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ABSTRACT

Performance degradation due to misconfiguration in software sys-
tems that violates SLOs (service-level objectives) is commonplace.
Diagnosing and explaining the root causes of such performance
violations in configurable software systems is often challenging due
to their increasing complexity. Although there are many tools and
techniques for diagnosing performance violations, they provide
limited evidence to attribute causes of observed performance viola-
tions to specific configurations. This is because the configuration is
not originally considered in those tools. This paper proposes Diag-
Config, specifically designed to conduct configuration diagnosis
of performance violations. It leverages static code analysis to track
configuration option propagation, identifies performance-sensitive
options, detects performance violations, and constructs cause-effect
chains that help stakeholders better understand the relationship
between configuration and performance violations. Experimental
evaluations with eight real-world software demonstrate that Diag-
Config produces fewer false positives than a state-of-the-art docu-
mentation analysis-based tool (i.e., 5 vs 41) in the identification of
performance-sensitive options, and outperforms a statistics-based
debugging tool in the diagnosis of performance violations caused
by configuration changes, offering more comprehensive results
(recall: 0.892 vs 0.289). Moreover, we also show that DiagConfig
can accelerate auto-tuning by compressing configuration space.

CCS CONCEPTS

• Software and its engineering → Software configuration

management and version control systems; Software perfor-

mance.
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1 INTRODUCTION

Modern software systems are highly configurable to meet users’
requirements in various scenarios. Take the popular open-source
database management system MySQL as an example. Its latest ver-
sion has reached around 1,000 configuration options. It is always
challenging to make the proper configurations for software de-
ployment. Studies have shown that misconfiguration is one of the
primary culprits responsible for production system failures and
performance problems [2, 36, 79, 84]. As system performance is
becoming more and more critical in enterprise business [24, 35, 39],
misconfiguration can lead to millions of dollars cost [66]. It is of
essence to quickly find out the improperly configured options when
SLOs (service-level objectives) violations occur.

However, diagnosing and pinpointing configuration-related per-
formance problems is time-consuming [9, 11, 28, 37, 55, 72, 88] due
to its huge search space. Search-based techniques are exploited to
change the value of configuration options by trial-and-error [32, 50,
54] to resolve performance violations and to find the optimal con-
figurations. But without explicit cause-effect relationships between
options and performance, search-based techniques could be easily
trapped in the massive configuration space generated by too many
options [13, 51, 68]. This motivates us to explore other techniques
to tame the cause-effect relationships for eliminating the effort of
trial-and-error and figuring out the crucial options.

The cause-effect relationships between configuration options
and performance help understand which, where, how, and why con-
figured options influence system performance behind the screen.
But such studies are still in the early stage and rely greatly on ex-
perts and domain knowledge. One human-centric approach [72] to
diagnose performance problems is to collect software hotspots with
CPU profiling, identify related options and locate option hotspots
with performance-influence models. Then they manually investi-
gate how related configuration options affect the performance. This
approach is non-trivial and cannot guarantee to find the correct
root cause for the following reasons: (1) the relationship between
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Figure 1: The weakness of traditional profiling techniques

for configuration-related performance violations diagnosis.

hotspots detected by profilers and configuration options is complex
and uncertain; (2) not all options need to be tuned when a perfor-
mance violation occurs; (3) some options are continuous values,
making it difficult for performance modeling; and (4) options evolve
with software updates. Thus, we seek to diagnose and restore the
evidence for performance violations via automatic cause inference.

When performance violations occur, there are substantial moni-
toring and profiling techniques whose goal is to locate performance
hotspots [20, 38, 52, 60, 69]. However, hotspots only imply per-
formance bottlenecks but not always performance violations. For
example, some code logic is destined to occupy more execution time
than others, and thus are highlighted as hotspots by the profilers.
On the other side, which options to tune remains an open problem
in performance analysis with traditional monitors and profilers,
given that those profiling and monitoring tools consider only one
instance of all configuration options at a time to evaluate their per-
formance effects. As illustrated in Figure 1, in a configurable system
with six options, method m1 contains complex computational logic
and is highlighted as a hotspot by profilers when a performance
violation occurs. However, traditional profilers cannot dive into the
option level and it totally depends on stakeholders (users, devel-
opers, and site reliability engineers) to navigate the source code
and then to find the options A, D, F are relevant to m1. But in fact,
option B is the critical option causing the performance violation.

Performance-influence models [61] help understand the influ-
ence of options on system performance [26, 27, 33, 34, 37, 42, 70–
72, 75]. The accuracy of performance models heavily depends on
the selected model [42] and the subset of the configuration space
generated by various sampling strategies [40, 47]. To make it trick-
ier for sampling-based performance modeling, software systems
are sensitive to configuration changes, meaning that systems with
similar configurations would have dramatic performance differ-
ences [13, 51]. Previous attempts at buildingwhite-box performance
models of configurable systems [70–72, 75] are deficient for general-
purpose dynamic workloads and environments. Besides, as the soft-
ware evolves and the number of options increases, it is becoming
more expensive to keep the performance models up to date.

Given the discussion above, our goal is to devise a general low-
cost, high-precision technique for configurable software systems
that can not only interpret cause-effect relationships between op-
tions and performance violations but also infer which configured
options are responsible for those violations. To achieve our goal,
we propose DiagConfig, a white-box diagnosis tool to (1) identify
performance-sensitive options, (2) tame cause-effect relationships
between the options and performance violations, (3) figure out the
options that are responsible for performance violations. DiagCon-
fig leverages both static code information from taint tracking and

runtime profiling information to build cause-effect chains which
can help stakeholders explain performance issues. We evaluated
DiagConfig with eight real-world open-source projects and the
results show that DiagConfig produced fewer false positives than
SafeTune [29] (i.e., 5 vs 41), a documentation-analysis based tool,
in the identification of performance-sensitive options. Moreover,
DiagConfig is fast and supports a more comprehensive diagnosis
of performance violations compared to Unicorn [32] (recall: 0.892
vs 0.289), a statistics-based debugging tool. We also integrated Di-
agConfig into an auto-tuner and demonstrated its feasibility of
underpinning prior works on configuration performance tuning.

Our key contributions are as follows.
• A summary of information needed for configuration diag-
nosis of performance violations, including identification of
performance-sensitive options, localization of performance
violations, and root causes inference.
• Awhite-box approach and prototype,DiagConfig, for build-
ing cause-effect chains between configuration options and
profiled hotspots to diagnose performance violations.
• A dataset of performance-sensitive options on eight real-
world configurable software systems in diverse domains,
which can be used to evaluate DiagConfig and its compara-
ble alternatives.

2 BACKGROUND AND RESEARCH

QUESTIONS

In this section, we first introduce basic concepts of profiling and
taint tracking, which are exploited in the white-box analysis of
configurable software systems. After that, we introduce important
information needed to diagnose performance violations, according
to which we define and describe our research questions.

2.1 Background

Profiling. Profiling aims to reveal the runtime behavior of program
execution with regard to resource consumption [19]. Profiling in-
vestigates howmuch of a resource each program element consumes
and reports performance-critical program elements as hotspots. A
program element refers to a statement or method (function) in a
program. It is a basic sampling unit in profiling. There are many
approaches to detect performance problems caused by resource
consumption, such as CPU-time profiling [25] and unnecessarily
high memory consumption profiling [77, 78, 81]. These approaches
track how hotspots are invoked; in particular, stakeholders follow
the traces (e.g., call-chains) to diagnose unexpected performance
behavior. However, limited evidence in the profiling clarifies the
relationships between options and hotspots. Stakeholders have to
navigate the source code to find hotspot-related options, which is
not efficient and could go beyond the scope of human reasoning
due to the complexity in the dependencies of program elements.

Taint tracking. Taint tracking is typically used in information
security detection to track the information-flow from user inputs
(sources) to specific security-sensitive locations (sinks). From the
perspective of performance analysis in configurable systems, the
configuration is equal to user inputs. Well-designed systems have
standard APIs for loading configuration option values to program
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variables [18, 45, 57, 58, 79, 80]. These variables are then propa-
gated along the program’s data-flow paths via assignments, string
operations, and arithmetic operations until they are consumed in
program elements that change runtime behavior. Taint tracking
with configuration as a source helps understand different attributes
of configurable software systems, including performance attributes.

2.2 Research Questions

The performance of a configurable software system can be defined
as 𝑃𝑖 = 𝑝 (𝑐𝑖 ,𝑤𝑖 , 𝑣𝑖 ), where 𝑐 = [𝑜1, 𝑜2, ..., 𝑜𝑛] is a valid configura-
tion, 𝑜 is an option,𝑤 is a specific workload, 𝑣 is a specific produc-
tion environment, and 𝑖 is used to distinguish between cases. In this
paper, our ultimate goal is to find the set of options 𝑐∗ responsible
for the performance violation |𝑃𝑖 −𝑃𝑆𝐿𝑂 | ≥ 𝛿 to help configuration
performance tuning and cause-effects explanation, where 𝑃𝑆𝐿𝑂
denotes the predefined SLO and 𝛿 is a significant factor.

Specifically, a configuration diagnosis needs sufficient informa-
tion to answer the following research questions.

RQ1: Which options are performance-sensitive?

Not all options are performance-sensitive. Stakeholders usu-
ally identify and interpret performance-sensitive options based
on documentation rather than source code [72]. However, any op-
tion that affects performance during runtime must have a data- or
control-flow dependency with performance-related operations [44].
Performance-related operations refer to code snippets in a pro-
gram contributing positively to execution time (time-expensive) and
memory consumption (memory-expensive). In this paper, we follow
the prior work [44], and consider four types of performance-related
operations: one type of memory-expensive operations and three
types of time-expensive operations. Thememory-expensive

operations are heap or static array allocation operations. And the
three types of time-expensive operations are (1) I/O operations;
(2) lock-synchronization and threads start/pause operations; and (3)
operations that affect system concurrency (e.g., creation of threads
or thread pools). These operations are computationally expensive,
and potentially need paging or swapping with low-speed devices
or context-switching. And the data- and control-flow dependen-

cies between an option and a performance-related operation can
be grouped into three categories.

(1) A direct data dependency where program variables derived
from the option’s value are used in the operation and affect
every dynamic execution of the operation.

(2) An if/switch-related control dependency where program
variables derived from the option’s value determine whether
the operation is executed by influencing control-flow deci-
sions of the if/switch statement.

(3) A loop-related control dependency where program variables
derived from the option’s value determine the number or
frequency of the operation executions.

To answer this question, we first treat configuration as the source
and mine the information-flow paths that record the dependencies
between performance-related operations and options via taint track-
ing. Since not all performance-related operations have a significant
performance impact, we characterize the dependency information
and then utilize the random forest [8] to identify performance-
sensitive options. The details of this process are presented in § 3.1
and the evaluation of its effectiveness is discussed in § 5.2.

RQ2: Which hotspot functions are performance-violating?

End-to-end performance metrics can tell when performance vi-
olations occur but could not help explain the reason. In contrast,
profilers report hotspot functions within the program concerning
execution time, memory consumption, invocations, etc. To answer
this question, we do a profiling comparison between poor execu-
tions and normal/baseline execution. The former has significantly
deteriorated performance while the latter is a high-performance
execution that meets SLO, usually given by domain experts. By com-
paring hotspot functions in poor execution to those in the normal
baseline execution, profiling can help locate performance-violating
hotspot functions under poor execution.

RQ3: How do performance-sensitive options lead to per-

formance violations?

RQ1 discovers performance-sensitive options and RQ2 identi-
fies hotspot functions causing performance violations. RQ3 tries to
build connections between those two in order to explain the cause-
effect relationship between options and performance violations.
To answer this question, we use performance-related operations
as the intermediary. Once the options are used in statements that
influence the hotspot functions (e.g., branch/loop conditions, in-
vocations), both performance-sensitive options and performance-
violating hotspot functions become traceable. We build cause-effect
chains by correlating information-flow paths (between options and
operations) in § 3.3 and call-chains (between operations and hotspot
functions), and evaluate the effectiveness of this approach in § 5.3.

3 METHODOLOGY

In this section, we first briefly introduce our prototype tool Diag-
Config and then describe the workflow steps in each subsection.

DiagConfig is a white-box configuration diagnosis system and
is general enough to adapt to software systems under different
configurations, workloads, and environments. Figure 2 shows the
overview of DiagConfig. It consists of two parts: 1) offline anal-

ysis, and 2) online diagnosis. Offline analysis (§ 3.1) identifies
performance-sensitive options by revealing the dependencies be-
tween configuration options and performance-related operations.
This procedure requires two inputs: 1) the target system’s source
code, and 2) a list of specific prerequisites. The prerequisites contain
statements that load configuration option values (as sources) and
performance-related operations (as sinks) in the source code. It
builds information-flow paths from option values to performance-
related operations via taint tracking, extracts options’ static per-
formance properties, and then classifies performance-sensitive op-
tions and information-flow paths. Online diagnosis (§ 3.2 and
§ 3.3) continuously monitors system runtime behavior, locates
performance-violating hotspot functions, and collects call-chains
for the performance-violating hotspot functions from the profil-
ing. It builds cause-effect chains with information-flow paths and
call-chains, which further reveals the data- or control-flow de-
pendency between individual options and performance-violating
hotspot functions. When a new performance violation occurs, Di-
agConfig can apply these cause-effect chains to guide diagnosis
and to recommend crucial configuration options for performance
tuning. It can work as a daemon process that continuously analyzes
performance-violating configuration options for auto-tuning.
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Figure 2: Overview of DiagConfig

3.1 Identification of Performance-sensitive

Options

The identification of performance-sensitive options is the goal
of the offline analysis. For each option, DiagConfig first com-
putes the information-flow paths that record the data- and control-
flow dependencies between variables derived from the option and
performance-related operations via taint tracking. Subsequently,
DiagConfig characterizes these paths as performance property
(i.e., feature vector), which is utilized as input for a random forest
model to determine whether the option is performance-sensitive or
not. The training process of the random forest is presented in § 5.2.

Taint tracking. Taint tracking tracks the propagation of vari-
ables in source code with a "coloring" technique. It first tags each
program variable that stores an option value and then analyzes
the dependencies between the colored variables and performance-
related operations. The initial taints are program variables obtained
from standard configuration loading statements, which are called
sources. Taints are then propagated and transformed along the pro-
gram’s data-flow paths, until they are consumed in sink statements.
Besides pre-defined performance-related operations (i.e., sinks),
DiagConfig marks if/switch statements with branches containing
performance-related operations and loop startup/jump-out state-
ments with the body containing performance-related operations
as expanded sinks (see§ 4). Once the taints reach sinks, Diag-
Config builds the information-flow paths for the corresponding
options that record performance-related operations, taints propa-
gation paths, and location (e.g., source code file name, source code
line number) of code snippets where the dependencies between
options and performance-related operations occur.

Example. As shown in Figure 3.(a), DiagConfig captures the if-
related control and loop-related control dependencies between the
option jobs and thread-related operations (i.e., call(), invokeAll()) via
taint tracking. Then,DiagConfig builds information-flow paths for
the option jobs that records the thread-related operations and the
location where the dependencies occur, including method signature,
if statement, loop startup statement, and source code line number.

Note that not all performance-related operations significantly af-
fect system runtime performance. To identify performance-sensitive

CompressedOutputStream.
processBlock()

public CompressedOutputStream
(…, Map<String, Object> ctx){…
int tasks =(Integer) 

ctx.getOrDefault("jobs", 1);
…
this.jobs = tasks;
…}

private void processBlock()
throws IOException{…
List<Callable<Status>> tasks =

new ArrayList<>(this.jobs);…
if (tasks.size() == 1){…
Status status =

tasks.get(0).call();
…}else{
for (Future<Status> result :

this.pool.invokeAll(tasks)){
Status status = result.get();
…}
}

…}
: Taint flow

DivSufSort.
ssMultiKeyIntroSort(IIII)V

DivSufSort.
ssSort(IIIIIIIZ)V

DivSufSort.
sortTypeBstar([I[II)I

DivSufSort.
computeBWT([B[B[IIII[II)I

CompressedOutputStream$EncodingTask.
encodeBlock(SliceByteArray;SliceByteArray;IJII)

+54 %

+Inf %

-98 %

+19 %

: Direct call

: The call ignores some callee

(a) Information-flow path (b) Call-chain

Figure 3: Example of building a cause-effect chain using an

information-flow path (a) and a call-chain of the performance-

violating hotspot ssMultiKeyIntroSort to diagnose where, how, and
why the option jobs causing a performance violation in Kanzi [46].

DiagConfig backtracks the call-chain (b) and analyzes each callsite.

In the method processBlock, it identifies the program dependencies

between the option jobs and thread-related operations that invoke

encodeBlock (the callee of the processBlock). Then, it connects the
information-flow path and the call-chain to a cause-effect chain.

options, we still need to characterize the information-flow paths of
the configuration options as performance properties and build a
random forest classification model with the labeled configuration
options’ performance properties.

Characterization. Given information-flow paths for one con-
figuration option, we count the number of performance-related
operations and characterize the performance property of the option
by constructing the counter vector 𝑉 . The original performance
property is a high-dimensional (e.g., at least 176 classes and their
2221 methods under the java.nio package belonging to I/O opera-
tions for Java applications) and sparse vector where each count is
relatively small. It influences the splitting decision for the random
forest and makes the random forest struggle to generalize well.
Inspired by the best practices of feature abstraction for sparse high-
dimensional feature spaces in text classification [7, 10, 64], we study
the information-flow paths of configuration options and conclude
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Code Snippets:

class ColumnFamilyStore implements…{…
ThreadPoolExecutor flushExecutor = new
JMXEnabledThreadPoolExecutor(
DatabaseDescriptor.getFlushWriters(),
…);

…}
// JMXEnabledThreadPoolExecutor
//     extends ThreadPoolExecutor
ThreadPoolExecutor(corePoolSize, 
maximumPoolSize, keepAliveTime, unit, 
workQueue, threadFactory, defaultHandler);

“memtable_flush_writers”

Cassandra-4.0.5 Code Snippets:

int write(…, WriteBuffer buff,…) {…
int compressionLevel =

store.getCompressionLevel();…
if (compressionLevel == 1) {
compressor = store.getCompressorFast();
compressType = DataUtils.PAGE_COMPRESSED;

} else {…}…
int compLen = compressor.compress(…);
if (compLen + plus < expLen) {
buff.put(…); …} 

…}

“COMPRESS”

H2 Database-2.1.210 Code Snippets:

void processBlock() throws … {…
List<Callable<Status>> tasks =

new ArrayList<>(this.jobs);…
for (Future<Status> result :

this.pool.invokeAll(tasks)) {
//  Wait for completion 
//   of next task and validate result
Status status = result.get();
}
…

}

Kanzi-2.0.0

“jobs”

(a) direct data dependency (b) if/switch-related control dependency (c) loop-related control dependency
Figure 4: Real-world examples of three target systems (see table 1 for more details) to illustrate the dependencies between performance-

related operations and options. The arrows show the data-flow of option propagation. Configuration options are quoted in the figure, and the

performance-related operations are shaded.

four heuristic strategies for dimensionality reduction and trans-
formation. We cluster the counts based on performance-related
operations and dependency categories that we mentioned in § 2.2.
(1) We first introduce 𝐶1

4 = 4 aggregated features by clustering
counts based on performance-related operation categories. As
an illustration, we cluster all performance-related operations
that pertain to the java.io or java.nio packages for Java applica-
tions in our implementation.

(2) We next introduce 𝐶2
4 = 6 aggregated features by clustering

counts according to the pair-wise combination of performance-
related operations categories. This strategy is motivated by our
observation that one information-flow path of options influ-
ences two categories of performance-related operations at the
same time. Figure 4.(c) shows a real-world example that the
option jobs in Kanzi determines the concurrency and synchro-
nization of tasks (the operation invokeAll() creates threads for
tasks execution and holds for them to complete).

(3) We then introduce one aggregated feature by accumulating the
counts of four performance-related operations categories.

(4) We finally introduce 𝐶1
4 · 𝐶

1
3 = 12 aggregated features by cat-

egorizing the dependencies between performance-related op-
erations and options. Figure 4 shows three real-world exam-
ples of the dependencies. Figure 4.(a) shows that the option
memtable_flush_writers directly determines the core pool size
of a thread pool; Figure 4.(b) gives an example that the option
COMPRESS decides whether WriteBuffer.put() is executed by
an if statement; and Figure 4.(c) shows that the option jobs

determines the task synchronization via loop control. These
aggregated features would prompt the random forest to learn
fine-grained information about dependencies between options
and performance-related operations.

These heuristics are set to mitigate the risk of overfitting caused
by the sparse high-dimensional feature space for random forest
classification model building.

Random Forest. Random forest is an appropriate algorithm for
our binary classification task. It combines multiple tree predictors
and distinguishes classes by aggregating their predictions. It is also
more robust than a single tree predictor and more interpretable
than deep learning models because of explicit decision inference
paths in a tree. Besides, training a random forest model only needs
a small sample data which is readily satisfied in our scenario. Given
these, to identify performance-sensitive options, we train a random

forest model which approximates the following function.

𝑔(performance property) → performance-sensitive or not

The training data are performance properties of the configuration
options with class labels (§ 5.2), namely performance-sensitive (i.e.,
1) or not (i.e., 0). Then, DiagConfig characterizes the information-
flow paths of a new option as the performance property and feeds
it to the trained model. The random forest determines whether the
option is performance-sensitive or not. All performance-sensitive

options and their corresponding information-flow paths are persisted

in a file for cause-effect chains building in the online diagnosis.

3.2 Performance Violation Localization

Performance violation localization is the first step of the online di-
agnosis. The goal of this step is to detect the performance-violating
hotspot functions based on performance measurements for the se-
lected metrics. DiagConfig first leverages an off-the-shelf profiler,
Jprofiler [20], to continuously monitor the end-to-end perfor-
mance of a system in sampled-based [3, 59] mode (see § 5.4). When
an SLO violation is detected in the end-to-end performance mea-
surement, it collects hotspot functions from the profiler. By com-
paring the execution time of hotspot functions in the performance
violated situation and the normal baseline execution, DiagCon-
fig calculates the performance variation of each hotspot function.
Most off-the-shelf profilers are capable to measure the execution
time of each hotspot function excluding the callee’s performance
influence. Thus, DiagConfig determines that a hotspot function
with a significant performance variation is performance-violating.
Here we choose the significant variation factor to be 5% (see § 5.1).

Besides the measurement of performance variations, we also
extract call-chains for each hotspot function from the profiler. The
call-chains of a hotspot function can provide trace information
about how the hotspot function is triggered and impacts the system
performance. Since a system has many hotspot functions and a
hotspot function can be associated with multiple call-chains, we
use some rules to filter and sort the hotspot functions and their
call-chains. We pre-set a significant variation factor (5%), and those
hotspot functions whose performance variations under the fac-
tor will be discarded. Then, we sort the hotspot functions and
call-chains according to performance variation and performance
contribution to the system performance.

Example. A call-chain is shown in Figure 3.(b), each box is a
hotspot function and the corresponding performance variation is
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marked in the upper right corner. Hotspot functions with significant
performance deterioration are culprits of performance violation.

3.3 Cause-effect Chain Building

Despite information-flowpaths showing howperformance-sensitive
options affect performance-related operations, not all performance-
related operations lead to performance violations at runtime. Be-
sides, quantifying the importance of options for system perfor-
mance violations is still an open question, which cannot be an-
swered by static code analysis alone. Moreover, some function calls
are dynamic binding (e.g., thread invocation, reflection, callbacks)
that static analysis tends to miss. Therefore, our approach leverages
the call-chains of performance-violating hotspot functions from
the profiler to complement the runtime information of a system
that is missing from static code analysis. DiagConfig backtracks
the call-chains of hotspot functions and analyzes the callsite at
the statement/block-level to determine whether there are program-
dependencies between the performance-violating hotspot func-
tions and performance-related operations. When a hotspot func-
tion in the call-chains involves performance-related operations or is
called by the operations, DiagConfig correlates the corresponding
information-flow paths and the call-chains to construct trackable
cause-effect chains (i.e., conditional pairs consisting of information-
flow paths and call-chains). Associating performance variations of
hotspot functions with options corresponding to information-flow
paths allows for quantifying and ranking options’ importance.

Algorithm 1 describes how we build cause-effect chains based
on information-flow paths and call-chains. The information-flow
path records the configuration option (source) and the location of
performance-related operation (sink). For each call-chain of the se-
lected hotspot function (line 4), we backtrack it from callee to caller
and check whether the caller is contained by the information-flow
paths (line 5). If all callers in the call-chain of a hotspot function are
not contained by the information-flow paths, this means that the
hotspot function is not influenced by the options. Since the branch
or loop body is involved in if/switch- or loop-related dependency,
we get the code snippet where dependency between the option and
the performance-related operation occurs (line 10). Then, we build
a cause-effect chain by connecting the call-chain and information-
flow path if the caller directly invokes the performance-related
operation or the callee is invoked by the performance-related oper-
ation based on the call graph (line 11).

Example. Figure 3 shows that DiagConfig builds a cause-effect
chain between the option jobs and the hotspot function ssMultiKey-

IntroSort. It backtracks the call-chain and finds that the option jobs

influences the frequency of the hotspot function ssMultiKeyIntroSort

by thread-related operation and if/loop-related control dependency
in the method processBlock. Then it builds a cause-effect chain by
connecting the call-chain and the information-flow path.

4 IMPLEMENTATION

Our prototype tool DiagConfig is built on the top of the Soot
compiler infrastructure [67], FlowDroid [4], Scikit-learn [56], and
Jprofiler [20] and specially targets configurable Java applications.

To ensure its scalability, we focus on the standard library APIs
and bytecode instructions that contribute positively to execution

Algorithm 1: Cause-effect Chains Building
Input: Perf.-Sensitive Info.-flow paths P, Selected hotspots with call-chains H
Output: Cause-effect chains C

1 C = 𝑒𝑚𝑝𝑡𝑦𝑆𝑒𝑡 ( )
2 for h ∈ H do

/* Get the call-chains for each hotspot */

3 𝑐𝑎𝑙𝑙𝐶ℎ𝑎𝑖𝑛𝑠 ← 𝑝𝑎𝑟𝑠𝑒 (h)
4 for 𝑐𝑎𝑙𝑙𝐶ℎ𝑎𝑖𝑛 ∈ 𝑐𝑎𝑙𝑙𝐶ℎ𝑎𝑖𝑛𝑠 do

/* Backtrack the call-chain from callee to caller.
Caller doesn’t appear in P, indicating that no
option-related performance operations involved */

5 for 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ 𝑐𝑎𝑙𝑙𝐶ℎ𝑎𝑖𝑛 ∩ P do
6 𝑃𝑎𝑡ℎ𝑠 ← P.𝑔𝑒𝑡 (𝑐𝑎𝑙𝑙𝑒𝑟 )
7 𝑐𝑔← 𝑆𝑐𝑒𝑛𝑒.𝑣 ( ) .𝑔𝑒𝑡𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ ( )
8 𝑐𝑎𝑙𝑙𝑒𝑒 ← 𝑃𝑟𝑒𝑣 (𝑐𝑎𝑙𝑙𝑒𝑟 )
9 for 𝑝𝑎𝑡ℎ ∈ 𝑃𝑎𝑡ℎ𝑠 do
10 𝑏𝑙𝑜𝑐𝑘 ← 𝑔𝑒𝑡𝑃𝑒𝑟 𝑓 𝑂𝑝𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘 (𝑝𝑎𝑡ℎ)

/* Check whether caller invokes perf.
operations or callee is invoked by perf.
operations */

11 if 𝑖𝑠𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒𝑑 (𝑐𝑔, 𝑐𝑎𝑙𝑙𝑒𝑟, 𝑐𝑎𝑙𝑙𝑒𝑒,𝑏𝑙𝑜𝑐𝑘 ) then
12 C.𝑎𝑑𝑑 (𝑙𝑖𝑛𝑘 (𝑐𝑎𝑙𝑙𝐶ℎ𝑎𝑖𝑛, 𝑝𝑎𝑡ℎ) )
13 end

14 end

15 end

16 end

17 end

18 return C

time and memory consumption. These are the basic application-
independent performance-related operations in the Java ecosystem.
DiagConfig treats these performance-related operations as sinks
through method signatures and type analysis based on Jimple, the
intermediate-representation provided by the Soot. For example, the
array allocation-related operations are represented by JNewArray-

Expr and JNewMultiArrayExpr, and the I/O-related time-expensive
operations are usually prefixed with java.io or java.nio for their
standard library API signatures.

In the offline analysis, we utilize the popular static taint analy-
sis framework, FlowDroid [4], to support configuration options
taint tracking. By treating configuration loading statements as
sources and performance-related operations as sinks, it reveals
the direct data dependency between the configuration options and
the performance-related operations. But the if/switch-related and
loop-related control dependencies are missed out. Therefore, we
slightly modified the sink manager component of FlowDroid with
program-dependence graphs [23] for our purposes to mark if/switch
statements with branches containing performance-related opera-
tions and loop startup/jump-out statements with body contain-
ing performance-related operations as expanded sinks. Then, if
the conditions of if/switch statements or loop startup/jump-out
statements have a direct data dependency with an option, there
is if/switch-related or loop-related dependency between the op-
tion and the operations inside the branches or loop body. We also
customized FlowDroid’s source manager component to support
those systems without standard configuration loading operations.
Additionally, we set the depth of alias analysis at five for FlowDorid
to balance the taint tracking precision and computational overhead.
This is the default value provided by FlowDroid, and the larger
the depth the higher the taint tracking overhead required. Next,
we build the random forest with Scikit-learn for identification of
performance-sensitive options. In the online diagnosis, we use a
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Table 1: Overview of target systems

System Domain #Opt. #KLOC V/ID Overhead

BATIK* SVG rasterizer 31 360 1.14 6h
Cassandra+ Database 172 697 4.0.5 10h
Catena* Password hashing 12 6.6 9c89da4 ≤1h

DConverter* Image Density Converter 24 491 bdf1535 ≤1h
H2* Database 28 340 2.1.210 3h

Kanzi* Data compressor 40 28.8 2.0.0 ≤1h
Prevayler+ Database 12 14.4 2.6 3h
Sunflow* Rendering engine 6 27.4 0.07.2 ≤1h

1 : Includes source code for several libraries invoked by image processing;
* :The system targets at low execution time (latency);
+ :The system targets at high throughput;
Opt: The number of options; V/ID: Version/Commit ID; Overhead: Time required for static
configuration options taint tracking;

profiler well-known in the industry for its low overhead, Jprofiler,
to monitor the execution time of each method in the system.

We consider a performance violation occurs when the system
suffers a performance degradation over 5% compared to the base-
line under its benchmark. Then we compute performance variation
for each hotspot method by hotspot comparison built within the
profiler and collect call-chains of the hotspot methods with perfor-
mance variation over 5% for root cause inference. The 5% is our
empirical unacceptable value, based on the measurement variation
(see § 5.1) which is up to 4% known from the prior work [75]. We
implement an inter-procedural callsite analysis using the call graph
provided by the Soot to build cause-effect chains.

5 EVALUATION

In this section, we evaluate the effectiveness of our summarized
information above (§ 2.2) to help stakeholders diagnose the per-
formance violations of configurable software systems. Moreover,
we further answer the following research questions to evaluate the
effectiveness of our approach.

RQ4: The performance of DiagConfig. Can DiagConfig
work well for performance violation diagnosis of configurable sys-
tems? Can DiagConfig speed up the existing auto-tuning process?

5.1 Experiment Setup

Hardware.We used two environments, one with 128GB of RAM,
24 cores, and 48 threads of Intel Xeon Silver 4116 processor running
Ubuntu 18.04, which was only used for static taint analysis, and
the other with 48GB of RAM, 4 cores, and 8 threads of Intel Core
i7-7700 processor running Ubuntu 20.04 desktop version.

Target Systems. We selected eight configurable, real-world,
open-source Java systems from various domains shown in Table 1.
All of them satisfied the following criteria: (1) systems with binary,
enumerated, and continuous configuration options; (2) systems
used for evaluation by previous research on performance modeling.
We reused the workloads and benchmarks evaluated in the existing
literature [75] for each target system.

Measurement and Configuration Variation. To confirm the
measurement stability in our environment, we chose one configura-
tion with normal execution (i.e., normal configuration) for each of
the four target systems according to their artifacts (e.g., documenta-
tion, release notes, benchmark results), and repeated 50 times in the
benchmarks. Figure 5.(a) shows that execution time variations of
Batik, H2 database, Kanzi, and throughput variation of Cassandra
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Figure 5: Performance variation of normal configuration and

problematic configurations in 50 repetitions.

in 50 repetitions with normal configuration are all below 5%. The
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = | 𝑝𝑖−𝑚𝑒𝑎𝑛

𝑚𝑒𝑎𝑛 | where 𝑖 ∈ [1, 50], 𝑝𝑖 is the
performance of the i-th execution and𝑚𝑒𝑎𝑛 is the average perfor-
mance of 50 repetitions. Each point in Figure 5.(a) represents the
performance variation of a single repetition compared to the aver-
age performance. Moreover, to capture the variation in a system’s
performance due to loading problematic configuration, we first
randomly generated 100 configurations derived from the normal
configuration for each system, repeated measurement 50 times, and
filtered out the configurations with average performance variation
below 5% compared to the normal configuration. This leaves us
with 49, 31, 32, and 38 configurations for Batik, Cassandra, H2, and
Kanzi, respectively. Then we randomly selected 30 problematic con-
figurations (i.e., average performance variation over 5%) from these
filtered configurations to understand the sensitivity of performance
violations. Figure 5.(b) shows that the performance degradation
(i.e., configuration variation) caused by problematic configurations
with 50 repetitions varies from 11.2% in Batik to 196% in Kanzi. The
𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = | 𝑐 𝑗−𝑛𝑜𝑟𝑚𝑎𝑙

𝑛𝑜𝑟𝑚𝑎𝑙
| where 𝑗 ∈ [1, 30], 𝑐 𝑗 is the

average performance for the j-th problematic configuration and
𝑛𝑜𝑟𝑚𝑎𝑙 is the average performance for the normal configuration.
Each point in Figure 5.(b) represents an average performance varia-
tion of 50 repetitions for one problematic configuration. The dashed
vertical line denotes theminimal configuration variation (i.e., 11.2%).
From Figure 5, we can conclude that in our environment, the per-
formance variation under repeated executions is below 5% and the
configuration variation is above 11.2%. Therefore, we regarded the
measurement result of 5 repetitions as approximate to the result of
50 repetitions and use 5% as the threshold of performance violation
conservatively. Note that measurement and configuration variation
is the rationale for our derived performance violation threshold.

5.2 RQ1: Accuracy of DiagConfig in

identifying performance-sensitive options

In this section, we describe how we labeled data for random forest
classification modeling, and the details about the identification of
performance-sensitive options, followed by the result analysis. Note
that we also conduct data labeling for Cassandra and use the labeled
data as the ground truth for the evaluation of identification results.

Data Labeling. To label performance-sensitive options accu-
rately, we conducted experiments to study the performance influ-
ence of each option. For each option in each system, we changed
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Figure 6: Results of performance-sensitive options identification.

its value, re-deployed the system, followed common practices [32,
33, 75] to measure five repetitions, and calculated the average per-
formance variation before and after the value change. Then, the
options with any observed variation larger than 5% were labeled
as performance-sensitive. Specifically, for options of binary and
enumerated types, we explored all possible values, and for continu-
ous options, we obtained a set of their values by Plackett-Burman
sampling [73]. For some continuous options that were not identified
as performance-sensitive in the sampling space, we further tried
our best to analyze their influence in small incremental steps (e.g.,
we used 2mb as a step from 1mb to 4096mb to analyze the influence
of the option file_cache_size_in_mb of Cassandra).

Random forest modeling. To build a well-generalized random
forest classificationmodel, we simulated a scenario where themodel
is trained on existing systems and tested on unseen systems. Given
this, we used Batik, Catena, H2, Prevayler, and Sunflow (i.e., 89
options) as the training set and Dconverter, Kanzi (i.e., 64 options) as
the test set. Our classification model constructed from the training
set figured out 93.3% (14/15) of performance-sensitive options on
the test set, so our model is valid and used for further evaluation.

Comparison.The remaining target system, Cassandra, was used
to further evaluate the effectiveness of our classification model.
We chose Cassandra since it was evaluated in another state-of-
the-art tool SafeTune [29], which identifies performance-related
parameters by building learning-based models and analyzing on
system configuration-related documentation. SafeTune made its
dataset publicly available, so we used it to compare with our results.

Result and Analysis. We collected the set of performance-
sensitive options by running Cassandra in NoSQLBench [22], tlp-
stress [21], cassandra-stress [53] and the YCSB [17] benchmark. We
fed 172 options to taint tracking, 67 of which influence pre-defined
performance-related operations. And we identified 37 performance-
sensitive options based on the random forest model. In comparison,
SafeTune identified 64 performance-related parameters.

The results are shown in Figure 6. The circled area labeled ‘Perf.-
Sensitive’ provides the ground truth for the comparison analysis.
Among the 37 reported performance-sensitive options byDiagCon-
fig, 32 are true positives (i.e., region 101 + region 111) and 5 are false
positives (i.e., region 100 + region 110), having a precision of 86.4%
and a recall of 65.3%. SafeTune reported 64 performance-sensitive
options. Among them, 23 are true positives (i.e., region 011 + region
111) and 41 are false positives (i.e., region 010 + region 110), having
a precision of 35.9% and a recall of 46.9%.

Both approaches produce false negatives. DiagConfig missed
17 performance-sensitive options (i.e., region 001 + region 011) and

SafeTune missed 26 (i.e., region 001 + region 101). We studied
the 17 performance-sensitive options that we misclassified and
summarized some of the sources that resulted in the misclassifica-
tion as follows: (1) the considered performance-related operations
are not complete; e.g., the option ideal_consistency_level depen-
dent on consistency maintenance-related operations that are not
included in the Java standard library; (2) performance property
is a simple count, which does not fully reflect runtime perfor-
mance behavior; e.g., the performance property of the option peri-

odic_commitlog_sync_lag_block_in_ms indicates that it is thread-
related, but the small count causes it to be misclassified.

DiagConfig and Safetune are complementary to each other
since each has identified new options missing in the other. Diag-
Config identified 20 performance-sensitive options (i.e., region 101)
missed by SafeTune, and SafeTune identified 11 performance-
sensitive options (i.e., region 011) that were missed in DiagConfig.
Summary for 𝑅𝑄1: For performance-sensitive option identifica-

tion, our static code analysis-based approach introduces fewer false

positives (i.e., 5 vs 41) than the documentation-based approach. This

is because the data- and control-flow dependencies between options

and performance-related operations in source code can better reflect

the runtime behavior of the system than documentation.

5.3 RQ2 and RQ3: Effectiveness of cause-effect
chains identified by DiagConfig

In this section, we focus on the diagnosis of performance violations
caused by configuration changes and evaluate our code analysis-
based approach by comparing it with a statistic-based approach.

Diagnosis of Configuration Changes. First, we selected a
baseline or default configuration based on the relevant document
and treated the application performance under this configuration
as the SLO for each system. Then, we mutated the configuration to
produce scenarios of performance violations for further diagnosis.
Similar to the sampling strategy for accurate performance modeling
which is described in Weber et al [75], we selected feature-wise and
pair-wise sampling for options of binary type and Plackett-Burman
sampling [73] for enumeration and continuous types. We first man-
ually filtered out the invalid configurations derived from sampling,
loaded only valid ones into the system, and got corresponding
performance measurements in a specific benchmark. Those config-
urations with an average performance in five repetitions over 5%
compared to the SLO would be fed to the process of diagnosis.

Note that in the evaluation, the goal is not to find the optimal
configurations, but to diagnose performance violations. The effec-
tiveness of diagnosing performance violations was reported via
precision and recall metrics. Precision is the ratio between the set
of correctly identified options and the set of predicted options while
recall is the percentage of correctly identified options causing a
performance violation and the set of options whose values had
changed compared to the baseline.

Comparison.We ranDiagConfig to obtain the set of configura-
tion options responsible for performance violations, and compared
our results to Unicorn, a statistics-based approach for configurable
systems performance debugging and optimization via causal perfor-
mance models. In debugging mode, Unicorn repeatedly generates
new configurations to replace the loaded one for the system in the
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Table 2: Average Precision and Recall of Comparison.

System Batik Catena H2 Kanzi Prevayler
AverageConfigurations 128 2433 573 494 118

Precision

Unicorn 0.787 0.705 0.871 0.964 0.756 0.817
DiagConfig 0.911 0.809 0.905 0.806 0.788 0.844

Recall

Unicorn 0.116 0.774 0.049 0.274 0.234 0.289
DiagConfig 0.807 0.956 0.815 0.932 0.952 0.892

Configurations: The total number of valid and performance-violating configurations (invalid ones are filtered out)
obtained by sampling, which is traded off against the performance measurement overhead.

deployed environment, measures the performance, then pinpoints
the critical options related to performance issues.

Result and Analysis. Table 2 summarizes the average preci-
sion and recall of Unicorn and DiagConfig for each system in
diagnosing performance violations. Catena has a much bigger con-
figuration size because in the fixed time duration sampling runs
faster due to its small source code size and number of options. It
also uncovers the reason for Unicorn’s exception recall in Catena
since a small number of options means that the correlation between
options and performance metrics is easier to learn during training.

The relatively low recall of Unicorn reveals its limitations.
When generating one new configuration to debug, Unicorn only
considers one crucial option at a time, changes its value, deploys
and measures the system, and targets normal metrics. The list of
candidate options is short and relies on the accuracy of causal cor-
relations between options and performance metrics captured by
causal performance models, resulting in an incomplete diagnosis.
In contrast, DiagConfig captures the cause-effect relationships
between options and performance behaviors and supports a more
comprehensive diagnosis via code analysis. However, DiagConfig
also produced false negatives and false positives.

For the reasons of false negatives, we double-checked the of-
fline analysis corresponding to the missed options and concluded
that (a) some information-flow paths of options are lost due to the
level of variables indirectly referencing the options exceeding the
depth of alias analysis we set (i.e., 5) in taint tracking; (b) a few
options influence compute-intensive operations (e.g., operations of
primitive numeric types and hash computation) without involving
the performance-related operations we have agreed upon, leading
to incomplete information-flow paths. Also, we found more op-
tions responsible for performance violations (which lead to loss of
precision) that deserve further tuning.

Summary for 𝑅𝑄2 and 𝑅𝑄3: Treating the system as a white box

and taking advantage of performance-related operations, Diag-

Config effectively diagnoses performance violations by building

cause-effect chains. In addition, the cause-effect chains achieve fine-

grained interpretability (like Figure 3), which helps stakeholders

understand the root causes of performance violations.

5.4 RQ4: Performance of DiagConfig

Overhead.As Figure 2 shows,DiagConfig consists of offline analy-
sis and online diagnosis. The offline analysis overhead includes data
labeling, static configuration options taint tracking, classification
model building, and performance-sensitive options classification
with their information-flow paths filtering. Among them, data la-
beling and classification model building are only required in the
preparation stage so that when a new system is fed into Diag-
Config, it can directly apply the classification model after taint
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Figure 7: Performance distribution of four software systems in

non-profiling, sample-based profiling, and instrumentation-based

profiling. The small top left plot reports the average performance

degradation caused by sample-based profiling for each system, while

instrumentation-based profiling incurs unacceptable overhead.

tracking and characterization. Thus, data labeling and classifica-
tion model building are conducted only once and used forever. The
performance-sensitive options classification with their information-
flow paths filtering are comparatively negligible compared to the
static taint tracking, which is required for each new system. Table 1
lists the overhead for static taint tracking of each target system
in our evaluation. It is relatively heavy but acceptable because we
only need to run static taint tracking once. Moreover, the software
vendors generally can provide the results of this part.

The overhead of online diagnosis includes profiling overhead
and cause-effect chain building overhead. To check the overhead
incurred by our chosen profiler, we selected 50 configurations for
each of the four target software systems. We measured these soft-
ware systems with 50 repetitions using non-profiling, sample-based
profiling [3, 59], and instrumentation-based profiling [48], respec-
tively. We visualized the performance distribution of these soft-
ware systems loaded one configuration in Figure 7 to show the
variation of the results. Each point in Figure 7 represents the per-
formance of a single repetition. For all four software systems, the
performance degradation incurred by sample-based profiling (i.e.,
|𝑚𝑒𝑎𝑛𝑠−𝑚𝑒𝑎𝑛𝑛

𝑚𝑒𝑎𝑛𝑛 | where 𝑚𝑒𝑎𝑛𝑛 is the average performance under
non-profiling and𝑚𝑒𝑎𝑛𝑠 is the average performance under sample-
based profiling) is below 6%. Additionally, the performance distribu-
tion is similar for all configurations, indicating that the configura-
tion does not impact the measurement stability, which is consistent
with the insight of Weber et al [75]. Despite the extensive research
on lightweight online monitoring tools and sophisticated industrial
profilers [83], our experimental profiling results suggest that the
overhead of sample-based profiling is acceptable and DiagConfig
may not need to replace industry-class profilers but build on them
to achieve performance violation detection in online diagnosis.
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Table 3: Overhead of Cause-effect Chains Building.

Batik Catena H2 Kanzi Prevayler

Total Time 666.105 s 37.419 s 324.705 s 46.569 s 23.020 s
Cold Start (Maximum) 68.248 s 24.207 s 47.920 s 19.903 s 20.638 s

Second Largest 6.104 s 73ms 3.716 s 531ms 155ms
Minimum 2.915 s 3ms 220ms 3ms 10ms

Mean 4.7233 s 5.65ms 549.8ms 56.2ms 20.9ms
Standard Deviation 769.1ms 101.8ms 267.3ms 88.5ms 21.8ms
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Figure 8: Tuning Example. Comparison of OtterTune tuning process

with (14 options) and without (42 options) DiagConfig aid.

Regarding the overhead of the building of cause-effect chains,
we recorded the execution time of each diagnosis when diagnosing
performance violations (§ 5.3). A summary of the metrics is shown
in Table 3. The cold start is that DiagConfig loads the necessary
program static information to build the call graph when construct-
ing the cause-effect chains for the first time. It is a one-shot cost.
The acceptable cost shows that our approach is suitable for the vast
majority of online production environments and can be integrated
into the existing auto-tuners for diagnosis before tuning starts.

Case Study. DiagConfig can recommend crucial options to
guide tuning tools (e.g., SmartConf [74], OtterTune [68], DAC [86],
BestConfig [90]) to reduce the huge configuration space. We con-
ducted a case study with OtterTune, a representative auto-tuner,
to show the effectiveness of DiagConfig’s recommendation. Ot-
terTune supports MySQL and PostgreSQL, but neither of them is
a Java system. Thus, we extended OtterTune to work for the Java
database Cassandra. We applied DiagConfig to figure out the cru-
cial options when a performance violation occurs and then ran
OtterTune to improve performance. We recorded OtterTune’s tun-
ing time spent to validate how much DiagConfig accelerates the
tuning process. In the case study, we simulated a situation where
Cassandra suddenly suffered significant throughput and latency
degradation under the YCSB benchmark. The stakeholders pointed
out the options related to this performance violation and then lever-
aged OtterTune to improve the system’s performance. By contrast,
we ran DiagConfig to select crucial options before tuning.

Result and Analysis. DiagConfig recommended 14 options,
while the stakeholders offered 42 relevant options according to
their experience. We fed these two sets of options to OtterTune
separately. The tuning process is shown in Figure 8. OtterTune got
stuck in the configuration space that consists of the 42 options.
Tuning with DiagConfig required only 11 minutes to achieve 98%
of the throughput obtained by tuning withoutDiagConfig through
45 minutes. This was an almost 4× acceleration. Moreover, after the
87th minute, the tuning with DiagConfig further achieved better
throughput. Similarly, the acceleration of OtterTune by DiagCon-
fig was also manifested in the latency.

Summary for 𝑅𝑄4: The auto-tuners can be stuck in a huge con-

figuration space leading to a slow tuning speed; DiagConfig with

acceptable overhead is complementary to them, which accelerates

the tuning process by compressing configuration space.

6 LIMITATIONS AND THREATS TO VALIDITY

Limitations of the Static Taint Analysis.DiagConfig computes
information-flow between options and performance-related oper-
ations in the offline analysis may produce inaccurate results. The
main source of inaccuracy is that static taint analysis requires a
trade-off between accuracy and overhead when confronted with
path explosion and alias analysis, leading to over-tainting or loss of
taint. If the analysis misses all information-flow, then DiagConfig
will fail to construct cause-effect chains. In contrast, if the analysis
falsely reports too many information-flow paths, resulting in many
redundant cause-effect chains. Additionally, while FlowDroid [4]
holds a high accuracy, the analysis is challenged by the explosion of
paths between source and sink as well as the size of the call graph.
As a result, these challenges limit the scale of the target system
that DiagConfig can analyze. Our evaluation demonstrates the
overhead of DiagConfig based on FlowDroid for static taint track-
ing in the target system. Although the cost of analyzing large-scale
configurable software systems is relatively heavy, it is acceptable.

Threats to Validity. The selection of the profiler for perfor-
mance violation detection is a threat to construct validity. Profiling
generally indicates an overhead, resulting in performance degrada-
tion of the software system. We mitigated this threat by selecting a
lightweight profiler, Jprofiler, for performance-violating hotspot
functions detection and localization. Besides, the setting of the pro-
filer is also a threat. Our evaluation of the target system Batik SVG
Rasterizer (128 valid configurations generate 51GiB call-chains)
showed that persisting profiling information for each hotspot func-
tion leads to expensive storage costs. Mitigating this threat requires
the user to understand the target system well enough and set the
profiler blacklist to ignore specific program elements. The selection
and setting of the profiler are threats to internal validity.

The choice of target systems threatens external validity, onwhich
we evaluate the effectiveness of our approach. To alleviate this
threat, we introduced various systems with multiple options from
different areas in our evaluation. They were collected from previ-
ous work [70, 71, 75] and were usually used to evaluate sampling
strategies and performance-modeling methods. We further ran our
approach with OtterTune on the Cassandra database to show the
feasibility of large-scale configurable software systems.

7 DISCUSSION

Interpretability of documentation and source code.Accurately
identifying performance-sensitive options requires understanding
the relationship between configuration options and performance
behaviors. This information can be obtained from system docu-
mentation and source code analysis. SafeTune is a documentation
analysis-based tool, while DiagConfig emphasizes source code
analysis. The information that documentation can provide is mostly
systematic and macroscopic, while the information provided by the
source code is mostly rational-logical and microscopic. Both Safe-
Tune and DiagConfig can identify performance-sensitive options



DiagConfig: Configuration Diagnosis of Performance Violations in Configurable Software Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

that the other has missed. Therefore, the information provided by
documentation and source code is complementary to each other.

Dynamic workload and environment. Dynamic workloads
and environments are non-trivial for evaluating system perfor-
mance. For RQ1, both SafeTune and our evaluation were limited
by the workload and environment. In our evaluation, we first con-
firmed the measurement and configuration variation (§ 5.1), then
tried our best to identify performance-sensitive options in multiple
rich workloads. In contrast, previous work [29] only considered
multiple workloads without accounting for measurement and con-
figuration variation, thus may lead to inaccurate results. For RQ2
and RQ3, due to the wide variety of workloads and environments,
the performance violations caused by dynamic workloads and en-
vironments migration are out of the scope of this paper.

Multiple metrics for performance issues troubleshooting.

A wide range of metrics has been spawned for monitoring var-
ious aspects of systems’ runtime behaviors. While DiagConfig
focuses on the diagnosis of single-objective (most prior works also
target single-objective [61, 68, 70–72, 75, 86, 90]) performance vio-
lations , we will accommodate multiple and mixed metrics with the
appropriate modification of monitoring components for in-depth
performance issues diagnosis in the future. For instance, thread ac-
tivity and concurrency metrics (e.g., thread on-CPU cycles, synchro-
nization delays) for unusual thread behavior and CPU contention
detection, and lock contention metrics (e.g., the level of locks) for
problematic code-sharing designs uncover.

8 RELATEDWORK

Generally speaking, software configuration tuning has three steps,
namely detection of performance violations, identification of root
causes, and searching for optimal configurations. DiagConfig
mainly targets the second step.

Performance violations occur frequently due to changes in work-
load and environment as well as misconfigurations. There is sub-
stantial literature on detecting [31, 87, 89], testing [15, 41, 65, 80],
diagnosing [5, 6], and fixing [43, 76] misconfigurations. Specifically,
ConfigX [89] employs a tailored static analysis of configuration-
related code snippets to extract the specification constraint among
options. It does not consider runtime performance behaviors and is
therefore well-suited for detecting misconfiguration that may re-
sult in unexpected and hard-to-observed functional behavior rather
than performance behavior before the configuration is loaded in.
While these solutions help reduce misconfigurations introduced by
users’ mistakes, interpretability is still an open problem. Our goal
is to restore the cause-effect relationships between performance-
sensitive options and performance violations based on the program
logic. In particular, stakeholders want a clear explanation of why
there was a performance violation when they had set up a configu-
ration that seems better according to the documentation.

There is no silver bullet to finding a configuration that performs
well in all situations. Off-the-shelf profilers [20, 38, 52], targeted
profiling techniques [16, 85], and visualizations [1, 16] help detect
performance problems and locate performance bottlenecks. How-
ever, there is not enough evidence to explain why options cause
performance violations, particularly to determine which options
are responsible for performance violations. DiagConfig strives to
recommend crucial options by cause-effect chains.

Similarly, most previous works aim to stakeholders understand
why, where, and how options and their interactions affect the
performance behavior of configurable software systems by build-
ing white-box performance-influence models [61, 70, 71, 75]. Con-
figCrusher [70] first relies on static taint analysis to determine
which options affect which code regions. Then it leverages option-
affected code region expansion and merging with instrumentation
to reduce the cost of measurement and construct interpretable
performance-influence models. However, the instrumentation is
overhead and does not support numeric options and multi-threaded
programs. COMPREX [71] builds white-box performance-influence
models based on expensive dynamic taint analysis and incomplete
configuration specific local code performance measurement. Weber
et al. [75] propose an approach based on SPLConqueror [61–63]
to build white-box performance models over binary and numeric
options at the method level for understanding options and their in-
teractions. It achieves relatively high precision because it combines
coarse and fine profiling to reduce the influence of performance
variance on the models. All approaches based on performance mod-
els involve repeated performance measurements of the system in
specific workloads and environments. In addition to the difficulty of
model transfer [33, 49], the performance of the models themselves
varies depending on the sampling strategy and learning tricks.

Optimizers for configuration tuning that treat the system as a
black box and contain limited interpretable information about the
relationship between options and performance behavior. They can
be classified into two categories: control-theory-based [30, 74] and
machine-learning-based [12, 13, 32, 68, 82, 86, 90] approach.

9 CONCLUSION

We propose a white-box static code analysis-based approach to
diagnose performance violations of configurable software systems.
This approach combines static configuration-related performance
information from source code and runtime performance behaviors
from profiling. Moreover, we implement a novel prototype, Diag-
Config, to diagnose performance violations. It performs option
tracking, performance violation localization, and construction of
cause-effect chains. Our evaluation with eight open-source systems
demonstrates the effectiveness and efficiency of DiagConfig. More
importantly, DiagConfig can restore the complete evidence chain
of performance violations, highlight the configuration options for
performance violations, help stakeholders explain the causes of
performance violations, and accelerate the configuration tuning
process regardless of workloads and environments.
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