Introduction to analytic proofs: Solutions

Patrick Breheny

September 1, 2022

Convergence

Theorem. Suppose $x_n \to x$ and $y_n \to y$. Then $x_n + y_n \to x + y$.

Proof. Let $\epsilon > 0$.

Thus, for all $n > N = \max(N_x, N_y)$, we have

$$|x_n + y_n - (x + y)| \le |x_n - x| + |y_n - y|$$
 Triangle inequality $< \epsilon$ ①, ②

Theorem. Suppose $x_n \to x$ and $y_n \to y$. Then $x_n y_n \to xy$.

Proof. First, let's establish an identity:

$$x_n y_n - xy = x_n y_n - x_n y + x_n y - xy$$

$$= x_n (y_n - y) + y(x_n - x)$$

$$= (x_n - x + x)(y_n - y) + y(x_n - x)$$

$$= (x_n - x)(y_n - y) + x(y_n - y) + y(x_n - x)$$

Now, let $\epsilon > 0$.

①
$$\exists N_x : n > N_x \implies |x_n - x| < \frac{\sqrt{\epsilon}}{3} + \frac{\epsilon}{3|y|} \qquad x_n \to x$$
②
$$\exists N_y : n > N_y \implies |y_n - y| < \frac{\sqrt{\epsilon}}{3} + \frac{\epsilon}{3|x|} \qquad y_n \to y$$

Thus, for all $n > N = \max(N_x, N_y)$, we have

$$|x_n y_n - xy| = |(x_n - x)(y_n - y) + x(y_n - y) + y(x_n - x)|$$
 Identity above

$$\leq |x_n - x| |y_n - y| + |x| |y_n - y| + |y| |x_n - x|$$
 Triangle inequality

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$
 ①, ②

$$= \epsilon$$

In the construction of N above, note that we are assuming $x, y \neq 0$. If either is zero, the second term in the sum can simply be omitted, as the corresponding term below is zero. \Box

Theorem. Suppose $x_n \to x$, with $x_n \neq 0$ for all n and $x \neq 0$. Then $1/x_n \to 1/x$.

Proof. First, let us note that $|a-b| < \frac{1}{2}|b| \implies |a| > \frac{1}{2}b$. This is fairly obvious when you think about it; to prove it, we can break the claim up into cases:

- b > 0 and a > b: a > b > b/2
- b > 0 and b > a: $b a < \frac{1}{2}b$, so $a > \frac{1}{2}b$

The cases where b < 0 follow the same reasoning. Now, let $\epsilon > 0$.

$$\exists N_1 : n > N_1 \implies |x_n - x| < \frac{1}{2} |x|^2 \epsilon \qquad x_n \to x$$

$$\exists N_2 : n > N_2 \implies |x_n - x| < \frac{1}{2}|x| \qquad x_n \to x$$

(3) so that
$$|x_n| > \frac{1}{2}|x|$$
 (2), see above

Thus, for all $n > N = \max(N_1, N_2)$, we have

$$\left| \frac{1}{x_n} - \frac{1}{x} \right| = \left| \frac{x - x_n}{x_n x} \right|$$

$$\leq \frac{2}{|x|^2} |x_n - x|$$

$$\leq \epsilon$$

$$(1)$$

Note that in this third theorem, the requirement that $x_n \neq 0$ is unnecessary. As we see from ③, if $x_n \to x$ and $x \neq 0$, then there is an N such that $x_n \neq 0$ for all n > N.

Continuity

The first two theorems are essentially the same as their sequence counterparts, but the differences are worth paying attention to.

Theorem. Let the functions f and g be continuous at x_0 . Then h = f + g is continuous at x_0 .

Proof. Let $\epsilon > 0$.

①
$$\exists \delta_f : |x - x_0| < \delta_f \implies |f(x) - f(x_0)| < \frac{\epsilon}{2}$$
 f continuous at x_0

②
$$\exists \delta_g : |x - x_0| < \delta_g \implies |g(x) - g(x_0)| < \frac{\epsilon}{2}$$
 $g \text{ continuous at } x_0$

Thus, for all $x : |x - x_0| < \delta = \min(\delta_f, \delta_g)$, we have

$$|h(x) - h(x_0)| = |f(x) + g(x) - f(x_0) - g(x_0)|$$
 Def h
 $\leq |f(x) - f(x_0)| + |g(x) - g(x_0)|$ Triangle inequality
 $\leq \epsilon$ ①, ②

Theorem. Let the functions f and g be continuous at x_0 . Then $h = f \cdot g$ is continuous at x_0 .

Proof. Let $\epsilon > 0$.

②
$$\exists \delta_g : |x - x_0| < \delta_g \implies |g(x) - g(x_0)| < \frac{\sqrt{\epsilon}}{3} + \frac{\epsilon}{3|f(x_0)|}$$
 $g \text{ continuous at } x_0$

Thus, for all $x: |x-x_0| < \delta = \min(\delta_f, \delta_g)$, we have

$$|h(x) - h(x_0)| = |f(x)g(x) - f(x_0)g(x_0)|$$
 Def h

$$\leq |\{f(x) - f(x_0)\}\{g(x) - g(x_0)\}|$$
 + $|f(x_0)\{g(x) - g(x_0)\}|$ See earlier proof
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$
 ①, ②
$$= \epsilon$$

Theorem. Let the function f be continuous at x_0 and the function g be continuous at $f(x_0)$. Then h(x) = g(f(x)) is continuous at x_0 .

Proof. Let $\epsilon > 0$.

①
$$\exists \eta : |y - f(x_0)| < \eta \implies |g(y) - g(f(x_0))| < \epsilon$$
 g continuous at $f(x_0)$

②
$$\exists \delta : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \eta$$
 f continuous at x_0

Thus, for all $x:|x-x_0|<\delta$, we have

$$|h(x) - h(x_0)| = |g(f(x)) - g(f(x_0))|$$
 Def h
 $< \epsilon$ $(2) \Longrightarrow (1)$ \square

Exercise: Write an R function n(eps) that returns the smallest N for which $n > N \implies |f(x_n) - f(x_0)| < \epsilon$ for $x_n = 2^{1/n}$ and $f(x) = e^x$.

Conceptually, this is a three-part process:

- 1. Determine what x_n is converging to. Here, $x_n \to 1$.
- 2. Determine the largest value of delta that satisfies $e^{1+\delta} e^1 < \epsilon$.
- 3. Determine the smallest value of N such that $2^{1/n} 1 < \delta$.

```
n <- function(eps) {
  delta <- log(eps + exp(1)) - 1
  ceiling(1/log2(1+delta))
}
n(0.01) ## 190

# Check solution
exp(2^(1/189)) - exp(1) ## 189 not good enough
exp(2^(1/190)) - exp(1) ## 190 within 0.01</pre>
```