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Convergence
Theorem. Suppose x, — x and y, — y. Then x, +y, = x +y.

Proof. Let € > 0.

D N, :n>N, = |z, —z| <5 Ty — T
@ HNy:n>Ny:>]yn—y|<§ Yn — Y
Thus, for all n > N = max(N,, N,), we have
|Tr 4 Y — (2 +y)| < |20 — 2] + |y — | Triangle inequality
<e @®. @ O

Theorem. Suppose x,, — x and y, — y. Then x,y, — xy.
Proof. First, let’s establish an identity:
TplYn — XY = TplYn — Ty + Tpy — Y
= (@0 — 2 +2)(yn — y) + y(zn — 1)
= (20 —2)(Yn —y) + 2(Yn —y) + y(@ — )

Now, let € > 0.

D EINI:n>Nx:>]35n—ac|<£—|rL Ty, — T
3 3yl
€ €
@ EINy:n>Ny:>|yn—y|<%+m Yo — Y
Thus, for all n > N = max(N,, NV,), we have
|znyn — 2yl = (2 — ) (Y0 — y) + 2(yn — y) + y(z, — )| Identity above
<|zyp — x| |lyn — y| + |2| lyn — y| + |y |20 — 2| Triangle inequality
<5tits ORE)

= €

In the construction of N above, note that we are assuming x,y # 0. If either is zero, the
second term in the sum can simply be omitted, as the corresponding term below is zero. [J
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Theorem. Suppose x,, — =, with x, # 0 for alln and x # 0. Then 1/x, — 1/x.

Proof. First, let us note that [a — b| < 3 [b] = |a| > 1b. This is fairly obvious when you
think about it; to prove it, we can break the claim up into cases:

eb>0anda>ba>b>b/2
ob>0andb>a:b—a<%b,soa>%b

The cases where b < 0 follow the same reasoning. Now, let € > 0.

@ E|N1:n>N1:>|xn—x|<%|x]26 Ty — T
@ Ny :n > Ny = |z, —z| < i |z Tp — T
®) so that |z,| > 1 |z| @), see above

Thus, for all n > N = max(N, Ny), we have

1 1 T,
Tn | Tp®
2
< —5 o — 7| ®
||

<e @

Note that in this third theorem, the requirement that z,, # 0 is unnecessary. As we see from
®), if 2, — x and x # 0, then there is an N such that x,, # 0 for all n. > N. m

Continuity

The first two theorems are essentially the same as their sequence counterparts, but the
differences are worth paying attention to.

Theorem. Let the functions f and g be continuous at xo. Then h = f + g is continuous at
Zg.

Proof. Let € > 0.

@ 365 |z —xo| <0 = |f(x) = f(wo)| < § f continuous at x
@ 0y |v — 30| <6y = [9(x) — g(x0)| < § g continuous at zg

Thus, for all = : |z — x| < 6 = min(dy, d,), we have
() = hxo)| = | f(2) + g(x) = f(x0) — g(x0)] Def i

< [f(z) = flzo)| + lg(x) = g(x0)] Triangle inequality

<e€ @7@ 0

Theorem. Let the functions f and g be continuous at xo. Then h = f - g is continuous at
Zo.



Proof. Let € > 0.

O  Fy:lr—a0l < = ]f(af)—f(xo)\<£+ ‘ f continuous at zg
3 3 |g(o)|
NG € _
30, 1 |x — 0 — — + t t
@) g — 20| <0, = |g(z) — g(z0)] < 3 +3\f(xg)] ¢ continuous at g

Thus, for all = : | — x¢| < 6 = min(dy, d,), we have

() = hxo)| = | f(2)g(x) — f(20)g(wo)| Def h
< [{f(@) = flzo) Hy(x) — g(x0)}|
+ [f(zo){g(z) — g(x0)}
+ g(xo){ f(x) — f(x0)} See earlier proof

+ £+ D,®
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Theorem. Let the function f be continuous at xo and the function g be continuous at f(zy).
Then h(z) = g(f(x)) is continuous at xy.

Proof. Let € > 0.

@ Incly =Sl <n = lgly) — g(f(x0))| <e g continuous at f(zo)
® 36 : |z — x| <d = |f(x) = f(zo)] <7 f continuous at x

Thus, for all = : |z — zg| < §, we have

|h(z) — h(xo)| = [g(f(x)) — g(f(20))] Def h
<e€ @ = O O

Exercise: Write an R function n(eps) that returns the smallest N for which n > N =
|f(zn) — f(20)| < € for z, = 2Y/™ and f(z) = €.
Conceptually, this is a three-part process:

1. Determine what x, is converging to. Here, z, — 1.
2. Determine the largest value of delta that satisfies e!0 — e! < €.
3. Determine the smallest value of N such that 2/ — 1 < 4.

n <- function(eps) {
delta <- log(eps + exp(1)) - 1
ceiling(1/log2(1+delta))

}

n(0.01) ## 190

# Check solution
exp(27(1/189)) - exp(1) ## 189 not good enough
exp(27(1/190)) - exp(1l) ## 190 within 0.01
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