exp x
1 ∗ 0.2 0.7 0.5 0.4 0.5 0.3 0.2
3 + 0.3 0.2 1. 0.8 0.6 0.3 0.7
1 ln 0.3 0.2 0 0. 0.1 0.5 0.5
1 sin 0.1 0.4 0 0.5 0.9 0.2 0.5
2 · 0.3 0. 0.3 0.5 0. 0.8 0.6
1 exp 0.3 0.3 0.4 0.1 0.5 0.4 0.4

Probability of adjacency matrix

f (x) = ln(x) + x +
sin(x · exp(x))

∗

+

ln
x

sin

x
·

x
exp

x

5 / 16

Problem statement

Find
The optimal superposition f ∗ for every fixed pair A = (X, y)
minimizes the loss function S :

f ∗ = argmin
f ∈F
S(f |X, y),

The squared loss is used hereinafter:

S(f |X, y) = ‖f (X)− y‖22.

Composition of basic functions satisfying constraints can be
treated as f .

Solution

I Predict the edges probabilities in the adjacency matrix.
I Restore the computational graph.

6 / 16

k-MST PCST problem statement

Rooted k-MST (k-Minimum spanning tree)

Given weighted graph G = (V ,E) with root r , and edge weights
w(ei) = wi > 0, ei ∈ E . Construct a minimum-weigh directed
tree with root vertex r covering at least k vertices.

Rooted PCST (Prize-Collecting Steiner Tree)

Given weighted graph G = (V ,E) with root r , and edge weights
w(ei) = ci > 0, ei ∈ E , every vertex vi ∈ V is assigned with a
prize π(vi) = πi > 0. Construct a tree T with root r which
minimizes the following functional:∑

e∈E
cexe +

∑
S⊆V \{r}

π(S)zS .

7 / 16

k-MST PCST problem statement

Linear Programming PCST (k −MST) problem

With relaxed constraints

minimize
xe ,zS

e∈E ,S⊆V \{r}

min
∑
e∈E
cexe + λ

 ∑
S⊆V \{r}

|S |zS−(n − k)


s.t.

∑
e∈δ(S)

xe +
∑
T :T⊇S

zT ≥ 1, ∀S ⊆ V \{r}, v ∈ S ,

xe ∈ [0, 1], ∀e ∈ E
zS ∈ [0, 1], S ⊆ V \{r}

In strict formulation xe ∈ {0, 1}, xe = 1 denotes that the edge is
included into the tree.
By analogy, zS ∈ {0, 1}, zS = 1 for set S = V \T

8 / 16

Computational experiment

Algorithms

The following algorithms are used for matrix restoration
I DFS
I BFS
I Prim’s algorithm
I k-MST via PCST (directed and undirected)
I k-MST+DFS (directed and undirected)
I k-MST+ BFS (directed and undirected)
I k−MST + Prim’s algorithm (directed and undirected)

9 / 16

Test data
Synthetic data with following properties is used:
I All the functions are taking only one input.
I The arities of the function are generated by Binomial

distribution (so there are many functions with small arity).
I 50 sets of arity values (with length from 5 to 20)
I 20 function for every set
I 5 copies of every function with noise from Uniform

distribution
I Linear calibration to interval [0, 1]

Quality measure

Quality is measured as correct restorations ratio.

Acc(R,N,M) =
1

|M|
∑
M∈M

[R(N(M)) = M] ,

where N is the noise function and R is the restoration algorithm.
10 / 16

Ratio of correct restorations, no orientation

0.0 0.2 0.4 0.6 0.8 1.0
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 re

st
or

at
io

ns
 ra

tio

DFS
BFS
Prim's
k-MST
k-MST-DFS
k-MST-BFS
k-MST-Prim's

Performance is averaged over 100 runs with random initialization.
Arity of functions vary from 5 to 20, noise varies from 0 to 1.
Algorithms based on k-MST use symmetrized adjacency matrix.

11 / 16

Ratio of correct restorations, oriented graph

0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 re

st
or

at
io

ns
 ra

tio

DFS
BFS
Prim's
k-MST
k-MST-DFS
k-MST-BFS
k-MST-Prim's

Noise .50 .52 .54 .56 .58

DFS .2 .2 .19 .18 .16
BFS .6 .58 .51 .46 .4

Prim’s algorithm 1.0 .94 .81 .69 .57

k-MST .17 .16 .14 .12 .1
k-MST-DFS .17 .16 .16 .14 .14
k-MST-BFS .43 .4 .36 .33 .29
k-MST-Prim’s .44 .39 .34 .33 .27

Illustration of algorithms behaviour near the 0.5 threshold of the
noise value with more details. Prim’s algorithm is the most
persistent.

12 / 16

Ratio of correct restorations, orientated case

0.0 0.2 0.4 0.6 0.8 1.0
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 re

st
or

at
io

ns
 ra

tio

DFS
BFS
Prim's
Ord-k-MST
Ord-k-MST-DFS
Ord-k-MST-BFS
Ord-k-MST-Prim's

Performance is averaged over 100 runs with random initialization.
Arity of functions vary from 5 to 20, noise varies from 0 to 1.
Algorithms based on k-MST use original adjacency matrix.

13 / 16

Ratio of correct restorations, orientated case

0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 re

st
or

at
io

ns
 ra

tio

DFS
BFS
Prim's
Ord-k-MST
Ord-k-MST-DFS
Ord-k-MST-BFS
Ord-k-MST-Prim's

Noise .50 .52 .54 .56 .58

DFS .2 .2 .19 .18 .16
BFS .6 .58 .51 .46 .4

Prim’s algorithm 1.0 .94 .81 .69 .57

Ord-k-MST .81 .68 .53 .4 .31
Ord-k-MST-DFS .2 .19 .19 .18 .16
Ord-k-MST-BFS .6 .58 .52 .47 .4
Ord-k-MST-Prim’s .92 .86 .76 .63 .52

Illustration of algorithms behaviour near the 0.5 threshold of the
noise value with more details. Prim’s algorithm is the most
persistent, the Ord-k-MST-Prim’s algorithm show much closer
results.

14 / 16

Comparing the algorithms performance

DF
S

BF
S

Pr
im

's

k-
M

ST

k-
M

ST
-D

FS

k-
M

ST
-B

FS

k-
M

ST
-P

rim
's

Or
d-

k-
M

ST

Or
d-

k-
M

ST
-D

FS

Or
d-

k-
M

ST
-B

FS

Or
d-

k-
M

ST
-P

rim
's0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

tim
e

Restoration time averaged over 250 000 runs normalized by Prim`s algorithm time

15 / 16

Conclusion

I The proposed algorithm delivers accurate results, but is more
prone to noise in the superposition matrix.

I The approach based on Prim’s algorithm delivers the most
accurate results and is the most resistant to small noise in
data.

I Approaches based on BFS and DFS are unable to restore the
original superposition if noise is present. PCST algorithm
with BFS used for superposition matrix restoration shows
mediocre results.

16 / 16

Backup

17 / 16

	Motivation
	Literature overview
	Computational experiment
	Conclusion
	

