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( PREFACE )

Today it is hardly necessary to talk about the importance of Mathematics in shaping
all the successive human civilisations culminating in the present modermn world, Whatever
has been said or will be said about it are too littie. Famous Indian Mathematician
Bhaskaracharya, born in A.D. 1114 conceived Mathematics as one embodied in the following
verse :

T R¥rEr g
mm@ﬁml

TR HafarRera ||
- Vedanga Jyotish by Lagda (About 1100 B.C.)

(As crest in a peacock's feather, jewel in a Cobra's hood, Mathematics is the crest-
jewel of all scientific knowledges.)

Mathematics, as a continuous human endeavour, seeks to capture the natural laws
in the form of supreme abstract formulations and as such it has to depend upon infallible
logic yielding the conclusions as eternal and absolute truth. It is a sublime discipline where
falsehood or any inaccuracy is not entertained.

Since the study of Mathematics has become inescapable for the acquisition of any
scientific knowledge, be it the farfetched subject like music or language, it is necessary to
make the study of Mathematics more absorbing and interesting. The only way to do this
is to encourage the students to pick up the pen and paper and start solving the problems
themselves. Just as one learns swimming only after entering inside the water, one enjoys
the taste of the sweets only after putting it inside the mouth, Mathematics is learnt only
through problem solving and this is the shortest route. No amount of lecturing on ‘swimming’
can equip one to swim.

The authors of the book, working under diverse constraints, are not fully certain if
they have lived upto the expectations and aspirations of the members of the Orissa
Mathematical Society in particular and teachers, students and the public in general.

Any suggestions for the improvement of the book shall be gratefully acknowledged
in bringing out the successive editions.

The authors are grateful to the authorities of the Council of Higher Secondary
Education and the Text Book Bureau for the patience and care in bringing out the book in
the present form.

Prof. G DAS
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Relation and Function

1.1

1.2

The rarest and most valuable of all intellectual traits is the capacity to
doubt the obvious.
- Albert Einstein.

lntroduc_tion

We have studied earlier that a relation R from a set A to a set B is a subset of the
cartesian product AxBi.e. RCAxB.If a € A isrelated to b e B by the relation R then
we express this as aRb or equivalently as (a,b)eR. We know about the domain and range
of a relation and also about many-one, one-many, one-one relations and their diagramatic
upresentations.

We mention that since ¢ AxB, ¢-is a relation called empty relation from A to B.
Here no element of A is related to any element of B. Similarly AxB < AxB shows that

 AxB is a relation called the universal relation from A to B. Here every element of A is

related to every element of B. These two relations are sometimes called trivial rela-
tions. '

As we know earlier, relations occur abundantly in nature and in mathematics. More
interesting and useful relations are those with suitable restrictions. Particularly some
special type of relations which are defined on a set A, i.e. from A to itself, (in stead of
one set to another), play much more significant role which we now proceed to study.

Types of Relations on A Set :

We begin with definitions.

Definitions : A relation R on a set A is called

(1) a reflexive relation if aRa, VaeA
(i.e. if (a,a)eR for every acA)

(i1) a symmetric relation if aRb = bRa, a,beA.

 (i.e. (ab)eR = (b,a)eR for abeA)

(ii1) a transitive relation if aRb and bRc = aR(.:; ab.ceA.

(i.e. (a,b)eR and (b,c)eR => (a,c)eR; fora, b, ceA)
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Example 1
Let A={1,2,3}. Consider the following relations :
(i) R=(1,1),(2,2),(3.3)}

Since for each of the elements 1,2 and 3 of A ; (1,1),(2,2), (3,3) arein R, R, is
reflexive. It is also symmetric and transitive. Particularly note that it satistics the condition of
a transitive relation. For example (1,1)eR, and (1.1)eR =(1,1)eR; is trivially satisfied and
similarly for other elements 2 and 3. It also trivially follows that R, is symmetric.

(i) R=(1,1),(3,3)}
Here R, is not reflexive on A, since (2,2)€R,.

~ Note that R, is symmetric and transitive. '

(i) R,={(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2)}
R, isreflexive, symmetric and trangitive.
Here R,=AxA=The universal relation on A.

(iv) R,={(a,)b):a-b>3} onA.

No pair of elements a,b in A satisfy the condition that their difference is greater
than 3. Hence no pair exists in R,. It is an empty relation i.e. R = §.

™ R={(23).(3.2),2.2), 33)
In this case R, is not reflexive as (1,1)R..
but if is symmetric and transitive.
Example 2
Let T = The set of all triangles on a plane. Define a relation ~on T as follows :
A~B if and only if A is similar to B where A, BeT.
From properties of triangles we can check that ~ is reflexive, symmetric and, transitive.
N.B. The symbol ~ is pronounced as ‘wiggle’ or ‘tilde’.
Example 3
Let L= The set of all lines on a plane and R be a relation on L defined by
I,R1, if and only if /,is “perpendicularto’ I, where /1, L.
If is easy to check that / R, = LRI .
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So R is a symmetric selation. But it is neither reflexiue nor transitive.
The following relations on the set R of reals or its subsets are easy to check.
Example 4 :
(i) The reldtion 'is equal to' given by {(a.,b) : a=b}
on R is reflexiue, symmetric and transitive.

(i) Therelation ‘is less than’ given by {(a,b) : a<b} on R is not reflexive, not symmetric
but transitive.

(iii) The relation ‘is a factor of” or ‘is a divisor of” or ‘divides’ given by {(a,b):ajb} onZ
is reflexive, transitive but not symmetric.

(iv) Therelation {(x,);y =2x} on R is not reflexive, not symmetric and not transtive.

Of all the relations on a set we give special attention to those which are reflexive,
symmetric and transitive. So we bring them under a definition separately. The symbol ‘~’
is usually used to denote such a relation. -

Definition :
Equivalence Relation

Arelation RS AxA is called an equivalence relation on A if it is (1) reflexive, (i1)
symmetric and (ii1) transitive. '

(for an equivalence relation the symbol ~ is very often used instead of R.)

‘Equality’ on any set, ‘congruency’ and ‘similarity’, on the set of triangles, ‘parallelism
or coincidence’ on the set of lines, ‘has the same age as’ on a set of people are some of
the examples of equivalence relation. We will now discuss an important equivalence
relation on Z. |

1.3 Congruen& Modulo Relation on Integers
Definition :

Leta,h €Z and let m be a fixed positive integer. We say that a is congruent to » modulo _
m and write this as :

a = b (mod m) iff m divides a-b.
Note that in this case a is of the form a = b +mk, for some k €Z.

For example, 10 =1 (mod 3)
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-20 =1 (mod 7)
-9 =3 (mod 4)
Instead of writing 20 = -1 (mod7) we often write this as 20 = 6 (mod 7)
The following properties directly follow from definition.
Leta, b, ¢, deZ. and m be a fixed positive integen.
Then (i) If a =5 (mod m) and x is any integer then @ +x = b-+x (mod m)
(11) If a = b (mod m) and ¢ = d (mod m) then
' a+c¢=b+d(mod m), ac = bd (mod m), The proof is left to the reader.
Forexample (1)127 =119 (mod 4) < 8 = 0 (mod 4)
(i) 10 = 2 (mod4) and 8 = 12 (mod 4)
=18 = 14 (mod 4) and 80 = 24 (mod 4)
Example §
Show that
(i) ca = cb (mod m) = a=b (mod m") w.l"iere m=m' x ged (c,m)
(11) ca = cb (mod m) = a=b (mod m) if ged (c,m) = 1,
Solution :
(i) Let ged (e,m) = h.
Then let ¢ = c¢’h and m = m'h and ged (¢',m") =1
Now ca = cb (mod m) = m | c(a-b)
= m'h | c'h(a-b) .
= m'| (a-b) (-~ ged (¢',m) =1)
-.a=b (mod m') '
-(11) Taking h = 1 1n (1) we get (i1).
Thus (i) 8 = 12 (mod 4) = 4 = 6 (mod 2) (--ged (2,4)=2)
and - 8 = 10 (mod 3) = -4 =5 (mod 3) (- ged (2,3)=1)

The following example illustrates the fact that congruence modulo relation on Z is
an equivalence relation.
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Example 6

Show that the relation ~ on Z given by ~= {(a,b): a=b (mod 3) (i.e. a~b iff 3
dividesa—b), isan equivaler_lce relation.

Solution :
~ is reflexive :
3dividesa—-aforallaeZ= a=a(mod 3) = a~aforall acZ
~ is symmetric :
a~b = 3|(a-b) = a-b = 3k for some keZ
= b—a =3(-k), - keZ -
= 3|(b—a) = b=a (mod 3) = b~a.
~ 18 transitive :
a~bandb~c;a,b,ceZ -
= 3|(a-b) and 3|(b-c)
= 3|[(a-b)Hb-¢)]
=2>3|(a-c)=>a~c.
Hence ~ is an equivalence relation.

Note : There is nothing special about the integen 3 in the above example. We can simply
~ replace 3 by any positive integer in to assert that congruence modulo relation on Z is an
equivalence relation.

The most significant feature of equivalence relation on a set X is that it enables the

set to be partitioned or divided into a disjoint collection of subsets of X whose union is
X.

Consider, for example,

S = The set of all students of a school imparting education from class I upto class
XII. Let a relation R be defined on S as follows :
Fors,s,eS; sRs,if s ands, are in the same class.

You can easily check that R is an equivalerice relation. Now suppose s, €S is in
class I. Let the set of all students in S who are related to s, i.¢. are in the same calssas s,
be denoted by [s ].
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Thus [s,] = {s€S:sRs }

Clearly s €[s, ] (1)
and [s, ] represents 'the students of class I.

Further if s, is another student of class I i.c.if s;Rs, then[s5,]=[s,] ... (i)
which you can ven'fy

Now choose another student s,€S not related to s .
If s, is in class 11, as before we get
[s,] = The set of all students of class II.

More over [s, ] N [s,] = ¢ (ii1)

For, if se[s,] N [s,] then sRs, and sRs, together imply that s Rs and sRs, by sym-
metry of R, which again yields s Rs, by transitivity. But s Rs, is a contradiction.

Thus by choosing a representative student s, , /=1, 2, 3, ..., 12 such that s, is not
related to s, (i #)) we partition the students of the school into mutually disjoint different
subsets called class I, class I1, ..., class XII. In symbols,

S=[s,]U[s,] V... U[s,,] (iv)

We formalise this discussion below.

1.4 Equivalence class

Definition :

Let X be a set with an equivalence relation ~ defined on it. The equivalence class of
xeX, denoted by [x]_is defined by ‘

[x).={yeX:y~x]}.

We simply write [x] in place of [x] when there is no confusion with regard to the
equivalence relation with respect to (w.r.f) which the equivalence class is considered.

As we have observed in (i) to (iv) above, the following facts are easily deducible

from definition of equivalence class.

(d) For aset X with an equivalence relation on it,

(i) xe[x] (- x~xbyreflexive property)
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(i) x~y<o[xFyl

(111) Either [x] =[y] or [x] " [y]=¢

(iv) Y [x]=X.

Definition : A Partition of a set X is a collection of disjoint, non empty subsets
of X that have X as their union. '

For example if X = {1,2,3}, then {{1,2}, {3}} and {{1}, {2}, {3}} are two partitions
of X.

‘Hence we state that given any equivalence relation on a set X we can partition the
set X into subsets X. called equivalence classes, such that.

(i) All elements of X, are related to each other
(ii) Any element of X, is NOT related to any element of X, fori=#j.
(iii) X, " X, = ¢ fori #j. '
(iv) UX,=X.
Example 7

Congruence modulo 3 relation partitions (or decomposes) the set Z into three
disjoint equivalence classes.

Find them.
Solution :

Any integer a € Z leaves remainder 0 or 1 or 2 when divided by 3. Hence either
a=0(mod3)ora=1(mod3)ora=2(mod 3). In other wordé a@=3mora=3mtl or
a=3m+2 for meZ. First we find all an such thata=0.

These are given by {0,+3, £6, +£9,..} ={..-6,-3,0, 3, 6,...} i

It is the equivalence class of 0 denoted by [0],. So

[o],={....,-6,-3,0, 3,6, ...}
Similarity [1].={...,-5,-2,1,4,7, ...}

[2),={.54,-1,2,5,8, ...}

Hence Z=[0],U[1],U[2]..
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Remark : For a given positive integer m, congruence modulo m relation partitions the
set Z into in equivalence classes denoted by [0] , [1]_, ..., [m-1] .

Equivalence relation induced by a portion :

Converse to the above discussion, given any partition of a set we can obtain an
equivalence relation on it. Take for example X={1,2,3,4,5,6}.

Let X ={1,2,5}, X,={3,6},X,={4} bea partition of X. Define a relation R on X as
follows :

aRb iffa and b ‘are in the same subset’.
Now (i) aRa forall ae X = R is reflexive.
(i1) IfaRb then bRa follows = R is symmetric

(iii) If aRb and bR¢ then a and b are is the same subset and along with the fact that b
and ¢ are also in the same subset if follows that a and c are in the same subset.

- Hence aRc, implying that R is transitive.
Thus R is an equivalence relation. More over Ris given explicitly by
R={(1,1),(1,2),(1,5),(2,1),(2,2),(2,5),(5,1),(5,2),(5,5).(3,3).(3,6).(6,3),(6,6), (4.4)}
and the equivalence classes are

[H21-B31EX,, BH6FX,, [41-X,.

Exercise-1(a)

. If A= {a)b,c.d} mention the type of relations on A given below, which of them are
equivalence relations ?

(1) {(a.a), (b,b)}
(i) {(a,a), (b,b), (c,¢), (d.d)}
(iii) {(a,b), (b,a), (b,d), (d,b)}
(iv) {(b.c), (b,d), (c.d)}
(v) {(a.a), (b,b), (c.c), (d.d), (a.d), (a,¢),(d.a), (c.a), (c.d), (d.c)}
2. Write the following relations in tabular form and defermine their type.
(i) R={(x,y) : 2x-y=0] on A= {1,2.3,..., 13}
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(ii) R= {x,y) : xdivides y} on A= {1,2,3,4,5,6}
(iii) R = {(x,y) : x divides 2 - y} on A= {1,2,3,4,5}
(iv)R={(x)):y<x<4} onA={1,2,34,5}.

3.  Test whether the following relations are reflexive, symmetric or transitive on the sets

specified.

())R={(mn)m-n=27} onZ.

(1)) R = {(m,n):2|(m+n)} on Z.

(ii1) R = {(m,n) : m+n is not ciivisib]e by3} Z.
(iv) R= {(m,n): —':z—z isapowerof 5} on Z-{0}.
(v) R= {(m,n):mn is divisible by 2} on Z.

(vi) R = {(m,n) : 3 dividesm-n}on {1,2,3...,10}.

4.  List the members of the equivalence relation defined by the following partitions on
X={1,2,3,4}. Also find the equivalence classes of 1,2,3 and 4.

) {{1}-{2}-{3.4}}

(i) {{1,2,3},{4}}

(iii) {{1,2,3,4}}
5. Show thatif R is an equivalence relation on X then domR = rmgR=X.
6. Give an example of a relation which is

(1) reflexive, symmetric but not transitive.

(ii) reflexive, transitive but not symmetric.

(i11) symlﬁetric, transitive but not reflexive.

(iv) reflexive tbut neither symmetric nor transitive.

(v) transitive but neither reflexive nor symmetric.

(vi) an empty relation.

- (vii) a universal relation.
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7. ' Let R be a relation on X, If R is symmetric then xRy => yRx. If it is also transitive then
xRy and yRx => xRx. So whenever a relation is symmetric and transitive then if is also
reflexive. What is wrong in this argument ?

8.  Suppose a box contains a set of n balls (n > 4) (denoted by B) of four different colours
(may have different sizes), viz. red, blue, green and yellow. Show that a relation R de-
fined on B as R={(b,,b,) : balls b, and b, have the same colour} is an equivalence relation
on B. How many equivalence classes can you find with respecttoR ?

[Note : On any set X a relation R={(x,y): x and y satisfy the same property P} is an
equivalence relation. As far as the property P is concerned, elements x and y are deemed
equivalent. For different P we get different equivalence relations on X]

9.  Find the number of equivalence relations on X={1,2,3}. [Hind : Each partition of a set
gives an equivalence relation. ]

10. LetR be the relation on the set R of real numbers such that aRb iff a-b is an integer. Test

. . : / ; 1
whether R is an equivalence relation. If so find the equivalence class of | and 7 WLt
this equivalence relation.

11. Find the least positive integer r such that
(i) 185¢[r],, (i) -375€[r],,, (iii) -12€(r] , .

12. Find least non negative integer r such that
(i) 7%13x23x413 = r (mod 11)

- (i) 6x18x%27%(-225) = r(mod8)
(iii) 1237(mod4) + 985(mod4) = r (mod 4)
(iv) 1936 x 8789 =r (mod 4)

13. Find least positive integer x satisfying

276x + 128 = 4 (mod 7)
[Hint : 276 = 3, 128 = 2 (mod 7)]
14. Find three positive integers x,, i =1, 2, 3 satisfying 3x =2 (mod 7)

[Hint : If x, is a solution then any member of [x, ] is also a solution]
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1.5

Functions : Types of Functions

As we already know, a function from a set X to a set Y is a special type of relation
ffrom X to Y such that for each x e X these is one and only one element y €Y which is
related to x by the relation /. We write y=f{x) and call it the i 1mage of x under fand call -
x, the pre-image of y under f.

In symbols,

[: XY if f< XxY such thatvVxeX, 3!'ye y and (x,y) € f (The symbol 3! means
that there exists an element uniquely, i.e. there exists only one element) We also know
that domf=D = X , codomain of f=Y and rng f=R=AX), We studied examples of
different functions on the set R of real number and about their graphs. We continue our
study of functions in some greater detail as the concept of function is extremely impor-
tant in mathematics. We begin with the following definitions.

Definition: A function £ X—Y is said to be an onto or surjective function if
rng f=f(X)=Y. i.e. if every element of Y is the image of some element of X.

Definition : A function /: X—Y is said to the an into function if rng /= fiX)<Y (a
proper subset of Y)

i.e. if there is at least one y€ ¥ which has no pre-image in X.
Definition: A function /: X—Y is said to be a one-one or injective function if for
every x,, x,€x fix)=f(x,) = x=x,.

(Equivalently fis one-one if distinct c_:lements. in X have distinct images in Y, i.e. x #x,
= flx,) # fx,).

Definition: A functionf: X—Y is said to be a many-one function if there exist x , x,eX
with x # x, such that fx,) =f(x,). i.e. more than one (many) elements of X have the same
image under 1.

We illustrate these ideas in the following example.

Example 8

Consider the following functions represented diagramatically.
‘& (=
™V o e g Y
, o
== ——

(1) One-one onto (i1) One-one into
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* ‘, \, 2 \ J
— — R
(111) many-one onto (iv) many-one into

In diagram (i) X={a,b,c}, Y={1,2,3} and f,: XY such thatf (a)=1, f,(b)=2 and f (c)=3.
Here distinct elements of x have distinct images in Y. Hence f, is a one-one map. More
over f,(X)=rmgf,={1,2,3}=Y implies that f, is onto. We say: /| is a one-one onto function.

In diagram (ii) , is one-one. Moreover there is one element 4 € Y which is not the image
of any of the elements of X. Thus rng f,= {1,2,3} < Y= {1,2,3,4]. Hence /,1s a one-one
into function. figs

In diagram (iii) there are two distinct elements viz a and b, which have the same image 1,
i.e.a # b but f(a)=f(b) = 1. Hence f, is a many-one function. Further f,(X)=rng
/,={1,2}=Y shows that £, is an onto function. Thus /, is a many-one onto function.

In diagram (iv) f, is a many-one into function as you can check.
Note that unlike a one-many relation, we do not have a one-many function. (why !)

Definition. A function /- X—Y is said to be a bijective (one-one onto) function which
is both injective and surjective.

Definition : Two sets X and Y are said to be in one-one correspondence if there is a
bijective function from X to Y. If there is a one-one correspondence between two sets X
and Y then we say that these sets one equivalent/similar/equipollent or equipotent and we
write X~Y.

Now we take a closer look at lijective functions which play a very significant role.

Exampie— 9

Consider f :N—N defined by fix)=2x. flx )=Ax,)=2x =2x,=x =x,. Hence [ is one-
one. But fis not onto since IeN has no preimage. for, if there is an xeN s.t. f{x)=1 then

we should get 2x=1 = x= % N.

But if we consider /:R—R defined by f(x) = 2x as above, then it is easily verified
that fis both one-one and onto. This shows the importance of domain of a function.

Example 10

Let f: R—R be defined by
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xz'—i,x;t()

2

fx)= -3
o

g X O

Show that f is onto but not one-one.
Solution :
In order to show that fis onto, given yeR we need to find xeR s.t. y=f(x).
If y = 0, then we have x = 0 (by definition of /)

1 x*-1
If y# 0, then y = fix) = x*- v e

= x'-xy-1=0

I - |
= x’= E(y +y + 4) (neglecting - sign before the radical as x*> 0.

Jy+»'+4 eR.

1
:i—
=X >

So fis onto.
Clearly f'is not one - one since /(1) =f(-1) =£(0) = 0.

Example 11

Let X and Y be finite setsand | X | =Y |.
(Recall that |S| denotes the number of elements in a finite set S)

Show that if f: X—Y is onto then f must be one one and conversely if f is one-one then
it must be onto.

Solution :
Let [X|=|Y]|=m.
Let f be onto.

If f is not one-one suppose x , x, € X, x #x, and f{x )=f(x,). Since each element of x has

only one image in Y there are atmost m-2 images of the elements x, x,... x_of X m Y. So
altogether we have (m-2)+1=m-1 images in Y. Hence |rng f| < m-1 <m = |y | which

contradicts the fact that fis onto. Hence f most be one-one.

Conversely let f be one-one since each of the melements of X has a unique image in Y
and f is one-one there must be m images in Y. i.e. [rng f|=m=|Y]|

= f 1s onto.
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Note: This result is not true for infinite sets as we have already seen in Example-9 and
Example-10.

Example 12

()

(11)

(iii)

(iv)

V)

(vi)

The function f: R—R defined by f{x) = x? is not one-one as f{-1)=f(1)=1. It is not onto
because any negative real number has no pre-image.

But f: R — R = {xeR : x >0} is onto but not one-one However f: R, 5R  is bijective.
The function /: R—R defined by f{ix) = x* is bijective. It is surjective : If yeR then we

can find y-li € R such that [J’%J= y.Sorng f=R.
It is injective :
fx)=f(x)=>x =x;
= —x) (xf X + x:f) =0
= (x,—x,) (xf +X,X, +X; ) =0
— 3
(X +x,x, +x; #0 for any x,,x, € R both not zero).

The function £.R—R defined by f{x) = 3x+5 is bijective.

2Ly = -5
It is surjective : If yeR then we can find e R

3
_ -5 -5
Such that f(yTJ = 3(!3_]"‘5 =Y

It is injective : f'(x,)=f(x,)

=Y 3x|+5 = 3x2+5 =DX=X,,X,X,€ R.

The function f/: R—R defined by f(x) = | x | is neither injective nor surjective since
(i)-2#2and|-2|=2=|2]

and (i) rngf=R LU{0}< R.

The function f: R;{O} — R-{0} defined by f(x) =—J]; is one-one and onto.

T T
The function f: [-5,5] —[-1,1] defined by f{¥) = sin x is one-one and onto. It is

clear from the graph of sin x. otherwise,
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(vii)

ll-_‘ "'J

X, +x2

sin o= sin X, = 2 cos

. xi_xzﬁ(.) =0 L
=sin 45=2=0, = x-x=0=>x=x,

(Ifcos - ;x’ =0, x,,x, =mw and x, + x, e[:;-,g]:x; =X =%}

-t 1
Again ifae[-1,1] we can find B (=sin"'a) € [T’E]
(see figure) such that sin B=a. You will learn about inverse trigonometric functions
later.

But f: R-[-1,1] defined by () =sin x is onto but not one-one. You know from periodicity
of sine that sin x = sin (x+2n) for xeR. Thus by restricting domain of sin e function

- T
from from R to [“2“35} we get a bijective function from one which is not bijective.

Similar observation can be had relating to other trigonometric functions. See article on

 trigonometric functions for detailed discussion.

The function f: R—5R defined by f(x) = is neither one-one nor onto.

x* 41

. z _
It is not onto; for if 5 1 R then x’-x+1= 0, whose roots are not real. Hence 1 has

; | 2
no pre-image. Also f is not one-one since f [E) =5=/.
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1.6 Composition of Functions

It is possible that the codomain of one fuction fis the domain of another function g.
There is @ way to combine the two functions fand g to produce a new function called the
composition of fand g that is defined below.

Definition. If /: X—Y and g: Y — Z, then the composition of fand g denoted by gof
(read ‘g composite /) is defined by (gof) (x) =g (f (x), xeX.

Note the order in which fand g appear in the definition of composition of fand g. Also
note that gof is defined only when rng fC Y =dom g. clearly gof : X—Z so that

dom (gof)= X and rng (gof) = g(rng f) < Z. The idea of composition is illustrated in the

adjoining figure.

+ 3

IS wng§  wng(aed)=aCmas)

Example 13.

LetX = {1.2.3}, Y={ab,c,d} and Z={red, green, blue}. Let f: X—>Y si.f={(1.a),
(2,¢), (3,d)} and g: Y= Z s.t. g= {(a,green), (b, green), (c, blue), (d, red)} gof is obtained
by observing the diagram.

i g g
1 »a » green
2 2> — blue
3 d » red

So gof : X— Z s.t. gof = {(1, green), (2, blue), (3, red)}

Dispensing with diagramatical approach, we have (gof) (1) =g (f(1)= g(a)= green
and similarly (gof) (2)=blue and (gof) (3) = red, which defines gof": X—Z.
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Example 14
Conéider the following real functions.
()£, (x) = sin
(i) £,(x) = cos (sin x)
(iii)j;(x) = (2x+1)? + 3(2x+1)+2

Hence f,, f,and f, are some examples of functions obtained by composition of fand g in
the following ways (Assumming f: R—R and g : R—=R):

(i) If g(x) = sinx and fix)=x?, then (gof) (x)=g((f (x))
= g(y) (writing y = f(x)
=sin y = sin x*= f(x).

(ii) g(x)=cos x and fix) = sin x = (gof) ()=g((f )
= g(y) = cos y = cos (sin x)

(writing y = f{x) = £(x).
(iii) g(x) = x*3r+2 and fx) = 2x+]

= (g9f) (x)
=g((/(x)) = g(y) = y+3y+2 = (2x+1)+3(2x+1)+2 = £(x)

It is very important tonote that composition of functions is not commutative in general.
If gof is defined then fog may not be defined and even if fog is defined, it may so happen
that gof = fog as the following example shows.

Example 15
(i) Letf R—R bedefined by f(x) =x+1 and g:R, —R be defined by g(x) =1/ .

In this case (fog) (0)=(f(&(x)) = 1 (Vx) =Vx +1.

But gof'is not defined as rngf ¢ dom g.
- (ii) Letustake#R,—Rand g:R —R, in (i) above. Then both fog and gof are defined
But (fog)(x) =Ag(x) =AA/x )= Vx+1 and

(gof) (x) = g (Ax) = g(x+1) = x +1. clearly fog # gof.
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(iii) LetfR-{0}—R-{0}and g:R—{0} -R-{0} be defined by

fAix)=x’and g(x)=-;? :

Then both gof and fog are defined. Further

1
(0/) (x) = g(ftx) = gx*)=—5 and

1
fo0re) =g =1 =)= &

* 5
Here fog = gofon R -{0}.
~ Some important results on composition of functions :

Theorem 1.

If £X =Y, g'Y—>Z and h:Z - V then

ho(gof) = (hog) of i.e. composition is assocaitive.
Proof.

By definition of composition,

gof : X—Z and hog:Y—V. Hence

ho(gof): X — V and (hog)of : X = V. Moreover for x € X,

(ho(gof))(x) =h(gof )(x) = h(g(/(x))

and ((bog)of )(x) = (hog)( £ (x)) =h(g(7(x)).
Hence proved.

Theorem 2.
If f:X—>Yandg:Y —>Zthen
(i) gof is onto if both fand g are onto.
(i1) gof is one-one if both f'and g are one-one.
(iii) If gof  is onto then g is onto.

(iv) If gof is one-one then fis one-one.
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Proof.

(1)

(i1)

Let fand g be onto. ThenﬂX) =Y and g(Y)=2Z.
Hence (gof)(X)=g(f(X))=g(Y)=Z.

= rng(gof)=Z = gof is onto.

Let fand g both be one-one.

Suppose (gof)(x,) = (gof)(x,) ; x,,x, € X.
=g(f(x))=g(f(x)

= f(x)=1(x,) ‘ (- g is one-one)

—T 0 M (- f is one-one)

Hence gof is one-one.

(1i1) Let gof: X—Z be onto.

(iv)

Hence if z '€Z, then there is at least one xe X s.t. (gof) (x) =z,

i.e. g(f(x))=z. Writingy =flx) we have ye Y s.t. g(y)=z.

" Hence g is onto.

Let gof be one-one.
Suppose fis not one-one.

Then for some X, %, X with X, #X,

F@)=f(x)
=g(f(x))=2(/(x))
= (gof)(x,) = (gof)(xz)

This is contradiction to the fact that gof is one-one.

So gof is one-one = f'is one-one.
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1.7 - Inverse of a Function

We begin with functions f,, £, f,and f, as given in Example 8. We have

£, {abc}—>{123}and f = {(a.1),(b.2),(c,3)}

f, {abc}—>{1234}and [, = {(a1),(52),(c,3)}

f,:{abc}—>{12}and  f, = {(a,1), (b,1),(c.2)}

[+ {a.bc}—>{1,2,3,4} and f, ={(a,l1), (b,2), (c,2)}

For the function f, consider the inverse relation g ={(1,a), (2,), (3,¢)}. Does it represent
a function ? Here g.= {1,2,3}— (a,b,c} such that g (1)=a, g (2)=b and g (3)=c and
consequently g, is a function which we call to be the inverse function of f, as the

domain and condomain of f, are interchanged with these of g,.

On the otherhand, for the function £, , consider the inverse relation g,=(1,a), (2,b), (3,¢).
We see that g, is not a function from {1,2,3,4} to {a,b,c} since g (4) is not defined. In
this case inverse function of f, does not exist.

Similarly in case of f,, the inverse function of f, cannot be defined by
g,={(1,a),(1,b),(2,c)} as ledom g, would have two different imagés. Also f, has no
inverse function as the elements 3 and 4 of domg, would be without images in the
codomain of g,. :

Hence we observe that out of f|, f,, f; and f, only f,, which is one-one onto, has the

inverce functions g,. We usually write ;™' inplace ofg,.

This abservation is true in general that all functions which are both one-one and onto
(bijective) have inverse functions. We prove it below.

Theorem 3.

Let f: X—Y. Then the relation /' is a function from Y to X if /s bijective.

Proof.

We show that
(i) dom f'=Y and
(ii) every y €Y has a unique image in X under /.
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(i) By hypothesis, f is surjective so that for every yeY thereis xeXs.t. (x,y)e f.
= (y x)ef ! = yedom f'. '
.. y < domf " andsince domf™ Y, wehave domf ' =Y .

(1) Now suppose yeY has two distinct images x, and x, under /™.
So(y,x,) € fand (3x)) € .
=(x,y)e f and (x,,)e /.
Since / is injective, x,=x, a contradiction to assumption, |
Therefore /' : Y—X is a function.
Now we have the following definition.

Definition. _

A bijective function f: X—Y has an inverse function /': Y—>X given by

=0 ) ef})

Thus if f1s bijective, y=f (x) < x ="'(y)

A function. S s said to be invertible if /' exists. The next theorem helps us to test
invertibility of f.

Theorem 4.
Iff: X—Y isbijective then

(1) fof=id, and fof ' = id, where id, and id, are the identity functions on X and Y
respectively. :

(1) Ifinaddition g: y—Z is bijective then (gof)'=f"og™.
Proof.

(i)  Toshow f" of=id, , by definition of equality of funcitons, we must show that
(f'of )(x) = idy (x) for every x e X.

Now y=("of )@= (f®)
=>(f@)hy)ef
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>(nf@)ef=fP)=f@)=>y=x
(.. fis one-one)
o> y= (f“af)(x) =x=id_(x), xe X.
= fof =id,.
Similarly we can prove that fof "= id, .
(i) By hypothesis, f: Y—X, and g ': Z—Y. By Theorem 2, gof is bijective and
(gof)": Z-X. '
In order to show that (gof)" = f~og" we must show, by definition of equality of functions,
that for every zeZ, (g0f)"(2) = (f'og™") (2).
Now, let zeZ.
Then we have xe X such that (gof)'(z) =x (A)
=z=(gof )(x)=g(/(x)) =80
(writing y = £ (x))
=>y=g (.
Buty=f(m) e x=f"'0=/"(g'@)=(/"g")@D- .. B
From (A) and (B) if follows that ' |
(‘goj")_l (z)= (f"og‘-1 )(z) foranyze Z.
Hence (gof)y'=f"og".
Remark.

The converse of Theorem 4(i) is true, i.e. if we can find g:Y—X such that gof=id, and
fog=id, then fis bijective and g=/". (see Q. 14, exercise-1(b))

We use this fact to test invertibility of a bijective function.

Example-16

Let f: R—R be defined by f{x) = 3x+5
Show that f is bijective. Find /(1) and /(0).
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Solution : :
‘To show that f is bijective refer Example 12 (iii).

y-=5

Nowy =f(x) =3xtS=>x= e

; -5
So for any yeR we can find a unique yT eR

y-5 -5
Suchthatf[ ] B=—+5=y, Hencef’lsglvenbyf (x)= 3 ——,xeR.

Then f(1)= —% and £7(0) -_-—%.

Example- 17

Show that f’R—R defined by f(x) = x*-1 is not invertible in general. Find the domain
and codomain where fis invertible. Also find /.

Solution
For flx)=x*-1, f{-1)=0=f(1). So f is not one-one. Hence fis not bijective and therefore
not invertible.
Now, lety =x*-1€R= x =+,/y +1. For x to be real we must have y > -1 - (A)

Moreever fis many-one since both —,/y+1 and +,/y +1 map onto y under f".

To make f* one-one we restrict the domainto R, U {0} i.e.{xeR:x20} .. (B)
Using (A) and (B) we consider f: [0,00) = [0,0) .

Now let us define g:[-1,0) =[O0, co)‘by gy)=Jy+1.
. Then (gof)(x)= g(fx)=g(®-1)=y(x* ~1) +1=x=id,(x)
and (f0g)0) = £ (20)) = £ (\y+1)=(Vy+1) ~1=y=id,()

since gof = id, and fog=idy, g=f"'.
o f1isdefind by f1 (x) = Vx+1, xeR.
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Exercises 1 (b)

Let X={x,y} and Y={w,v}. Write down all the functions that can be defined from X to Y.
How many of these are (1) one-one (ii) onto and (ii) one-one and onto ?

Let X and Y be sets containing m and n elements respectively.

(1) What is the total member of functions from X to Y.

(i1) How many functions from X to Y are one-one according as m<n, m>n and m=n ?
Examine each of the following functions if it is

(1) injective (i1) surjective, (iii) bijective and (iv) none of the three

(@) f:R = R, f(x)=x’
(b) f :R—>[-L1], f(x)=sin x
(¢) f:R, -;R+,f(:c)=x+-1£ where R, ={xeR : x>0}

(d) f:R—)R,f(x)=x’+1.

X
1-x

(e) f:(-L1)>R, f(x)=

(f) f:R >R, f(x) = [x] = the greatest integer < x .
(8 fR-R,f(x)=|x|

(h) fR-R,f(x)= sgn x

(i) /R >R, f=id, = the identity function on R.

Show that the following functions are injective.
R AL o
(1) fix) =sin x on "

(ii) fix) = cos x [0, ]
(iii) Ax) = log x on (0,:0), (a>0anda#1)

(iv) fix) =a*on R. (a>0anda=1)

Show that functions fand g defined by f{x)=2 log x and g(x) = log x* are not equal even
though log x> = 2 log x.
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6.

10.

11.

Give an example of a function which is
(1) Surjective but not injective.

(ii) injective but not surjective.

(iii) neither injective nor surjective.

(iv) bijective

Prove that the following sets are equivalent :
{1,2,3,4,5,6,...}

{2,4,6,8,10,...)

42,5795

(1,4,9,16,25,.)

Let /= {(1,a), (2,b), (3¢), (4,d)} and
g={(a,x), (b, x), (¢, y), (d, x)}

Determine gof and fog if possible. Test whether fog=gof.

Let f= {(1,3), 2:4), 3.7)}
and g= {(3,2), (4.3), (7.1)}

Determine gof and fog if possible. Test whether fog = gof.

Let fix)=+/x and g(x)=1-x%
(i) Find natural domains of fand g.

(ii) Compute fog and gof and find their natural domains.

(iii) Find natural domain of h(x) = 1-x.

(iv) Show that h=gof onlyonR ={xeR:x>0} and notonR.

Find the composition fog and gofand test whether fog = gof when fand g are functions

on R given by the following :
(/) =X, g@) =x-2
(ii) fix) = sin x, g(x) = x*

(iii) fx) = cos x, g(x) = sin x*

1

(i) f1x) = g9 = (1-x°)
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12.

e X

14.

15.

16.

17+,
8%,
C19%,

20%,

(a) Letf beareal function. Show that
h(x) =f(x) +f(-x) is always an even function
and g(x) =f(x) - f(-x) is always an odd function.
(b) Express each of the following function
as the sum of an even funcﬁon and an odd function:
(i) 1+x+x?, (i1) 22, (iii) e*,(iv) e+ sin x
Let X= {1, 2, 3, 4} Determine whether f: X—>X
defined as given below have inverses. Find /' if it exists :
(1)/= {(1.4), (2.3), 3.2), (4,1)}
(1) f= {(1,3), (2,1), (3.1), (4.2)}
@) = {(1,2), (2,3), 3.4), (4,1)}
(iv) f={(1.1), (2,2), (2,3), (4.9)}
W= 1{(1.2),(2,2), 3.2), (4.2)}
Let £ X—Y. |
If there exists @ map g:Y—>X such that gof = id, and fog = id,,, then show that
(i) fis bijective and (ii) g = .
[Hint- since id, is a bijective function, gof=id, is bijective. By Theorem 2(iv) f is
injective. Similarly fog is bijective = fis surjective by Theorem 2(iii)]
Construct an example to show that (A NB)# f(A)n f(B) where AnB# ¢

Prove that for any f: XY, fo id, =f=id of.

Prove that f: XY is surjective iff for all BEY, /(f~'(B))=B.

Prove that f: X—Y is injective iff /! { f (A)) =A forall A _g X.

Prove that 2 X—Y is injective iff for all subsets A, B of X, /(A NB)=f(A) Nf(B).

Prove that £ X—Y is surjective iff for all ACX, {f(A)'=f(A’), where A' denotes
the complement of Ain X.
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1.8 Binary Operations

Addition, subtraction, multiplication and division of real members are some of the
arithmetic operations with which we are all familiar. A closer look at these operations
makes it clear that we take two real numbers and apply these operations to obtain another
real number. We can think of this operation as applying a function on RxR to R. Since
these operations involve basically 'two' elements, they are called binary operations, we
note that the operations of addition and multiplication in R denoted by symbals '+' and
'x' respectively, satisfy a property given by a+b =b+a and axb=bxa. In the following we
discuss about binary operations in general and study some of the properties they sat}sfy
We begin with

Definition.
Let A be a nonempty set. A binary operation on A is a function from AXAto A..
In otherwords, given any ordered pair (a,b) of elements a and b of A the binary operation
*' associates to this ordered pair a unique element ¢ of A. We write axb=c instead of
writing * ((a,0))=c.

Example 18

Addition, subtration and multiplication are binary operations on R because given any
two real members a and b, a+b, a-b and axb (or ab) are also real numbers. -

Subtraction is not a binary operation or N because fora <b, a—bgN.
Division is not a binary operation on R becomes a + b is not defined when b=0.
But it is a binary operation on R-{0}.

Multiplicaiton is a binary operation on R as axb €R for any a,beR. But multiplication of
a real number by a constant is not a binary operation because it

(i.e. x — kx,k is constant, x € R) is not a function or RxR (why ?).

Definition : Q
Let Bc A and * be a binary operation in A. If for every pair of elements (x,y)€B, | |
x * y is also in B, we say that B is closed under '+’

If there is at least one pair (x,y) in B such that x * y is not in B then we séy that B isnot
~ closed under '+'. Thus as shown in Example-18, N is not closed under subtraction but
closed under addition. We also say that B satisfies closure law w.r.t. '+ ' if B is closed
under '+, “
Example 19. 7
Let X be any set and P be the set of all subsets of X.

Let U:PxP—Pbe given by (A,B) > AU B and M : PxP—Pbe givenby (A,B) ANB.
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Because union (intersection) of a pair of sets (A,B) is a unique set denoted by AUB
(ANB) in P, U and M are binary operations in P.

~ (Note that binary operation 'in P ' and 'on P ' shall be used synonimously)
Example 20

(x, y) =" is a binary operation or N because for every pair of positive integers (x.,y)
there is associated a unique integer x. But this is not a binary operation on Z or Q or R
(We cannot always associate (0,y) to a member).

If the order of a set is small we can represent a binary operation on it by a table called
composition table/operation table/multiplication table, like the multiplication table which
is known to us from our school days.

(Note that the coinage 'multiplication table' does not necessarily mean that the binary
operation involved is our well known multiplication operation. In fact, the symbols used
for binary operations have flexible meanings specific to their definitions in the context.
Just see the table that follows.)

Consider the following example.

Let A={a,B,y }. define '+' on A as follows. ata=a, a+B=p, a+y=y, p+a=p,
B+B=y, p+y=a, y+a=y_y+B=a and y+y=PB. We can write the above binary
operation '+ by the following table.

pot T N |
i %.p Y g
gl g 1 =
p i e S

~ We shall now consider some important type of binary operations.
Definition A binary operation '+' on a set A is said to be
(i) commutative ifa * b=b x a foralla,b € A.
(i1) associative if (axb)*c = ax*(b=*c) forall a,b,ceA.
For example, +' is commutative but -' is not commutative in R and '+' is not associative
in R-{0}. |
Definition.
Let *be a binary operation on a set A.

(i) The setAis said to have an identity element if there exists a unique element e A
such that exa = a+e forall aeA. In that case e is called the identity element w.r.t. *.

" (ii) Ifthe set A has an identity element e w.r.t a binary operation, then an element aeA
is said to have an inverse element w.r.t. *, denoted by @', if axa'=a'*a=e.
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In that case a’' is called the inverse of a w.rt. *.

(Also note that the meaning of a™' is specific to the definition given here. It does
not necessarily mean the exponential a™')

Example 21 .

The integer 0eZ is the identity element of Z w.r.t. "' since a+0=0+a = a for every
acZ.

For any integer neZ, -m is the inverse of m w.r.t '+

The integer 1 €Z is the identity element of Z w.rt '¥' since 1xa=ax1=ga for all
aeZ. Butany integer meZ, m#1, does not have an inverse w.r.t.'x',

Again 1€Q (or R) is the identity element of Q (or R) w.r.t. x , the multiplication |
I . :
.operation and for any xeQ (or R), x # 0, S the inverse of x w.r.t.' x".

These concepts have far reaching consequences in higher mathematics.
Example 22 ' '
Show that '+'and ' x' defined on RxR by the rules
(i) (e, )Hx,, ¥,)=(x +x,, ¥ +y,) and
(i) (x,0) % (x,, ) = (X, X, ¥, ¥y, X, 7,4, 7))
are both commutative and assaciative
where (a,b)=(c,d) < a=c and b=d.
Solution :
(1) @)+ 0, 2) = (x+x,, ¥+ )
=, tx, ¥, ) (+.-addition on R is commutative)
=(x,,»,) +(x,»,) (bydefinationof'+ on RxR)
Hence '+ is commutative.
Since addition of real numbers obey associative property we can similarly show that '+
satisfies this property on RxR.
(i1) We only test the commutative property for 'x'.
(x.) X (x,, y,) = (XX, y¥,, Xy, + x,»,) (by definition of 'x") and
(xZ’ yz) X (xl ? y:) 7 (xrx!'yay1=x2y1+yle)
since X, X,= ¥, ¥, = X, X,- ¥, ¥,
and x, y,+x, y=x,y, +y, x,' (by commutative property of multiplication in R);
by defination of equality in RxR, we see that (x,,y,)% (x,,»,) = (x,, y,) X (x,, »)).
Testing of associativity is left as exercise.
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Exercises- 1 (¢)

- Show that the operation * given by X *y=x+y-xy isa binary operation on Z, Q and R but

noton N.

Determine whether the following operations as defined by # are binary operations on
the sets specified in each case. Give reasons if it is not a binary operation.

(i) axb=2at+3bonZ.

(i) a*b=ma-nbonQ+where mandneN.
(iii) a*b=a+b (mod 7) on {0,1,2,3,4,5.6)
(iv) axb=min {a,b} onN.

(v) axb=GCD {a,bjonN.

(vi) axb=LCM {a,b} onN.

(vii) a*b=LCM {ab} on {0,123 4......, 10}
(viii) axb = Ja? +b? onQ;

(ix) axb=axb (Imod 5)on {0,1,2,3,4}.

(x) axb=a’+b* onN.

Exly aab =atb - abon R<{1}.

In case *is a binary operatioﬁ in Q2 above, test whether it is (i) associative (i1)

commutative, Test further if the iedentity element exists and the inverse element for any
element of the respective set exists.

Constract the composition table /multiplication table for the binary operation *defined
on {0,1,2,3,4} by a*b = axb (mod 5). Find the identity element if any. Also find the
inverse elements of 2 and 4.

[This operation is called multiplication moduls 5 and denoted by x,. In general, on a
finite subset of N, x _denotes the operation of multiplication modulo m where m is a

fixed positive integer].
o




Inverse Trigonometric Functions

Mathematics possesses not only truth, but supreme beauty, cold and austere, like
that of sculpture and capable of stern perfection such as only the greatest art can show.

- Bertrand Russell
2.0 Introduction ‘
In earlier classes you have studied the concepts of trigonometric functions, such as sine,
cosine, tangent, cotangent, secant and cosecant; their domain, range and some properties. Also

. ; e O | 5n
you know that trigonometric functions are not one-one and onto e.g. Smg =R =Sin = Hence

in general we cannot define their inverse functions. But by suitable restriction of their domains
we can make bijective functions out of them. In this chapter we shall consider the inverse
trigonometric functions. These functions have extensive use in mathematics especially in
integral calculus and also in engmeenng and technology.
2.1 Definitions :

Let us first consider the function

Sin: R—[-1,1]

Lety =Sinx, x € R. Look at the graph of sinx. For ye[-1, 1], there is a unique number

y : 3z T = wml w3 )

x in each of the intervals..., [_T’ —5]» [‘3: ?]: ['5, T] .-« such that y =sin x. Hence
any one of these intervals can be chosen to make sine function bijective. We usually choose

[--125 ‘g] as the domain of sine function. Thus sin : |:—"2- E:|—->[—1, 1] is bijective and hence '

admits of an inverse function with range [ 57 2] denoted by sin™ or arcsin (see foot note)

Each of the above mentioned intervals as range gives rise to different branches of sin™!

function. The function sin with the range [_E E] is called the principal branch which
is defined below.

T
Sin™ : [-1, 1] —)[*— ——] defined by y=sin"'x < x = siny
- . n n ] \ -
The values of y(=sin™'x) in [_E i E] are called principal values of sin'. -

* The prefix ‘arc’ in “arcsin x” stands for ‘the trigonometric argument whose sine is x’. In a unit
circle it is same as an arc of measure of 6 radians.
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Similar considerations for other trigonometric functions give rise to respecive inverse
functions. We define below the principal branches of cos™, tan™ and cot .

cos™ : [-1, 1] = [0, n] defined by y=cos™'x <> x = cosy
T
tan” : R— (—5,_—2—-) defined by y=tan'x <> x = tany

cot : R—> (0, m) defined by y=cot™'x < x = coty
Observe that in the above definition for tan!, since x = tany is undefined for

n T W
y=+2, {—5 ) '5} is excluded from the range of tan'. For similar reason {0, 7} is excluded

from the range of cot™.

To define sec!, we see that y = sec™'x <> x = secy. Since [sec y| = 1 i.e. secy <1 or
secy > 1, the domain of sec™ is all of R excluding the numbers in the interval (-1, 1). Further

1 5 n T .
x=secy= ooy shows that no real value of x exists when y = > Soy# > and hence {-2-} is to

be excluded from the range of sec. Similar considerations lead us to exclude (-1, 1) from
the domain and {0} from the range of cosec™'*Thus we define sec™ and cosec' as follows :

n
~sec':R-(-1,1)— [0, ] - {E}=[0,g)u (% ,n] defined by y = sec”'x & x = secy.

T n T T
cosec”’ : R-[-1, 1]=>| 55| - {0}=|-E,0 )u(ﬂ,;], defined by y = cosec'x <> x

2 2
= cosecy.
Like sin™!, the inverse trigonometric funtions cos™', tan™, cot™!, sec! and cosec™ are
also denoted by arccos, arctan, arccot, arcsec and arccosec respectively.

Remark :

1. The notation sin~'x should not be confused with el the reciprocal of sinx, which

we denote by (sinx)"'. Remember that sin™' is a single or non-composite notation for the in-
verse function of sine rather than the (=1)th power of some number.

2. Unless otherwise mentioned, by sin~'x we shall always mean the principal value of
sin"'x and similarly for other inverse trigonometric functions.

2.2 Graphs:
To obtain the graph of y=f"'(x) we can take sample points x,, X,, X,......... X, on x-axis and
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evaluate the function " at these points givingy,, y,, .......... ¥, and then join the points (x , y,),
(x,, ¥,), .. -x,, y,) by smooth hand.

But the following general technique can be adopted for obtaining the graph of the inverse
function f! when the graph of f is already known.

Let us first consider the sin™! function. Since y = sin"'x <> x = siny, the graph of y=sin"'x
can be obtained from that of x=siny by interchanging x- and y- axes. Look at the graph of
y=sinx given in Fig. (a). The bold part of the graph is to be taken into consideration for the

principal branch of sin~'x, where x e[—%, %]

V’y’ \/xl
Fig.(a) y = sinx Fig. (b) x = siny
| 2y’ L SR
' s o 1N

- s e wm e e

x ¥

B - —— -

Fig. (¢) Fig (d) y = sin”'x
Now to obtain the graph of y = sin"'x we draw the graph of x=siny. Interchanging x-and
y-axes we see in Fig.(b), the graph of x=siny. To view the graph of x = siny or equivalently y =
sin"'x in standard mode give Fig. (b) some orientational changes as follows :

-
Step (i) Rotate Fig (b) clockwise in its plane so that the new position of OX is in the
standard positive direction of x-axis {See Fig(c)}.
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= :

Step (ii) Rotate Fig. (c) about x_')x so that OY is now in the standard positive direction
of y=axis {See Fig. (d)}. Fig. (d) gives the graph of y=sin"'x. '

The above procedure can be followed to obtain graphs'of cos™x, tan™x, cot™x, sec'x and
cosec’x. The principal branches of these inverse functions are shown below. Along with the
graphs of inverse functions the graphs of corresponding trigonometric functions are also given
for understanding the above procedure. _ '

AY NY
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2.3 Important Properties

Property-1.
We know that when f: X— Y is invertible then fof "'=I, and f~'of=I,.
Applying this we have.
(1) sin (sin'x) =x, xe|-1,1]
cos (cos'x) =x, xe[-1,1]
tan (tan'x) =x,xe R
cot (cot'x) =x, xe R
sec (sec'x) =x, xe R- (-1,1)
cosec (cosec'x) =x, xe R- (-1,1)

CAN = _nn
(i1) sin”’ (sinx) = x, x€ )
cos™ (cosx) = x, xe[0, 7]

tan” (tanx) =x,x € (.._125_%)

cot” (cotx) = x, xe(0, 1)

sec”! (secx)=x,xe [0, n ]-{g}
2

Tllustration

sin| sin™ ;l = sin P __S,-,,I‘.'__l
e S D 3 4
Rl e o B R
sy %) (o8 N MG 273
We have sin™ sins—?t =sin| sinl i=EMN=sin sinZ |
e have 2 b <l]= = =%

Similarly cos™' [cos 4—;‘) =coy [003[21: —%ED =cos” (cos—zgzj = %E

Property-II :
(i) sin’(-x) =-sin'x, x el-1,1] -
(ii) cosec’(-x) =-cosec'x, [x|=1

(iii) tan’(~x) =-tan’'x, xeR
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Proof

(i) Let y=sin (—x)yeii—-g -;ijl ;

&> siny=-x
& x=-siny =sin(-y)
< -y=sintx (- ye [—-g-,%jl
& y=-sin'x
Hence sin’'(-x) = -sin’'x.
Similarly properties (ii) and (iii) can be proved.
(iv) cos?(-x) = = - cos’'x, xe|[-1, 1]
(v) sec’(-x)=m-sec'x, |x|21
(vi) cot'(-x) = - cot’x, xeR
Proof. (iv) Let y = cos™(-x), ye[0,n] .
< CoOsy=-x
< x=-cosy = cos (n-y)
& n-y=cos'x (. ye[O,n] & n-y €[0,n]
& y=m-cos'x
Hence cos™(-x)= n - cos™'x.
“Similarly (v) and (vi) can be proved.
Property - I1I

(i) sin™ [%) =cosec 'x, |xP1

(i) cos [%)mc“x. |1

m“(l)— cot’'x, x>0
i) x) |-wtoot™'x, x<0

Proof.

(i) oo e S0 [ )IXL-l
T
2

T
Then V € I: 3’ i| {0} since no real value x ex15ts for whichy =0.
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(iii)

Fm‘the:—}r-=siny¢:x=cosecy

22

Since ye l:——ﬁ -Tf-] —{0}= rng cosec’, it follows that y = cosecx.

: 1
Hence sin™! [;J=cosec“x |x|=1.
Result (ii) can be proved similarly.
1
- oI] =
Lety=tan [xJ
Consider first x > 0.
1
Hencey € (O,-g-)and ;=fﬂ"}’¢>x=6‘01}’
4 n 2
Since y=(0,=)c (0,n) = rng cor ', it follows that y=cot'x
i =1
Hence tan e =cot” x, x>0.
Now Let x <0.

Since x < 0, by definition of tan™, y € (_—;,0)
£ e A
Now y = tan =& ;=tany & x=coty= cot(1t+-y)

Since ye(:;—,() % n+ye(-g,n)c(0,n) = rng cot !

Hence x = cot (m+y) = m+y =cot'x
= y=-n+cot'x

il
= tan 1-;= —t+ cot'x, x <O0.

Illustration.
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1 T Sm
tan™ (———-— =——=--g=cot” (-—\5) - 1.
'
Property - IV
@) sin'x + cos'x = % |x|<1
(ii) tan”x + cot’'x = g, xeR"
(iii) sec’'x + cosec’'x = %, |x|21

Proof. -
(1) Lety=sin'x.

<:>x=siny=cos(g-—y]
T 3 T
<::>§—y=cos‘x (‘.'E—ye[o,n])
ML st el = =1
@5—3111 X=C0S X

o 2 18
&< Ccos X+ Sin I=§.

Results (ii) and (iii) can be similarly proved.
Example 1. Prove that
(i) For0<x<l.

sin"x=.t:ﬂs"\ll—x2 = J_(x¢1)
il
= cot™ lxx . (x#0)
!

1

-1

— - # 0
cosec” —., (x#0)
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Gi)  For-1<x<0

X

: ; |
sin''x = —cos ] — x> T fan =, (x#-1)
; R J1-x*
wt l-xz
= -1+ cot
X
A
= —Sec =, (x=-1)
1-x
)
=cosec” —.
X

Solution.

(i) Lety=sin'x,0<x<1.
T
(a) Thenye [Oi-f:l
and sin y=x so that cos y = X
- | n . -
Since ye [0: E} — [0,n] = rng cos™, y=cos™ \[1—x* -

! p siny X
(b) NOWfOl’X;ﬁll.e.yii‘,taﬂy: COS}’_Jl-xZ'

X T [
— p=tan! ince ===, —
y ’l—xz $x¢15 YE[Oyz) ( 2’2)‘

(c) Againforx#0ie y#0,coty= siny= =
X : T
,x#O,smceye(O,i)c(O,n)

= y=cot’

Similarly it can be proved that
1 : oo
in-ly = -1 inlx = -1—
sin'x = sec ﬁ,x#& 1 and sin”'x = cosec = , X #0. :
(ii) Lety=sin’x,-1<x<0
Let x = —w, w>0 so that x>=w?
sin’lx = sin”(-w) = —sin"'w= A (say)
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(@) A=-sin'w =-cos'y1-w? by (i) above.
=—cos ' \1-x

w
(b) A=-=sin'w =tan’ fi_.2, forw=1

(-w)
=tan’! 71_“,: 3 forw#1

X
=tan’ il_xl, forx # -1

1__ 2
(¢) A=-sin’'w =-cot’ ww , forw#0

, w0 (sin cot™ (—w)=-n—cot ' w)

2

@ x
= —q+cot™ % x#0

: Similarly other two results can be proved.
- Illustration

sin"[lj—lc—-cos“‘ l—l*cos“[ﬁ} —-rcm”‘[ . Jetc
\2) 6 \’ ;5 38 i 7 i

(-4 -2 = |-t (33) oo ()< e

6
Property V |
x+y

(1) tan'x+ tan"y=tan"-1-—__;, for xy <1

) co T o L
(ii) tam'x + tany. = £t + tan™ 4

e for xy >1

: according as x>0 orx<0.
Before proving (i) above we note the following.

Let a=tan'xand B=tan' y and xy <1.
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% X
Then a,Be(~-:-2-,E)andx=tana, y=tan

tano+tanf _x+y
l-tan aanB 1-xy

Now fan(a+[3) =

a X+ I
From the above equality we cannot conclude that o+ = tan™ ;c_ xj: unless it is proved

that a+B e( _;'%) when o,B e( ——;-,%) . So we proceed as follows.

Proof.
(1) Let a=tan’'x, B=tany, and xy <1.
The case when xy=0is trival.

case (I). Let.x >0 and y>0. Then o, Be (o,g).

ik .
Now xp<l=px< v = tana < cot 3 = tan (%—'— B). |

Since tan is an increasing function,
s

a<~£—-ﬁ=:oa+ﬁ<2

2
i
Thus +B € (O,E)and

fano+tanB  x+y
l-tanatanB  1-xy

tan(o+p)=

xX+y

= o +p=rtan™ i

A
I=xp
Case (II) Letx <0,y <0. Then -x>0and -y > 0
We have (-x) > 0, (-y) > 0 and (-x) (=) = xy <I
By case (I) we have

=tan”' x+tan" y =tan

!-—x!+(—y!

1=(=x)(~»)

tan™ (-—x) +ian™ (=) =tan™
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5 : O xS et
=>tan"' x+tan™' y =tan ’1—y']-}—,smce tan™ (-0)=—1an™' 0

Case (IIT) Let x<0 and y>0. Then o e ( 412‘_,0) and B e (o,g)
T T
SO_ a+f E(_'Z'!E)

Similarly if x > 0 and y<0 then also o+ € (—

ST

T
)E)

Now, as in case (I),

_lana+tanB _ x+y
tan ( a+B)_1~—ranuranB T l-xy
' X+
= tan'x+tan"'y= tan’! T:Iy}i 3
This completes proof of (i).
(i) Letxy>1

First suppose x > 0 obviously y > 0.

Hence o, e(O,-g-).
§eni s ' T
Now xy>1=>x> 7=> tan o > cot = tan [-5-5]

n : £5% ; !
=a> —E*B (since tan is increasing function)

- But0<u:JL<-13 and 0<[3<1r—.

=>a+]3>2 > >

L. -
2 2
Now tan (a+f—m)  =-tan (n—(a+B)) = tan(a+)

Hence = <a+Bf<n=>—<a+B-n<0.

fana+tanfy  x+y
~ l-tanatanB 1-xy

23X e (s'mcea+ —ne(==X,0
l_xy(smcea-l-B ) = tan I—xp B ( ik )

Hence a+f-n=tan’
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1-xy-

On the other hand if x <0 then xy >1 = y <0.
Then -x >0, - y > 0 and (-x) (-y) = xy >1 give us
Sy ) -

tan”(-x) +tan’(-y) = n+ tan T o 1))’ , as shown previously

=tan” x+tan™ y =n+tan”

= tan''x +Han'y = —x + tan™ 1;{-3-}}—' (since tan(-0) = - tanf)

Hence proved.
By writing -y in place of y in the above property V (i) and (i1) we get the followmg
properties. However we need to remember only (i) and (ii)./

(i) tan’'x +tan'y= tan- =2

l+xy . forxy>-1_

— y ( .
1+xy for xy < -1 according as x>0 or x<0.

(iv) tan'x-tan'y=+m+ tan 2
We only derive (iv) from (ii) and (iii) is left as exercise.
Proof of (iv).

Let xy < -1. Let x >0.
Hence by property V (ii), since x(-y) =-xy >1 and x > 0

tan"'x +tan'(-y) = rc+tan"”—x+( y) for x(-y)>1
Y 1 x(—y) : y
i.e. tanx - tan™! =1r+tan"qu for xy <-1
o y I+xy’ oy
If x <0 then again by Property V (ii),
tan'x + tan’'(-y) = - © + tan™! e for x(-y)>1.
: ek |
A==y
i.e. tan'x - tan'y = -n + tan™! for xy <-1.

I+xy°’

By taking x =y in Property V(i) and (ii) we get the following formulae.

tan™ |x]<1

2)
(v) 2tan'x= 1=x
oS

1-x

+r+tan

7,  according as x>] orx<-1
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Illustration
: —11 ~|l_ g S L _1__1_
(i) tan 3+tan z—ran —-———1_1/6-ran 1-4, 3.2~<1
1+1
. 4 1 — § 2 & paa 176 '1_1.. _.l _1_
(i1) tan ( 3)+tan i 1 tan 7/6 =tan - 3.2<1
T 3
3+2 T 3n
iii) tan™ 19— 1= = PRl
(iif) tan™'3+an"'2= 1t + tan"2=1—= = m+tan" '(-1)=mn - gy
- n 3n
(iv) tan™ (=3)+tan” '(-2)—-—1t+tan =3 2—n+tan ’l=—1t+-z=—T
(v) tan'3—tan"' 2 =tan' 3+ 1an"' (-2)
34(-2) : .
=tan~ ————tr \%
an =3-(2)’ applying Property V (i)
ran“l-l—
& 7
Alternatively applying property V (iii)
= =
tan’'3 - tan"'2 = tan’ (since 3.2=6>-1)
1+3.2
:tan—l_l.
7
Property-V1
(i) For x*+y* <1
sinlx + sin—l_',=_,)in-l(.t\/1--—_w1 +y\/l-xz')
(ii) For x*+y* >1 with x,ye[-1,1]
sin*‘(x\fl -y + y\/.l - x’) if x and y have opposite signs.

sin'x + sin'y =

:l:x—sin"(x\/l-—y’ +yJI—x’) accordingasx,y >0 orx,y<0

Proof. .
(i) Let x¥*H2< 1.
= x’< 1and y’< 1= xy €[-1,1]
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Now let oo =sin"'x and = sin’'y.

T T
= x=sin y—smBanda,Be[ 3? E]

T
1-x*,cosP = 1/1 — y* since cos a and cos P are both positive in [—5 'Ejl

Now sin(o+B)=sin a sin B + cos a sin B=x/1- y* + yy/1-x* AR L
Case. 1

xZOandyZO.:ba,Be[O,%]

Now x* )< 1 = x’<1-y? S X< 1 )* = sina < cosp

' TN
= sina. < sin[g —.B) =50 S g— (since sin is an increasing function in [“5,5] )

tv.la

.-.a+Bs~2'5.ThusOSa+Bs

Hence from (i) we get a.+ B =sin™ (x\/l-—y2 +y\/l—x2)

‘i.e. sin"'x +sin"'y = sin™ (x\/ 1-3% + p1- % )
Case 2
x<0andy<0
=-x20and-y20.
Hence by case (1)

sin’'(-x) + sin”'(-y) = sin” ((—xh/ ¥ +(-W1x )
= —sin" x—sin”' y =—sin”’ (x\fl —y +W1x? )
= sin”' x+sin”' y = sin™' (x\fl —y? + yJ1x? )

Case 3.
Letx>0and y<0 .

Then ae_l:(),%:| andfe [-%,0}
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T T
Hence a+fie [“ 7 ’5:| and from (1) we have

a+[3=sin*'(x\[1—x2 +y\ﬁ—xz)

= sin”' x+sin”' y = sin”’ (Jc\/l--y2 + 12 )
The case when x <0 and y 2 0 is similarly dealt with.
This proves (1).

(1) Letx*+*21 whilex,y € [-1,1].

Let a=sin"'xand  =sin'y

= x=sina,y=sinp and o, e[—g;]

As shown earlier _

sin(a+B)=sino.cosB+cosasinB=xy1-y* + yy1-x° )
Case 1.

Firstletx>0and y<0.

ST

5]

Then ae [0%] and Be [-%,OJ =>a+Be[—

k!

-
"2

i

Similarly if x<0andy 2 0 then a +P e I:—
Hence from (2) we get in either case,

a+B= sin"(x\ll—yz +y\/1—x2)

i.e. sin” x+sin’ y = sin’ (x\fl Y+ 1= X )
Case 2. Firstsuppose thatx>0and y > 0.

m

Thena»BE|:0s2:|=> G+BE[O,7§]_
Now x*+y?21 = x* 2 1= )? = x 2 /1-)*

:>sina2cos[3=sin(%—[3j T
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T " SPRLEN SR T T
— X A 7 P since sin is increasing in [—.-2-,-2-] 1

T
:>(1+B25
T n
'ThlJS-z'SC('i-BSTC:}—E,Q‘FB-—ﬂSO

=0<n—-(a+P) <

(ST

Now sin(n—(a +P)) = sin(a+B) = xy/1- % + yv1-x* from(2)

= n—(o+p)=sin"’ (J‘c,ﬁ—.yz +y\/1—-x2)

= (a+B)=n—sin”" (x\/l—yz +y~Jl—x2)

or sin"'x + sin'y=m— sin”' (xJ 1-y% + y\/ 1-x* ) Y (A)

Next suppose that x,y <0.

Then -x = 0 and - y = 0. Hence by the previous case.

sin’!(-x)+sin(-y) = n:—siﬁ" ((-—x),(l -y +(-y)V1-x

= (sin” x+sin™ y) =1t+sin"(x\/1 N )

: = sin”' x+sin” y=—n—sin™ (Jnn:\/l—y2 +yxﬁ—x2)- B)

combining A and B we get (i1).

To evaluate sin"'x - sin™"y we write -y in place of y in the formula for sin"'x + sin'y.
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Ilustration

7 3 :
o =a(Z)er(2) _[ il o ]
A3V 2Y
\' 5) "\25) 625
= sin” (3 24 L%, =sin”’ s
el (2o B0 5

(ii) sin”' (%) —sin”! (27—5] = sin” [; ] +sin” (;;J

ol AY Y 49 383

GYEY |3 | e R A T T
(4Y (2 98
L L

- sin” (iJ
\5

Property- VII
(i) Forxty20Owith-1<x,y<1

cos'x + cos’'y=cos™ (33’-\1 1-x* \11-1’1)

(ii) Forx+y<Owith-1<x,y<1

cos’'x + cosly = Zn—ws"'(xy-\[l—xz\/l-—yz)
Proof

Leta=cos ' x,Bp=cos'y,~-1<x,y<l.

= CLBE[O n]andx cosa,y = cosf.

Hence a+B €[0,2n] and sin a=+/1 - x* ,sinP = -J] -
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Case (i)

Letx+y20.

= cosa.+cosB=0

= cosa>—-cosp=cos(n-B)
= a<n—p since cos is decreasing in [O,n]

—a+B<n
=>0<a+B<n (1)

Now cos (a+B)=cosa cosp - sinc sinf = xy - /1 - x? ,f] -y?
=o+B=cos™ (xy-\/l—-xz\/l-—yz) using (1)
i.e. cos'x + cosy = cc::s“(xy'-'w}l-x'2 Jl-yz)

Case (i)
Letx+y<0
= a +f 2 m, reversing the inequalities in case (i)
=>nsa+pB<L2n.
=-n2-(a+p)2-2n
=2n-n22n—(a+p)20

=0<2n—(a+B)<n

cos(2m—(a+B)) =cos(a+B)=xy—V1-x*f1-)? as in cosec (i)
= 2n—(a+B) =cos“'(x_y_,[1_7\[l—_7)

= (o +B) =2n-cos” (- V1-2"{1- 7

i.e. cos'x+cos’y =2 - cos™ (.xy—ﬁ Ji-y* )

Hence proved.

Now to evaluate cos™x - cos™y we write cos™x - cos'y={cos™'x + cos™ (-y)} -, (since
cos!(-y)=n—cos™y) and apply the formula used for cos™'x+cos™'y. However we state the
formula for cos™x - cos™y below for ready use.

ms'_'(xyhh—_xz\{l'—_f) if x<y
—cos™ (ng+ﬁ Jl——yl ) if x>y

(ii1) cosx - cos'y = ¢
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when-1<x, y<1
Proof is left as exercise.
Ilustration

o = (=l {FGNG)

o oo (@ e (3

=ws"‘[_§_)—cm"(_%j_)=cm1[%.%4-‘]1—(%) Jl—(%] }bypmpertyV]I(iii)

(i) cos™ (%)+cos-'(—§]=Zﬂ—é“"[%‘[_?s]'\ﬁ_%)zJl_(%ﬂ
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= +cos” o :
125

Property VIIL.

<£x<

m‘(szl—_x’) —

2 sinlx = 1 u—sin*'(?.x\!l—x’), %Sxﬁl

k—ﬂ-.sin"(h\[l—-—xz), | -1< xs—%

) -
-

2

Proof.
: Let a=sin'x

: T T
Hencex=sinaand ae| ~ 515
2°2
. > TR
=cosa=+l-x [ cosa>0forae {——E.ED

;. sin2a = 2sina.cos o = 2xy1—x’ (1)

wla

=S-—<as-— [sinisirmingin[

i

T b
g <—,
= 2520.__2

Now sin2a = 2sinocoso = 2xv1 - x*

=20 =sin" (Zx\!l —x° )
i.e. 2sin’'x =sin (2xy1-x?) :

Case (ii) Let T sxs
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Case (i). First suppose that 0 < x < 1.

:OSas-g =0<2a <

From (1) if follows that
2a = cos?(2x*-1) i.e. 2cos’x=cos!(2x*-1).
Case (ii). Again suppose that -1<x < 0.

T . = : . T
Then-1<cosa <0 = 5 < a <, since cos is a decreasing function on [ 3 ]

s XS 2085 2%

From the first incquality in (2) we get
-t2-200=>n22n-2a  (adding 2x on both sides)
and from the second inequality in (2) we get

2n-20.2 0.

Thus 0 <2n-2a < . :

Now cos (2n—2a) = cos 2o = 2x* -1 (using (1))

= 2n - 2a = cos™(2x*-1) '

= 2a.=2n - cos™ (2x*-1)

i.e. 2cos™'x = 2n- cos™(2x2-1).

Hence proved.
Property X
sin"’(&x-t‘x“) r:f—-l-s.vsl
2 2
3 gimty = 4 msin (3% - 42) if—;—sxsl
—~n—sin~ (3x - 4x°) rjf—'ls.ts-%

Proof .
Let a = sin'x
; T =n
Then_x= sinaanda € [-5.5}

Then sin 3o =3 sin a - 4 sin‘a =3x - 4x* .. (1)

: 1 1
g -
Case (1) Let ZSx_z

A =1¢ 3 3 T \
i, < e -
:Sfﬂ( 6 ]_SIHQ_SIH[GJ

NSRS : e : n
= = <a< 3 (Since sine increases in |:-—2—,

(ST
TS
S
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=>—-1£S3(1<-T£
2 w2

Now sin3a = 3x - 4x°
= 3q = sin™! (3x-4x°)
i.e. 3sin’'x = sin?(3x - 4x%)

Case - (ii)

Let%SxSl

] T
:ﬂgﬁaﬁi

<3a<3

| a

=

ol a

n rr
= —=<30-nN<—=

2

Now sin (1 - 3a) = sin 3a = 3x - 4x°
= n-3a=sin"'(3x- 4x3)

— 3q = n-sin” (3x —4x")

ie. 3sin' x=m—sin" 3x—4x).

Proof of case (iii) is left as exercise. _
We now give below similar properties for inverse cosine

using similar argument.

Property XI

3cos'x = { 2n-cos” (4x’ —3x) if —% <x% 5

LS

Proof.
Let o = cos™x.

Then x = cos a.and a.€[0,x].
cos3a= 4cos’a - 3cos a = 4x*- 3x ...

Case (i)

i
=<x<1
Let 3 X

(from (1))
(using (2))

cos™ (4x* = 3x)

21+ cos™' (4x° —3x)

by (1)

P
lffESxSl

1

1
if - Y=
1<x=< 3

function which can be proved
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T
cos§ <cosa <cos(

=>0<as %, (since cos 1s decreasing in [0,1])
=0<3a<mn
Now cos 3a. = 4x*- 3x (1)
= 3a =cos™ (4x"-3x)
1

i.e. 3cos™x =cos™ (4x’-3x)

when ESxSI.

11 . -
Case (ii) Whenx € |:-——,-~] and case (iii) when xe |:—1,——1} are left as exercises.

22

2

Alternatively using property X for 3 sin"x we can prove the Property XI for 3cos™x.

1
For example to prove the property when xe- [—1.—-2-] we proceed as follows.

Alternative proof for case (iii) :

1
We know that for xe [-1,—5]

3sin'x = -1t - sin”'(3x - 4x°).

ST

Also sin'x + cos’'x =

Hence 3cos'x = 3(%- sin’'x)

= 37“+ —3sin~' x

3n

=7+n+sin" (3x—4x%)
s SRS (3x—4x’)
e e :

=3n—cos™ (3x—4x")
=2n+m—cos™ (3x—4x°)
=2n+cos” (4x° —3x).

(A)

by (A)
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Property XII
'mn_lflx-x"_ g#d = 1
=3 B B
3x-x°

Ay = dn+tan” , X>—=

—1t+mn"3 x X<— :
2!
1-3x 33

Proof. Leta=tan"'x
Then x = tan o and a.e( —g,-;—t)

3tana.—tan’ 0. _ 3Ix-x
1-3tan’a 1-3%

(1)

tan 30.=
¥ 1
Case (1) Let —$<x<7;

= la -—E <tanao < fan -E
: n 6 (v} 6

n T : e : : TN
— T ca<— [sincetan isanincreasing function on (—5 ) )]

6 6
";" <3a < -725
j 3
Hence from (1) 3a =an™' = —xz
_ 1-3x
3x-x
. 3tan'x=tan"'
i (I—Sx" }

1
&= xX>—=
Case (ii)Let 5

n n
Then tana>tan—6~=>a>—6-.

18 T . % 3r
Thusg<a<5=>5<3a<—i-.
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-7 3n T
=>-2—<3a—n<7—n-§
Now tan (3a — 1) =-tan(n-3a1)

=tan 3o
Ix—-x
k)
=3 -n=tan" 3x—x;
1-3x
% 43x=-x
ie 3tan' x=n+tan™ 1{3;

case (iii) is left as an exercise.
Example 2 :

Find the value of cos tan™ cot cos™ 3?

Solution :
cos*‘—"@=9 = cosb =—"§-
2 2
o Al S
=0 6 —C0s'5-=%-

. cos tan™' cot cos™ —‘/—5 = cos tan! cot % = cos tan”' V3

2

3 _11:.1 .w - :E
=08 % = (- tan'\N3=3)

Example 3.
Express the following in the simplest form.

R ,l[\/1+x+dl—x}
(i) sin 5 !
(ii)tan-'(J1+x2 —'x)

Solution (i)
Let x = co0s26

D<x<l

= Jl+x =~f1+c0529 =i~/§co.5'0 and

JI—x =/1-cos20 = +/2 5in®
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Given0<x<1,29e|: ;]nee[ ,4]

Socosf>0andsin 0>0 = Jl1+x = xEco_sE) and1-x = /2 sin6.

/ f1- 0
1+ x +1—-x J_-(COSB-%SHT) ICOSB‘FLSIHB sm[ +9]
2 2 ﬁ \/5
= . ollexeni=n ) gl L%
ence sin oy i
TT T 1
=Z+e=-:i- "i‘COS X

(i) Letx=cotB

1+ x? = x = cosecB-cotd

1—-cos® 23""2-“2“ 3]
=— = =tan—.
$in® 2sin er:osg Z
2772
e (\Il+x2 —x):ran" fane -Er--l—cof“‘x.
. 2 X ;
Example 4 : :
. Prove that
sin”' 2x2 . | x|=1
2 tan'x = Ees
SE R
cos™ : xz y x>0
1+x
Solution.

(i) Let tan x=0 = x=tanf andO e (- 7

2tan® _ 2x
l+tan*® 14+x*

Now sin 20 =

. nT n R
-] << s i s .
Given _l_x..l,Be[ 4,4:|=>296|: 2,2:|
457

.20 =sin"
1+x

2
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2x

ie 2tan'x=sin" ], 2, |x]|=1.

(i) Letx>0sothat 6[0,7)

e et
e | !anz 0 - 1 x2
l+tan"® 1+x

Now O € [0,%) = 20 €[0,7)

2

.20 =cos™ -
" 1+x

2

X
R x20.
1+x

It is left as exercise to show that

ie 2tan™ x =cos™

iy 2tan' x =+m—sin
(1) _ 1+x

2

(i) 2tan”' x =—cos™ i

Example 5.

Solution,

a+b+c

Let k= T

Since tan (A+B+C) = l

x :
——, according as x > 1 orx <1

i ARG
X

Then 0 = tan"'ak+tan"'bk+tan’ck

tan A +tanB +tanC -tan AtanBtanC

POTE ak + bk + ck — abck’
1 —abk® — bck* —cak?

_ k(a+b+c—abck®)

g = b —_ 2
1o Pk < el 0 (since k*abc =a+tb+c).

-tanAtanB-tanBtanC-tanCtan A
writing A = tan"'ak, B=tan'bk, C=tan'ck we get 6 = A+B+C and

L R

If0.=tan”, /ﬂ;’iﬂ vl /3(3% PP J-‘L‘”ﬂ—?ﬁ, S thié walue of tan 6.

s -
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Example-6

A

¥ o i
tan™' 7 = tan

Prove that 2tan” 5

Proof :

; 1

z 25

2tan l_% =tan™ 51 =tan"‘% [Property V(v)]
ey

25
Bep . R TR
. L.H.S.=tan 7 tan”' 7
—tan“'ﬁ_ﬂr_—tan‘ (%x %) =tan"%=R.H.S.
1+ 4 :
12°
Example-7
~ —l4 =1 = 5 1 -1__1_§_ == E
Prove that sin 3 + sin 13 Tsin 65 2
Proof:
el Loaad R i 16
We shall prove that sin S+sm 13- 7 SN %
S ) A 3
Now sin 5 +sin 13
41 B s B £ . (5) =238
-sm"{SJ 132+13J1 52} ( (?) 5 (13) 4225 1
63
~sint {4 < + Fxd) = sin 163}
= cos™' -8 =cos! 18
65 65
= -;-5 = sin‘i% (Using property IV)
Example-8

\ Ifcos ! x + cos'y +cos'z=m, provethatx-+y’+zl+2xyz =1
Proof:
cos x + cos”'y + cos”'z ==,
=cos' x+cos'y=n- cos'z

.

= cos™’ (xy~ \’I—Jr2 \jl—y2 )=n- cos'z

=Xy - \/l—.lr2 \/l—y2 = cos (n - cos™'z)
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=Xy - \/1—)1'2 \fl—y2 =~ cos (cos'z)

=Xy - \/l—-xz Jl—y2-=—z

=@y +22=(1-x)1-)%) .
=xP+2+2xpz=1-x- ) +x%?
=S+ P+ +2xz= 1.

Example-9

Solution :

g M
Solve cot™'x + sin™ 75' = %

' 1
¥ _.._..__ . - ——
Let sin = so that sino 5

2 2
Again cot 'x = tan™' L Now the equation shall be tan™ L 4 tan“% =%
1451
= tan™' x 2.2 = tan™’ X+2 _ =z
e 2x—1 4
2x
x+2 = ®% L o
T | 3 =1 =>x 3

| EXERCISES -2 ]

Note : In the problems involving inverse trigonometric functions it is assumed that the relations exist

)

(i)

(iii)

()

in suitable intervals.
1. Fill in the blanks choosing correct answer from the brackets :
IfA = tan"' x, then the value of sin 2A = 2x 25
=tan™' x, thent ev'aueo sin2A= ——. \(1 x2 e
If the value of sin™' x = % for some xe (=1,1) then the value of cos™'x is —.

(3. 55 Ix)

10" 10”10

1 : T T
The value of tan (2cos )1s— “’E‘_i)
Ifx+y=4 xy=1,thentan'x +tan' y = ———. (‘§4£ %,%)

v)

£ s e i i
The value of cot ‘2+tan‘§ = | (4, 1, 2)
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(vi) The principal value of sin™* (
(vii) Ifsin”’ Z + cosec™! £imB then the value of x = ——.
5 * Sy

(viii) The value of sin (tan™'x + tan“—l- ,X>0=—,

sin =—

27:). .
8 —

\f sinx + J1+ sinx

(Z_Tr = 4_n)
FRE S
(2,3,4)

(0,1, %)

@) cot"[Jl —sinx — «/1+sinx

4
2sin” — +sin! — =—o
(x) 2sin 5 i o

(27-4%.%, n-%)

(m, -x, 0)

(xi) If8 = cos'x + sin"'x - tan’'x, x > 0, then the smallest interval in which Qliesis___

(xi) sec’(tan'2)+cosec’(cot'3)=

(20202

2.. Write whether the following statements are true or false.

(i) sin* L cosec' x=1
: x
: -1i+cot“'[_—3)—x
(i) tan 3 2

7 ' 5
(v) sec! (“—) =m—cos ' =
5 7

‘(vii) The prmcxpa] value of tan™' (

an3E) s 35

(16,14,15)
cos~ i +tan™' == tan™ 1—7
(iD) 5 3 6
: ey | ) (S 4
(iv) sec 5 Teosec” 5 =75

(vi) tan” (tan3)=3

4

(viii) cot” (—V3) is in the second quadrant.

(ix) 3tan'3=tan'—

13
(x) 25in“i=~sm‘2—4
Sl 25

(xi) tan"'2+an'3=- 7§

(xii) The equation tan''(cotx)=2x
has exactly two real solutions.

3. Express the value of the following in simplest form.

() sin(2sin"0.6)
(i) cos (2 sin"'x)

® “"‘I(y] ol 7T

L L S
(vii) sin™ J_ + cos™ J_

(ii) tan(l:-+ 2cot! 3)

(iv) tan (cos' x)

> 3 4
(vi) cosec (cos‘l 50 cos™’ E)

(viii) sincos™' tansec™ V2
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1-x 1. -1 2x L 11-9
. . -1 —=Ssin + = COs :
(x) sin [2tan 1+x] (x) tan {2 P R ey
(xi) sincot’costan’x. (xii) tan™ [x +¥1+x )
4. Prove the following statements :
3 8 36
(i) sin'%F +sin']7 = cos'§5 (i) sin' 3 +cos 42 = cog133
_ ; 13 65
(i) tan™ -.1';+tan“‘-l-l§ =tan’' % (iv) tan™! :lz + tan™’ ; +tan™ %= -} .
(v) tan(z tan' l-—£J+l-_~
S AL AT
5. Prove the following statements :
(i) cot'9+ cosec™ ‘/—;ﬁ-= 2 (ii) sin-‘%+2 tan™ %= >
- = 4 21 RO S - : | = 5«/_ UL S
1 i e ] =2 b T, | 1 —= 1
(i) 4tan'< —tan 70 + tan 99~ 4 (iv) 2 tan 5 sec™ 5= +2tan g
(v) cos™ —+ 2 cos™! 1} + cos™ -J c05‘1
(vi) tan’cos’ 73__ +cot” sin™ T =6 (vii), cos tancot sin'x = x.
6. Prove the following statements :
(i) cot'(tan2x)+cot' (-tan2x)=n
(i) tan'x+ cot! (x +1)=tan” (¥ +x+1)
T 4 a=b A g
(m) tan s + tan i tan q tan™ ¢
+1 r+1 +1
(iv) cot! ‘;q_q + cot! %_r oot ?_p =0
e b-c Sy
() tar el TN e TR Lica ‘
2yl 22
= tan™ ¢ zbz +tan™ b 262 +tan L2
. l+ab 1+bc l+c2a2
7. Prove the following :
: 1 2a-b a12b—a _X
(i) tan! + tan ==
: 3 add .3 : ;
(i) tan' LY, 5 4 =tan™! 1
x+y X e xpl %
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LNt ,x -9 _ ’p Sl ,p =X
1 - I = aadt
(m) sin P -q 5 \p-q cot 'y —¢
(iv) sin? (sin” x +sin"'y + sin"'z) = cos® (cos ' x + cos™' y + cos™'z)
(v) tan(tan'x+tan"' y+ tan"z) = cot (cot” x +cot” y+cot 2)
8 (i) Ifsin"x+sin'y+sin'z =, show that
x1-x2 +y 1=y 4zy1-22 =2z
(i) Iftan’ x+ tan'y +tan™ z=nshowthatx +y +z=xyz
(i) lftan"x+tan“‘y+tan"z=%,showthat).y+yz +zx=1 .
(iv) Ifr=x*+)y*+ 22, Prove that
12 et gt X =2
o xr+“m y,.+tan w2
: : = 0()° 4 b E Cre L .
(v) Inatriangle ABC if m£A =90°, prove that tan = el Ty =
f where a, b, ¢ are sides of the triangle.
9. Solve: :
() cos(2sin'x)=5 (ii) sin” x +sin (1-x)= 5
() sin” (1-x)—2sin'x =-72£ (iv) cos'x + sin”" % = %

\ Lox=1 cixtl = . T | PO (TR .
(v) tan + tan e Gl | (vi) tan ¥y + tan P tan 3
(vi) 3 sin”! 2X __ 4cos e +2tan —2-=k

, 1+ x 1+ x2 lma? 2
44 I ~1 i ~1 i = -1 l
@iil) cot ! ——7 +cot! ~+cot! —y=cot -
2 2 2
. P L dlkda’ o'l 2b
(x) cot S CORe B sec v S
: y 2a : 2b )
-1 +eint! | === -1 x.
S (1+a2] = (ms»2 et 3
A 3 oL R
(xi) sin'x - cos'x = cos™ —\i—— (xii) sin"'2x + sin’'x = %

10.- - Rectify the error if any in the following :

sin™'

PN R
5 tsin” 3 HsinT €%
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1.

82

13.

Prove that :

(M)

(i)

(i)

(M)

(ii)

(iii)

(iv)
(v)

b+acosx) =B X
| — ] = =L —
cos [a+bcosx 2 tan o tan

x.1 .-1d g P 26
tan(z 2(:08 b)+tan (4 2os ) »

s B v [ e

wherer =x +y +z.

2 2 2
If cos™ (g)“" cos™ [‘g‘) =8, prove that ___x2 * —;g coso + ;2 = sin’ 6.
a

Bre o

Ifcos! ("5—) + cos™! %J =@, prove that 9x> — 12xy cos@ + 4)y” = 36 sin’0.

If sin”’ + sin™! [%) sin” ( ) prove that b2+ 2xy ya?b? —c* +ay?=c'.
: .. 2y A
If sm*‘ + sin’! =a, prove that —j Sosat = =sin‘a.

Ifsin”! x +sin! y + sin”' z ==, prove that x“+ Y+ 2+ 4xy’ 2 =2 (5 + Yy +2°x0).

Solve the following equations :

(@

(i)

(iii)

(iv)

cos™ (I +%)+ cos™ x + cos™ (x—l) = 2%

tan™ = +} tan™! gi o =tan 1%2
= g g T
tan 3+tan S+tan 7+tan 2

2 2

1 1 il
| vl 1 <1 2. L
3 tan 2+ £ tan = tan 3-




(CHAPTER 3)

Linear Programming

3.1

3.2

It appears to me that if one wants to make progress in mathematics, one should
study the masters and not the pupils.

- N.H. Abel

Introduction

Learning mathematics without knowing its usefulness in solving real life problems
is drudgery. We face a variety of problems in the field of manufacturing, farming, com-
merce, construction work, transportation, assignment of jobs, military operations and
so on. In the earlier class you learnt about linear inequalities involving one or two vari-
ables and their graphical solutions. In this chapter we shall discuss how to utilise those
concepts to solve problems faced in many of the real life situations. For this our first
step will be to reduce / formulate the real life problem into the language of mathemat-
ics. This requires selecting suitable quantities and designating them as variables, con-
necting them by means of some equations and inequations depending on various condi-
tions and finally trying to solve them to get the desired values.

Operations research is that branch of mathematics which deals with the study of
such processes. Linear programming, in particular, discusses the type of problems in
operations research where the equations and inequations involve 'linear functions'. The
term ‘programming’ refers to the plan of action or programme we make for solving the
problem.

General Linear Programming Problem (L.P.P.) '
We begin with an example to have an insight into the programming problems.

Example 1

A person having a capital of ¥ 5000 has to buy two types of boxes of toys viz. type
1 and type 11 at 10 and ¥ 20 per box respectively and sell them at ¥ 14 and ¥ 25 per box
respectively. Suppose for reasons of limits on sale he cannot buy more than 150 boxes
of type I and 200 boxes of type II but he must buy a minimum of 100 boxes altogether.
How many boxes of each type he must buy in order to gain maximum profit assuming
that he can sell all the boxes he has bought.
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Formulation :

(1)

(i)

Suppose he buys x boxes of toys of type I and y boxes of type II.

He makes a profit of 4 per box of type I and % 5 per box of type II. So his total
profit would be given by the equation.

- z=4x+5y
His objective is to choose non-negative integers x and y such that z is maximum.

But he cannot make this choice arbitrarily. There are certain constraints to his choice.
Because of funds constraint the total cost of buying the toys cannot exceed X 5000.
Hence 10x+20y < 5000 or equivalently x + 2y < 500.

For limits on sale the number of boxes he buyes i.e. x and y must satisfy x < 150
and y < 200. 533 ‘

Further and total number of boxes he buys i.e. x+y could be 100 or more.
Thus x+y = 100. '

(iii1) Finally the obvious conditions on x andy are givenby x>0 and y 2 0.

()

(i)

Collecting all the relations which x and y have to satisfy we state below the prob-
lem as follows : '

Maximize Z = 4x + Sy (1)
subject to x+2y <500 (2)
x<150
¥ <200
x+y=100
and x,y=0. (3)

From the above example we observe the following :

There is a linear function (i) representing profit which we want to maximize. Some-
times we need to minimise a function, such as cost of productin or time for comple-
tion of a job or number of workers needed for certain work and so on.So our objec-
tive is to optimise (i.e. maximise or minimise) certain linear function which we
shall call the 'objective function'. The objective function may be linear or non lin-
ear but we shall consider only linear functions (Hence the term 'linear’ in LPP)

The variables x and y involved in the objective function are known as 'decision
variables'.

(iii) There are certain inequations / equations (such as (2)) which need to be satisfied.
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We call them 'constraints'.

(iv) Another requirement is that te decision variables x and y must be non-negative
(condition (3))
We now define the general LPP.

Definition.

A general linear programming problem LPP isto obtain x, x,, x,, ..., X, soas to

~ Optimize

3.3

L=cxtex tex+t... +Cx (A)
subject to
@ Ta X+ e ta X S{ora) b,

a,Xta, X o, o ctax ()b, (B)

a-x. ekt ...t x S{or2)b

where ¥ , x5..., % 2 .0 (©)

i ]

anda b, withi=1,2,...,m;j=1,2, ...n are real constants.

In the LPP given above the func’uon Zin(A)is called the objective function. The
variables x, x, ...... x are called decision variables. The constants € By ovicics cu are
called cost co-efficnents. The inequalities in (B) are called constraints. The restrictions
in (C) are called non-negative restrictions. The solutions which satisfy all the
constraints in (B) and the non-negative restrictions in (C) are called feasible solutions.

The LPP involves three basic elements :

1. Decision variables whose values we seek to determine,
2. Objective (goal) that we aim to optimize,
3. Constraints and non-negative restrictions that the variables need to satisfy.

Types of Linear Programming Problems.

As we have already discussed we come across different types of problems which
we need solve depending on the objective functions and the constraints. Here we discuss
a few important types of LPPs. before learning how to formulate them.

(i) Manufacturing Problem. A manufacturer produces different items so as to
maximise his profit. He has to determine the number of units of products he must produce
while satisfying a number of constraints because each unit of product requires availability
of some amount of raw material, certain manpowgr, certain machine hours etc.

(ii) Diet Problem. Suppose a person is advised to take vitamins/nutrients of two
or more types. The vitamins/nutrients are available in different proportions in different
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type of foods. If the person has to take a minimum amount of the vitamins/nutrients
then the problem is to determine appropriate quantity of food of each type so that cost
of food is kept at the minimum.

(iii) Allocation Problem. In this type of problem one has to allocate different
resources/tasks to different units / persons depending on the nature of the gain or
outcome.

- (iv) Transportation Problem. These problems involve transporting materials from
sources to destinations for sale or distribution of products or collection of raw materials
etc. Here the aim is to use various options for transportation such as distance, time etc
so as to keep the cost of transportation to a minimum.

3.4 Formulation of LPP
We have seen in Example-1 how to formulate a simple problem. We take up some
more examples to show the method of formulating LPPs.
Example- 2

A firm manufactures two products A and B on which the profits earned per unit are
¥ 13 and X 12 respectively. Each product is processed on three machines M , M, and
M.. Below is the required processing times in minutes for each machine on each product.

Product

- A B

Machine M 4 3
M. 2 2

M, '3 4

The machines M, M, and M, are available for not more than 9 hours 10 minutes,
10 hours and 8 hours 20 minutes respectively on any working day. Formulate the LPP to
find the number of products to be manufactured so as to get maximum profit.

Solution : '
Step (i). Let the number of units of products A and B to the produced for optimum
profit be x, and x, respectively.
Step (ii). The objective function is the function that determines the profit (to be
maximised) given by
Z5=13x, ¥ 12%, _

Step (iii). The constraints are on the time available for each machine. The machine M,
takes 4 x, minutes to produce x, units of A and 3x, minutes to produce x, units of B.
Hence the restriction of M, is given by '
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4x, +3x,< 550
Similarly restrictions on machine time of M2 and M3 give.
2x, + 2x, < 600
and  3x, +4x,< 500
Step (iv). The non-negativity restrictions demand that
' x,20andx,>0.
Hence the LPP is formulated as :
Maximise Z = 13x, + 12x,
Subjectto = 4x, +3x, <550
2x, + 2x, < 600
3x, +4x, <500
| andx ,x,20.
Example - 3.
An animal feed company must produce 200 kg of a mixture consisting of

ingredients A and B. The ingredient A costs ¥ 3 per kg. and B costs X 5 perkg. No more
than 80 kg of A can be used and at least 60 kg. of B must be used. Formulate the problem

to minimise the cost of mixture.
Solution -

(i) Suppose the company uses x kg. of A and y kg. of B to prepare the mixutre. So
the cost or preparation of mixutre is 3x + 5y which is to be minimised. Hence the

objective function is
Z=3x+3y
(ii) Since quantity of mixture must be 200 kg one condition is
~x+y 2200
Again the constraints on the amount of ingredients to be used. requires the following
conditions to be satisfied. '

x<80andy=60 .. (3)
(iii) The non negativity conditions are x>0 and y 20 (4)
Hence the LPP is given by

minimize Z= 3x+5y
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subject to  x+y =200
x< 80
y = 60
andx, y=0.

Exercise - 3 (a)

1.  Amerchant sellstwo models X and Y of TV at ¥25000 and T50000 per set respectively.
He gets a profit of 1500 on model X and ¥2000 on model Y. The sales cannot exceed
20 sets in a month. If he cannot invest more than 6 lakh rupees, formulate the problem of
determining the number of sets of each type he must keep in stock for maximum profit.

2: A company manufactures and sells two models of lamps L, and L,, the profit being %19

' and ¥10 respectively. The process involves two workers W, and W, who are available
for this kind of work 100 hours and 80 hours per month respectively, W, assembles L,
in 20 and L, in 30 minutes. W, paints L, in 20 and L, in 30 minutes. W, paints L, in 20
and L, in 10 minutes. Assuming that all lamps made can be sold, formulate the LPP for
determining the productions figures for maximum profit.

3. A factory uses three different resources for the manufacture of two different products,
20 units of the resource A, 12 units of B and 16 units of C being available. One unit of
the first produet requires 2,2 and 4 units of the resources and one unit of the second
product requites 4, 2 and 0 units of the resources taken in order. It is known that the first
product gives a profit of ¥20 per unit and the second ¥30 per unit. Formulate the LPP
50 as to earn maximum profit.

4. A man plans to start a poultry farm by investing at most Rs. 3000. He can buy old hens
for 80 each and young ones for T 140 each, but he cannot house more than 30 hens. Old
hens lay 4 eggs per week and young ones lay 5 eggs per week, each eggbeing soldat X 5.
It costs %5 to feed an old hen and T8 to feed a young hen per week. Formulate his
problem determining the number of hens of each type he should buy so as to earn a
profit of more than 300 per week. '

5. Anagro-based company produces tomato souce and tomato jelly. The quantity of material, -

machine hour, labor (man-hour) required to produce one unit of each product and the
availability of raw material one given in the following table :
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Sauce Jelly availability
Man-hour 3 4 10
Machine hour 1 2.5 1.9
Raw material 1 1.2 42

A assume that one unit of souce and one unit of jelly each yield a profit of ¥2 and ¥4
respectively. Formulate the LPP so as to yield maximum profit.

(Allocation Problem.) A farmer has 5 acres of land on which he wishes-to grow two
crops X and Y. He has to use 4 cart loads and 2 cart loads of manure per acre for crops X
and Y respectively. But not mote than 18 cart loads of manure is available. Other expenses
are 200 and T500 per acre for the crops X and Y respectively. He estimates profit from
crops X and Y at the rates 1000 and T800 per acre respectively. Formulate the LPP as

" to how much land he should allocate to each crop for maximum profit.

(Transportation Problem) A company has two factories at locations X and Y. He has
to deliver the products from these factories to depots located at three places A, Band C.
The production capacities at X and Y are respectively 12 and 10 units and the requirements
at the depots are 8, 8 and 6 units respectively. The cost of transportation from the factories
to the depots per unit of the product is given below.

(Cost in Rs.)
To— A B C
From X 210 160 250
Y 170 180 140

The company has to determine how many units of product should be transported from
each factory to each depot so that the cost of transportation is minimum. Formulate this
LPP.

(Diet Problem) Two types of food X and Y are mixed to prepare a mixture in such a way

~ that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units

of vitamin C. These vitamins are available in one kg. of food as per the table given below.

- Vitamins
food © A B G
X 1 2 3
Y 2 2 33 :

One kg. of food X cost T16 and ope kg. of food Y costs %20. Formulate the LPP
so as to determine the least cost of the mixture containing the required amount of vitamins.
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2

10.

11.

Special purpose coins each weighing 10gms are to be manufactured using two basic
metals M, and M, and a mix of other metals M,. M, M, and M, cost 500, ¥800 and
¥50 per gram respectively. The strength‘ of a coin demands that not more than 7gm. of
M, and a minimum of 3 gm of M, should be used. The amount of M, in each coin is
maintained at 25% of that of M,. Since the demand for the coin is related to its price,

formulate the LPP to find the minimum cost of a coin.

A company produces three types of cloth A, B and C. Three kinds of wool, say red, green
and blue are required for the cloth. One unit length of type A cloth needs 2 meters of red
and 3 meters of blue wool; one unit length of type B cloth needs 3 meters of red, 2
meters of green and 2 meters of blue wool and one unit length of type C cloth needs 5
meters of green and 4 meters of blue wool. The firm has a stock of only 80 meters of
red, 100 meters of green and 150 meters of blue wool. Assuming that income obtained
from one unit length of cloth ‘is %30, 50 and %40 of types A, B and C respectively,

formulate the LPP so as to maximize income.

A person wants to decide the constituents of a diet which will fulfil his daily requirements
of proteins, fats and carbohytrates at minimum cost. The choice is to be made from

three different types of food. The yiélds per unit of these foods are given in the following

table.
food yield / unit cost/unit
Protein Fat |Carbohydrate
/i 3 2 6 45
X 4 2 3 40
8 8 7 7 85
Minimum . i :
requirement| 1000 200 | - 800

Formulate the LPP.
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3.5 Graphical Solution of LPP.

We now discuss methods of solving an LPP. When the number of decision variables

i limited to two, we can use graphical method. Other methods are available for larger

number of variables but they are beyond our scope of discussion.

You already know that in two dimensional geometry given an inequation in any one
of the forms ax+by < ¢, ax+by 2 ¢, ax + by < ¢ or ax+hy > c, the set of points (x,y) in
R? satisfying the inequality determines a region which is called the corresponding
solution-region. Taking into account all the constraints in an LPP (See inequalities (B)
and (C) of art 3.2) we obtain a common region that is the intersection of the solution-
regions of each of the inequalities. Every point of this common region satisfies the
whole set of constraints including the non-negativity restrictions. This region is called
the feasible region (F.R) of the L.P.P. Every point of the feasible region is a feasible
solution of the LPP. All points which are outside the feasible region do not satisfy all
the constraints and the nonnegativity restrictions simultaneously. They are called
infeasible solutions and the region to which they belong is called infeasible region.
Note that the F.R. is either a region bounded by a convex polygon or anunbounded region
(Sec remark (i). ‘ _

Out of infinitely many points of the feasible region we have to determine those.
points at which the optimum value of the objective function occurs. This is done as per
the following important theorem in linear programming which we state below without

proof.

Theorem. If the feasible region for an LPP is bounded by a convex polygon (convex
polyhedron, in case of more than two variables) then

(i) at least one of the extreme points (vertices or corner points-where two sides if a
polygon meet) gives an optional solution.

(i1) the objective function has both a maximum and a minimum value each of which
occurs at an extreme point of the F.R.

Remark (1) A feasible region is bounded if we can find a constant k such that the distance
between any two points of the region cannot exceed k. A region that is not bounded 1s
called unbounded.

(i1) If the F.R. is unbounded then the optimal value of the objective function may or may
not exist and if it exists then it must occur at one of the extreme points.

(iii) If an optional value occurs at two different points then it also occurs at each point
of the line segment joining these two points.
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3.5.1 Working procedure to solue LPP graphically.
Step-1. Taking all inequations of the constaints as equations, draw lines represented by each

equation and considering the inequalities of the constraint inequations complete the
feasible region.

Step-2. Determine the vertices of the fearible region either by inspection or by & solving the

two equations of the intersecting lines.

Step-3. Eraluate the objective function Z= ax-+by at each vertex.

casc

case

Note.

(1) ER. is bounded: The verlex which gives the optional value (maximum or minimum)
of Z gives the desired optional solution to the LPP.

(i1) ER. is unbounded: When M is the maximum value of Z ata vertex Vmax, determine
the open half plane corresponding to the inequation ax + by > M. If this open half
plane has no points in common with the F.R. then M is the mqximum value of Z and the
point Vmax gives the desired solution. Otherwise Z has no maximum value.
Similarly consider the open half plane ax+by < m when m is the minimum value of Z
at the vertex Vmin. If this half plane has no point common with the F.R. then mis the
minimum value of Z and Vmin gives the desired solution. Otherwise Z has no minimum
value. |

To determine the open half plane in either case (maximum or minimum), draw a dotted
line through the corresponding vertex (Vmax or Vmin) parallel to the line Z=ax +by =
0. Then find the side of the line depending on the inequation ax+by > M or ax+by <
m ’

We now consider some examples to illustrate the above ideas.

Example- 4. Solve the following LPP graphically.

Maximize Z = 3x+4y
Subject to
4x + 2y < 80
2x + 5y < 180

x,yz20

Solution :
Step-1: Taking inequations of the constraints as equations, draw the straight lines represented

by 4x + 2y =80 and 2x +5y =180 using Table 1 and Table 2.

“Table -1 : Table - 2
b 20 0 10 X 90 0 20
y 0 40 20 y 0 36| 28
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Y
= -80
(Fig. 5)
Step-z Origin (0,0) satisfies both inequalities
Considering the set of point (x,y) which satisfy the in equations (as shown by the
arrows on the lineés drawn) along with the condition x,y > 0 which depicts the first
quadrant, we obtain the feasible region. .
The the vertices of the feasible region are O(0,0), A(20,0), B (2.5,35)and C (0,36).
Step-3 The values of the objective function at these points are
Z(0)=0, Z(A)=60, Z(B)=1475 Z(C)=144.
Thus the maximum value of Z is 147.5 and it occurs at B (2.5, 35), Hence the solution
of this LPP 1s
x=25,y=35andZ__=1475
Note: - The coordinates of the vertices O,A,B and C can be obtained by finding the points of

inter section of corresponding lines after solving the equations of lines take in pairs.
The small arrow marks drawn on a line as in the figure above, show the location of the
feasible region on the appropriate side of the line. Refer to the discussion on the
Solution Region (SR) in the chapter on linear inequalities in Vol-I to refresh your
knowledge in this regard.
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Example- 5 :
Solve the following L.P.P. graphically
Maximze Z =40x + 88y
subject to
2x + 8y < 60
S5x + 2y < 60
x.y=29
" Solution :
Step-1 Treating inequations as equations, the constraints become
2x+8y=60 ............ (1)
x4+ =00 ........... (2)
Puttingy =0 in (1) we getx =30 and Puttingx =0 in (1) we get y="7.5
The points (30, 0) and (0,7.5) are on the line represented by (1). Plot these pomts and
draw the line.
Similarly in (2),
putting y = 0 we get x = 12 and putting x = 0 we get y =30
The points (0, 30) and (12,0) are on the line represented by (2). Plot these points and
draw the line.

Y

xl

Step-2 Since origin (0, 0) satisfies the inequation 2x + 8y < 60 and 5x + 2y < 60, the
+ feasible region is below the line 2x + 8y = 60 and to left of the line 5x + 2y = 60
Due to the non-negative restrictions x > 0and y > 0 the fea.s;lble reglon is in the
first quadrant.
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So the shaded region OABC is the feasible region.
In this figure, the point B is the point of intersection of the straight lines
2x + 8y = 60 and 5x + 2y = 60
Solving these equations we getx = 10, y =5 Thus the vertices of the feasible region
are 0 (0,0), A(12,0), B(10,5), C(0,7.5)
Step-3 The values of the objective function Z at these vertices are
Z(0)=40 « 0 + 8 x 0=0
Z(A)=40 x 12+88 x 0=480
Z (B) =40 x 10 + 885 = 840
Z(C)=40 x 0+ 88 x7.5=660
Thus the maximum value of Z 1s é40. and it occurs at B (10,5). Hence the solution
of this LPP is
x=10,y=5,andZ __ = 840
Example- 6
Solve the following L.P.P. graphically.
Optimize Z = 20x +40x,
Subjectto 6x -x,>-6
x+4x,2 8
2, +x,24
x20;x, 2 0
Solution

Step-1 Treating the constraints as equations, we have

L G -x =6 .. (1)
L tdg =80 . 2)
LoZetx =4 . (3)

In (1) putting x,= 0 we get x =-1 and putting x =0 we get x, = 6. Joining the points
(-1, 0)and (0,6) we draw line L . Similarly joining points (8,0) and (0,2) we draw line
L, and by joining points (2,0) and (0,4), line L,.

The origin (0,0) does not satisfy any of the constraints. Moreover x1 and x2 are
non negative. Hence the shaded region ABCD in the first quadrant is the feasible

region.
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V¥
Sfep—Z The vertices of the fearible region é_re seen to be the points A, B, C, and D.
We have, by inspection, obtained A = (0,6), B=(0,4) and D=(8,0). To obtain C, we
solve L,=0 and L,=0. Thus
x +4x,-8=0

and 2x1+x2-4=0

IR e
adon 7 e e —% (by cross Multiplication)
' 8 12 8 12
:x,—?andxz—7$C—[—7—,—7—].

Step-3 Now Z= 20x, + 40x,
=  Z(A)=20x0 + 40x6 = 240 (max.)
Z(B) = 20%0 + 40x4 =160

Z(C) =20x 5+ 40 x 12 = 640/7=912 (min.)
7 7 7
Z(D) = 20x8 + 40x0 = 160 . _
Here we cannot immediately decide that Z(A) and Z(C) are the maximum and minimum
values of Z because the F.R. is unbounded. So we draw a dotted line through the
origin representing Z=0. Since Z(C) is a possible case of minimum value, we draw a
dotted line through C parallel to the line Z=0. The half plane satisfying 20x,+40x, <
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z(c) = 640/7 is indicated by little arrows on the dotted line through C. This region has
no points common with the F.R. Hence the objective function Z attains minimum
8 12

To decide whether A is a maximum point or not, we draw a dotted line through A
parallel to the line Z=0. The half plane satisfying 20x +40x,> Z(A) = 240 is indicated
by little arrows on the dotted line through A. Since this region has points common
with the F.R. the maximum value of Z does not occur at the vertex A.

: 8 12
Hence we conclude that the objective function Z has minimum value of C= [5,7J

3 -
the minimum value being Z(C) =91 7 and has no maximum value.

Example- 7

Solve the following L.P.P. graphically.
Minimize Z = 6x+ 9y
Subjectto x+ 12y <65

Tx -2y <25

2x+3y 210

x,y20

Solution

Step-1 Treating the given inequations as equations the constraints become

X FI2ymEe. L (1)
"\ 7x-2y=25 S
2x+3y=10 A )

; ; ; 65
In equation (1), by putting y = 0 we get x = 65 and putting x =0 we get y el
65 , )
So the points (65,0) and (0, E] are on the line represented by (1). Joining these
points we draw the line.

: 20 . 25 : .
Similarly in equation (2) we get points [T’OJ and [0,“-2—] on the line represented
by (2). Joining these points we draw the line.
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Step-2

Step-3

10
Again we get points (5,0) and [0: —3—] on the line represented by (3) and joining

" them we draw the line.

Since the origin (0,0) does not satisfy the inequation 2x + 3y > 10 and satisfies the
other two inequations, the feasible region ABCD is shaded as shown lying in the first
quadrant. The point C is obtained by Solving the equations (2) and (3) whence

19 4 '
C=(-S— r;j-) , The point D is obtained by solving equations (1) and (2) whence D=(5,5).

The points A and B are points of intersection of lines (1) and (3) with x=0. Thus the

65 10 19 4
vertices of the feasible region arc A 0 13 |-B| %5 |,C| 55 | and D(5,5).

The values of the objective function Z are

9
Z (A) = 6x0+9 9*1—45

Z (B) = 6x0+9x 539 =30

19 4
Z (C) = 6x 5 +9x =30

Z (D) = 6x5+9%5=75
Here the feasible region is bounded.
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Hence Zmin = 30 the minimum value occurs at be and also at C. Hence the minimum
value occurs at every print of the segment BC . (see remark (iii) of section 3.5) The
solution of the LPP is given by

19 . 10 4
(xl,sz[k.0+(l—l)-—f,-,l—?+(l—~l)§), refo1]

[Recall that any point on the segment joining (x,,y,) and (x,,y,) is given by
(ax.+ (1-2) %, A0,+ (1-0),), A€ [0,1]]

e (e slson+aanz] ) aefo

and Zmin = 30.

Exercises- 3 (b)

Solve the following L.P.P.s graphically.

L. - Maximize Z=5x, + 6x,
Subjectto  2x, +3x,<6
e
2. Minimize Z= 6x, + 7x,
Subjectto  x,+2x, 24
X.0% 20
3. Maximize Z=20x, + 40x,
Subjectto x, +x, <1
6x,+2x, <3
X, % &0
4. Minimize Z= 30x, + 45x,
Subjectto  2x,+6x, 24
5%+ 2%, 25
Xy Xy 20
5 Maximize Z=3x, + 2x, : [

Subjectto  -2x,+x, < 1
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6. Maximize Z= SOxI + 60}\:2

Subjectto  x,+x, <5

7 Maximize Z= 5x, + 7x,
Subjectto  x +x, <4
3%, + Bx. < 30
10x,+ 7x, < 35
x,x,20
8. Maximize Z= 14x, - 4x,
Subjectto x +12x, <65
Tx,- 2x,< 25
2x.+ 3x, 210
X %20
- Also find two other points which maximize Z.
9. Maximize Z= 10x, + 12x+ 8x,
Subjectto  x +2x, <30
Sx;=lx. 212
x,+x+x,=20
X220
[Hint : Eliminate x, from all expressions using the given equation in the set of
constraints, so that it becomes an LPP in two variables]

10. Minimize Z= 20x, + 10x,
Subjectto  x,+2x, <40
3x,+x,2 30
4x, + 3x, 2 60

Xy o Xy 20
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11. Maximize Z=4x, + 3x,
Subjectto  x,+x, <50
x,+2x,< 80
2x, +x,2 20
X%, 20
32 Qptimize Z = 5x, + 25x,
Subjectto  -0.5x,+x, <2
x,+x,22
x,+5x,25
S 2 0
13. Optimize Z= 5x, + 2x,
Subjectto  -0.5x,+x, £2
x,+x,22
-x,+5x,25
X X, 2 0
14, Optimize Z= -10x + 2x,
Subjectto  -x,+x, -1
x +x,56
53
X% 2 0
15.  Solve the L.P.Ps obtained in Exercise 3(a) Q1 to Q9 by graphical method.
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4.0

4.1

Mgl_‘!-ices

It is no paradox to say that in our most theoretical moods we 'may be

nearest to our most practical applications.
- A.N. Whitehead

Introduction

Brevity is the essence of mathematics. Many a time, in our day to day life, we come across
situations which are similar in nature. In stead of giving them individual attention, we would like
to deal with them as a ollective and systemetic whole. How much interesting it would be if we
were able to express a nuiiiber of equations as a single one and come up ready with their
individual solutions in a compact form !

Not only equations, there are several instances from various fields of our activities as diverse
as physics, engineering, electronics, finance, business management and over and above all, the
software ‘matlab’ where we need compactification of ideas for a systematic dealing with facts
and figures.

Matrix, what it is :

Suppose there are to 4 unit tests in science, mathematics and literature and your scores in repective
subjects and tests are given as under :

Tests/Scores Science Mathematics Literature

I 80 90 76
| 82 89 74
Il 88 91 77
v 89 95 78
From the above we can carve out a rectangular array :
80 920 76
82 89 74
88 91 77
89 ' 95 78

with the understanding that a column gives your scores in a particular subject in the defferent
tests whereas a row gives your scores in a particular test in different subjects.

An array as such is an example of a matrix.
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Matrix and its order

4.2

A matrix i arectangﬁlar array of numbers (any system of numbers), arranged in rows and columns.
If there are m rows, and n columns in a matrix, it is called an ‘m by n’ matrix, or a matrix
of order m x n.

Note that m and n in ‘m by n’ or ‘mxn’ respectively dinote the number of rows and number of
columns in a matrix.

Let us consider a set of numbers, @, (i=1,2, ...m;j = 1,2,3....n). We can arrange them in
arectangular arrayas follows (denoted by Aand described by [a,] ). So.

4 3\
apy app Q3 dyg - Ay

a1 @2 A3 @24 - A2p
ay) azy azz Azq ... d3q

\%ml 9m2 9m3 9m4 - 9mn )
This array is enclosed by parentheses (Alternatively this can also be enclosed by brackets.) A=
(9] 5 called a matrix of order mxn.

When m =n, we have a square matrix of order nxn (or simply n).

Each g is called an element of the matrix and it is the j* element of the i* row.

It can be observed that there are mn elements in a matrix of order m x n.

Some Definitions:

1. Zero Matrix : Ifall the elements of a matrix are zero, it is called a null matrix or zero matrix.
The null matrix of order m x n is denoted by 0_ _If the elements of a matrix are not all zero, it is
called a non- zero matrix.

2. Transpose :

The transpose ofa matrix A is the matrix, obtained fromA by changing its rows into columns,
and columns into rows. It is denoted by A’ or A”.

Hence if A is’ of order m x n, then AT or A’ is of order n x m.

a, a,

b ¢
The:ransposeof[j ¥ c'} @x3 matrix)is |5 &, | (3x2 matrix)
252 % ¢ ¢
Transpose of a transpose : .

Itis evident that the transpose of the transpose of a matrix is the given matrix itself, that is
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[AT]"=A.
IfA=[a],, thenby definition, A" la'i]]n < Where @’
3. Row Matrix : '

A matrix with a single row is called a row matrix.

=a|‘

=)

Thus [a,b, ¢ ] is a row matrix. It isa I X 3 matrix.
[aa,.....a]isa 1X n(row) matrix.
4. Column Matrix :

A matrix with a single column is called a column matrix.

a
& | isacolumn martix

5|

Itisa 3x1 matrix.

aj

a
In general 2 is ann X 1 column matrix.

ay

N.B. : Transpose of a row matrix is a column matrix and transpose of a column matrix is a row

matrix.
5. Diagonal Matrix : _
A square martix of which the nondiagonal elements are all zero, is called diagonal matrix.

A2 W e
So| 0 0 ay. .. 0 | isadiagonalmatrixofordern.
L S0l 20 0 G @

The elements @ , a

1> @55 - A, COMprise the diagonal of the square matrix [a ] _ .

Hence [a ], .  is a diagonal matrix ifa =0 for i#js
6.Scalar Matrix :
If the diagonal elements of the diagonal martix are all equal, it is called a scalar matrix. For
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a 0 0
0 a 0
0 0 a

example, the matrix is a scalar matrix of order 3. For any real or complex

number o, [«] is also a scalar matrix of order 1.

N.B.: Scalar matrices are necessarity square matrics. It may be noted that a squafe matrix of
order n actually means a matrix of order nxn as per definition in the beginning.

7.Unit Matrix :
If the diagonal elements of a diagonal matrix are all unity, it is called a unit matrix.
1 00
R
00 1
matrix. A unit matrix of order 7 is denoted by I_or by I, when the order is understood.
8. Equality of Matrices :

For example is a unit matrix of order 3. A unit matrix is also called Identity

Two matrices A and B are said to be conformable for equality, if they are of same order.

Two matrices ofthe same order are said to be equal, ifand only if the corresponding elements of
the two are equal. So the matrices [¢,] _ and "’a‘]-n- will be equal if and only ifa, =b, for

each pair of values of i and ;.
: a b ¢ Y N - o R - o
Thus the two matrices P o and P G n areequal;fai—p,, bl-(h'cl_r:'az

e = 5
=p,b,=q,andc,=r, Forexample,thematl“IC%|: 334 ]and[ 27 64 ] are equal. We

ffqd b 1 8
write 33 43 =l 27 6l

4.3 Algebra of Matrices (Operations on matrices) :

Addition and Subtraction of Matrices :

Two matrices A and B are said to be conformable for addition if they are of the same
order. The sum of two matrices of the same order is the matrix of which the elements are the
sum of the corresponding elements of the two matrices, Therefore the sum of the two matrices
A=[a]
iandj.

mxe aNdB=[b ] is thematrix C= [¢,),., Wherec, =a, + b, for all values of
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a b g A @ on a+p b+qr a+n
Thus + =
la b o 2 @2 n] Bt Bter atn

1. 2.3 % 7.8 9] |8 1012
For example, | , 5 ¢ 3. &9 7 11 15
The difference A— B of two matrices A and B of the same order is defined to be the sum
i 23 1 06 0., 2 =3
A+(~B)ofmatricesAand~B.Thus |, ¢ ol " |5 4 5| |2 s 3

Additive Identity :
Itisevident that[a.] +O_  =[a,] . .and[a]  -O_ . =[a]
= O__, is the additive identity with respect to addition on mxn matrices.
Additive Inverse :

The additive inverse of a matrix A=[a ] is the matrix o

-

“a1 —412 ... )y

1. W2 . ... “Wp

1 —a3y —d3; ... —a3,
and is denoted by—-A=

_—-aml =@m) ¢ asaa -amu_

Commutative law holds good for addition of matrices:

LetA=[a], . .andB= [b,]

ij4m*n

a,= a,+b,and B+A=[p]

1
o, = B

Hence A+ B =B +A. Thus matrix addition is commutative.

be two matrices, thenA+ B =[o.]  where

where B, = b, +a . Buta, + b o= b.'j + a,.So

m*n*

Associative law holds good for addition of matrices :
LetA =[a],... B=[5,], .andC=[c,] . bethree matrices, then (A+B)+C=[a] ,, +[c;]

mxn (Where e, =a, +b.)=[p.] ..

where p.=a +tc.=a,+b +c AgainA+ (B+C) =[q,] .. *[7,

Jmxa- (Wherer, =

bij+ ¢;) =1q,],.,whereq, =a, +r, =a.+b+tc,=p,

Therefore [p,],...=[g,],,.,Hence (A+B) + C=A+ (B +C).

So matrix addition is associative.
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Transpose of Sum of Matrices :

It can easily be shown that the transpose of the sum of two matrices is equal to the sum of their
transposes, provided that the sum is defined. Thus [A+ B]" =A™ + B'

‘Multiplication of matrices by a scalar
Let A be amatrix [a,] _ and k be a scalar quantity, i.e. a real or comlex number, then the

o b. ¢ ka kb ke
product kAor Akis amatrix [b,]  where b, =ka, . Hence k e

B gt kp kg kr
123 [246
Thus2x 13 4 51716 8 10| -

If A and B are two m x n matrices, and ¢ and d are scalars, then the following results are
obvious.
(i) c(A+B)=cA+cB (11) (c +d)A=cA+dA

Corollary :
The transpose of the product kA is the product of k and the transpose of A.
Thus [kA]T=Kk[A]".

Matrix Multiplication :

If the number of columns of a matrix A is equal to the number of rows of another
matrix B, then the matrices A and B are said to be conformable for the product AB -
and the product AB is said to be defined. We denote the product by A. B or AB.

n

IfA=[a],, and B= (6,],.,, then we have AB= [c ] wherec, = _Z'l"ij - Pik 1n
: j=

other words, if A is a matrix of order m x n and B is of order n * p, then AB is a matrix of
order m  p ,and the element ofith row and kth column of AB is the sum of the products of
the elements of the ith row of A, and the corresponding elements of the kth column of B.

n'fp'

- [ m
{01 boal, g _[ ajp +bq ten apy +higy + on ]
Hence | a, by o) | ik axpy + by q teon  axpy thgy + on
o & B
1 -2 3 5 1 1+4+9 0+2 +6 14 8
. . x == =
Similady {0 1 2] |% || [0+2+6 0+1+4 8.5

In the product AB, A is called the prefactor and B is called the post factor.

Corollary 1 : If A and B are two matrices such that (A + B) and AB are both defined, then A
and B are both square matrices of the same order. Since (A + B) is defined, the matrices
A and B must be of the same order, say m x n. Again, since AB is defined, the number of
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columns of A must be equal to the number of rows of B. Hence m = n.
Corollary 2 : IfAisanm x n matrix, and if both AB and BA are defined, then B is an» X m matrix.
Note 1. Non zero matrices may multiply to a zero matrix ' 3

If AB = [0] (sometimes the zero matrix [0] is also written as 0), we cannot say, as in scalar

. 1 4 0 0 00
algebra, that either A or B is a zero matrix. For example, ifA=|2 5 0| andB=|0 0 0
3 & 78 9

we have AB =

c o O
=T = =
o o o

which shows that though the product AB is a zero marix, neither

A nor B is a zero matrix.

In the above example both A and B are 3x3 square matrices. However they may be of different
orders which are conformable for multiplication. Consider :

0 0 1
030
(i)A=[O ; 4}(2x3matn'x),B= 0 0 0| (3x3 matrix)
0 0 :

0

Here AB =0, a 2x3 zero matrix.

-3 2 2-0
() A= 0 0 , B= 3 0 (Square matrices of order 2)

Here AB= (), a 2x2 zero matrix.
Observe that neither A, nor B is a zero matrix.

Note 2. If AB = AC, we cannot say, as in scalar algebra, that B = C, even if A # 0. For

1 4 0 Tl Sl | T -2 T3
example, if A= 23501 g |1 23| angc=1{! 2 3|wehaveaB=|!! ¥ 7|_ac

3, 5 4 56 71 8°9 15 18 21
whre as B = C.

Properties of matrix multiplication

(a) Matrix Multiplication is not commutative in general .

In order that the matrices A and B be conformable for the products AB and BA, we take
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[".,].,....» and B=[4,] . . Then the product AB is a matrix of order m x m while the
product BA is a matrix of order n x n. Hence the question of equality of matrices AB and BA
does not arise unless m = n.

Ifm =n, wehaveA=[a] . andB= [6,],., ThenAB = [c]

nxn? ij4m = m?

where [¢,] = Zaxk byj and BA = ), ..o where d, -zbik“lg Since ¢, #d, in
k=1

general, AB # BA in general.
You can also numerically verify the assertion by taking

1 -1 4B = 0 3
A=lg 2|™ 4 -2
that AB = BA.
Thus matrix multiplication is noncommutative in general.

Note : The n X n unit matrix |_behaves as the multiplicative identity during multiplication with nxn

square matrices, i.e. Al =A=1 A where A is any square matrix of order n.

You can verify this by taking specific examples.
We shall make use of this fact in our subsequent developments.

(b) Matrix multiplication is associative

LetA=[a,] = [b,),., andC=[c,] , be three matrices, so that they are conformable

mxn’
n

for the products AB and BC. Now AB= [a,] . wehre o, = _Z]“ij by,,andC= [
j=

So the marices AB and C are conformable for the product (AB). C; hence (AB)C= [B] .,

where B = Zaik"'kl
Z [[ 2.4 lk] | = E Z“u R S
k=1 k=1 j=1

: p
Similarly, BC= [8 ],, , where 9 = D bk cu .
k=1

So the matrices A and BC are conformable for the product A (BC), and hence A (BC) =

(8,],,., where § = Zaij 8 = Zaij [ibﬁqﬂJ
J=1 i=1 \k=1
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(c)

n p P n
> [Z“ij bix ‘kl] =Y Xayby cu (-~ the number of terms is finite)

j=1\k=I k=1 j=I
=P, (from (1))
Since B, =, forall pairsofiand /(i=1,2,3, ........ Ml 2% oo q)
we have [B,] . =[8 ilmq - S0 (AB) C=A(BC)
Thus matrix multiplication is associative.

m*q

You can also numerically verify the result taking suitable examples maintaining conformability
for multiplication.
Matrix multiplication is distributive with respect to addition :

LetA=[a] . ,.B=[b],, , and C= [¢,],.,» be three matrices, so that they are conformable
for the sum (B+C), and for the products AB and AC. We have B+ C = [x,],., where x,=b,+
¢;- So the matrices A and B + C are conformable for the product  A(B+C).

AgainA (B+C) = [y,], . , (wherey, = Z:'ijxjk )
Jj=

n - n n
j=1 ol J=

AgainAB = [u,]

m*=p

(where u,= 2% bik )
ik j =

. n
(where v, = 2.9 €k )

and AC =[v,] o
} =

mxp

So the matrices AB and AC are conformable for the addition AB + AC; hence

" ] n
where o, = u, +v_= 2 aibi 4+ Z"ij ik =y  [from (1)]

ABTAC= o], j=1 Ju

xp?

Since y, = o, for all pairs of iand k (i=1,2,3,...m k= L2 3.0
we have Lvik]mxp-__- [wﬂ‘]wp,

SoA(B+C)=AB +AC

Thus matrix multiplication is distributive with respect to addition.

Corollary Assuming the conformability of the operations,

We have A (B-C) =AB-AC, : .
(A+B)(C+D)=A(C+D)+B(C+D)=AC +AD +BC + BD
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@

(e)

In matrix multiplication, a scalar matrix behaves like a scalar multiplier.

T aal TSR
) RS
B S | PER RO S be a scalar matrix.

L nxn

a“ 012 ﬂln
a3y 422" - G3n
andA=| .. .. .. .. |beamatrixofordern.

P | N 0 any 42 - din
0 k£ ... O0llay axp .. axn

0 0 .. kf|ag 9n2 - 9y

kay, kayy ... kay a) 4 - 4
kay, kay ... kayy ay ayp .. Gy

kay kayy ... kag, 8p] Gp3 - Opg

It can easily be seen that KA = AK. In other words, multiplication of a matrix with a scalar
matrix is commutative as in case of multiplication by a scalar.
The transpose of the product of two matrices is the product of their transposes, taken
in the reverse order.
Let A= [a
AB.

dmnandB=[b,] be two matrices so that they are conformable of the product

n
Then AB=[c,],, wherec, = Zl“ij bik
J:

~. Transpose of AB/is [AB]'==[c'.] .

Again B = [6", ] . where b’ = b,, and A" = [a"],. where a’ .= a,, so that they are
conformable for the product B'A".

n n n 4
Then B'A= [d",] , , where d',= 2w = Lbydi = 2aibx =c.=c’,
J=l J= j=1

Since ¢’ = d’,, for all pairs of £ andi(k=1,2, ...... yi=1,2,..m)
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Hence [AB]"=BTAT
It is known as the law of reversal for a transpose.

Corollary IfA, B, C... K are square matrices of same order, then [ABC]"=C" [AB]" = C"B'A’, In
general [ABC.....K]"=K".....C'BTAT™. '

Some further definitions based on matrix-multiplication :
i. Orthogonal Matrix :

webave[e ] .. = [d] . .

A square matrix A of order n is said to be orthogonal if AA' = A'A=T_

ii. Idempotent Matrix : A square matrix A is called idempotent matrix if A>i.e. AxA=A. For
2 -2 4

=1 S ead
1 -2 -3

example A = is idempotent.

iii. Involuntary Matrix : A matrix such that A= (unit matrix the same order as A) is called an
involuntary matrix. '

iv. Nilpotent matrix : A square matrix A is called a nilpotent matrix if there exists a positive
integer m such that A™=AxAx...xA(mtimes)=0_

Mlustrative Examples

Example1:

Z°3
4 2 -1 i3 8 y e
Given A= 71 and B = - Find A + B, A- B, AB and BA wherever it is
possible. State reasons for the operations which are not possible.
Here A is a matrix of order 2 x 3, and B is a matrix of order 3 x 2. Since the matrices are
not of the same order, the operations (A + B) and (A — B) are not possible.

- Since the number of columns of A is equal to the number of rows of B, AB is defined; and
4 2 -l o 8-6+1 12+0-5] [3 7
AB=(3 _7 ;|* “18+21 -1 9 +0 5|7 |98 18

e ek
Similarly, BA is defined and BA = “-’1* ‘; % [3 1 1]
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8+9 4-21 -2+3 17 -17 1

12 0 -89 340 = 12205613

-4 +15 -2-35 145 11 -37 6
Example 2 :

: ; : =+ V-2 =X z~1
Find the values of x,y, z, t for whichthematrices | 5_, 7, and | _ g Rt may
be equal.

x+y y-z R e R
Ml 2 Tan g g x+z+r,thenx+y=r—x, y-z=2-1,5-1=2z-yand

7 4+ x=x 4 z + 1. Solving these four equations we get x = l,y=2z=3and? =4

Example 3 :
b2 B b of 8]
. - 0 6 -3 3 “F2 =1 6
Determine the matrices.A and B where A+2B= I and 2A-B=

— I
4.3 30% Fd: 200 5 010 o
2 4 5 31 w53 Syt gl

iy 2 AT ey

P N W O R B

R - )

From the second equation, we have

g %
gigy sl 06
fiod
R e ST
e wt lac gk 2orbap
3559 2 9 1.2 R N
Exampled4 :
010

IfA= '(‘) ‘(’} "; , find the value of A* —A*+1,



010 010 -1 0 2
are| -1 0 2], [-1 02 0 -1 2
00 1 00 1 0 0 1
-1 02 "B Y 0 -1 2
PP g1 Doz 3 BOE SEO D R I IS SR 02
0 H 1 00 0 0 1
0 -127] [-1 02 1
Therefore A>~ A2 +1«| 1 @ O | 0 =1-21,10
- R S 0 0 1 0
To#1+T {2040 2=246) [2 <1 o
_ |1-040 0+1+1 0-2+0(_| 1 2 -2
0-0+0 0-0-0 1-1+1] |0 0 1
Example 5 :
Verify that [AB]" = B AT
123 2.3
WhereA=| 6 7 3 |anaB=| 3 4 2
6 -3 4 546
1 2258 =2 3 22 28 10
WehavaAR=] % T 813 472 1] 67 8 @
6 -3 4 551 17 24 16
22 67 17
- [AB]" =| 28 88 24
. 10 40 16
1 6 6 - N
Again AT = 27 3| andBT= e
3 4 2 1
1'35 16 6 2 67 17
. BTAT=| 2 4 6|, -3 |_| 28 88 24
B 4 10 40 16

Hence [AB]"=BTAT

(=
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Applications
Example 6 :
Transform the following system of equations to a single equation, using matrices :
(i) 2x+3y-5=0 7. -
3x+5y-7=0
(i) 3x-ytz=6
x+2ytz=1
2x+T7y+5z=5
Solution : Equation (i) can be written as
2x+3y=>5
3x+S5y=17
Take the matrix of coefficients as

X

’

253 5
A= |: ] , the matrix of variables as X=[ ] and the constants on RHS as B = [7}

3 35

(We take the matrices in the above particular forms in order to get conformability for matrix
multiplication)

2 3][#] .[5
Using matrix multiplication, we get | 3 5| y| |7

or AX = B, which represents the system of equations as a single matrix equation.
(i) As before, the matrix equation in this case is

AX =B, where
3. =) X 6
A=|1 2 1|, X=|y|andB=|1]
2 -8 z 5

N.B. The solution of AX=B shall be dealt with in the next chapter.
Example 7 :

The total investment in farming and business by two persons P, and P, is ¥10 lakhs and 15
lakhs respectively. If these two sectors yield profit annually at the rate of 20% and 25%
respectively, determine how can they divide their investments in the respective sectors so as to
get total annual profit of ¥2.3 lakhs and 3.5 lakhs respectively.

Solution :

Taking investment of P and P, in farmihg as x and y respectively, the ‘investment matrix’, in
lakhs is given by
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Farming Business
Blx 10—x
i P, [ y 15— yjl
and the ‘rate of profit matrix’ is given by
20%.
i {25%}
.. The ‘total profit matrix’, in lakhs, is given by

20x  25(10-0) | 23

100 100 %
AB=|20 =

2 y+25(15 ¥) 3.5

100 100

(You can choose the matrices in some other way and, depending upon their conformability for
multiplication, find out the profit matrix)

Solving for x and y applying definition of equality of matrices
x = 4 lakhs, y = 5 lakhs.

= P, should invest T4 lakhs in farming and Y6 lakhs in business and P, should invest 5 lakhs
in farming and ¥ 10 lakhs in business in order to get the total desired profit.

EXERCISES 4 (a)

1.  State the order of the following matrices.

1
(i) [abec] (ii) 2}
Xy _ TEE: S TS
Gy | ¥ 2 )
%% ~3-2"'1 3
2. How many entries are there ina .
(i) 3 x 3 matrix (ii) 3 % 4 matrix
(iii) p * g matrix (iv) a square matrix of order p ?

3.  Give anexample of
(i) 3 x 1 matrix (S (ii) 2 x 2 matrix
(i) 4 % 2 matrix _ (iv) 1 x 3 matrix
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4. LetA=

[P -

2304 1
5 6 12
2 N (S

(i) what is the order of A ?

(ii) Write down the entries a,,, a“, a,,
(iii) Write down A",

(iv) What is the order of A" 7

5.  Matrices A and B are given below. FmdA+B B+A,A-Band B-A. VenfythatA+B—
B+AandB-A=- (A-B).

solit . wll

£ 142 ‘ - By ¥
(i) A= % et s B= =5
W ¢ e
2 4 T
()A={ 1 1 it o
_ 305 Ak o
; 1 a-b i e
) A=| a1y -3 B=| 4 s
B (-1 2 -5
o) A -1 4 3 Bl Jo =R S
1 2 -3 1w

0 2
(ii) Given [xyz] -[-431]=[-51 0], determine x, y, z.

x] X2 I . ; ' 3
(lll) If n »n == 0 1 ~ £-9 :detemexpx.pypyz'

2 =3 41
(iv) Find the matrix which when added to [ 47 ] gives [ 3 2 ]

e 2.0
6. (1)F1ndthe2><2matr1xX1fX+[ ]=[ ]

7. Calculate whenever possible, the following products.

— e — e
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S e g _ 1L =27 273
(“‘)[z 1_[11] (“’)[—z 3][234]

1 g} %2
§o BAR Ly 4pR" 1 4 C=|1 3

Calculate (i) AB (ii) BA (iii) BC, (iv) CB, (v) AC, (vi) CA
9.  Find the following products.

“Tra2i[10 i Tyelri12
(‘)[3 4][0 1] : (“)[0 1][3 4]
2 a7 S
il el
2 ' 0 11[a &
(v)[ l] where i = /_] (vi) [1 ol le d]
0 k][a b fa B[ 01
("ﬁ)[i OHc d] ("“‘)[c d]_l o]
' 1-2.5] 006
bk Blla & 4 5 6/|0 00
(m)[" k][c “’] : 00739_ 000

10. Write true or false in the following cases :
(i) The sum ofa 3 x 4 matrix witha 3 x 4 matrix is a 3 x 3 matrix
(i) k[0] =0,k e R
(iii) A- B = B—Aif one of A and B is zero and A and B are of the same order.

(iv)A+B=B+A, if Aand B are matrices of the same order

-1 0 Lipd 3 RS
M|l of*|2 o T° (V) g o] =312 2
(vii) With five elements a matrix cannot be constructed.

(viii) The unit matrix is its own transpose.

- 2" 41 10
1. IfA=|, ,3|andI=|, | findA -aLaeR.

12. Findxand y in the following
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13

14.

15.

16.

17.

0 [3 __2;]=[:) j] (i) [2 iﬂ=[.l
) [zf :yy}:[-a ] it U +[ﬂ =[

W2x -yl+tly 3x]=5[1 0]

The element of ith row and jth column of the following matrix is i + j. Complete the matrix.

LV I S P S ]
n & W
w
|

- -

) . @y, S Gzl 3 ;
Write down the matrix ifa_=2i+3j.
a1 G 93 v

Construct a 2 X 3 matrix having elements given by

()a,=it] (i)a;=i-j
(i) @, =i % j (iv)a,= f
2k P 4 2 8 3
If| | 3l*|o 1|=|1 2| findxandy.
_ o 259
Find A such that | ! 0 214 a=|2 -1 0
3 1 -l B3,

1 0

x+y x-z| P
18. If - - find the values ofx, y, z.

19.

20.

21.

2x-y 0
What is the order of the matrix Bif[342]B=[2 1 0 3 6]

4 -4 8-4
ik 3 -3 6 3

17 s
FmdBlfBz=[8 ”] .
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' R 4
22. Findxandywhen |, _; W

23. Find AB and BA given that

0 1 b 7y 10
(i)A=[1 0}']3:[4 1] (ii)A-:[ts 4]-B=[o 1]

" el 43 _ 12 T
ﬁ“”‘:[z 3]’]3: SO (“’)A=[2 5]=B= s

24. Evaluate
. 7 S A I 21, 211 2
(i) [[2,1]1+2[0-2]] 1 =2 0 (|3 g L 95 31 1
T R 128
s 1A=l 1 1O g{! ! ! andc=| ! ! 7! |showthat AB=AC, thoughB = C.
-1 4 0 s ke ! ! Zerdeeed
Verify that () A+ (B+C) =(A+B)+C,
(i) A(B+C)=AB+AC (iii) A (BC) = (AB) C
26. 'Find Aand B where
B They : TR g .
oa+B=|5 4 3 |mda-28=| 3 % !
1. ke -2 -2 2
4 2 ) 3
27. HA= g iy and I is the 2 x 2 unit matrix, find (A— 2I) (A-3I).
I 0
: 1 2 =3 2 0
28. Verifythat [AB]"=B'A" where ()A=|,5 5 | ,B= e and

Sl ,
230

- 23
(i) A= ,B= [ ]

) 3 4 Joe=g

a b
29. VerifythatA=| . satisfies the equgtionx’—(a+d)x+(ad—bc)1=0where1isthe
2 % 2 unit matrix.
' P o - ' .

30. IfA=| > ‘z I'| show that A>—23A—401=0
4 1
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a h g x
31. Simplify : [xyz] % s h ol
2 - O A z
32. IfAand B are matrices of the same order and AB = BA, then prove that

33.

34.

g

36.

37

38.

39.

41.

42.

(i)A’-B*=(A-B)(A+B)

(i)) A*+2AB + B*= (A + B)’

(i) A>-2AB + B*=(A- By

If o.and p are scalars and A is a square matrix then prove that

(A-al). (A-Bl)=A?—(a+ B )A+ apl where I is a unit matrix of same order as A.

If o and B are scalars such that A= aB + BI where A, B and the unit matrix I are of the same order,
then prove that AB = BA.

=1 =38

_| 1 3 -5 2
IfA= ,show that A=A,

el 5034508

-9 23 7 6 3]
IfA=_2 1.4 |andB=| | 5q,ﬁnd2A+3B,2A—3B.

(1 0 -2 4 -1 37 2 3 0
IO 5w BN gy [WREE  Ty pe

() A-3B+2C (ii) (A+B-C)" (iii) B~ C".

$723° .3 2323 Y ;
IfA= [”1 3], B=_ | l]amc=[_2 3 0:l,w.’eni"y
(i) (A+B) C=AC+BC (ii) (AB) C=A (BC)

1 =2 X v [ -3 4
3 oa bk U he s jofodrandy.

2 4

e 1 _
HA=| 3 ¢4 |:B= s ,venfythat(AB)_T=BTAT

1 2 0 1
IfA,_B,C.a:ematricesofordeﬂx2_eachand2A+B+C=[3 gj|vA+B+C=|:2 l}’

x y EVE 1 4 :
If| %_H 152 % =[2 3],ﬁndx,y,zandt
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43. There are two families A and B. In family A there are 4 men, 6 women and 2 children and in family
B there are 2 men, 2 women and 4 children. The recommended daily amount of calories is 2400 for
men, 1900 for women, 1800 for children and 45 gram of protein for men, 55 grams for women and
33 grams for children. Represent the above information using matrices. By matrix multiplication,
calculate the total requirement of calories and proteins for each ofthe two families.

44 Atrust fund has 50,000 that s to be invested in two types of bonds. The first and second bonds
respectively pay annual interest at the rate of 5% and 6% respectively. Using matrix multiplication,
determine how to invest the money in these bonds so as to get a total annualinterest of T2780.

4.4 Symmetric and Skew Symmetric Matrix :

Definition (Symmetric matrix) : A matrix which is equal to its transpose, is a symmetric

Obviously, for a symmatric matrix A= [a,], a=a, foralliand j. .
Corollary : .
A symmetric matrix is necessarily a squaré matrix.
For if A=A’ and A is of order mx nthen A’ is of order n x m and
A=A"= m=nso that that Aand A’ are both square matrices.
So the above definition is in the best possible form.
Example :

a h g
- S

h & J fend [2 1:| are symmetric matrices.
g f
Definition (Skew Symmetric matrix)

A matrix A such that A =-A’ is called skew symmetric.

Obviously, for a skew symmetric matrix A= [a,), a,=-a foralliand j.

Also, a skew symmetric matrix is nécessaﬁlya square matrix.

A skew symmetric matrix enjoys an additional property :

The diagonal elements of a skew symmetric matrix are zero.

Proof: IfA={a,] is skew symmetric, then a.=—a_foralliandj, so for dxagonal elements we have
a, = -a_foralli 1,

which implies @, = 0 for alli.
Hence the result. i .

Note: (1) It follows from definition that if A is a symmetric/skew symmetric matrix thena A is also
symmetric/ skew symmetrc for any scalar o .
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(2) The zero matrix is both symmetric and skew symmetric. The converse is also true:
A matrix which is both symmetric and skew symmetric, must be the zero matrix.
Let A=[a ] be both symmetric and skew symmetric. Then we have
a,=a (by symmetricity)
=-a, (by skew symmetricity)
=a,=0 foralli&).

=5 A is a zero matrix.
Now let us see what see what happens to A+A’ and A-A” !

A-A'
Take an example :
1 -2 0
Yo
R =3
0 1 —4
| 44 0
= R
SR L T
[0 -1 -3
2 =5 4
TigAiAl=] &
4 6
0 1 4
IR e S
4 4 0

Observe that A+A" is symmetric, whereas A-A' is skew-symmetric.
However, it is not an isolated phenomenon with particular matrices.
Our next two theorems establish some general results along this direction.
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Theorem -1

For a square matrix A

(1) A+A’ is a symmetric matrix and
(i) A-A' is a skew symmetric matrix.
Proof: (i) (A+A’)'=AHA’)’ (- Transpose of sum = sum of transposes)
=A"tA (- Transpose of transpose is the original matrix)

: =.A_+A' (-.- matrix addition is commutative)
Since (A+A")'=A+A’, it follows that A+A’ is a symmetric matrix.
(A-A’Y=A"+(-A") =A’- (A")’ (by prperty of transpose of scalar multiple, taking scalar as -1)
=A'-A=-(A-A") (by property of multiplication by a scalar)
Since (A-A")'=- (A-A'), it follows that A-A" is skew symmetric matrix.

Theorem-2

A square matrix can be uniquely expressed as a sum of a symmetric and a skew symmetric matrix.

Proof:

Let A be a square matrix.
By the property of matrix-addition and multiplication by a scalar,

1 1
A=—(A+A")+=(A-A'
=3 ( ) 5 ( )
A+A" is symmetric and A-A" is skew symmetric. (By Theorem-1)
1 ; B | ;
=5 E(A +A') and E(A —A") are respectively symmetric and skew symmetric.

(- IfA is symmetric/skew symmetric, thena A is symmetric/skew symmetric for any scalar o)
To prove uniquenesé, suppose A=R+S where R is symmetric and S is skew symmetric.
~R=R’"and S=-§

SoA=R+S=R'-§

= A'=(R'-S')' =(R')-(S')'=R-S.

Thus

R+S=A and R-S=A'

:> R=%(A +A')and S= —;-(A ~A")
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1 1
SoA=R+S§ = E(A+A') +-2-(A—A')

and the expression is unique.
HNlustrative Exﬁmples
Example - 7
IfAand B are both symmetric matrices of the same order, then AB is symmetric
if and only if AB=BA.
Proof:
Suppose AB =BA
(AB)'=B’A’ (transpose of product)
=BA (-- Aand B are symmetric)
- =AB (by hypothesis)
=> AB is symmetric.
Conversely suppose that AB is symmetric.
We shall show that AB=BA.
AB=(AB)' (- ABissymmetric)
=B'A’ (transpose of product)
=BA (- Aand B are shymmetric)
It follows that AB=BA.

Example-8
| R (R
W ey : . :
Express as a sum of a symmetric and skew symmetric matrices.
-1 5§ 2 . :
Solution :
D g
TakingA=| ¢ 0 !
-1 -2
a1 1 4 -1 Pl 2
A+A'=40 12 0 “Al=16-0 6| "
-1 .8 =2| {3 1 =21 |2 6 -4
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A_Ar,_ 4 0 l - 2 0 5 — 2 0 —4
-1-5 =2 3 1 =2 -4 4 0
3 1 0 -1 2
2 E I 3 2]4=2 20
T | 0 -1 2
IR issymmetricand| | 0 ~ is skew symmetric.
S

s =220

4.5 Transformation of Matrices

(Elementary Row and Column Operations)

A matrix can be transformed into another by charging its rows or columns through some elementary
- operations as illustrated below :

1. Interchange of any two rows/columns, symbolically represented asR <> R orCo C.
R, R, stand for i and j* rows and C,, C, stand for i® and j* columns.
Example-9 '

05301 1 00 ) SRS
g 1D 0.1 6 0 -0 -1
0 232
> S B
we get *
< R 1

This process oftransformation of the matrices is described as-

5 2 o 0= W]
3 -1 \{g —"'c.lﬂ—cj—) \/g -1 3
e SJ - RS |

b L al

-3 -y sl S .
3 -1 Jg o vy e '\/E 2

®) %2

B SJ - } 3 SJ
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Example-10
Transform the following into unit matrices :

0 01
10 1

=400
¥ O .

010

Solution:

0.1 1.%50
R e A T
. (we can also apply R, <> R,)
0 0 1 1 0 0 ¢ Y
010 g 1.0 o o
We can also apply column operations :
00 1 1 00 10
0 1 0 010 0 0 1

2.  Multiplying the elements of a column/row by a ronzero scalar, symbolically represented as
R,—» kR, or Cj—> kCl s k=0,

3. Replacing a row/column by adding toita nonzero scalar multiplis of elements of another
row/column, symbolically :

R R,+kR10r C—C kC, e
Example-11
Transform into unit matrix :
Jro-20
6 3
v 14 1 (O GEWLE)
(D[ ] (i)
2 2] . 00 3

Solution :
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28 2100
0 0 3| Remw 00 1
4.6 Inverse of a Matrix
Definition (Inverse of a matrix) :

IfAand B are two square matrices of the same order such that AB=BA=I, the unit matrix ofthe
same order as A or B, then B is called the multiplicative inverse of A or simply inverse of A, written
as A, Ais also called inverse of B, written as B'.

Note:

1. We do not define inverse of a matrix which is not square because of the requirement AB=BA in the
definition of inverse, which requires that both must be square matrices.

2. A matrix whose inverse exists, is called an invertible matrix.
Iustrative Emaples :
Example-12

2- 13 =11 10
Sall=5 9110 -1
So both the matrices on the LHS are mvertible and are inverses of each other.
Example-13

= '
[2 4} is not mvertible.
You can see this from the fact that

1 2)[x y] [x+2z y+20 ] [1 0
2 4|z ¢ |2x+4z 2y +4¢ 191
gives rise to inconsistent equations :

x+2y=1, 2x+4z=0 and y+2t=0, 2y+4t=1 in terms of the unknowns x,y,z,t.

Just what types of matrices are invertible and what are not, shall be one of the objects of our study
in the next chapter. .

However, it may be remarked that if, in the course of applying elementary operations to a
matrix we get all the zeros in a row/column, then its inverse does not exist.

Further discussion regarding this shall be done in the next chapter.
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Uniqueness of Inverse
Theorem-3
Inverse of'a matrix, if it exists, is unique.
Proof :
Let a square matrix A have inverses B and C. Then, by definition,
AB=BA =1
and AC=CA=1I
Now, C=CI=C(AB)=(CA)B=1IB=B.
=> C=B and there is only one inverse of A, in other words, inverse ofa matrix is unique.
Inverse of Product :
Theorem - 4
If A and B are invertible matrices of the same order, then
(AB)'=B"'A"
Proof':
(AB) (B'A") = A(B(B'A"))=A((BB')A") =A(IA")=AA" =]
(by associative property of matrix-multiplication and property of inverse of a matrix)
Since (AB)(B'A') =1, it follows that
(AB)'=B'A". .
Inversion of Matrices : _
Given that a matrix is invertible, we now discuss methods of finding its inverse.

Let A be a square matrix of order n and I, a unit matrix of the same order. Supposing that A is
invertible, the procedure for finding A is detailed below :

1. Elementary row operations:
We use the equation |
A=IA
and transform the matrices involved in such a manner that
(1) The post-factor A in RHS is left unchanged.

(ii) A in LHS gets transformed into the unit matrix I through row operations which are to be reflected
onto the pre-factor I in RHS, ultimately giveing us

I=BA. .
Since we have supposed that A is invertible A™' uniquely exists such that AA'=A"A=].
So post-multiplying A" to '
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I=BA
IA"=(BA)A'=B (AA") =BI
= Al=B,

N.B.: Inthe format A=A we can apply only row operations on A and consequently on I because it is the
rows of [ in RHS which get involved in the multiplication.

2. Elementary column operations:
We take the equation

A=Al leave A on RHS unchanged, carry out elementary column operations on A until we convert
it to the unit matrix, simultaneously applying the same column operations on 1 on RHS; thus getting

I=AB, which gives
B=A"
N.B.: We take the equation A=AI, because it is only the columns of I which get involved in the product AL
Ilustrative Examples :
Example - 14
' 25
Find inverse of L 3] applying elementary operations.

Solution :
To apply column operations we write :

2 5] 1 0
AL ey

[15]_,[30
% lo 3] |41

(C,>3C-C)
1 0'_A” 3 =15
* 1o 3 -1 6
(C,>» C-5C)
1 o'HA' 3 =5
bl 2 | o WA
1
(C,»3C) :
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('You can also apply elementary row operation in the orderR > R -R, , R—>R-Rand R —

R 2R, in the equation A= IA and arrive at the same result)

Example - 15
Applying elementax}mperations,ﬁndtheinverse of
0.9 2 }oo2 =3
@lo 2 o, G2 1 4
2 B9 P 0 .2
Solution : B
(i) In order to apply column operations we write
0 0 2 1 9 0
_|o 2 o|=Al0 1 0
2 0°0 90 1

(== L e IR

) ) 0 0
2. 0l=A10 1

(C,«C)
0 2 1.0

< = O
o O wi

[cl —>%q, L] —:%c_,)

2
0o o 2] [0 o0 4
At=lo 2 0] =|0 10
2:0 6/ |+ 60
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1 0.2} .[o
ol® 1 0f=l0
1 2 31 |1
(R,SR-2R)
1 0 2] [o
0 1 0f=(0
or
¥ 210
(R,~RR)

1. 0-2] [o
or|0 1 0]=|0
00 1
(R,>R-2R))

1% o] {2 4
01 0|=(0
or
o .6 1]i]3
(R,~R,-2R,)

i @
~A'=[2 1 4
1 0 2

State which ofthe following matrices are symmetric, skew symmetric, both or not either :

0 1
@Dy o

(i)

(vi)

0
1
g

l

-2 |A
3

=5

~21A. ™

Goaat

0 1
1 =2

X
(ii) | ~1
-2

~5
-2

3

|| Exercises - 4 (b) ||

1

-3

2

3|, (xy,2) #(0,0,0)

Z

V)

= I - A

DD

= = T =
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2. State ‘“True’or ‘False’:
(i) IfAand B are symmetric matrices of the same order and AB—BA # 0 , then AB is not symmetric.
(i) Foranysquare matrix A, AA'is symmetric.
(i) IfAis any skew symmetric matrix, then A%is also skew symmetric.
(iv) IfAis symmetric, then A% A’ ..., A" are all symmetric.
(v) IfAis symmetric then A-A' is both symmetric and skew symmetric.
(vi) For any square matrix (A—A'") ? is skew symmetric.
(vii) A matrix which is not symmetric is skew symmetric. :
3.() IfAand B are symmetric matrices of the same order with AB# BA, final whether AB — BA is
symmetric or skew symmetric.

(i) Ifasymmetric/skew symmetric matrix is expressed as a sum of a symmetric and a skew symmetric
matrix then prove that one of the matrices in the sum must be zero matrix.

4.  Aand B are square matrices of the same order, prove that
(i) IfA, B and AB are all symmetric, then AB—BA=0
(i) IfA, Band AB are all skew symmetric then AB + BA=0

1 R0

5. 1A=| @ 1 3| thenverifythat
~2.-5 3

(i) A+A'is symmetric

() A-A'is skew symmetric

6.  Prove that a unit matrix is its own inverse. Is the cohverse true ?

0 1 -1
&t 4 ""3 4 - = -1
IfA= show that A>=1 and hence A= A".
. A P

7.  (Here Ais an involuntary matrix, recall the definition given earlier)

0 1
8. Showt.hat[l o}isitsowninvme.
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9.  Express as a sum of a symmetric and a skew symmetric matrix.

] [2 -1 3 (x a
- el d st ¥ e
0) (i) @l » °
-1 5 -2 (ot 6 b ¢ z
SlnG - 2] Bhas (4 -3
Mz o] Wly S P
Pk e
ALV R
10. What is the inverse of
152040
1 0
o (01710
i
B 5 0. 7
11.  Find inverse ofthe following matrices by elementary row/column operation (transformations):
g e . _[4 2]
(1) 58 (i) ity (iii) 3 ]
. 1875 [1° 79 1 0]
S R My -3 (g )
12.  Find the nverse of the following matrices using elementary transformation :
002 L
wil G-2- D . =23
1 11
® 28 0 @ S Al
3 =23 G I3,
ol [ N I | . ol 2
(m v
) =3 2 ) S i
Y-2 .3
) 21 4
L z0n2 .



(CHAPTER 5)

Determinants

In the sky, there is no distinction of east and west; people create distinctions
out of their own minds and then believe them to be true.
- Buddha
5.0 Introduction 5

Around 1100 B.C., the Chinese had first used the concept of determinants in solving linear
equations. After a long gap of time certain rules of determinants were given by Leibnitz (1646 —
1716). Later other mathematicians, notably, G. Cramer (1704-1752), A.T. Lagrange (1738 -
1813), C.G.J.Jacobi (1804-1851), J.J.Sylvester (1814-1890), and Cayley (1821 — 1895) made
significant contributions to the theory of determinants. Sylvester was the first to use the word
matrix and Cayley made extensive study of the theory of martices. Besides its use in the solution
of linear equation, martices are now being used as a tool in various disciplines.

We have already discussed matrices and in this chapter, associated with determinants, we
shall study their use in the solution of systems of linear equations.

5.1 Determinant of a square matrix
Let us solve the two linear equations

gxebyte =0 L - aidlh i (1)
and ax + by+c,=0 SR
To eliminate y, we multiply (i) by b, and (ii) by 5, and then by subtraction we get
by — by
ayh, — ayb, |
Similarly eliminating x from equations (i) and (i) we get
L i
Y= ahy - aphy

These solutions exist provideda b, —ab #0
The quantity @ b, — a,b, determines whether a solution of the linear equations (i) and (i1)

a b
exists or not. It is especially denoted by the symbol L2 bz’ which is called a determinant (of

order two). Thus

a

2‘ o B S et e (1)

a2

_ a, b
In fact, it is called the determinant of the square matrix { al bl ] :
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5.2

Similarly we can show by the method of elimination that the set of equations
ax+by+cz+d =0 :
ax+by+cz+d =0
ax+bytez+d =0

produces a solution if

abc — abgc, + abc, 9251‘33 tab.c —abe #0

The above quantity on the left is again denoted

a b ¢
by |“2 by ¢
a3 by ¢
which is called a determinant (of order three)
Thus
a b ¢
az 52 = 0 a:bzc_: 51 anbscz * asblcz ST azblca x azbscl s asbzc; -------- (2)
a b g '
a; b o a b ¢
h . . . a, b. c,
92 D3 € |is the determinant of the square matrix 2
ay b; e, ay by ¢

Given a determinant as on the L.H.S of (2) how do we write the value as on the R.H.S ?
We shall study below the rules of ‘expansion’ of a determinant. But before we proceed let us get
ourselves acquainted with some new terminology.
Minors, Cofactors and Expansion of a determinant.

a b q
Let A= |®2 B o
a3 by o
be a determinant. The entries a,, b , ¢, a,, b, etc. are real or complex numbers and are called

the elements of the determmant. The elements which are placed horizontally form a row and
those placed vertically form a column. The number of rows (which is same as the number
of columns) is called the order of the determinant. Here A isa determinant of order three
(we also call A a third erder determinant.) The elements along the ‘dlagonal’ of the determinant

viz.a,, b,, c, in A, are called diagonal elements.

A determinant can be expressed as a compact symbol |a, | where a, stands for the element
in the ith row and jth column. The suffixes i and j which represent row number and column-
number respectively vary from 1 to », where » is the order of the determinant.
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Thus in A above a,=4a,,48,~ bl' Q- €, a4, a4~ bz’ Ay~ €p a4y, =8, A= bs" Gy C

Now A can be expressed as the sum of produéts of its elements as on the 7 A.s. of (2). This
expression on the rA.s. of(2) is called the expansion of the determinant A. These terms in the
expansion, of which three are preceeded by positive sign and three are preceeded b)lf negative,
sign, are obtained by fixing @, b, ¢ in natural order and arranging the suffixes 1, 2, 3 in all
possible orders (Hence |3 = 6 terms). The term @ b,c, which is called the leading term is
always preceeded by positive sign.

However the sign preceeding a term is determined as per the following principle :

A pair of positive integers (p,q) is called an inversion if p > ¢. A term is'preceeded by
positive sign or negative sign according as the number of inversions in the order ofthe suffixes
is even or odd. For example, the ordered arrangements (2, 1,3) and (3, 2, 1) have one inversion
viz. (2, 1) and three inversions viz. (3, 2), (3, 1) and (2, 1) respectively. Hence the termsa, b, ¢,
and a, b, ¢, are preceeded by negative sign. We shall learn an easier way of expanding a
determinant using the concept of minor and cofactor.

It must be borne in mind that a term being preceeded by a positive or negative sign does not
mean that the term is positive or negative after numerical evaluation. For example : a,bc, is
preceeded by negative sign, where as -a,b ¢, becomes -(-1).23=6, which is positive fora,= -1,
b=2,¢,=3.

Minor : The minor of any element of a determinant A is the determinat obtained from A by
deleting the row and column in which the given element occurs. For example in A,

by

) a
mmorofal—— B oy

by
az b

a q

, minor of ¢, = and minor of b = :

a; G

we denote the minor of an element a; of A by M.
The minor of any element in a third order determinant is a second order determinant.

Cofactor : The cofactor of an element is equal to its minor with appropriate sign. The sign is
positive if the row-number and column- number ofthe element add up to an even integer,
otherwise it is negative. Usually the cofactor of an element is denoted by the corresponding
capital letter. For example, in A above,

by ¢

Cofactor ofa, =A =+ by ¢

ﬂ'] bl

Cofactorofc,=C,=~ |, 5,
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b ¢
b o

and Cofactor ofa, =A, =+

Sometimes we adopt the notation :

Cofactorof a, = C, = (-)'’' M, ... (3)

Expansion of Determinant

A determinant of order two is evaluated by (1)

A determinant of higher order is evaluated by ‘expanding’ the determinant by the elements of
any row (or any column) as the sum of products of the elements of the row (column) with the
cofactors of the respective elements of the same row (column).

) gy By .
ThusA=|"1 1 “| = a, by of - b |9 €| +cla, b
a b o by ¢ a3 o b
a3 by ¢ i

. (bz {:3-——5302) i bl(azcs_ ascz-) i cl(azba_ aabz)
which is same as r.h.s of (2). Hence we have
S Rma R Rl e e L (4)
The above expansion has been done using the elements of the first row. We can similarly verify
that
A=aAd+bB +c.C
=a;A+b B, +c,C,

.andalso A= a4 +a,A,+a, A= b B+bB +bB etc.

S3

N.B. If the elements along any row or column are all zero, then the value of the
determinant is zero.

Application of determinants in finding the area of a triangle
In chapter-11, Vol-1, the formula for the area of a triangle with vertices A(x ,y,), B(x,.y,), and
C(x,.y,) was proved to be | A |, where

- ‘li{’“ Oy P 05 079}

: A, S Y
which is the value of the determinant s Y, Y Yl
s WO £ e

Since area of a triangle is a positive real number, it is written as |A|.
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Condition for Collinearity

- S » Al S
A=0or % v, ¥, ¥s|=0or |y, ¥ ¥|=0 alsoturns out to be the condition of collinearity
| SO0 e e 2

of the points A(x,.y,), B(x,.,y,), and C(x,,y,).
This may be seen from the fact that, when A, B and C are collinear, slope of AB =slope of
BC (or slope of ‘A—'C)
By equating any two of the above slopes we can get the condition for collinearity.
N.B. When three points form a triangle, they are necessarily noncollinear, so taking area of the
triangle being zero as a condition for collinearity, makes no sense as area is always a positive
~ real number. '
Example 1
Applying determinants prove that the points A(2,3), B(5,4), C(7,6) form a traingle. Find the
area of AABC. :
‘Solution

_— D N

-5
4
1

— O\~
Il
E

We have

Since the determinant is non zero, the points are not collinear, hence forma triangle.

1 28 7
AABC= —|3 4 6|=2sq. units.
S A

5.4 Some properties of Determinants

(a) A determinant remains unaltered by changing rows into columns, and columns into
rows ;
(The determinant obtained after such change is called the transpose of the original determinant)

a b ¢ ol e AR
LetA =|ay b c;| andA,= |b b by |=transpose of A, denoted as A/’
a3 b a &

A, is obtained fromA, by the interchange of rows and columns.
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a b

ay by

by )
by o
=a; (bzca = bscx) % bl(caazw"fza.\) +C1 (azba_asb:)

a3

_.bl

From definition, A =a, +q
F 03 €3

b, b,
c

b, b,
a, ¢

bl b1
c

-

2 3

and A =a 4 i

2 3

=a,(bec,~b.c))-a,(bc-bgc)+a,(bc-byc

— = > e, -+ s
albi‘..c_i alb3('2 ¥ a: b.‘icl alblc.’i alblcl a3blcl

= (bzczq bzcz) i bl (Csaz_ a, cz) * € (azbs_lasbz)
Therefore A, =A,=A/ e 2

Alternative Proof:

As the leading term of each of A, and A, is a b,c,, and the remaining S terms of each of
A andA, are derived from a b.c, by writing @, b, ¢ in the natural order, and arranging the
subscripts 1, 2, 3, in all possible orders with a sign determined by the same rule of signs, the
two determinants A, and A, have the same terms. Hence A = A, ¢

(b) The interchange of two adjacent rows or columns of a determinant changes the sign
of the determinant without changing its absolute value.

a b ¢ a b o
Let A= |9 B Gimd dysta b
a3 by o a3 by
A, is obtained from A, by interchanging the first and the second rows.
by ¢ :
From definition, A = a, 5 -b, A O L
3 €3 ay ¢ : as b.4
Yy (bzc3_bacz-) tt bz(czas_ a.c,) +cl(azb3_asbz)
b g a4 ay b ;
s % 1 1
and A, =a, S T e
=a,(bci-bc)*b(ca——ca) +c‘.{(alb3—aab])
:azbncs_azbscl i bzclas— bzcsa] J“"‘:a;*ﬁ’a_“E"’:tb:
=-a (bc~byc,)-b (ca—-ca)—c(ab—-ab)
o A
a b ¢ a b o a; b*o
Thus g, b o=  |a b a|~|a b o

a3 by | a3 b o R
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a b ¢ b a ¢ b o a
Similarly, |5, b, | T~ |8 @ @[T |(h o a
a3 by ¢| |B3 a3 | [b e a3

Alternative proof :

Since the interchange of two adjacent rows is the interchange oftwo subscripts and the
interchange of two adjacent columns is the interchange of two letters, the sign of each term of
the determinant is changed in either case. Hence A, =— A, and so on. '

It can be shown that interchange of any two rows (or columns) changes the sign of the
determinant without changing its absolute value.

While interchanging the p® row and " row, observe that if p* row needs to move k steps
down (each such move in nothing but one interchange of two adjacent rows), q" row having
moved one step up in the last interchange of p* row, needs to move k — 1 steps up so that we
need k + (k — 1) interchanges, which is odd. Other rows between p® row and q" row move
one up and once down, thus retaining their position. Thus an odd number of interchanges yields
a change of'sign at the end. '

(¢) If two rows, or two columns of a determinant are identical, then the value of the
determinant is zero.

The interchange of two identical rows or columns does not change the numerical value of
the determinants. But by the property (b), the sign of determinant is changed by such interchange.

Hence A=—-A,or 2A=0.. A=0.

A few more properties of determinants

(d) If every element of any row (or column) ofa determmant is multiplied by a factor, the
determinant is multiplied by the same factor.

a b g

Sincewehave |92 2 @ =qA +bB +¢C ,and A B ,C/
ay by ¢

are respectively mdedependent ofa,b,c ,weget

kay kb ke

@ b |- gA +kbB,+keC,
a3 by

= k(aA +b6B,+¢cC)
a b ¢ "

=k“2b2"2
ay by o
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kay b ¢
= k(@A +aA +aA) =k 2 o
kaz by
Therefore if every element of any row (or column) of a determinant has a common
factor k, then k is a factor of the determinant and can be taken outside.
(e) Ifevery element of a row (or a column) of a determinant can be expressed as the
sum of two numbers, then the determinant can be expressed as the sum of two

determinants.
a b ¢ _
Aswehave |2 &2 2| aA +bB +c¢C, 6 and A B , C, are respectively
a3 by c3
atoy 5 +Bp e+
independent ofa,, b, c, weget | 2 b 22

a3 by 3
o (al+ c"'I) Al * (bl+ BI) BI +(CI+ Yl) CI
,= (aIA] + blBl + Cl(:‘l ) + (alA! * ﬁi Bl 3 TICI )

a b ¢ ar Br 11
—|a2 & | |2 b o
a3 by 3 a3 b

a-o; b q a b q a B ¢
Similarly we can write [72792 & @ |-|@2 b lif®r b @
a3-a3 b3 c3| |a3 by 3| |3 by o ‘

(f) A determinant remains unchanged by adding k times the elements of any row (or
column) to the corresponding elements of any other row (or column), where & is
any given number.

By the preceding properties of the determinant, we have

a+kby by ¢ a b ¢ kby b ¢
aytkby b | _|ay & o .,.’d’zbzcz’
ay+kby by o3 a3 by c3 kby by o

a b q by b ¢ a b q
=2 b ol . | b afl_|a b o

a3 by b b o a3 by c3
as the value of the second determinant is zero, since the first and the second columns
are identical.
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(2) The sum of the products of the elements of any row (or column) of a determinant
and the cofactors of the corresponding eiements of any other row (or column) of
the determinant is zero.
It can be verified that a A + 5 B, +¢,C,=0 =a B, +a,B, +a,B, etc.

(h) If all the elements below the leading diagonal or above leading diagonal or except
leading elements are zero, then the value of the determinant becomes equal to
product of all the diagonal elements.

g 5. e g 9 0
g : |10 b ci=abc.=|% b, 0
.9 a b c
(i) If theelements of adeterminant D that involves x are polynomials in x and if D
vanishes for x = a, then (x-a) is a factor of D. In other words, if two rows (or two
columns) become identical for x=a then (x-a) is a factor of D.
If r rows (r>1) become identical on substitution of a for x, then (x-a)™'is a factor
of D. (This can be proved by expansion of determinant and apphcatlon of remainder
theorem)
5.5 Some special types of Determinants

1. Symmetric determinant :

It is a determinant witha =a,, ie. the elements symmetrically situated about the main diagonal

are equal.

Example
a h g
h b fl=abc+2fgh—af* -bg® —ch’
g-F ¢

2. Skew symmetric determinant

It is a determinant with a, = -a, . This obviously renders all diagonal elements equal to zero
(sincea,=-a, = a,=0) and all other elements symmetrically situated about the main diagonal,
additive inverses of one another.

Note that the value of a skew symmetric determinant of odd order is zero,

e.g.

0 b -c : .
-6 0 al|=0
£ gl Sy
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3. Circulant determinant

It is a determinant in which the elements of the rows (or columns) are in cyclic arrangement,

a b c .
b ¢ al=—(a’+b +c' -3abc)

e.g
i Y

a b.a

The corresponding matrix | & ¢ a |is also known as a circulant matrix.
c a b

*5.6 Product of Determinants
(Additional topic for interested students; not for examination)

Let |A| and [B| be two determinants of same order.
Let |C| = |A||B|. The product determinant |C| can be obtained by applying any one of the
following methods :

(i) Row by Column product :

The (i-j)th element of |C| is obtained by the sum of the products of corresponding elements
(inner product) of ith row of |A| and jth column of [B].
(ii) Row by Row Product :

The (i-j)th element of |C| is obtained by the ‘inner product’ of ith row of |A] and jth row of

B].
Similarly, (iii) Column by Row and (iv) Column by Column products are defined.
For example : :
132 1z A fsi=g ks -9 K . '
3 4 |4 3 T|3-16 6+12 = |19 18 =10, by method (i)
GRS SN - ;
“3+8 -12412| " |5 o =10, by method (i)
-1+6 -4+9 85
"o ety 5 A Ssle by method (i)
=1=17 2498 213 i i
T 2-16 4412 = [-18 14 =10 by method (iv)

Let |A"| denote the determinant of A”, the transpose of A, obtained by intefchanging Tows to
columns and vice-versa. Then by the property of determinants |A”| =|A|. The fact that |A] [B|=
|AT] [B| =|A| |BT| = |A"||B| gives us the justification of the above methods of multiplication.
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Warning : ‘
We shall define product of two matrices A and B in a particular way by taking ith row of Aand

jth column of B. It should be clear that no product such as row by row, column by row or

column by column exists in the c4ontext of matrices.
In case of determinants, other methods of multiplication besides the row by column
method are some times helpful in obtaining factorisation of a given determinant.

5.7 Illustrative Examples :
Example 2

oot

Find the minors and cofactors of the elements of the determinant 5
2

: d, Gy 9
The determinant is of the form |a,, a,, a,,

n 9y apn

So M, = Y=2x1-3x4=-10
4 2
2 3
M,=| of=2x2-3x1=1
v
M,=| o=2x4-1x1=7
2 1
M, =, 5| =2%2-1x4=0
11
M,=[ of=1x2-1x1=1
} 2
R S R
2 1 '
M,=[ §=2x3-1x1=5
g ol
M32=2 q=lx3‘_‘lx2=1
N (A A
M=l (|=1x1-2x2=-3
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We know that the cofactor C, = (-1)""'M;
So, C,, = (-1)*'M,, =-10

C,=(1)"M, =-1

C, = (1)"M, =7

C, =(-1'M, =0

C, =(-1?M, =1

C,, =(-1P"M, =2

G, = (—1)3”M3‘ =5

C, = (-1y?M, =1

C, = (1M, = -3

Example 3
' o %

Ifx+y+z=0,showthat |*, ¥, %.1=0

W 33
1 1 1 1 0 0
x3 y-; 23 = x3 y;x 3 z;x 3 (Subtracting 1st column from the 2nd and 3rd
SR X =X ziie=x
column)
y-x z-X 1 foiind
= y3_x3 - =(y —x) (z—Xx) 2 2y ki

=(y-x) -2 (@ +zx+ 2 -x -ay - y)
=(@-x)(z-%) {x(z-») + (' -»)}
=@-0@E-0)E-N(x+y+2)=0(-x+y+z=0)
Example 4 '
a+l 2 3

3 a+2 4

Prove that (a—1) is a factor of the determinant Z
> a+

3

oW N

3
If we put @ = 1 in the given determinant, it becomes : =0« C =C)
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On the other hand after expansion the given determinant is @ cubic expression which reduces
to zero if @ = 1. Therefore, a = 1 is a root of the resulting cubic equation ina. So (a-1) isa

factor of the determinant.
Example 5
Prove without expanding that
be a a'2 | a’2 a
@ cabb2=1b2 b3
ab c¢ c? 1 02 63 ‘
1l a a® —bc
o =0
(i) 3 =0
l¢c c¢“—ba
2 3
| Ly
be a a . "2 &
1 b b
ca b bz = g(abC) T T
(l) ab ¢ 02 1 c2 03
=(abc) — —
& C
(N ot
“ ;2 ;:3 1@ & ' a2 a]‘
=abc'?)l- T —g— =—l—abc 1 bz b3 =1 bz b-;
1 CZ .:'3 1 c2 o 1 02 e
1o " &
laaz—bc'.laa?’ ¥ g be
.'Ibbz—ca=lbb2—lbca
F TR e L rtattoieants o S (St TN CNCEE RSN |SPR S S 1)
@ lccz—ba lccz 1 .¢c ba (
b athe a a* abc
Lo eal= = ip 8 ahe

of these two determinants, the second oneis |  « abc 5
_ 1 ¢ ba ¢ ¢ abc

- —— — = —
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a a1 1 a a&*
A _abelp 2 1] =|1 b B
= Seaue - 2
o | | s

Substituting the value of second determinant on the right hand side of (1), we have

1 ‘a a*-bc
1 b b*-cal|=0
1 ¢ c*-ba
Example 6
17 58 97
‘ ; : ¥ Exy 19 60 99
Without expanding find the value ofthe determinant G
' 18 5§

Subtracting the elements of the third row from the corresponding elements of the second row,
and subtracting the element of the first row from the corresponding elements of the third row, we

17 58 97 17. 58 97

have |19 60 99|= |1 1 1 |=0(--second and third rows are identical)
18 59 098 | (N i |
Example 7
Factorize the determinant
Y=g Xz
A ; :
g na ey without expanding.
c —a c
I3'63 x2 X 1’3 1'2 X ﬂ‘3 x2 X
s 3 2 v b= B b|-|a® B b
O et e & e gte ve
A% o 1axt x x2 x 1
2 , 2 2
bt B J Sl o bz b1
¢~ ae ol g T ] |

(Interchanging the first column and the second column, then the second column and the third
column in the second determinant).

2 - x-b 0 .
¢ b-c 0O

B =
= (xbc - a*
=4 ) T g
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(Subtracting the second row from the first, and the third row from the second)

x+b 1 0
= (be-a) (x-b)(b-o) [PHF ! O

¢ 0 |

x+b 1
=(@xbc-a)(x=5)(b-¢) |p.c 1

= (xbe-a) (x-b)(b—-¢c)(x+b-b—-c)
= (x=b) (x—¢) (xbc — @) (b-c)

Example 8

a® 2ab b
h* 4::2 2ab| .

Express in the form of a perfect g

T ok 37 o i

a® 2ab b* ¢3'2+21:1.‘)+.’J2 2ab+b* + a’ b*+a* +2ab
¥ a* 2ab|_ b? a? 2ab

we have Y

2ab b a 2ab b? a’
(Adding third and second rows to the first row)

1 1 1

2 2
=(@+2ab+t?)| Y T 24
: 2ab b° a

1 0 0
B2 a2-bp® 2ab-b*

= (a +b)
2ab b* -2ab a® —2ab

(Subtracting first column from the second, and first column from the third)

a® - 2ab -b*

L 2
@+BY |2 _20p a2 -2ab

= (a + b {(a*- b?) (&> 2ab) + (b*~ 2ab)*}
= (a + by {a*- 2a°b— @b + 2ab’* +b* — dab*+ 4a°h?)
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=(a + by {a*-2a’b + 3a°b* — 2ab’ +b*}
= (a + b) {a*+ a*b* + b* - 2a°b— 2ab*+ 2 &’b*}
=(a + by (@*—ab + b*) = {(a + b)(a®— ab+ B?)}*
=(a + by

Alternative method using product of determinants :

a® 2ab b* a b 0|la 0 b
2 a* 2ab| =10 a b||d a 0O
Row by Row product)
2ab b a° bOaOba( 4 ’
a Olla b 0
T S SR E ) e T, : : ;
= -“| (Interchanging row and column in the second
b 0 alll O:-a ;
determinant)
a 0
2 2.2
— |0 a B| =la.a® -b(-b")]
b 0 a
= (@ + b’
Example 9
-1 cosC cosB
IfA+B+C= n showthat |°5C ~1 ©cosAl_g
cosB cosA -1
-1 cosC cosB -1 cosC cosB
We hove cosC -1 cosAf_ |0 cos”’C—1 cosC.cosB + cosA
cosB cosA -1 0 cos B.cosC + cosA cos’B-1

(Adding cos C times the first row to the second row, and cos B times the first row to the third
row). :

—sin?C cosC.cosB + cos A
" |cos B. cos C + cos A —sin’B

= — sin? B sin? C + (cos B. cos C + cos A)?

= —sin’B. sin’C + {cos (n—B+C) +cosB.cosC}*( wA+B+C=n)

=—sin’ B. sin’C + {—cos (B + C) + cos B. cos C}*

=—sin’B. sin? C+sin’ B.siP C=0 (Ascos(B+ C)=cosB. cos C—sinB. sin C)
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|I EXERCISES'S (a)J

Evaluate the following deferminants.
e g : 2 3 > |sec & tan®
® 7 3 (i) e (i) tan O secH
. T d 4 -1
™ 12 o L B Sl - (1) 3.2
sy G ¢
cos ® sin 0
y % | 1% (4 . 0 0
(Vi) | (i) (ix)
sin 0 cos @ ady 00 1
7ol g - y e
x) 00 0 (xi) 0 sinx siny (xil) G
-1 2 0 0 cosx cosy 3 4
02 01 3 1 o of 28 e
: 2
.| 04 02 : ® o 1 2
(i) (xiv) 2 (xv)
06 03 2 ® | (S 3353
-6 0 0 00 -18 17 19
3. =57 . 20 355 S g -0
(xvi) (i) (xviii)
g8 11 . 4. 113 -4 5 2
State true or false.

(i) Ifthe firstand second rows ofa determinant be interchanged then the sign of the determinant is
changed. i

(i) Iffirst and third rows of a determinant be interchanged then the sign of the determinant does not
change. : :

(i) Ifin a third order determinant first row be changed to second column, second row to first
cotumn and third row to third column, then the value of the determinant does not change.

(iv) Arowand acolumnof adeterminant can have two or more common élements.

(v) The minor and the cofactor of the element a,, of a determinant of third order are equal.

3 13 64 2f |64 5], 2 34| |423
o) | 5 3 4 2T vl Uk R Fal, 2
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3. Fillin the blanks with appropriate answer from the brackets.
i <8 @

@ Thevalseol |2 A B, o - (0,25, 200, - 250)
| 1 410 0 |

1 2

w (0]
5 5 : o o 1 2
(i) Ifwisthe cube root of unity, then T s = (1,0, ®, ®")
15a, bae
(ii)) The value ofthe determinant |' 2 "*‘; =——  (a+h =c, (a+b+c), 0, 1 +a+b+ c)
. Ve at ;

a big

@) If|? 9 2| =0, thenx=
X Dl

(a, b,c,a+ b +¢)

ayt+ay aztay as
V) bytby bytby bs
aqtey c3tey ¢

determinants. (17 2: 33 4)

different third order

can be expressed at the most as

sin x cos X

(v1) The minimum value of 18— (-1,0,1,2)

—cosx l+sinx

A S
(vi)) The determinant |1 2 3 is not equal to
) } Qe
2o b s SL SR S LS R
R 5 Y % e & S S T
Ziadiagl 4 o3 68) 9 6110 3.6
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(vili) With 4 different elements we can construct — number of different determinants of order 2.

Solve the following :
4 x+1
). BV S fo 5
q.6 =
(i) e S| R0 0
S
x+a b c
c a-: x+b
S ST
P = (et AR,
(vii) =0
1 2x 5x?
202 x
el T
Evaluate the following .
¢ A T |
o] I
(i)
7 g s
_ x 1 =1
4% 2
o LI,
3 =1 2
8 -1 -8
-2 2 2
V)
3 =5 =3
=} 3.2
PR 1 B T
(vii)
1 =3 -1

(@

(Vi)

(vii)

()

(i)

(Vi)

(v

(1,6,8,24)

11 23 31
12 19 14
6 ‘97
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3% =3 1Y, ef i e
- §6: 2 =3 . 2 =3
(x) . (x)
B £ B i -15. 20
[x+1 3 5
SNaE : 2 xE2 LYV [
6. Show that x =1 is a solution of =0
o 3 x+4
a+l 2 3
: | SRR [
7.  Show that (@ + 1) is a factor of ; :
_ -6 a+

aq b -—q a b ¢
g - Shewte] 2 R %2154 oo
: a3 b -3 a3 b3 3

9.  Prove the followng .

a b e y b ¢ X2

(i) * Etes (A B X a pl|= _p q r
p'qg T e . -b-e
l1+a 1 1

= gl RSN §

@ |1 e ~abc(1+a + 1y c)
1 1 l+¢ '
b+¢ c+a a+b a-b'c

(i) g riirep prqi =2\p g »
y4z z4X ok o
(a+1)(@a+2) a+2 1

(v) (a+2)(a+3) a+3 l=__2

(@+3)(a+4) a+4 1

a+d a+d+ k a+d+e
W) c ct+b c * ohc
d d+k d+e

1 1 1

b+e cta a+b |
vi =(b-¢c)(c-a)(a—-b
O |50 2o 3= @-9C-a@-b
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10.

11.

aaz

3

a
e ;
(vi) b bz bi =abc(a-b)(b—c)(c—a)
Sl | s 3
b+c a c
c ¢ atb
b2 +c? ab ac
: ab ¢* +a* be
(x) i i ke
BT S =
2 bz ¢
) e =(b-c)(c—a)(a-b)(bc +ca+ ab)
be ca ab
a-b—-¢ 2a 2a
@ | 2 EErAr leGah e
2¢ 2¢ c—a-b
: (v+w)2 u? u’
2 2 2
A v (w+u) v .
e =2uwvw(utv+w
iy e ( y
Factorize the following
x+a b ¢ a b “
: % wbc Q i b+ec cta a+b
@ (ii)
¢ a x+b a* b? c?
Ko 2
{ I x4+l 3
(iit)
1 4 X

Show that by eliminating o and p from the equations o+ bp+c,=0,i=1,2,3 we get

a b ¢
a b g
.‘.'.13 ba 63

=0
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12.

13.

14.

15.
16.

17.

5.8

Provethefol]omng

1 bc a(b+c)

1 ca blcta)l=
1 ab cfa+b)

@

x+4 2x 2%

_(ﬁ) 2x x+4 2x |=(Sx+4)4-x)

2x 2x x+4

sinot cosa. cos(o+8)
sinB  cosB cos(B+d)|=0

(i)
siny cosy cos(y+96)
| CRES S

@ [ 1 x|=0-x)
o1

-3

Prove that the points (x.),), (x,.y,), (x,.y,) are collinear if X yaliog
' x3 y3 1

sin?A cotA 1

IR
IfA+ B + C=mn, prove that sz s L 0
_ sin“C cotC 1

=y T
Y"Z‘b z-x'°T x-y

Given the equations x = cy + bz, y = az + cx and z = bx + ay whrer ¥, y and z are not all zero, prove
that @* + b’>+ ¢® + 2abc = 1 by determinant method.

Ifax + hy+ g=0, hx + by+ /=0 and gx +jy+C*kﬁndtbxvalueoflmtheformofa
determinant.

Eliminate x, y, z froma =

Consistency, Inconsistency and number of solutions
of a system of linear equations. '

Let us consider the three linear simultaneous equations.
ax+bytecz=k g

ax +bytcz=k
ax+bytcz=k,
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The determinant of the matrix of coefficientsis given by

a b ¢
A=l b | z0
az by o

andletA A, A, ... denote the respective cofactors of @, a,, a,, ....in A . Multiplying the equations

~ byA,A,, A, respectively and adding, we have (@, A +a, A, +aA)x+(bA +bA+bA)y +

(e A+ AT cA)z = klAI tEA, k,ﬁg_'

Since b A +b,A,+bA =0 andc A +cA,+c,A, =0, we have
(@A, +a,A, +aA))x=kA +k,A, +k,A,

= Ax=A,

k b ¢

where A = b Ry
KB

(refer expansion of a determinant using cofactors and pfoperty (g) ofa diterminant)

Similarly we can obtain :

Ay=A, and Az=A

al. kl Cl al bl. kl
where A, =g, k, ¢ , Ac=la by Ky
o A6 R W

Now three exclusive and exhaustive cases can arise
HAz0
(i) A=0 and A,_,A A, arenot all zero

(i) A,A,,A LA, areall zero.

Under case (i)
A
x=§—". LR ol an
A A A

which is a unique solution such a system.
Such a system is called a consistent system

Example -10

Test whether the following system has a unique solution
2x+3y-z=9 5
x+2ytz=4

Sx-y+2z=1
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Solution
e B g ]
Here A=|l 2 1]|=30
R Y

Since A # 0, The systemis consistent and hasa uhique solution.
(In fact, the solutionisx=1,y=2,z=-1)
Under case (ii)

A A, A

Division by zero being meaningless, we cannot get values of —=, 57 a’ and hence the system

lacks a solution and is called inconsistent.
Example - 11

Examine solvability of the system :
x+y-z=1
L tyfz=17
Ix+3y-3z2=2
Solution
SR e | I 1 <}
- A=21 1=00A =17 1 " 1]==38%0
Fou Jrov=y 23 =3
— System is inconsistent and hence not solvable.
(The inconsistency of the system can be immediately realised fromx + y-z=1and 3x + 3y-3z=2

Under case (iii)

Ax=A, Ay=A,Az=A,

and in this case the system of equations is not inconsistent as both the sides in each of the above
involve zeros. However, we do not get any definite solution since determinant ofx, y, z involves

division by A which is zero.
Example - 12
2x-y=5
6x - 3y =15
Solution
2 -1 5 -1
A= =0 A = =0
6 -3 15 =3
25 i
o el B
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. The system has infinite number of solutions.

Infact, by giving any particular value ofx either equation, we can get a corresponding value of
yand in this way, obtain infinite number of solutions.

Note : An interesting case occurs when we come across systems like

ax+by+cz=0
a,x+b,y+c,z=0
ax+by+cz=0

g b ¢
withA=|a, b, ¢,|=0
a, b ¢

Such a system as above, with all zeros in RHS is known as a homogeneous linear system
and x =y =z =01s an obvious solution. :
But since A=0and obviouslyA = A =A = 0, the system comes under case (iii), thus admitting
indefinite number of solutions.
Out of these solutions, the obvious solution x =y =2z =0 is called a trivial solution. But a
solution in which not all ofXx, y, z are zero; is called a nontrivial solution.
Note that a nontrivial solution of a homogeneous system occurs only when the
determinant of coefficients A= 0,
otherwise (If A + 0) it comes unider case (i) having ¥ = y= 2= 0 as the unique sohution.
| Take an example :
Example - 13
Examine whether the following system has any nontrivial solution. If so, find one.
x+t2y+z =0 |
3x+35y+2z=0
4x+3y-z =0
Solution
In this case it is easy to check that
A, =A,=A =0

o
AlsoA=[3 5 2[=0 ‘ .
Tl B
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So the system has nontrivial solution apart from the trivial one, x =y=z=0.
Adding 1st and 3rd equation, we get
5x+ 5y =0, which gives
y = -x
Putting y = -x, the system reduces to
-x+z =0
-2x+2z=0
x -z =0, which are one and the same, i.e.z=x.
Every non zero value of x gives rise to a nontrivial solution, e.g.

(x, 3 z)=(1,-1, 1) and in general (k, -k, k), keR constitute the infinite set of nutrivial solutions.

N.B.(i) Though we have discussed 2 or 3 equations in 2 or 3 unknowns, the discussions apply to n

5.9

number of equations in n unknowns forn> 2.
(1) Solving linear equations by the above method is known as Cramer’s Rule,

Inverse of a square matrix

We have already discussed inverse of a square matrix in the previous chapter. Now we
shall introduce the concept of adjoint of a square matrix and discuss another method of finding
the inverse. We shall also discuss precisely under what condition inverse of square matrix
exists we begin with the definition

Singular matrix

A square matrix A is called singular if det A= 0. If det A # 0 the matrix A is called a non-

singular matrix or a regular matrix,

Adjoint of a matrix :

IfA= [a,], ., is a square matrix, then the transpose of the matrix [A],.., of which the
elements are coﬁlctors of the corresponding element in | A |, is called the ad] omt or adjugate
of A. It is denoted by adj A.

Thus adj A= [A ]

nxn

ay a2 ap Ayl Ay Ay
IfA= (921 92 923| thenadjA=|"12 A2 A3 | yhere
ayy azy a3 A3 Ay Ag

A, is the cofactor of a, in |Al.

Theorem 1 : If A is a square matrix, then A. (adjA) =|A| 1= (adjA) A

Proof: Let A= [a,], ., The element on the ith row and,/ th column of A (adj A) is equal to a, A,

A, ... A A= |A] or zero according asi=j ori#j. (ref. property of d_ete'r_minant)
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Al 0 0 ... ©
2o 0 |Al 0 ... 0

- A (adjA) = , =|A| 1
& -0Le .

Similarly (adjA).A=|All
Hence the theorem follows.

Note : The product of a singular matrix and its adjoint is zero matrix, since in this case
|Al=0

Theorem 2 :
Let A be a square matrix. Then A~ exists if A is nonsingular and the inverse is given

1
by A = 5 adj A

Proof : We know that

A. (adjA) = (adj A) A= |Al. 1 since |A| # 0,
l i = L 1 >
= A )= (hadn) . a=1
= A'= “l—ad' A
T s Sy

5.10 System of linear equations and solution (Matrix method)
Suppose we have the following system of equations :
ax+by +cz=d

a2x+bly +ez=d

: ax + by -H','3z=a'3 (1)
01 b| (5] X dl

WewriteA= |92 &2 @pX=|y|B=|d 2)
a3 by z ds

The equation (1) in the matrix form becomes AX = B.

Theorem 3 :

The system of equations ( 1) has a unique solution ifand only if the matrix A is non singular; and
in this case the matrix solution of (1) is givenby X.= Tx] (adjA). B.

Proof. The system given by (1) isAX=B
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Since A is nonsingular, by theorem2, A~ exists. Hence A~ (AX)=A"'B

. AdjA
= (A'A)X=IX=X=A'B=X= Al . B.

5.11 Ilustrative Examples

Example 14

L et s
— P

1
Find the adjoint of the matrix | 2
1

The given matrix isA=(a ), ,
A and M, respectively are cofactor and minor ofa,.

=3
Thus A” = (-1 l\"Iu n TR 7 e 5
= 2.2
A|2=(—1) M1:= =13 1 =0
1+3 2 l
Au:(‘l) Mu:- T =5
{72 153
A?'] = (._.l)- le _ 3 l — 2
_ i ¢
Au=(—1_)2’2Mn= T4 =0
o | '
An:(—l) ME=—' 1 3 =-2

) i3 |
A31=('1)3HM31=’[ ZI =1

{ i -
A32=(_])3+2M33=_‘2 2' =0

| P |
: A13=(“1)3+3M33= 2 ll

Adjoint of Ai.e. Adj A= The transpose of [A ], _,

Al A2 Az g oA L
Az Ay Az 0.0 .0
Alz Az A3 { So8a =l

-

== 1
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Example 15

)
Find the inverse of the matrix |: 3§ ]

The given matrixisA=[a,],,,

2
|Al=| 5 | |=-5=0

So the matrix is invertible.
NowAu=(—1)”1(l)=1 A“=(—I)1"(2)=-2

A, =(-1)!*2 (3)=-3. A, =122 (1) =1

\ Al Ap -2
ade“[Au Rozi) -8 T

<2 ppsid

e adjA Sl e 551 HOF -
SoA” =14 “‘5’[—3 1]* 34

Example 16

Solve the equation x + 2y =3, 3x +y =4 by matrix method.
The given system of equations is of the form AX =B.

F.& 3 x
Where A = 31 Bl L= =

|A|=-5#0. So A exists.

|

NowAX=B=X=A"'B=

S OO0 U e

Foot wopeit
=179 & L5

g

s HEH

=sx=y=1l.

2

& M3 :

2k [ 4 } [A! is taken from Example 17]
s .

i,

Example 17

Solve the systemx + 2y + 3z =8, 2x +y+z=8x+y+2z=6.
The given system is of the form A X =B.
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1..7:3 8 X
where A= o it ,B= 2 X
| ) 6 z
! (= me
Now |A|= |2 | If{=-2=0.
e Bl :
e g i =2 1
Here A, = (-1) 1 2| T LASED FRE i
1+3 - .2 1
1+ 3 S
. A22=(—l)2+- 1 .2 :_luA'z.?;('_l)ZH 11 =1
2 : 1
o T = = 342 —_
o o e SN RS T o A
CE i
o I VT Y
Al Azl Az 2y S Ml
g As O A AR ot 3. LoD
A1z Axy Ajj 1 1 -3
The solutionof AX=BisX=A"'B
1 =1 =1 8
s R RN R
i i Pl P T
. [ 8 -8 -6
AL " G
ST e
[ -6 3
b 1
x 3
A L .
z 1
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&

3.31)

(i)

(i

|‘ EXERCISES 5 (b) |

Write the number of solutions of the following system of equations.

M x-2y =0
@) 2x+y=2and—x-5 y=3
(v) 2x+3y+1 =0andx-3y—-4=0,
M) x+y+z=1
xtytz=2
2x+3y+z=0
(vi) x+y-z=0

() x—y= 0and 2x—2y=1

(v) 3x+2y=landx+5y=6

(i) x+4y-z=0

Ix -4-z=0
x-3y+z=0

(x) ax+by+cz=0
ax+by+cz=0
ax +by+cz=

a. b ¢
and a b o =0
a3 by o3

Show that the following system is inconsistent.

(@a-bpx+(b-c)y+(c-a)z=0
(b-cx+(c-a)y+(a-b)z=0
(c—ax+(@-b)y+(b-c)z=1
The system of equations
x+2y+3z=4 : 3
2c+3p+4dz=5 |
3x+4y+ 5z=06has

(a) infinitely many solutions  (b) no solution

(c) a unique solution (d) none of the three

If the system of equations

2x +5y+8z=0

x+4y+7z=0

6x+9y-Az=0

has a nontrivial solution, then ), is equal to
(a)12 (b) -12

(c)0 (d) none of the three

The system of linear equations
x+y+z=2
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()

V)

2x+y-z=3

Ix2y+tkz=4 °

has a unique solution if

(A k=0 (b)-1<k<1
(c)-2<k<2 (k=0

The equations

x+y+z=6

x+2y+3z=10

x+2y+mz=n

give infinite number of values of the triplet (x, y, z) if
(a) m=3,neR : (b)m=3,n=10
(c)m=3,n=10 (d) none of'the three
The system of equations

2x-y+z=0

x-2y+tz=0

Ax-y+2z=0

has infinite number of nontrivial solutions for

- (a) A=1 (b) A=5

*v)

(c) A=-5 (d) no real value of A
The system of equations

ax+bytcz =0

ax+by+cz=0

axtbytcz =0

a b ¢
with |a, b, ¢,|=0 has
;S -

a;

(a) more than two solutions  (b) one trivial and one nontrivial solutions
(c) No solution ~ (d) only trivial solutions
Can the inverses of the following matrices be found ?

[0 0 TX 2
() [0 0] (i) [3 4]
Wit 1 e | AN iy T
G [1 1] ST [2 4]

|
(v) |0

o o- o
- O
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5. Find the inverse of the following :
F1e Tz =l
M1 9 @), 3
B o Y s
(1) c Tl (v) | s
I 0 i~ d
@ 5 M| o
i =i X=X
(vii) i (viii) a2 b wherex# 0, x#—1
6.  Find the adjoint ofthe following matrics.
1 1 -1 =% 3]
@) 2 -1 2 (i) s PR 1S5
= ~d =3 4]
24,2 bdi)
32 Shux & ]
7. Which of the following martices are invertible ?
I 0 0 2 1 =2
ol il : |
o @ 2
20=5 1 6 4
=1 =2 3 Y 0 1
% . AP
(i) 2 1 4 (iv) . il
o B R 3 2 AR AR |
8. Examining consistencyand solvability, solve the following equations by matrix method.

(®

x—y+tz=4
2x+y—3z=0
By =y
2x-y+z=4
x+3y+2e=12
Ix+2p+3z=16

(1)

V) xty+z=4
2x—-y+3z=1

x4 2y—z=1

@ x+2y-3z=4
2x +4y—-5z=12
Iy tz=3

(v x+ty+z=4
2x +5y—-2z=3
x+Ty-Tz=5

(M) x+y-z=6

2x-3Jy+tz=1
2x—4y+2z=
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(vii) x—2y =3 (vil) x+2y+3z= 14
x+4y-z=-2 o —yp+5z=15
Sx—3z=-1 2y +4z-3x=13

(X) 2x+3y+z=11
X+ty+z=6
Sx-y+10z=34

9.  Given the matrices

1 D3 x 1 _
A=t P R M w3 Y tagec] 2]
4 2 1 z 3

write down the linear equations given by AX = C and solve it for x, y, z by matrix method.

W 6 | x|

ot x=|9 ,where X=| *2
Bt 1 1 x3

11. Answer the following :
() Ifeveryelementofa third order matrix is multiplied by 5, then how manynnm its determinant valie

10. Find X if

becomes ? .
4 1 o 1 R
(i) Whatlsthevalueofxtf e i e (SO
B 2 L
(i) What are the values of x and y if T8 el y 2 =17
b i e T |
(iv) What is the value of x if 'l : ‘I‘ =49
o -—h —g]
() Whatisthevalueof|# ¢ 1o
g o
L ke
a
: 44 ca
(vi) What is the value of | # ?
: % 1 ab S
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1 2 -3
(vii) What is the cofactor of4 in the determinant : {5) (: ?
1 sinf 1
(viii) T which interval does the determinant A= —smﬁl : ; Si“el lie ?
= —sin

sin (x +y +2) sinB cosC
—sinB- 0 tanA

(x) Ifx+ytz=m _ what is the value of A=
: cos(A+B) -tanA 0

where A, B,C are the angles of a triangle.
12. Evaluate thefolbwingdetérmh’:ants :

14 3 28 16 19 13
Q) 17 9 34 (ii) 15 18 12
25 950 14 17 .11
204 77T - 32 o4
(i) 735 888 105| (iv) 234
812 999 116 4 6
e 2 92 32
; 2 2 2
e e 2 30— &
) (vi) R ]
g 14 20 345
1. 0 =5863 265 240 219
(vi) 7361 2 7361 TN i 240 225 198
1 0. 4137 : 219 198 181
0 02 b - |
a-b b-c c—a
2 2 :
. 0 ARre =
et g Sfed i
¥ 2
L p-9 q-r r-p
' 2 2
a-b b—c c—a —cos” 0 sec” 0 -02
(xD) b-c c—a a-b . (xil) cot29 —t3n29 12
c—a a-b b-c - -1 1 1
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|
TR 5 L =0, what are x and y ?
I N ¢ 5
2% %) I & 0
14. For what value ofx LA S e &
-1 2 0 i s e
a0 0
15, Sokwe| & *%P @ l-p
a 0 - xte
asx a=—x a—x
16, Solve [ 4% 4T 43U
a—-% a—%. a2
Xta b c
17. Solve| ¢ S
a b x+e
x -6 -1
18. Showthatx=2isarootof| 2 -3x x-3 |=0.Solvethis completely.
-3 2x x+2
1 a be | a a
; b2
19. Evahxalelbw—lbbz
1 ¢ ab l ¢ ¢
a a*-bc 1
2_ .
20. Evaluate|® 7,7 !
¢ ¢ —-ab 1
21. For what value of A the system of equations x +y +.z = 6, 4x +Ay—Az=0,3x+2y—-4z=~
: 5 does not possess a solution ?
22. IfAisa3 x 3 matrix and | A| =2, then which matrix is represented by A x adj A ?
o - 7
0 —tan-—z— 1 cosa.  —sina 1 0
23. IfA= tzm% 0 ,showthat(I+A)(I-A)'= S s wherel=| o ,
24. Prove the following :
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a4l ab. - ac
2
T e MRS P EE R T
ac e ekl
iy
W% 5 G|=6-0C-a@-b@+b+o
a> by .e
b2 —ab b-c bc-ac
a b ¢ > 2 :
g 30k Vi Sl : | ab-a a-b b“—ab
(i) By =3ghc —-a* -b' -c¢ O o e en ab-at =0
5 :
b
-ab_ ‘;2 :c (b+c)2 a’ be ;
@ e S | = 4a02c i) | (c+a)? B2 ca|=(@+B+cD)(atbto)
3 ac -C S
(a+b)~ ¢ ab (b—c) (c—a) (@a—b)
b+c a+b a
(vii) c+a b+c b| _ pi i 3abe
a+b c+a c
atb+c —c -b
iy | - S bRl S R ) ra) (6 )
-b -a atbte ot
|ax-by+cz aytbx azt+cx
@y | BERe  Bea-a. EYO )Ll Bedyia dby teat v )
v oex+az ay +bz cz—ax—by
2 :
@ (-a? (s-a)
25. If2s=a+b+c, show that (.s-—b)2 b (S—b)z =28(s-a)(s-b)(s—0)
; i (s—c)2 (s—c}2 s 3
4 12 22 -1 :
3
26. ¥ y2 vy~ =1|=0, then prove thatx yz =1 when x, y, z are non-zero and unequal.
z z2° -1 ' .
27. Without expanding show that the following determinant is equal to Ax +B where A and B are

determinants of order 3 not involving x.
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x2+x x+1 x-2
2%243x-1 3x 3x-3

| Pe2x43 2x-1 2x-1
28. Ifx,) z arepositive and are the pth, gth and rth terms ofa G.P.,
logx p 1

logy g 1| _,

then prove that
: logz- r LI

Foosig n(n+1)/2
29. IfD = i b "(”H)(?”H)M , then prove that ZD
P2 e nPa+D*i4 J=1
30. Ifa‘,az,.....anareinGP,_andaP(]foreveryi, then find the value of

loga, loganps; logap+2
logap+) logag+y logay+3
logap+p logan+3 logan+q

I+sin®x  cos’x 4sinZx
_ s 2 .
1+ 4sm?2 g :
31. Iff(x)= S{mzx _cozs A i ) ; ,what is the least value of f(x) ?
: sin“x cos™x 1+4sin”x

32, Iff (x), g (x), h(x), 7= 1,2, 3 are polynomials inx such that f, (a) = g, (@) = h, (a) and
A(x) - fax)  f[3(5)
F=|81%) &) &® | f0q F' (x)atx=a.
| @) n(x) hy(x)

cosx  sinx COS X

33, Iff(x)= cos 2x sin2x 2cos 2x find 1 (%]
cos 3x sin3x 3cos 3x.

S L'x) ') A fo(x)  f(0
[Hint. In Q 32, F'(x) = gix) &(x) 2 |, |8&'® 2'(x) g'®) |,
h(x)  mp(x)  h(x) h(x) h(x) h3(x)

A fr(x)  f3(x)
g1(@) g2(x) g3(x)
h'(x) :hp'(x) h3'(x)




Probability

If friendship is your weakest point, then you are the strongest person in
the world.

- Abraham Lincoln
6.0 Introduction
In the first volume we have dealt with probability of random or nondeterministic events.

We have introduced some fndamental concepts like statistical experiment, sample space of
an experiment, elementary events, event as a subset of a sample space, mutually exclusive events,
equiprobable or uniform sample spaces and above all, the definition of probability in a uniform
sample space and have proved some propositions related to the properties of probability.

A recapitulation of the above discussions and the techniques involved will be helpful in following
the contents that come in the sequel.

6.1 Conditional Probability

Consider the experiment of choosing a two digit number from N. The sample space of the
outcomes of this experiment is given as '

S={10,11....,19;20,21....,29;...,90,91,...,99}
Clearly |S| =
Under this experiment let events E, and E, be as follows :
E,=event of choosing an even number

={10,12,..., 18;20,22,...,28;30,32,...,38;...;90,92,...98}
E,= event of choosing a number divisible by 3

= {12,15,18, 21,24,27, 30,33,36,39,...90,93,96,99}
Clearly [E,| = 45 and |E,| = 30.

Out of E, and E, we now contemplate two events E [E, = the event that the choice is an even
number, given that a number divisible by 3 has already been choosen

={12,18,24,30,36,42,48,54,60,66,72,78,84,90,96 }
Clearly [E, |E;|=15

In writing E |E, we precisely choose those numbers of E, which are members of E, which is
nothing but E, ~E; . Thus the choice of E,[E, is actually 15 (=|E; | E5| ) out of 30 (5[E,)).

Such an event as E |E, is called a conditional event and its probability is obviously 15 out of

15 |E;IE| 1 AE Tk 0
30, i.e. 30 le |3 =3 or, for that matter, P(E,|E,)= %l,whlch is known as a conditional
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probability - the probabilityof E, subject to E_, i.e. the probability of the choice being an even
number subject to the condition that a number dmsnble by 3 has already been chosen.

" In the same vein we can now consider E J|E,, the event of the choice being a number divisible
by 3, given that an even number has already heen chosen.

As before it can very well be seen that

|E; |E,| |E1ﬁEa| B
IE, | Bl . 45 3

P(E,E,)=

Iri the context of the sample space S we make the modification

|E, NE,|
|E; |E,| |E,n1-:,| |S| . PE;nE,)
PEJE)= |E,| Bl | [El P(E;)
IS
Similarly we can get
P(E, ~E,)
P(EJE)= "Fg,)

In the above example it is easy to observe that
: 15, 1
KEJE)= 3 3 @d

P(EJE,) ===

The above discussions prompt the following definition.
Definition (Conditional Probability)

When A and B are events in a sample space the conditional probability of B subject to A is
defined as

P(BNA)
P (B|A)= P(A)

Which is the probability of B subject to he condition that A has already occurred.
Similarly
P(AnB)
P(B)

Note : The definition P(B|A) and P(A|B) respectively presuppose that P(A)= 0 and P(B) = 0; P(B|A)
and P(A|B) are meaningful only when A # ¢ and B = ¢ respectively.

P(A|B) =
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Corollary :

®

The following properties follow from the definition of conditional probability :
For any F S (sample space), with F= ¢
P(S|F) =1 and also P(F|F) = 1.

Proof :

(1)

(iv)

PIE) = =

Proof of P(F|F) = 1 is left to the reader.

For any three events E, F and G in sample space S with G = ¢,
((EuF)|sz P(E|G)+ P(lé1d)—r((EnF)1G)

Proof follows easily from |E U F|=|E| + |[F| - [EnF]| .

For events E and F with F= ¢ |

P(E° | F)=1-P(E|F) :

Proof : From Property (i)
P(S|F) =1

= P((EUE®)|F)=P(E| )+ P(E |F) =]

(-~ E and E® are disjoint and S=E UE®)

= P(E° [F)=1-P(E{F).

For events E, F and G in sample space S, with G = ¢,
EC F = P(E|G)S P(F|G)

Proof:

EcF=F=EuU(F-E)

= |F| = |E|+[F-E]

(. E and F-E are disjoint sets)

Now FnG=((Eu(F-E)nG=(EnG)u((F-E)nG)
=|FNG| = |[EnG|+|(F-E)nG|

(-En(F-E)=¢ = EnG)n(F-E)nG)=¢)

= [FNG|=|[EnG|+|(F-E)nG|

>[ENG|

- (F~E)nG|20)

.. FnG|_ |ENG]|
"6l 16l
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So P(E|G) < P(F|G)
Multiplication theorem for conditional probability
(Multiplication Rule)

For events A and B with A = ¢,

P(BNA) = P(A).P(B|A)

Proof: ;
We have, by definition of conditional probability

P(BnA)
P(A)

‘Multiplying P(A) on both sides _
P(BAA)=P(A).P(B|A) _ (A)

P(B|A)=

Interpreted verbally, formula (A) says that probability of joint occurrence of A and B (or B
and A) (Some times also written as P(BA) is given by probability of A muhlphed by probability of
B subject to the occurrence of A.

Formula (A) is usually called the multiplication theorem for conditional probability
(or multiplication theorem for probability). It has great advantages as the following applications
will show :

Example 1

Two cards are drawn at random from a pack of 52 cards. Find the probablhty that both
are kings.

Let A be the event that the first card is a king and let B be the event that the second card
is a king. We are thus interested in finding the value of P(AnB) =P (B~ A)

=P(A).P(B|A).

Now P(A) = ‘?_2 since there are 52 ways of drawing a card and there are just 4 kings. Let us

now compute P(B | A), that is, the probability that the second card is a king subject to the
condition that the first card is already a king. Since there are 51 cards left of which three are

kings, P(B |A) = 5—

Thus P (A~ B)= 35 . ==

Note :

As said earlier, the multiplication theorem has great advmtages The problem solved above
could have been attemped directly : The sample space in this case has *C, points whereas we
can draw 2 kings in *C, ways; so the required probablhty is -
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Remark
The multiplication theorem for probability can be further generalized as follows :
IfA, B, C are events then P(CnBnA)=P(A).P(B|A).P(C|AnB), (B)
(Provided BN A=¢,ie. P(BnA)>0)

Proof : IfweletD=B A, then
P(C~AD)=P(D).P(C|D)=P(AnB).P(C|AnB)=P(A).P(B|A).P(C|AnB),

. Which is also written as P(ABC) or P(CBA) = P(A) P(B|A) P(C|AB) ;

where AB means AnB.

Example 2

Three cards are drawn at random from a pack of 52 cards. Find the probability that all
three are queens.

Let A, B, C be the events that the first, second and th.etbud cards are queens (respectively).
Then we want the value of P(A~B~C). Employing the formula (B), we have

P(A~B ~C)=P(A). P(B|A).P(C|A~B)= Si?-_ : % : 52—0=ﬁ
Example 3 '
A person draws five cards at random froma pack of 52 cards. Find the probability that all
the five cards are spades.

The required probability, using the generalized multiplication rule, is

i3 I@ - 11 10 9

52 " 51 " SO "49° 48"

Note that;—2 is the probability that the first card is a spade, Sl is the probability that the |

second card is a spade under the condition that first card is already a spade etc.
Example 4
A person has four pairs of socks of four different colours. If four socks are picked at
random what is the probability that there is at least one pair among them ?

Let A be the event that there is at least one pair among the four socks, Let us now compute
the probability of the event A° (= the event that all four socks are of different colours). Now,
applying the multiplication rule, we have P(A°) = % : % 3 % % 385 ,henceP (A)=1 -

pay- 2 27
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Note : You are advised to compute the probability of A directly and see for yourselfhow lengthy
and difficult it can be !

Generalised multiplication theorem for probability
(Generalised multiplication rule)
- ForeventsA ,A,,...,A wehave
P(AA,..A)=P(A).P(AA ). P(A A A)..P(A|A A .A_), (©)
provided P(A A,...A )>0.
(AA,...A means A NA,N...NA)
Proof: '
A 2AA, DAAA; D..DAA,. A,
= P(A)2PAA,) 2 P(AAA,) 2. 2 (AA, . A, )
P(AA,.A )>0=>P(AA,..A )=0
andhenceAA,..A »¢
= A, AA, A A A, ... are all nonempty sets with positive probability.
Therefore all the conditional probabilities on RHS of (C) are well-defined.
SPADP(A, |A)DP(A, |AA,).PA, |[AA,. A, ) :
PAA,) P(A,A,A,) _PAA;.A,)
P(A) P(AA,) PAA,.A,,)
P(A/A,...A) (after cancellation)
This completes the proof.

P(A,).

Il

Example §

Two dice are thrown simultaneously and the sum of the numbers appearing is observed to
be 7. What is the probability that the number 3 has appeared atleast once.

Solution:
The sample space S has 6°= 36 sample points.
The event E : the sum of the numbers appearing is 7
=~ E={(1,6),(6,1),(2,5),(5,2),(3,4),(4.3)} and
F : the number 3 has appeared at least once ;
~ F=1{(3,1),(3,2), (3,3),(3,4),(3.5), (3,6), (1,3), ...(6,3)}
Now |[E| = 6, [F|=11, also [EnF| =|{(3,4), (4,3)}| = 2
. The required probability = P(F|E)
_ P(FnE) 2/36 1

P(E) 6/36 3
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Example 6
A family has two children. What is the probability that both the children are girls, given
that at least one of them s a girl.
Solution:
Let 'b' and 'g' stand for boy and girl respectively.
Then the sample space S = {gg, gb, bg, bb}
Let E and F stand for the events
E : both the children are girls,
F : at least one of them s a girl.
Then E= {gg}, F={gg.gb,bg}, EnF={gg}
So that [E|=1, [F|=3, |[E~nF|=1 and

EAR Y L WS
P(EAF)= g s B =

(EmF)_l
So the required probability P(E|[F) = PE) 3

- N.B. We can also conclude
(1) P(at least one boy)

b2

= 1——=—

1
(i) By similer reasoning as in the example, P (both are boys) = 3

6.2 Independent Events
Definition : Two events A and B are said to be independent if P(A~B)=P(A) .P(B).

: _ P(AnB) P(B).P(A
Note that if A, B are independent, then P(A | B) = (p(g) b (P)(B§ L = pa).

The first one shows that P(A) = P(A | B); that is, the probability of A is same as the
conditional probability of A subject to B. In other words, A is not influenced by B. Similarly
P(B | A) = P(B) shows that B is not influenced by A.

Example 7

Let a coin be tossed three times. Let A be the event that the first toss is head and let B be
the event that the second toss is head. Are Aand B independent ?

As shown earlier, the sample space has 8 points. we also have

= {hhh, hht, hth, htt}, B = {hhh, hht, thh, tht}, A ~ B = {hhh, hht}.

4 & > S
P(A)=3=3,P(B)=%=7.PAnB)=% = 7.

Thus P(A~B) =P(A) . P(B); hence A and B are independent.
Example 8
There are 100 tickets in a bag numbered 1 through 100 and a ticket is picked at random.
Let A be the event that the number on the ticket is divisible by 2 and let B be the event that
number on the ticket is divisible by 5. Show that A and B are independent.
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Clearly P(A) = 5= = 3 and P(B) = 155 = +. A\ B is the event that the number on the
ticket is divisible by both 2 and 5, hence dwlslble by 10. Therefore
= _.1_ 2
P(AnB)= 105 = 75 = P(A) . P(B):
Example 9 :

Let A and B be defined as in example 23 above where a ticket is picked at random from
a bag containing 65 tickets uumbered 1 through 65. In this case :

P(A)= 22, P(B) - 22 %. ‘

On the other hand, P(A [InB) = 2% #P(A). P(B)

Thus A and B are not mdependent.

Example 10

When two fair coins are tossed all the four out comes, HH, HT, TH, TT are equally likely.
IfE is the event that the first coin shows head and F, the event that the second shows tail, then

E and F are independent, since P(EF) =P({H,T})= —

1 1
P(E)=P({H.H},{H,T}) =7, P(F) =P({H,T},{T.T})= 7.

Example 11
When tossing two fair dice, let E denote the event that the sum is 6 and F denote the event
that the first die shows 4.
Here |S| = 36 where S is sample space.
E={(1,5),(51),(24),(42),(33)} .
F={(4,1),(4,2), (4,3), (4,4),(4,5),(4,6)}

Now, P(E) = 36
2F) = - - =
36 6
R i
P(E).P(F)= 5=

Where as P(EF) = P({4,2}) = i # P(E).P(F)

So E and F are not mdependent
Example 12 ' A
A speaks the truth in 80% of cases and B in 70% of the cases. In what percentage of
cases they are likely to contradict each other in reporting the same fact.
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Solution :

LetA, B, A, B respectively stand for
A : Aspeaks the truth :
B : B speaks the truth

A -Atells a lie

B :Btells alie
Let E be the event that A and B contradict each other.

Obviously E = (AnE)U(KmB)
So P(E)= P(A~B)+P(A~B) (- A~B and A~B are dlS]Olnl')

Obviously A, B and A , B are independent events
- P(E)=P(A)P(B) +P(A ) P(B)

850 TN o A
10 10 10 10
Y
100

or P(E)=38%
Extended Definition of Independent Events
Definition
Three events are said to be independent if
P(EF) = P(E).P(F)
P(FG) = P(F).P(G)
P(GE) =P(G).P(E)
P(EFG) =P(E).P(F).P(G)
The definition can be ﬁu’ther extended to n number of events E , E,, ..., E under the
condition :
P(E,E,...E)=P(E)) P(E)..P(E) for2<k<n.
N.B. There can be extension up to infinite number of events, but that will take us outside the
-scope of the book.

EXERCISES 6 (a)

1. Two balls are drawn from a bag containing 5 white and 7 black balls. Find the probablhty of
selecting 2 white balls if

(i) the first ball is replaced before drawing the second.
(ii) the first ball is not replaced before drawing the second.
2. Two cards are drawn froma pack of 52 cards; find the probability that
(i) theyare of different suits.
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6.

(i) they are of different denominations.
Do both parts of problem 2 if 3 cards are drawn at random.

- Do both parts of problem 2 if 4 cards are drawn at random.

A lot contains 15 items of which 5 are defective. If three items are drawn at random, find the
probability that (i) all three are defective (ii) none of the three is defective. Do this problem
directly. ; '

A pair of dice is thrown. Find the probability of getting a sum of at least 9 if 5 appears on at
least one of the dice.

Hints : Let Abe the event of getting at least 9 points and B, the event that 5 appears on at least

10.

11.

12.

* independent (iii) A° and B are independent.

one of the dice. Clearly, :
B={(1,5),(2,5),(3,5),(4,5), (5, 5),(6, 5), (5, 1), (5,2), (5, 3), (5, 4), (5, 6)}
whereas, AnB = {(4, 5) (5, 5), (6, 5), (5, 4), (5, 6)}.

P(AnB
Therefore P(A | B) = Jl:*(r]?:—)) o

&
13

=k

A pair of dice is thrown._ If the two numbers appearing are different, find the probability that
(1) the sum ofpoints is 8. (i1) the sum of points exceeds 8.
(i) 6 appears on one die.

In a class 30% of the students fail in Mathematics, 20% of the students fail in English and 10%
fail in both. A student is selected at random.

(i) Ifhe has failed in English, what is the probability that he has failed in Mathemetics ?
(i) Ifhe has failed in Mathematics, what is the probability that he has failed in English ?

(i) What is the probability that he has failed in both ?

IfA, B are two events such that P(A) = 0.3, P(B) = 0.4, P(AUB) = 0.6..Find

(i) P(A|B) (i) P(B|A)

(iii) P(A | BY) (v) P(B|A). .

IfA, B are events such that P(A)=0.6 P(B)=0.4 andP(A nB)=0.2, then find
(i) P(A|B) (i) .P(B|A)

(i) P (A |B) (iv) P(B|A°).

If A and B are independent events, show that (i) A° and B* are independent. (ii) A and B¢ are

Two different digits are selected at random from the digits 1 through 9.
(i) Ifthe sumis even, what is the probability that 3 is one of the digits selected ?
(ii) ‘Ifthe sumis odd, what is the probability that 3 is one ofthe digits selected ?
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1y

14.
15.

(1) If3 is one of the digits selected, what is the probability that the sum is 0dd ?
(iv) If 3 is one of the digits selected, what is the probability that the sum is even ?
IfP(A)=0.4P(B|A)=0.3 and P(B°| A°) = 0.2. Find

() P(A[B) . (i) P(B|A) J (iii) P(B)

(iv) P(A%) (v) P(AUB). _
IfP(A)=0.6, P(B|A)=0.5; find P (AuB) when A, B are independent.

Two cards are drawn in succession froma deck of 52 cards. What is the probability that both
cards are of denomination greater than 2 and less than9 ?

*16.From a bag containing 5 black and 7 white balls, 3 balls are drawn in succession. Find the

¥

18.

probability that

(1) all three are of the same colour.

(i) each colour is represented.

A die is rolled until a 6 is obtained. What is the probability that
(1) you end up in the second roll.

(i) you end up in the third roll.

A person takes 3 tests in succession. The probability ofhis (her) passing the first test is 0.8.
The probability of passing each successive test is 0.8 or 0.5 according as he passes or fails the
preceding test.Find the probability ofhis (her) passing at least 2 tests.

Hints : We have the following mutually exclusive cases where S = success in a test and F = failure

in a test
event Probability
SSS - 8x 8x 8
SSF B8x 8x .2
SFS 8x2x.5§
FSS 2% . 5x .8

*19. A person takes 4 tests in succession. The probability of his passing the first test is p, that of his

20.

passing each succeeding test is p or % depending on his passing or failing the preceding test.
Find the probability of his passing (i) at least three tests (ii) just three tests.
Given that all three faces are different in a throw of three dice, find the probability that

(i) at least one is a six, (ii) the sum is 9.

Hints for part (i) : Let A be the event that at least one (of the three results) is a six. Let B be the

event that all three faces are different. The size ofthe sample space S is 216; the size of B is

P(A° ~B)

°C,.3!. Let us compute P(A*| Bj = PE)
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A° B isthe event that all three faces are different and 6 does not occur. Thus the size of

°C, . 31/216

' A°mBis’C1.3!.ThusP(A°!B)*6C 311216 2°
3 g =3

21. From the set of all families having three children, a family is picked at random.
(i) Ifthe eldest child happens to be a girl, find the probability that she has two brothers.
(i) If one child of the family is a son, find the probability that he has two sisters.

22. Three persons hit a target with probabilities -% i % and % respectively. If each one shoots at

the target once, (i) find the probability that exactly one of them hits the target (ii) if only one of
them hits the target what is the probability that it was the first person ?

Special Application of Multiplication Rule
(Compound events)

The multiplication rule comes in handy while dealing with the so called compound events.
Suppose that a bag has 4 white and 6 black balls and that a second bag contains 5 white
~and 7 black balls. Suppose that a ball is randomly picked from the first bag and put in the
second bag (without knowing its colour). If you now pick a ball from the second bag what is
the probability that it is white ?
To solve this problem, let
W, = the event that the first draw is white (which is transferred to the second bag)
B, = the event that the first draw is black
W2 = the event that the second draw is white
B, = the event that the second draw is black.
We thus have the following four situations.
() W, AW, (i) W, nB, (iii) B, n W, and (iv) B, nB,.
The probablhty ofeach of these events can be calculated by using the multiplication rule.
For example,

P(W,n W) =P(W,) . P(W,[W)=-£ & 12
P(W,B,) =P(W,).P(B,|W,)=

.i“_
10 -
P (B,nW,) =P(B,). P(W, |B,)= %

6 24
P(B,~B,) =P(B,).P(B,|B,) = T
Thus the probability of drawing a white ball from the second bag is given by

a2 = 27

P(W,AnW,) + P(B,nW,)= + %5~ 6
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Example 13
From a bag containing 6 black and 4 white balls, two balls are drawn at random.
Find the probability that both are of the same colour.
We have two mutually exclusive cases; either both are white or both are black.

foyivp
P (both are white) = W =13
2

P (both are black) = s By
10 €, 3¢

P (both are of the same colour)

= P (both are white or both are black)

=P (both are white) + P (both are black)

- iy W
= B el
Example 14

From a bag containing 3 white, 4 black and 5 red balls, three balls are drawn at random.
Find the probability that all three are of the same colour.

We have three mutually exclusive cases whose probabilities we have to find :

3

C
P (all three are white) = # = 2—50
3

s o
P (all three are black) = 13-53- =30
g

5
P(a.llthreearerc;ed)=-IZCT3 =El:%.

Therefore, P (all three are of the same colour) = 14-2;12_310 = 74%- .
Example 15
A bag contains 4 white and 5 black balls; a second bag has 3 white and 4 black balls; a
third bag has 5 white and 4 black balls. A ball is randomly picked from the first bag and put in
the second; then another ball is picked at random from the second bag and put in the third. If
now ball is randomly picked from the third bag, what is the probability that it is white ?
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Let B = black and W= white. We are thus interested in the following cases :

First transfer Second transfer Third pick : Probability
M W B | w 2
@ B W b -
& B B W 225
® W W o 5810

Thus the total probability = % :

Example 16

A purse contains ten one-rupee coins and one two-rupee coin; a second purse contains
eleven one-rupee coins. Ten coins are transferred from the first purse to the second and then
ten coins are transfered from the second purse to the first at random. Find the probability that
the two rupee coin is still in the first purse.

We have two mutually exclusive cases : (i) the two - rupee coin has not been transferred
at all or (ii) the two- rupee coin has been transferred from purse 1 to purse 2 and then again
from purse 2 to purse 1. For case (i), the probability p, is given by

1x!¢Cy 10 _ 1

p=1= e, T Rl

] 10 20
i AR C 1 C
For case (ii), the probability p, is given by p, = SNt L

1 71
Cyo O :

1
PP, = 71

EXERCISES 6 (b)

1. A bag contains 5 white and 3 black marbles and a second bag contains 3 white and 4 black
marbles. A bag is selected at random and a marble is drawn from it. Find the probability that
it is white. Assume that either bag can be chosen with the same probability.

Hint : There are two mutually exclusive cases : (i) you are selecting bag 1 and then drawing a

white; call this event 1 W (ii) You are selecting bag 2 and then drawing a white, call this event
2W. :

Now P(IW) = P(1) P(W/1) = = . 3 and P2W) = P(2) . P(W/2) = 1 . 3 hence the

required probability is = + - = 25 .

2. A bagcontains 5 white and 3 black balls; a second bag contains 4 white and 5 black balls; a
third bag contains 3 white and 6 black balls. A bag is selected at random and a ballis drawn.
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Find the probability that the ball is black.

(i) Do the problem assuming that the probability of choosing each bag is same

(i) Do the problem assuming that the probability of choosing the first bag is twice as much as
choosing the second bag, which is twice as much as choosing the third bag.

A and B play a game by alternately throwing a pair of dice. One who throws 8 wins the game.
If A starts the game, find their chances of winning. :

Hint : 8 can be obtained with a pair of dice in the following five ways

4.

5.

(6, 2), {3, 3), (4,4),(3,5)and (2, 6).

Thus P(S) === (Remember the sample spece, when a pair of dice are rolled !);
P(not 8) = 5= . Since A starts the game, A can win in the following situations :
(i A throws 8.

(i) A doesnot throw 8, B does not throw 8, A throws 8.
(i) A does not throw 8, B does not throw 8, A does not throw 8, B does not throw 8 A
throws 8 etc.

In case (i) probability = "35'5

2
In case (ii) probability = 3= aF % : -3% = -3% : (%)
3padpiateal. & sy
In case (iii) probablhty— 7 A A A T (3_6') ate

4
Thus P(A wins) = % {H(gé) +(—§%) +}

3
36
- 3P| = 36
[l_(%) ] 67
o, o &
Hence,P (B)=1- =&7-

A, B,C play a game by throwing a pair of dice in that order. One who gets 8 wins the game.
If A starts the game, find their chances of winning.

There are 6 white and 4 black balls in a bag. If four are drawn successively (and not replaced),
find the probability that they are alternately of different colour.

Hint : There are two mutually exclusive cases, WBWB and BWBW.

6.

7.

Five boys and four girls randomly stand in a line. Find the probability that no two girls come
together.
If you throw a pair of dice » time, find the probability of getting at least one doublet.
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9. =

L

[When you get indentical members you call it a doublet. You can get a double in six ways : (1,
1), (2,2), (3,3), (4, 4), (5, 5) and (6, 6); thus the probability of getting a doublet is 4 =

—é , 5o that the probé,bi]jty of not getting a doublet in one throw is % ]

Suppose that the probability that your alarm goes off in the moming is 0.9. Ifthe alarm goes
off, the probability is 0.8 that you attend your 8 a.m class. If the alarm does not go off, the
probability that you make your 8 a.m. class is 0.5. Find the probability that you make your 8
a.m. class.

If a fair coin is tossed 6 times, find the probabxhty that you get just one head.

Hint : There are 6 mutually exclusive cases :

HTTTTT, THTTTT, TTHTTT, TTTHTT, TTTTHT, TTTTTH.

10. Canyou generalize this situation ? If a fair coin is tossed six times, find the probability of _

getting exactly 2 heads.

Hint : First find out the number of ways you can write a sequencé of six heads and tails with 2

heads and 4 tails. Argue this way : Fill any two places with H and the remaining four places by
T. Since the two places can be chosen arbitrarily we can do so in ¢C, ways. For example

HHTTTT is one such. Again each of these results has a probability equal to‘i’é’

A remark

We now know that there are sample spaces which are equiprobable (or uniform) and also
sample spaces which are not equiprobable. Ifa fair coin is tossed twice (or two fair coins are
tossed once), we know that we get an equiprobable sample space

S = {hh, ht, th, 1t}
so that each elementary event has probability equal to% . In particular, the probability of getting

one head and one tail (not necessarily in that order), is equal to% . Even such a distinguished

mathematician as D’ Alembert (1717 -83) argued that there are three possible outcomes in all,
namely, .

(i) 2 headsand no tail

(i) 2 tails and no head

(i) 1 head and 1 tail.

He therefore argued that each elementary event should have a probability equal to % His

surmise, of course, didn’t match with experimental restilts. It was observed that if two coins
were tossed a large number of times then one head and one tail appeared approximately half
of the times and not one-third of the times as D’ Alembert clalmed So the conclusion was that

even if we take the sample space S to be
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S = {2 heads, one head and one tail, 2 tails}, this is not an equiprobable space.
In describing the rules of probability for a finite sample space S, we had this rule:
IfA and A, are mutually exclusive then P(A wA,)=P(A) +P(A)
From this rule, one can easily derive the following : IfA , A,, ...., A_ are mutually exclusive
events in a sample space S, that is ANA, = ¢ whenever i # j then

P(A, LA, L...UA)=P(A)+P(A) +...+ P(A).
However, if the sample space is not finite, for example if S’ is countably infinite, we will need
a stronger axiom : If {A }, n=1,2..., o, is a sequence of mutually exclusive events then

a0

(o]
p| ¥ An|= Y PA,)
n:l n=1

When S is uncountable (for example, the set of reals and the set of irrationals), every subset of

* S need not be an event; only a special collection of subsets of S (called a o algebra) will be

events. These facts are beyond the scope of this book.

In the beginning of this chapter, we defined the probability of an event A (in a finite sample
S) as : '

_ sizeof A

P(A) = “Size of S -
In all the examples and problems given until now, size simply meant the number of elements of
the concerned set. We used the word size simply because there are situations in which size
may mean other things. To justify our claim you may consider the following experiment. Imagine
that you have been invited to open a science exhibition in your school where you have to cut a
ribbon of length 1 meter tied across the door. If you do it at random, then every point of the
entire length (of one metre) is a point of the sample space. Thus, the sample space is S = [0,
1].
Suppose now that the middle one-third of the ribbon is of red colour and the two sides are of
green colour. Let A be the event that you cut the ribbon at a point in the middle one third. What
is then the probability of A assuming that all points of S are equally likely to get you scissor ?

{12
A‘[s’s]

1 1

is of length 3 and S is of length 1. Our intuition tells us that P(A) =142 =1 Ifyou look at
; Ve _ sizeof A
your definition P(A) = L .

then it would be obvious that size in this case simply means length.
Take yet another example; imagine yourself standing in front of a wall of dimension 4m
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*3m. In the centre of the wall is a circular area (painted red), the radius of the circle being 1m.
[fyou are asked to fire a pistol at random against the wall, what is the probability that you will
hit a point in the circular area ? You may assume that all points of the wall are equally likely to
be hit by your shot. Once again, it is intuitively clear that since the area of the wall is 12 and

the area of the painted circular area is nm?, the probability of your hitting a red spot is-l% ;

You can therefore conclude that size in this case is simply the area.

Until now, we have dealt with three different cases where

(i) size means number of elements,
(i) size means length of an interval,
(i11) size means the area. :

All these are particular cases ofa more general mathematical concept (associated with a
particular family of sets) called measure. :

To give you a sample of how these ideas are used in computing probabilities of events,
consider the following example. Suppose that you and your friend decide to meet each other
at the railway station on a particular Sunday between 5 p.m. and 6 p.m. You further decide

- that whoever comes first will wait for the other for just fifteen minutes. If you and your friend
come to the station at random during that 60- minute period find the probability that you will
meet your friend. |

To solve this problem, let us make one simplification. Let us fix the origin of time at 5 p.m.
and also take- the unit of time as minute. Let

x = time of arrival of your friend

y = time of your arrival
Since x € [0, 60] and y € [0, 60],
therefore the sample space S= [0, 60] x [0, 60], which is a square of side 60 units. Let A be
the event that you meet your friend. This is possible only when

Case 1:x—y<15; thismeans that your friend arrives first and you arrive within fifteen minutes
of his arrival ;

Case 2 : y —x < 15; this means that you arrive first and your friend arrives within fifteen minutes of
your arrival. :

Let us denote these mutually
exclusive events b)\!‘i}t\l and A,
respectively; clearly A = A UA, and
P(A)=P(A,) +P(A,). Using ordinary 451
coordinate geometry of dimension 2, it 30
is obvious that the two straight lines y 1
=xandy=x+15 enclosetheareaA
inside the square which has been
shaded.

¥

60
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Therefore,
area of A %x 60 x60—%x 45x 45 7
PA)= ——oFs = 60 x 60 P
One can similarly deduce that P(A,) = ﬁ 3 hence P(A)= l

We have already mentioned about the exchange of letters between Pascal and Fermat
(1654). You can get some insight into the early stages of development of probability theory
from the contents of one of those letters which dealt with a simple question.

(a) Suppose you throw a perfect die, then what is the minimum number of throws necessary
so that the probability of getting at least one six exceeds —é- .
Well, this is an easy question to answer. Suppose you need » throws. Since the probability of
not getting a 6 in one throw is %, £
P (not getting 6 in all # throws) =. (%) : :
Hence, P(getting at least one 6 inn throws) =1 — (%) ;

Since, 1 - (-5-

n
6) ; ,itis easy to deduce that n =4. Thus,

%
P (getting at least one 6 in 4 throws) =1- (%] =0.518.
(b) Suppose that you are now throwing a pair of dice; then what is the minimum number of

throws necessary so that the probability of getting at least one double 6 exceeds% .
The answer to this question is equally simple. For each throw of a pair of dice, the probability

of getting a double 6 is 3¢, so that

35

P (not getting a double 6) = 36"

n
P (not getting'a double 6 inn throws) = (g—g—) y

Hence, P (getting at least one double 6 inn throws) =1 — (gg)

It is easy to check (usmg a calculator or a logarithmic table) that the least value of » for which

35
1- (36) 2 is 25;

35 25
and in that case 1 — (%) =0.506.

(c) Now compare the results given in (a) and (b). Infa), you are throwing one die and you

need just 4 throws so tht the probability of getting at least one six exceeds-zl* . In(b), you
are throwing a pair of dice and you need 25 throws so that the probability of getting a
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double six cxceeds-ilz- . On the surface of it isn’t there an apparent contradiction ? At least,

so it looked in 1654 A.D. !

6.3 Total Probability and Bayes' Theorem

We first introduce a fundamental concept, the partition of a sample space.
Definition :

Partition of a sample space

Asetofevents {E ,E,, ..E } issaid to forma partition of a sample space S, if

i s=_JE,

(i) E, 2 ¢ ,fori=1,2, .,n .
(1) Elr‘ij=¢, 1# J

- Theorem of Total Probability
Let the events E , i=1,2,...,n form a partition of the sample space S.

Then for A ¢S, wehave P(A)=) P(E,).P(A|E,)

i=1
Proof:
The second condition implies that P(E) >0, so that
P(A|E) is well defined for every i. '

=1 1=l

s=JE =>AﬁS=Aﬁ(UEi):O(AnEi) (by distributive law)
. i=1

From (iii) it follows that P(A) =P {0 (An Eg)J = iP(A NE;)

i=1 1=l

By multiplication rule P(A ~E,) = P(E,)P(A | E,)

So P(A) = 3 P(E)P(A[E)

This complete the proof.
Example 17

There are two bags B, and B,. B, contains 4 red and 3 black balls and B, contains 2 red and
4 black balls. A bag is selected at random and a ball is drawn from it.

 Find the probability that the ball drawn is red.



176

Elements of Mathematics, Class-XII

Solution :

We have to determine the probablhty of drawing a red ball which we can do in the mutually
exclusive ways, either from B, or from B,.

Let us write :

E = the event of selecting B,

E, = the event of selecting B,

A =event of drawing a red ball.

(Obviously the sample space S comprises B, and B, with all their balls which form a disjoint
partition) ,

4
Now P(A|E,) = probability that the red ball is drawn from B, = 7

2 1
Sumlar!y P(AB,) === 3
By the theorem of total probabi!ity,
P(A) = P(E )P(A[E,) + P(E,) P(AE,)

Note on the Theorem of Total Probability

The expression P(A) = 2 P(E,).P(A | E,) signifies that the occurrence of the events A is

i=1

contingent upon the occurrence of the events E , E,, ..., E_ which form a partition of the
sample space.

Thus, if A is termed as an effect, thenE ,E,, ..., E_are its causes. The theorem of total
probability gives the probability of an effect in terms of the probability of its causes.

The next theorem takes us to a reverse situation. Given that a particular phenomenon A
(effect) has already occurred, the theorem gives us an estimate P(E | A) (for 1 <i<n), which
is the probability of its occurrence due to a particular cause.

Bayes' Theorem

Ifasetofevents {E | i=1, 2, ..., n} forma partition of a sample space S,

P(E,|A) = P(E,)P(A |E,)

; provided P(A) > 0.
ZP(E,)P(AIE,) - :
=1
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Proof :
: P(E,NA) = >
P(EJA) = P(A) (By definition of conditional probability)

P(E,)P(A | E;

P(E,)P(A |E,
(E)P(A|E,) (By the theorem of total probability).

ZP(EJ)P(Al E))
1
N.B. The subscnp.t ' under the summation sign is a dummy suffix in the sense that it can be
replaced by any other suffix, even 7.

A Note on Bayes' Theorem
In contrast to the theorem of total probability, Bayes' theorem gives us an estimate of the

probability of a particular cause having known that the event (effect) has already occurred

Usually, in real life situations the probabilities of the causes E, are not so easy to determine
They are mostly estimated depending upon experiments and experience. Hence P(E) is known
as 'a priori' probability and P(E |A) is called 'a posteriori' probability of the cause E..

Example 18 (Coming back to example-17, reworded)
Threre are two bags B, and B, containing 4 red, 3 black balls and 2 red, 4 black balls

1
respectively. If the ball drawn from a bag, selected at random, is red, find the probability that
the ball is drawn from the bag B .

Solution :
With E., E. and A having the same meaning as before, applying Bayees' theorem.

Probability that the red ball is drawn from B, is given by

‘ P(E,)P(A | E))
P(E,|A)= B(E,)P(A | E,) + P(E,)P(A | E,)

1 4
T8 e
1.4 12009
2T 6

N.B. You can similarly calculate P(E |A) =



178

Elements of Mathematics, Class-XII

Thus P(E |A) + P(E,|A) = 1 which turns out to be 2 certainty !

6
But, mfact probability of drawing a red ball from either of the bags is 3

How do you account for this ?

Note that, in this problem, drawing ofa red ball is not a nondeterministic event. It is given
that a red ball has already been drawn, which is consequently a certainty.

The case is like this ;

The event, say an epidemic has already broken out. We are simply ascertaining the probable
reasons !

Further note that in problems as such there are multiple random selections; as in this case—a
bag is randomly selected and then a ball is selected from the bag at random. This has to be
borne in mind while working out problems.

| EXERCISES - 6(c) |

There are 3 bags B, B, and B, having respectively 4 white, 5 black; 3 white, 5 black and 5
white, 2 black balls. A bag is chosen at random and a ball is drawn from it. Find the probability
that the ball is white. “

There are 25 girls and 15 boys in class X1 and 30 boys and 20 girls in class XII. Ifa student
chosen from a class, selected at random, happens to be a boy, find the probablhty that he has
been chosen from class XI1.

Out of the adult population in a village 50% are farmers, 30% do business and 20% are
service holders. It is known that 10% of the farmers, 20% of the business holders and 50% of
service holders are above poverty line. What is the probability that a member chosen from
any one of the adult population, selected at random, is above poverty line ? |

Take the data of questicm number 3. If a member from any one of the adult populﬁtion ofthe
village, chosen at random, happens to be above poverty line, then estimate the probability that
he is a farmer,

. Froma survey conducted in a cancer hospital it is found that 10% of'the patients were alcoholics,

30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the
smokers, 70% ofalcoholics, 50% of gutka chewers and 10% of the non specific, then estimate
the probability that a cancer patient chosen from any one of the above types, selected at
random, .
(1) 1s a smoker

(11) is alcoholic

(i1) chews gutka

(iv) has no specific carcinogenic habits.
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6.4 Random Variable:

A random variable is a rule that assigns a numerical value to each possible outcome of an
experiment. The term ‘random variable’ is actually a misnomer since a random variable X is
a function whose domain is the sample space S and whose range is a subset of the set of
real numbers. :

Definition: A random variable X on a sample space S is a function X : S — R . If the range of X is

6.5

countable, 1,¢., in one to one correspondence with a subset of the set N of natural numbers,
then the random variable X is a discrete random variable. In this chapter we shall be concerned
only with discrete random variables.

Consider a random experiment consisting of three independent trials with outcomes either a
success (S) or a failure (F) in each trial.

Let us denote a success by 1 and a failure by 0.
Then the sample space
S={(,1,1),(,1,0),(L0,1),(00,1,1),(1,0,0), (0, 1,0),(0, 0, 1), (0, 0, 0)}

Any number of random variables can be défined on S. For example, we may consider the
total number of successes as a random variable because it takes values either 3 or 2 or 1 or
0 cach with an assigned probability.

Here X(1,1,1)=3,X(1,1,0)=2,X(1,0,1)=2
X0,1,D=2,X(1,0,00=1.X(,1,0=1
X (0,0,1)=1, and X (0, 0, 0)=0.

Thus X takes values 3or2 or 1 or 0.

A probability can be assigned to each of these values of X.

Since each point of S is equally likely to occur their probabilities are equal and each is equal

tot.
So P(X=3)=1, P(X=2)=3, P(X=D)=2, PX=0)=1.

We observe that

Probability Mass Function:

Let X be a discrete random variables which takes the possible values x,, x,,.......x, .
With each x, we associate a real number .
p,=P(X =x )i=123,..n

which is called the probability of X = x, satisfying the following conditions:

(i) p, 20 for cachi,
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(i) ?;Pf =p+ptotp, =1

i.e. the total probability is 1.
To be more precise, if X is a discrete random variable we define

p(x)=P(X=x)
Such that p(x)>0 and X p(x)=1 summation being taken over all values of the variable.

The function p(x)= p( X =x) is called the probability mass function or simply the prob-
ability function of the random variable X. The set of all ordered pairs (x, p(x)) is called the
probability distribution of X.
Example : A random variable X has the following distribution:
- 0 1 2 3 4
px): 0.1 0.3 k 0.2 3k
Determine the value of k so that it represents a probability distribution.
Solution: For the given distribution to be a probability distribution we must have

Ip, =1.

This implies that
0.1+03+k+0.2+3k=I
=4k =04

= k=01
6.6 Mean and Variance of Random Variable
Let X be a random variable having the following probability distribution:

S g 7, S I B e - 4
p(x): p, Pysevsrassncassras Py 2eaossines P,

Then the mean of the random variable X dentoed by ¥ is defined as
= ix, p(x,)

The variance of X dentoed by o? is defined as

o’ =§(J\jr —f)’p(x,.)

An alternative form of this can be obtained as follows:
We have

3 (x,~F ) plx,) = 35.(x — 2%, +3)p(x, )

i=l
=3 X p(x,)= XL X P(x )+ T3 p(%,)

L% )-2Z+T

M=

-
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=3 x’p(x,)- %
§=1

Thus ©° =J§=:l-’ffp(x,)—fZ

The positive square root of the variance of X is called the standard deviation of X and is
denoted by o .
The mean of a random variable X is also called the expectation of X and is denoted by E(X).

Example :Two cards are drawn successively with replacement from a well shuffled pack of 52
cards. Find the probability distribution of the number of kings. Also determine the mean
and the variance of the number of kings.
Solution:
If X denote the number of kings in a successive draw of two cards with replacement from
a deck of 52 cards then X is a random variable which takes values 0 or 1 or 2.
Since we draw the cards with replacement the two draws are indeépendent.
So P(X=0) =P (no king and no king)
= P(no king) x P(no king)

_48 48 144
T52752 169 , |
P(X =1) = (a King and no King or no King and a King)

= P(a King and no King) + P (no King or a King)

4 48 48 4
= —— _—
82 52 .52 52
_24

169

P(X=2) = P(a King and a King)
= P(a King) xP(a King)

e 1 S Y

s —
52 52 169
Thus the required probability distribution is

X=x]| 0 1 2
1441 24 | 1
169 | 169 | 169

plx)

F = OXm + X 42X
169 169 169
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. ey

_+______ iy

169 169 169 13

3
» 2 2 -2
Variance © = Z’ x p(x)-X
=]

=1 >(£‘€I'-+Iz x—zi+ 2 XL—[E) .
169 169 169 13

24 4 4

169 169 169

24
169

Example : If a pair of dice is thrown trice then find the mean and the variance of the number of
doublets. :

Solution: We denote the number of doublets by the random variable X.
Here X can take the values 0 or | or 2 or 3.
The possible doublets are
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5). (6, 6) which are 6 in number.

6 1
So the probability of getting a doublet = 3 = 3

_ . /
and not getting a doublet = =1 FEe

Thus the required probability distribution is

X=x[ 0| 1]2]3
125 [ 75 [ 15 [ 1
216 | 216 | 216 | 216

p(x)
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Mean X = Z]:l',P(«T,}

15 1

125 +2x + 3%

75
X

=0 x

216

216 216~ 216

75° 30. 3

iyt
216 216 216

(o

08

75 60
£

Example : A box containing 20 electric bulbs includes 5 defective bulbs. Four bulbs are drawn at
random with replacement. Find the probability destribution of the number of non- defective
bulbs. Calculate also the mean and the variance.

Solution: Let X be the random variable of the number of non-defective bulbs.

Clearly X takes values 0 or 1 or 2 or 3 or 4.

. Numiber of non-defective bulbs in the box =20~ 5= 15

So the probability of getting a non-defective bulbs.

153

"2 4

Hence the probability of getting a defective bulb

T e 20
4 4
¢ v PCX=0)= lxixl—L
onsequently — SaC 4_ 6 :
P(X—-l):ixi .l_x_+lxix.]_xi+lxlxixl.'..l—x_l;xixg.
24 A d Bk A A & 4.4 A 4.4 4
$40p0 peod 20 )
=4 Xx—X—X—=X— ==
4 4 4 4 256
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P(X=2)=ixixlxlxlxéxéx}-+lx—i—x£xi+3xlx—%—x—l-
A4 4.4 4 4 8 A4 G4 o i
et B T < T (e NG R
e X o X e X e e X X = X
4 4 4 4 4 4 4 4
B e UAW e
=X —X—X—X—=——
4 4 4 4 256
P(X_—.3)=—xE—><E—xl+lxix3x§—+ixixixi+ix§-xlx§-
44 4 & 4 44 °48°4 % & & A K4 4
L PN TN G (R 1)
=4 X—X—X—X—=——
44 4 4 256
P(X‘:4)=£x3x_3.x§._—_£
_ 4 44 4 25
Thus, the required probability distribution is
X=x1 0 | 2 3 4
1 12 | 54 | 108 | 81
p(x)
- 256 | 256 | 256 | 256 | 256
5 s | 12 54 108 81
X= =0 +1 +2 3 +4
Mean X = 2.5 P(%, )= O St X e 4% o6+ 256 T " * 256
12 108 324 324
=0+ + - =+
256 256 256 256
.
256
5 —
Variance =§xfp(x‘)-x2
=03><L+Fx£ 2’:'ci‘¢1-+32><--l--(E+4’:xﬂ—-32
256 256 256 256 256
12 216 972 1296
=0+ + + + -
256 256 256 256
_249%6 o 3
LoaRge !
6.7 ‘Bernoulli Trials :

Very often experiments are performed in which there ase only two possible mutually exclusive
outcomes. For example, in tossing a coin the outcomes are head or tail, in rolling a cubic die
the possible outcomes are an even number or an odd number, in selecting an article the
outcomes may be defective or non-defective. Under this situation one of the outcomes is
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called a success and other a failure. For example, in sclecting an article if the outcome is
non-detective we may call it a success and if the outcome is detective then we call it a
failure.

Each time an experiment if performed is a trial.

Definition: Trials of a random experiment are called Bernoulli trials if the following conditions are

satisfied:
(1)  The number of trials is finite,
(2)  Trials are independent
(3)  The outcomes are dichotomous (success or failure)

(4)  The probability of success (or failure) in each trial is constant.

Examples; Tossing a coin five times is an example of a Bernoulli trial.

6.8

Drawing 3 balls successively from a bag containing 5 red and 6 blue balls with replacement
is also an example of a Bernoulli trial.

Binomial Distribution : :

Consider an experiment resulting in two outcomes, a success (S) and a failure (F). Assume
that the prbbabiiity of a success is p and that of a failure is q so that p + q = 1. Suppose that
the experiment is repeated n times under identical conditions so that the probability of a
success in each trial is a constant, i.e., equal to p. In order to find the probability of x
successes and hence (n-x) failures in n independent trials we proceed as follows:
Assume that the first x trials result in success and the remaining (#»—x) trials result in failure.

Then the sequence of outcomes will be

§§8S8..8 FFF... F

o

x fimes fi—x) times

P(SSS... S FFF...... F)

X times I'JI—JM

= {(P(S) P(S) P(S) ..... to x factors} {P(F) P(F) P(F) -....P(F) .s. 10 (1—X) f‘actors}

= p'q"™" as the trials are independent.
But x successes in » independent trials can occur in "C, different ways,
P(x successes) = *Cpa " x=012 . .»

Since "C_p"g"™* is the (x +/)th term in the expansion of (g + p)" the probability distribution
of number of successes in an experiment consisting of # trials are the terms in the expansion
of (g + p). '
This distribution can be expressed as’

X=x 0 1 2 Y G o x ¥ n
p(X=x} n uq" " qun—lp i zqw~2p3 nc!an—xp.\' 2| [ "C,,P"
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and is called the binomial distribution with paramcters n and p. Here p is the probability
function of the distribution.

This binomial distribution is usually denoted by the symbol B(n, p).
Example : If a fair coins is tossed 5 times then find the probability of getting
(1) Exactly three heads :
(ii) at least three heads
(iii) at most three heads

Solution: This is a case of Bernoulli trials where getting a head in each trial is a success, we know
that if :

the number of trials = n
the probability of a success in each trial = p
and the probability of a failure in each trial = q,

then P(x successes) = "C.¢""p’.

Here n=5 e d —l——]---l—
e At R
So (i) P(exactly three heads) '

= P(three successes)

ey

N TR e N | PO
o
2 <3232 32 16

(11) P(at least three heads)

= P(three successes) + P (four successes) + P (five successes)

LONOREORORLORC

s ] 1 1
= C32_5+5 C‘.?‘+ﬁ CS?

T 3120'32 4!1*32 32

_1045+1 1
Y

(iti) P(at most three heads)
= P(at most three successes)
= P( no success) + P(one success ) + P(two successes) + P(three successes)

5 51 5-2 2 3-3 3
sofyf ey 3oely) ) +<(3 0
z 2 2 = " i3 2
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1,510 10

5 1+ s+
R i A

145410410 26 13
R g e sy g
Example : Four cards are drawn successively from a well-shuffled pack of 52 cards with replacement
after ecach draw. Find the probability that
(1) all four cards are diamonds
" (i1) only two cards are diamonds, .
(ii) none is a diamond _
Solution: This is a case of Bernoulli trials where getting a diamond in a draw is considered a success.
We know that if the number of trials = n,
the probability of a success in each trial = p
and the probability of a failure in each trial = q,

then P (x successes) = "C.¢" " p*

S T R S
cre n=%, p 52 4 and ¢ P= 4-—4

WL T 1
1616 128
P 5 4(*- (E]bo l]n
(111) P(no success) = L, 2 7
Sl om
256 256

Example : The probability of a shooter hitting a target is 3 Find the minimum number of times he

must fire so that the probability of hitting the target at least once is greater than 0.999.

Solution: Let the shooter fires n times. for each time the probability of the shooter hitting the target
is considered as a success.

If p = the probability of hitting the target and
q = the probability of not hitting the target,

4 -4 ]
then p=§andq=1—-§=-§.

We have P(x successes) = "C.g¢" " p°
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So P(at least one success)
=]- P (no success)
1Y
=1-"C,| =
{3)
1
=1-—>0.999
5'!
A 1
This implies that 5T<0-'001
. 1
=5t =1000
0.001
=HnS
Thus the shooter must fire minimum 5 times to hit the target with probability greater than
0.999, :
6.9 Mean and Variance of Binomial Distribution

If the mean of the binomial distribution is denoted by ¥, then

fn-x)

¥=3x "Cp'q
x={
- nrlpqm'l) + 2n Czpzqrn—h 4= nC!piqr‘n-” e I H"Cﬂp"

{n~1) (w-2) n(n=1)(n- 2)p3q(n-3)

2

= ”P[qnpi +=‘R—U C,pqn_z +fn-1; Czpzq"! - ‘_"+rn-l.J q"_“pr‘_n--l)

=npq"" ™" +n(n-1)p’q +.tn'C,p"

= np(q+p)"

=np (v g+p=1)
Variance of the Binomial Distribution
We have

z X plx)= % {x(x~1)+x} p(x)

= ix(x . l) uCrplq(n-x} 2 ix !!C'pxq(k.-xl
¥=1 x=1

=2"C,pq" +32"C,pq" " +...+n(n-1) "C.p" +np

=n(n—l]p3q"'2'+ n(ﬂ_lli("_z) 33 e

A n(n—1)(n-2)n-3)
[2

4 _(n-4)

Pq

+eentn(n=1)p" +np
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Probability
_: ﬂ(n b l)pﬁlq(n—Z] +frr-2] Clpqn 3 +(n—2} Czplq[u-‘l} g +[u—2) Cf"-np(n-zl] + np
=n(n-1)p*(g+p)'"* +np
=n(n -D)p* +np
Variance = %xzp(x)—fz

C=nn-0)p’ +np-n’p?
= -np’ +np
= np(1-p)
= npq
Example : For a binomial distribution the mean is 6 and the variance is 4. Obtain the probability
distribution and hence find the

(i) probability of no success
. (i1) Probability of at least one success
(iii) probability of at most two successes.
Solution: Given that np = 6 and npg =4
where the number of Bernoulli trials = n
the probability of a success in one trial = p

and the probability of a failure in one trial = ¢

_npg_4_2
So ¢ np 6 3
N
. ence P q 373
n
np=6=>—==6
i i g
=n=18

So the required binomial distribution is given by

(2

C|=||=| ,x=0123...18
. p(x) (3J(3] x :

: _[sc[_l_Jn(g_ 184_(2 18
Clearly (i) P(no success) = C, 313 T3 ;

(i1) P(at least one success) =1-p (no success)

]
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(iii) P(at most two successes)
= P(no success) + P(one success) + P(two successes)

P | 17 2 16
BREDRGN
3 I3 3 3
¥ 2 16
= [g] wel2mel [g]
3 353 "ON3

o i6
= i+4+1?‘)[-‘?-]
9 3

syl
9 \3

Exercise - 6 (d)

State which of the following is the probability distribution of a random variable X with rea-
sons to your answer.

X=x0941.]1 213 |4
p(x) [01]02(03(04]0.1

(a)

X=xl 9 1 2 3
px) [0.15[035]025]|0.2

(b)

X=x|{o|1}12[3|[4]35
p(x) [04|R|06|R*[07]03

(c)

Find the probability distribution of number of doublets in four throws of a pair of dice. Find
also the mean and the variance of the number of doublets.

Four cards are drawn successively with replacement from a well shuffled pack of 52 cards.
Find the probability distribution of the number of aces. Calculate the mean and variance of

 the number of aces.

Find the probability distribution of
(a) number of heads in three tosses of a coin
(b) number of heads in simultaneous tosses of four coins.

A biased coin where the head is twice as likely to occur as the tail is, tossed thrice. Find the -
probability distribution of number of heads. :
Find the probability distribution of the number of aces in question no.3 if the cards are drawn

successively without replacement. .

From a box containing 32 bulbs out of which 8 are defective 4 bulbs are drawn at random

successively one after another with replacement. Find the probability distribution of the
number of defective bulbs. :
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8.

10.

11.

13.

14.

15,

16.

17.

18.

A random variable X has the following probability distribution.

X=x[0]1]2]3]4]5
p(x) |0|R|2R|3R|3R|R

Determine (a) R (b)P(X<4) (c) P(X22) (d) PR<X<5)

Find the mean and the variance of the number obtained on a throw of an unbiased coin.
A pair of coins is tossed 7 times. Find the probability of getting

(1) exactly five tails

(i1) at least five tails

(iii) at most five tails

If a pair of dice is thrown 5 times then find the probability of getting three doublets.

Four cards are drawn successively with replacement from a well-shuffled pack of 52 cards.
What is the probability that

(1) all the four cards are diamonds
(i1) only two cards are diamonds
(i1) none of the cards is a dlamond.

In an examination there are twenty multiple choice questions each of which is supplied with
four possible answers. What is the probability that a candldate would score 80% or more in
the answers to these questions? '

A bag contains 7 balls of different colours. If five bal[s are drawn successively with replace-
ment then what is the probability that none of the balls drawn is white?

Find the probability of throwing at least 3 sixes in 5 throws of a die.

1
The probability that a student securing first division in an examination is 0 What is the

probability that out of 100 students twenty pass in first diyision?

Sita and Gita throw a die alternatively till one of them gets a 6 to win the game. Find their
respective probability of winning if Sita starts first.

1
If a random variable X has a binomial distribution B (3»5) then find X for which the out-

come is the most likely.
Hint: Find X = x for which P(X = x) is the maximum, x=0, 1, 2, 3, .



CHAPTER -7

Continuity and Differe'ntiability

The infinite! No other question has ever moved so profoundly the spirit of man.
- David Hilbert

7.1 Continuity

Let us measure the distance covered by a vehicle from a given point. Let the function
f: | — N be such that f (f) is the distance covered by the vehicle by the time t.

Let the graph of the function f be as follows :

distance

O time

Fig. 7.1
Take another example :

If P(w) stands for the postage necessary to send an ordinary letter with weight w then
P:9R,: - R is a function whose values as of 2002 are as follows :

5 for0<w<20
P(w) = 410 for20<w<40
15 ford40< w<60.

which says that the postage is Rs. 5/- for first twenty grams or part there of and Rs.5/- extra
for every extra 20 grams or part thereof.

How will its graph look like ?

15 } o—]
10 } o—]

What difference do we see in the graphs of the two functions described ? In the first case the
change was gradual at every point whereas in the second one the change is abrupt at certain
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points. We try to describe what these words gradual and abrupt mean in this context. A change in
the value of a function will be called gradual if small changes in the value of the function f(f) can
be brought about by a small change in the value of the argument £. What it really means is that

forevery ¢ >0 wecan finda &> 0 such that
|f() - fit,)| <e for |t -1, <8
This point f9 is called the point of continuity of the function f at t=t,_
In fig.7.2, if 20 < t; < 40, then f(t)-f(to) = 0 as it is a point of continuity. If to = 40, then the above
‘equation breaks down (verify). Here tois a point of discontinuity.
This establishes an obvious connection between limit and continuity :
f :1a,b] > Ris continuous at ce [a, b] if
lim f (x) exists and is equal to f(c);
X

in other words, if imf (x) = f (c).
X—¢

If for every e >0 thereisa 8> 0 such that _
[f(x) - flc)| <& for csx<c+d

then we say f is right continuous at c.
On the other hand, if for every £>0, 3 8> 0 such that
[f(x) - flc)| <& forc-8 <x <

then we say that f is left continuous at c.

To illustrate this point let us take an example. Suppose we have an artillery gun with which
we want to hit a target. We know when the cannon is pointed in the direction of the target
making an angle 6 with the horizontal, as long as the gun and the shell being fired is fixed the
distance of the point is dependent only on 6 . We can say that the range at the angle 6 isf(9). In
other words the range is a function of 8. Suppose we know that the target is at distance ¢ from
the gun and f (6, ) = t. Then the best result is achieved if the gun is trained to make an angle 6, -
with horizontal. Our experience tells that while fixing the angle there is likely to be little deviation
in fixing the gun making an angle 6, with the horizontal. This would obviously mean that our
shell will miss the target. But we know that the shell, when hits a point explodes causing damage
to a limited region around the point. Suppose ¢ is the distance with which the shell is effective in
the sense that we get the desired result if the target is within a distance ¢ from the point of hit.
Now the question is how much of play should be allowed in training our gun to get an effective
hit. That is what is the maximum deviation of 6 allowed for the gun from the angle 6, so that

If(8) - £(8,) <& .

Soif f is a continuous function of 6, then for the given ¢ >0 we can find a 8 > 0 such that
|f8) - £(8,)] <& whenever [0-86,|<3,

that is, if the angle 6 is not allowed to deviate from 6, by more than & then our desired

effectiveness of the fire would be achieved.

Thus many situations are encountered in experience as continuous processes such as flow of
wind, flow of time, flow of liquid etc. The formulation of the concept of continuity enables us to
give a mathematical structure for these situations. So it is necessary to study the notion of
continuity of a function in a more formal way. e
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Definition :
A function f is said to be continuous at a point a € D if
(i) f(x)has definite value f (@) at x =a,
(i1) o af (x) exists,

i) M f () =f @)
If one or more of the above conditions fail, the function f is said to be discontinuous at x = a.
The above definition of continuity of a function at a point can also be formulated as follows :
A function f is said to be continuous at x = a if ' :
(i) holds and for a given & >0, there exists a 3 > 0 depending on € such that
Jx-a| <8 = |f(x)-f(a) ] <e.
A function f is continuous on an interval if it is continuous at every point of the interval.
If the interval is a closed interval [ a, b ] the function f is LOI‘IhﬂlIOI.lS on|[a b]ifitis
continuous on (@, b), ! hm o f @ =f@and I'm M fE=f®.

Note : The expression }:ﬂa}'(.\') = f(a) can be written in the form }:ﬂof(a + h) = f (a) by putting
x=a+h.

Let us consider a continuous curve C which is the graph of a continuous function y = f (x) in
the interval [4, b]. We use the term “Continuous Curve” in an intuitive sense to mean that it can
be drawn with a continuous motion of a pencil without lifting it from the paper.

YI'\ "
)+ €
[
f(eyr-e€ /I/
5 &5 ¢ cH5 . b X
Fig. 7.3 '

The above diagram is a pictorial representation of the statement :

|'x=c|<8= |f®-f)]<s,
iec-d<x<c+d=f(O)-e<f(¥)<flc)+ e exhjbmngtheconhnu.ttyofthefuncnonfatx a.
Thus the definition of continuity of a function is in agreement with the intuitive idea of a
continuous curve. :
If a function is discontinuous at a point, then intuitiv‘ely we mean that there is a gap or jump in
~ the graph of the function at that point.
We consider the following examples :
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7.2  Continuity of some real valued functions :

Real valued functions along with their graphs have already been discussed in section 3.4, Vol-L

We now discuss their continuity.

IExamplel:
Examine the continuity of | x |.
Solution :
£ _{xifxao
“l—xifx<0
lim _ lim o TN
Sox—:»O—lx‘_x—)G—( (bt
and im |y | = lim ~,_ o
x>0+ x>0+
: Lim — lim -0 li -
ey M &t VR Rl e ek

Thus .lx“fl 0 [x] =0.

So | x| is continuous at x = 0.

The graph of the function is given in fig 7.4.
Example 2:

Examine the continuity of the function f defined by

2, 220 .
f(x)=4{x*+2,0<x<1
3, x=2l
atx=0.
Solution : -
lim f(x)=2
x=0" p
- o - 2 =
e Rk
and f(0)=2.

So f(x) is continuous at x = 0.

The graph of this function is given in fig 7.5
Example- 3: '
' Discuss the continuity of f(x) = [x].

(Recall greatest integer function, Example-22, Section-3.4,

Vol.-I)
Solution :

Clearly the function is defined for every real number.
Case-1  Suppose x = n, an integer.

In example - 10 of section 14.3 (Vol.-I), we have seen
that lim [x] does not exist for any integer n.

X—n
So [x] is discontinuous at every integer n.

Case-2  Let x =a be a real number which is not an integer.

X)

Y}

Fig. 7.4

m3) 4=3 %2\
Y2i,m g0 (%)
(LFS]
ton)

A

8t) (100

™=

Fig 75

Fig. 7.5

Y

@z .2
—eo

1 any @

& Sieho 1 23
-1 @©-n

(-1,-1)
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—— _3
-3,-3) 2.3) v
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Then lim f(x)=lim [x]= [4]

Also f(a) = [a]
Thus lim f(x) = f(a)

So f(x) = [x] is continuous everywhere except at integer-points.
Graph of this function is given in Fig.7.6.

Example-4 :
Examine the continuity of signum function f(x) = sgn x.

Solution :
We have
-1ifx <0
sgnx=1 0ifx=0
1ifx>0

(Compare with the definition given in example-19 of Section 3.4 Vol.-I)
First we observe that f is defined for all real numbers.
Case-1  Letx=0
In example - 9 of section 14.3 Vol.-1, we have seen that Ll_l"lg sgn x does not exist,

So sgn x is discontinuous at x = 0.
Case-2 Letx=a=0
Then lim sgnx = limsgnx =1= f(a) for a>0
and limsgnx=limsgnx=~1= f(a) for a<0

So sgnxis continuous for x 0.
Graph of the function is given in fig 7.7.

&) -

X% o0 %
e )
vy

Fig.-7.7
If we analyze the graphs of the functions. In examples-1 and 2, we observe that they are all
gradual, i.e. there is no suddenness in them. They do not have break-points or jumps. In other words,
the graphs can be drawn ceaselessly without lifting the pencil. The graphs in examples-3 and 4 are
abrupt and have break-points, i.e. jumps.
Theorem 1: '
If the functions f and g are continuous at a point 4, then f + g, f - g, ¢f (c is a constant), fg are

continuous at a. é is continuous at a if g (a) = 0.
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Proof :
Since f and g are continuous at a, i"i‘) af (x) =f (a) and _lxi'_‘;a g (x) =g (a).

So lim (£, ¢) () = lim (f®)+g(®))

X—a X—>a
> x—mf(x) ;2 }:n:)ﬂg (x)
=f@+3 @)
=(f+8) (a).

Hence f + g is continuous at a.
. We leave the proofs of the other parts as an exercise for the reader.

Theorem 2:
If a function f is continuous at a point 4 and a function g is continuous at the point b = f (a), then
the composite function gof is continuous at a.

s e o 0= 7, 59)

=g(f@)
= (g of ) (a).
The proof of this theorem is the direct application of the definition of limit.

Note: If a function fis obtained from several functions by a finite number of arithmetical operations and
the operations of forming a function of a function (composite function) the verification of
continuity of f at a given point can be done by the successive applications of the last two theorems
provided that these theorems are (used a finite number of times) applicable.

Theorem 3:
- If fis continuous at 4, then | f| is continuous at 4, for all real values of a, but not conversely.

Proof :
Let f be continuous ata. ' ‘
By definition, for a given € > 0,3 a § > 0, such that
|f(x) —f(a) | <& whenever |x-2|<& i
I /@ -1f@] < | f@&)-f(@)| < e whenever [x-a| <&
(“lal-to] < |a-b]). -
So [f] is continuous atany 4 € R.
To show that the converse is not true, we consider an example :

% Lifx>0
f(x)_{—l, if x<0

so that |f|(x) =|f(x)|=1 ¥xeR.
Then lim| f[(x)=1= | f|(0) ,
= | f|is continuous at 0.

However, lim f(x) does not existas lim f(x)=—1and lim f(x)=1
x—=0 x—+0" x—0"
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Hence f is not continuous at 0.
Continuity of trigonometric functions
Continuity of sinx and cosx

Each of sinx and cosx is a continuous function of x for all real x. We prove below the continuity

of the sine function.
_ Let us consider the continuity of sinx at an arbitrary point x =2 € R.
We have |sinv-sina | =] 2cos® ;“ sin'x;“ |
=9 |COS X +Q I lsinx—ﬂ' [
|x -
<oz
-2
= |x-a|.

- (|cosB| < 1and |sinB| < |0]; refer theorem-6, section-14.6, Vol-I)
Let € be an arbitrarily small positive number. Take 8 = € :
Then |x-a| <& = |sinx-sing| < €.
S;osimc—wimas x—a; 1
lim
X—=>a

i.e. sinx = sina.

Hence sinx is continuous at x =a.
Since ais an arbitrary real number, it follows that sinx is continuous for every real x.
The proof of continuity of cosine function is left to the reader as an exercise.

Continuity of tanx
sin '
We have tanx = CLS—'; It is defined for all real values of x, such that cosx#0 for which we must

L

have x#(2n+1) 3

,NEZ.

£ . T
Therefore tanx is continuous for all real x except x=(2n+1)5, neZ

The continuity of secx, cosecx and cotx are left to the reader as exercises.
Example-5:

Examine the continuity of sin(sinx).
Solution :

We observe that the function is defined for every real number x and it is a composition fog
whére f(x) = sinx and g(x) = sinx. Since both f and g are continuous functions (by theorem-2),

(fog)(x) = f(g(x))=sin(sin x) s a continuous function.

-
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Continuity of an exponential function
Recall that the exponential function f is defined by f (x) = @* V x € R where a > 0 and a # 1 (ref.
Section 3.4, Vol-I, Example-20). a is called the base of the exponential function.
We state without proof an important result :
a* is continuous for every real x (a >0, a = 1).
Corollary : ¢* is continuous ¥V x € R.
Continuity of Logarithmic Function :
Continuity of loggy, (a>0and a#1) and x> 0
The logarithmic function has been discussed in example-21, Section-3.4, Vol-1.
For the proof of the continuity of the logarithmic function we quote below a theorem whose
proof appears in higher mathematics.
Theorem 4:
If a function defined by y = f (x) is continuous and strictly increasing over an open interval
(a, b), then the inverse function defined by x = f~1 (y) is strictly increasing and continuous on
the range of f.
Remark : The above theorem remains valid if “increasing” is replaced by “decreasing”. The theorem -
also holds if the intervals are infinite intervals.
Ifa>1, then y = a* is a continuous and strictly increasing function defined on R = (- «, ).
The range of this function is (0, «). The logarithm function defined by x = loggy is the inverse of
the function y = a* with domam (0, ») and range (- =, ®). So the logarithm function is strictly
increasing and continuous on (0, «) if the base a is greater than 1.
If 0 <a <1, the argument is quite similar with the word “increasing” replaced by “decreasing”.
Thus loggx is a strictly increasing and continuous function of x on (0, «) by the use of the
preceding theorem.

S0 3 v, 10gax = 10gax0 ¥ x0 & (0, ).

- The Continuity of power function x”

Letus consider the function f defined by f(x) = x“, where a is a real constant. For any
given a € R this function is defined and is positive for x > 0.
We have x* = ¢* %" where x > 0.

Since exponential and logarithm functions are continuous functions it follows that x* is a
continuous function of x ¥ x > (.

If & > 0, the function x™ is continuous from the right at x = 0.

Since x” is a continuous function of x, ¥ x > 0, where o is a real constant

m o _ oy, 50,
x—a

Continuity of Polynomial function ' .
We recall that a polynomial function is defined by

f(x) = @0+ a1x + a2+ ... +amx* where n is a non negative integer, ag a1, ..., @ € R, a4, %0
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(Refer Example -16, section 3:4, Vol-I)
Since power function is continuous, it follows from theorem] that polynomial function is

continuous.
Continuity of Rational Function
A rational function is defined by

f(x)=%, g(x) %0

Where p(x) and g(x) are polynomial functions.
Clearly the domain of f is the set of all real numbers except those for which g(x)=0.
It follows from continuity of polynomial functions that f is continuous in its domain.

Example 6:
Examine continuity of the function f defined by
SN2E i x % 0
f@)= x
1 ifx=0
atx=10.
Solution :

Wehavef(o) =1

lim sin2x _ , lim sin2x _
t—)(]f(x) x>0 =2 x50 2x 53
‘hru.e f (x) # f (0), the given function is discontinuous at x = 0.
Example 7:

Examine the continuity of the function f defined by

o2+l #x <l
fx) =40 ifx=1
?-1ifx>1

Solution :
From the definition of the function f it is easy to see that fis continuous for x < 1 as well as
forx>1.
The point x = 1 is a possible point of discontinuity of the function f.
We have (1) =0.
lim _ lim =3
x—1- F@)= wephe O RIS
lim _ lim e
x—)lJ(x)_ 't'—>l+(x2 1)=0.
Since x—>1 fx)# _,1 flx )’x lf(x),doeqnotexlst

So the given function is discontinuous at x = 1.
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Some facts based on continuity of functions

We state below, without proof, some important facts which can be derived as properties of
continuous functions. They can also be realized by taking into consideration the graphs of the
functions concerned.

Facts : -

1. If f is continuous at x = @ and f(a) #0, then there exists an open interval (@ - 3, a+5), such
that Vxe(a - 8, a+d), f(x) has the same sign as f(a).

2. If f is a continuous function defined on [a, b], such that f() f(b) < 0, then there exists at least
one solution of the equation f(x) = 0 in the open interval (g, b).

3. If f is a continuous function defined on [a, b] and k is any real number between f(a) and
f(b), then there exists at least one solution of the equation f(x) = k in the open interval (4, b).

4. If a function f is continuous on a closed interval [a, b], then it is also bounded on [g, b], i.e.
there is a real number k, such that |f(x)| < k. _

5. If f is continuous at every point of a closed interval I, then it assumes both an absolute
maximum value M and an absolute minimum value m somewhere in I, i.e. there are numbers x;
and x; in I with f(x;) = m, f(x;)=M, and m < f(x) < Mforall xin1. :
Some exercises using the above properties :

Example-8
Prove that x = cosx for some x & (0, n/2).
Solution :
Let f(x) = x — cosx :
f0)=-1,f(n/2)=n/2-cosn/2=n/2
= f(0)f(n/2) <0 '
= 3 x e (0,n/2) such that f(x) = 0,i.e. x—cosx =0 (ref. fact-2)
So x = cos x for some x € (0, n/2).
Example-9
Prove that the expression 2x+x? attains the value 2 for some value of x between 0 and 1.
Solution :
Let f(x) = 2x+x?2
f is a continuous function for all x in R, hence, necessarily in [0,1].
f(0) =1 and f(1) =3
f(0) <2 < £(1)
= 3x € (0,1) such that f(x) = 2 (by fact-3).
This proves the result.
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EXERCISE 7(a)

Examine the continuity of the following functions at indicated points.

2 2

] X —0
@ flx)=4 x-a
a
(sin 2x
@ fx)=1 x

2

iy fx)={0+20"

| ¢
) fo)=1* %
b o
S |
V) f(x)=4 x-1
L 0
sin-l—
i) f(x)=4 x
: 0

(vii) f(x)=[3x+11]

1

e* —1
(viil) f() =9 % .,
0
1
() f(x)=4x+[x]
-1
x|
x) f(x)=1 x
0

tfx s atx=a

if x=a

j =

{.fx 0 atx=0

if x=0

ifx #a atx=0
if x=0

gres atx=0
if x=0

A atx=0
if x=0

B atx=0
if x=0

s
i

Ewd, atx=0
if x=0

[ -
i atx=0
if x20

i x e atx=0
if x=0
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2x+1 7 if x50
(xi) f(x)=4x ifo<x<l atx=0, 1
2x-1 ifc>1
l -
2 o b X ~0
(xii) f(x) = e* =1 if x<0 atx=
0
ngx] atx=0
xiv) f(x) = g(x)-g(]) at x =1, where g(x) = |x-1|

2. If a function fis continuous at x = 4, then find

(i) lim+ > {f(a+h)+f(a h)}

() i+ { f(a+ )~ /@)

3.  Find the value of a-such that the function f defined by

sin ax
'e 2 i if x#0
g w
1 if x=0
a
Is continuous at x = 0.
ax’ +b if x<1
4. If f(x)= 1 - ifx=1
2ax-b if x>1

Is continuous at x=1, then find a and b.
5.  Show that sin x is continuous for every real x.
6.  Show that the function f defined by
1 if x is rational
o

0 if x is irrational
is discontinuous V #0€R..
7.  Show that the function f defined by g
X if x is rational
—X if x 1s irrational

o]
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A0

11.

7.3

Is continuous at x=0 and discontinuous Vx # 0 e R.

Show that the function f defined by
X if x is rational
f(x)= R
0 if x 1s irrational

Is discontinuous everywhere except at x =0.

e
xsm—, x#0
Show that f(x)= SIS

0, x=0

is continuous at x = 0.
Prove that ex-2 = 0 has a solution between 0 and 1

(Hints : Use continuity of e~-2 and fact-2)

So that x5+x+1 = 0 for some value of x between -1 and ().

Differentiability

In the chapter on limits and derivatives of Vol.-I, we have already defined the derivative of a
function. We have learnt to differentiate certain functions. Before going further into derivatives and
~ their applications, let us recapitulate the following ideas which have already been discussed in Vol.-I.

Derivative :

A function is said to be derivable or differentiable at x € (a, b) if ;7 Lo/ exists and this limit

h

is denoted as f'(x) or 2—£ or Df. Dor f; is called the differential operator. The derivative of y = f(x) is also
denoted by % or ¥’ or Dy.

The process of finding derivative is called differentiation or derivation.

Using the definition of derivative, we have derived the following standard results.

(Ref. Sec.-14.12, Vol.-I) :
ix" =ax™,aeR

inx = cosx

w

COosx = - sinx

a E|n E|n.

— tanx = sec2x

r B

— cotx = - coseciy

secx = secxy tanx

Bl Rl B

Cosecx = - cosecx cotx



| Continuity and Differentiability 205 l

The following rules were also established as a part of the algebra of derivatives (Ref. Sec.-14.13,
Vol.-) '

If u and v be two derivablg functions of x, then
(i) (u+v) =u'+v’
(i) (u-v)'=u’-v’

(iii) (uv)=u'v+uv’
: w\  u'v-up'
(iv) (;) ST
7.4  Derivatives of Exponential and Logarithmic Functions
Exponential Function :

Example-10

— LY
If y=a%,a >0 then—==a* Ina.

Proof :

ay _ im%
dx‘&x-u&

lim o**%*_q*
BT bx

_ lim a*@%*-1)
ox—»0 ox

= aE lim a%%-1
§x — 0 6x

=g*ina.

(o lim a1

A — = In a, see section-14.7, Example-23, Vol-I)
x-0 x

Corollary :
If y=ex then%': 8
It follows from the above result on substituting 2 by e and observing that Ine = 1.
Example 11:
If y = logax
(x>0,a>0a=1),
I

xlna

dy _
then e

Proof : ' .

dy _ lim &
dx- §x — (&
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lim log,(x+dx)—log, x

T ox -0 Sx
[x-l—&x)
log, &
= lan X e = =log—
e T e (. logm —logn = log n)

0
("~ nlog.m=log.m" and éx -0+ —x—»(l)
x

gk ol Vh _
-;logae (.L1$(l+h) —e)

1 1
= log,e=
xlna log, a

Ify=lnxthen~al=l.
dx x

Corollary :

Example 12:
Differentiate ¥ from definition.
Solution :
Put u=yx so that y = . _
Let 8x, 8y and u be changes in ¥, y and u respectively.
Now, u=vx = u+0ou =J;r§.

Hence y+5y=em =g
. 5_}'_ ew&u _eu i em-éu_en -J_H
U ox Sx du  Ox
“ e&ﬂ'_] ﬁ
du éx
fy Wil e B = O
=] =e". lim Lim — i
dx 5:-.053; Su—0 5u 5:-—;{!63- " { ( 2

We observe that as 6x—(), du also tends to 0.

Hence taking limit in (A),
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@}—:e".lne. lim
dx Sx—0

(Jx+6x-—x/;)

8x
e (Jx+5x—\ﬁr_)(dx+5x+ﬁ)
€5 5):(«Jx+6x+\f;)

1
. lim —————nm
0 Jx+6x +x

1 e‘f‘

e“.m=m.

| EXERCISE 7 (b) I

Differentiate from definition.

()

(i) In (3x+1) (iv) log x® (Hint: logx

e i) 2*
g _(nS
Inx

(v)  Insinx (vi) x%a®*

7.5

Derivative of a Composite Function (The Chain Rule) :

Let y = f (1) be a differentiable function of u and u = g (x) be a differentiable function of x so

that y = fog (x) is a composite function of x. For example if y = cosu and u = x then y = cosx? is a
composite function of x. The derivative of y w.r.t. x is not - sin¥? as one might think considering
 that derivative of cosu is — sinw. It is very important to observe here that the derivative of y i.e.

cost is — sintt w.r.t. # but we require the derivative w.r.t.x.

Now let 3x be a small increment in x and 3u, dy be corresponding increments in % and y

respectively.

Since u = g (¥) is a differentiable function of x it is continuous (Ref. 7.11) and hence 8u — 0

as dx = 0.

[This has been proved later while discussing ‘differentiability and continuity’. However you

can read that article and understand the contents right now !]
HoLo S
x du  dx

dy _tim % _lim % lim B
dx x>0 5x  du—05y -0 §x

Now (6u = 0)

—

_dy
T oduodx’

d
[‘Su:o::ruiscomstant::v Yy is constant = d_y =0]
b ¢

The result

dy _dy du b $
dx' du dx ,

is called the chain rule of differentiation. It can be generalized as follows :
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If y is a differentiable function of u, u is a differentiable function of v, ...... and finally t is a
differentiable function of x, then the denvanve of y w.r.t. x is given by the rule

dy _dy du ﬁ
dx du do’ A
It is important to learn to detect the cases where the chain rule is to be applied.
Example 13: '

Find d_y when
dx
(i) y=@2+2x- 1)5 (i) y = cotx, (i) y = cos (Inx)*.
Solution : '

(i) Letu=x2+2x—1.

du®
Then y = 15, ay M s
s du du
and — = — (2 +2x-1)=2x+2
Hence%=§y;%—. @2x+2)=10(x+1) (2 + 2x-1)%
(i) Letu = coty, Theny =u°.
< .
dy du 5 du . d
S 5 uhand === cosecx
Hence % = 312 (- cosec?y) = - 3 cotx cosec?y.

(iii) Let u = (In x)2 Then y = CoSi.
Again let § = Inx. Then u = 92.
Now y is a function of # and u is a function of 8.

Bt the chain rule,
dy _dy duds
dx du a9 ax’
&y BN
du ; du
du _ ds
R Tk
dg d
s B8 = PRt | L
dx dx x
On substitution in (2) we get

% = —2sin (Inx)? Inx/x.

We can use the chain rule to obtain the following general results where 2 and b are constants.

-‘?— (ax+b)“-—-u(ax+b)a'1a,aeR
b
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% sin (ax + b) =a cos (ax + D),

% In (ax + b) =a/(ax + b),

s bat® Ina,

dx
LA X =q ¥,
dx
More generally if u is a function of x we have the following formulae.
gy au™1 _d_u‘ aeR
dx dx
& sinu = cosu i i Cosu = —sinu Eﬁ
dx dx’ dx dx’
-‘f— tanu = secZu % (Similarly for other trigonometric functions)
'd -
.1]]11; B l ilf.
dx u dx
d i u du
— a"=a"Ing —
dx 3 dx
d ol = g du ;
dx

For practice, the students may begin by actually making substitutions for applying the chain rule
as in the Example 13. At a later stage the substitutions need not be explicitly stated. Instead, one
can make use of the generalized formulae to shorten the procedure. For instance, in case of

example 13 (iii), we proceed briefly as follows.
d

B e 2 4ia 12
= ¢os (Inx)* = - sin (Inx) = (Inx)

== sin (Inx? 2 (Inx) - (in9)

= —sin (In®)? 2Inx . L.
G

l EXERCISE 7 (c) l

Find derivatives of the following functions.

: 1]
1. (x2+5)8 : S W S
¢ ) (x“ - sin.t)z
3. In (J; + 1] 4. sin5x + cos7x
5. esint 6. ax® +bx + ¢
-3

7. (’2”) 8. sec(tand) :

; X +3

e

2
sin [1 - } 10. 1!tan(az)

2
1+x
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11. tan’x 12. sinix
13.  sin?x cos?x 14. sin5x cos7x
15. tanx cot2x : 16. sin J;
17.  JJsec(2x + 1) 18.  cosec (ax +b)?
19.  ainx 2. &8
. e
21. Intanx o7 M v
23. Intan [-’E + i] 24, (a"; ]
PERGE
25 In(e+em™) - % e
27.  flogx 28, - groex
act | d [1- tanx ;
- 2
29. h'lesinx 30. Prove that b [mI =-1/ Jcos2x (cosx + sinx)

7.6  Derivatives of Inverse Functions :
Theorem 5:

Let f be a differentiable function of x which admits of an inverse function f~1.

d 1 g Y
Then Ty- = -(a_f—]- provided Z =0,
dx '
Or equivalently :—; - ;, provided % £0. | d L v (1)

dx
me -

Let y = f (x).. Let 8x be a small increment in x and 8y the corresponding increment in y.
Hence y + 8y = f (x + 8x)
@ x+dx=f"1(y+dy)

 BO R Ty +8y) - fW)
=7,gf1('f1=sy_+of y+W-f @

By
=lim (x + 6x) — x
& =0 f(x + &) - f ()
;ﬁm dx
6-‘f—>0f(ar + 8x) — f (x)
_ lim 1
T & 07 (x +5x) - f (¥)
% ¥

1
=—, ed — =#0.
prov dgx #

(&)
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Example 14 :

dx

‘@+1'

cmen () L (e Gy techin i

" Derivative of inverse Trigonometric Functions :
We recollect that sin : R — [ - 1, 1] is a trigonometric function and by restricting the domain

to [— %,325 ], we obtain a bijective function which possesses an inverse function.

R o B e
e
Thus y =sin~1x,x e [ -1, 1]

& x=siny, y e [—E Iz
IR E ,
Similarly the other inverse functions viz. cos™, tan~), cot, cosec~, are defined. Their derivatives
can be obtained by using (1).. Two examples are given below. Derivatives of rest of the inverse
trigonometric functions can be obtained in a similar way.
Example 15: -
Find derivative of .
(i) sinly,-1<x<1

(i) secly, x| >1.

Solution :
(i) Lety=sinlx, xe(-1,1)
< x=siny
Differentiating w.r.t. y we obtain
& _ cos
dy ‘y .
R SIS D
dx 2
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Gince by definition of inverse functiony € (— -123, -g-) whenever x € (-1,1),cosy >0.
W e
50 ¥ Tl—j ......... (2)
(ii) Lety= sec”x,|x|>]ie x¢€ (-0, -1) w (1, ®)

& x=5ecy,ye(0, 325) U (—g-,n)

Differentiating w.r.t. y we obtain

2% secy tan
TSN
= -.d—y— o ]
dx secy tany
b 1
Secy(i J;eczy -1

5 1
S ;t:erz—l

Where the sign before the radical depends on the sign of tany. Now if x e (-o,-1)
then secy = x < — 1 which implies thaty e (%, rt). But then tany < 0. Similarly if x € (1, ),

thenyé (0,-“2—) where tany > 0.

1 :
—T-, ifx < -1
T dw ], -1
dx ifx > L

1
x1x2—1’

Combining the two cases we may write

.gl - —d—sec-lxs 1 . B (3)
dx  dx [zl -1

Similarly we can find
4 oy = S R e S e e (4)
dx -
d 1
—tantx; = B A e TY S S T N e T T Dl 5
dx 1 +x° )
d -1 :
—caliiy = T AR e KL e Sl e 6
dx 1 +x° . - ©)
A coseclx = i N e T et i sonr iy S LA DY, @)

R T
dx |x|3x2—1
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Example 16:
Find the derivative of tan*!¥ from definition

Lety=tanlx, xe R

m

n
< X =tany, (~ -, —J.
SN e Ry
Let dxbe a small increment in x and &y the corresponding increment in y. Then x + &x

= tan (y + &)
- 8x = tan (y + dy) - tany
R e dy )

ox tan (y + dy) - tany
dy cos (y + ﬁy)msy
sin (y + 8y) cosy — siny cos (v + dy)

o 83"305(3 i 5y)t‘05y
sin(y + 8y - y)

=S—;E-;;.ms(y+5y)cosy.

& lim % _lim 1 lim .
T dx 8x—>0 5y %0 Sindy ' dy—0 05 U +8) cosy.
8y
=1.costy = 12 s 3
sECy "l v x
Example 17 :
Find derivative of tan™? (sin2x).
Solution :

Let y = tan™! (sinx) = tan"lu, where u = sin2x.

du du 1 +.u
L = ism2x=2smx — sinx
dx dx x

d »
L -.. (R PN 2

Hencedx—a il o v
Example 18 :
Differentiate tan™! ( 2 2) '
1 -x+x
Solution : i
 We have
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e C S, 1
—dxtan x+dxtan Y.

Hence writing 1-x fory, we get

i1 )

dx 1-x+x"

g e i s

= dxt.'m x+dxtan (1-x)
1 1

Tl ey
Otherwise,-d—tan'l[—-l—;]
dx 1-x+x

= (1—‘x+x2)2 d[ 1 ]

1Al mx sy 4 N =%+ X
2.2
Pk Sl S AR - SRR
(1—.\'+x)+1 (1_x+x2)
1-2x

=1+(1—I+I2)2

which is equal to the earlier result.

l EXERCISE 7(d) |

1. Prove the formulas (4) to (7)
Find derivatives of the following functions.

2. sin™'2x ' : 7. tan~! (cosv/x )
1
3. cotlx 8. x%cosec™! (—]
; Inx
g %
4. sec’! (2x+1) 2 g. _('.‘Ot_1 —-—'x—
5. cost |2 *2”‘ 10. (xsin~'x)!5
P -
6. cos™ X 11. sin! 1’1 -
e 1 +x
x

7.7 Methods of Differentiation :

Now that we have learnt how to find derivatives of standard functions and some rules for
differentiating sum, product, quotient etc. of functiorls we are in a position to differentiate any
given function (provided, of course, it is differentiable). But again, to find the derivative in the
simplest possible way we have to adopt various methods depending on the nature of the given
function and this we illustrate below through examples.
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Differentiation By Substitution :

Sometimes with proper substitution we can transform the gi'ven function to a simpler
function in the new variable so that the process of differentiation w.r.t. the new variable becomes
easier. Finally we apply the chain rule to obtain the derivative w.r.t. the original variable. .

Example 19 :
Differentiate cos™ (4x® - 3x).
Solution : . |
Lety = cos™! (4x° - 3x).
Let x = cos0 so that 0 = cos™1x.
Theny = cos™! (4cos30 - 3cos6).

= cos™ (cos30).

=30 =3 cos~1x.
Hence d_y = _._3_. <
dx y EHE

Example 20 :

Differentiate tan™! [
1+ X

Solution :

1+ x

Ja_c—x)_

Lety= an‘l [—3_.-"2

Put /¥ =tana, x = tanf}

so that « = tan-! Jx and B =tanlx

= tan (a - )

J:?—x] tana — tanp

Th =
s ( 7/ 1 + tana tanf

1+x
= y =tan™! tan [a~p]

= 0— B
=tan"!Vx —tan-lx, from (1)

Hence g% = -:—r tan~! y/x —a‘ix tan~1x .
: a(F) 1 :
g (,/;) de. 142
1 1

Wr(l+x) 1+1
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Example 21 :
Find 22 iftano = 1=1.
dt 1+t
Solution :

Let ¢ = tana so that a = tan~1t.

Hence tan@ = =130a _ 0 [-75 - u)

1 +tana 4
de 4 da
2 2
sec” 0—=sec -)—.
= dt (4 ]()dt
O  da __ d e : 20 =gectl X -
=E_-3—f__ = — 1+t,.(5mcesec9-sec(4 a)]

s I EXERCISE 7(e) !

Differentiate the following functions by proper substitution.

% sin"?.):\!l-x2 6. sin"‘( = ]

1 +x
f 2 2
2. tant -2 T 7o pec (———-———ﬂ =2 ]
1 -x a
’ 2
3. tan? J1—t 8. sin! [—2——'2—“—1]
1+t ¢
2 : 2
2 2 &
4 [[1 ”,) & 1] . 9. cos! (I—,L,]
1-t¢ 1 +¢
5 tan™ (%J-_J-E-} 10. cosl (22-1).
- yXH

Differentiation using Logarithms :
When a function appears as an exponent of another function we make use of logarithms.

Examples 22.:
Differentiate (sinx)tanx.
Solution :
Let y = (sinx)!anx,
Taking logarithms of both sides we have
Iny =ln (sin:r)tam

= tanx In sinx.
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Differentiating both sides w.r.t. x we obtain

= %, =-5-tam1nsim+tan.tiinsinx
y dx dx dx
= sec2x In sinx + tanx . ms: . (by chain rule)
sin.

= sec2x In sinx + 1
= -g-]f- =y (sec?x In sinx + 1) = (sinx) 0% (sec2x In sinx + 1).
X :

(i) When a given function is expressed as a product of several functions we use logarithmic

differentiation.

Example 23 :
Differentiate
(x-1)"Bx -1

x?(ﬁ = 7:\’1)3;2

Solution :
Taking logarithms of both sides we get
Iny =ln(x-1)2+In@x-1)Y2=Inx7-In (6 - 7x2)>/2

=2n(x-1)+ % In{3x—1)-7lnx—% In (6 - 7x2).

Now differentiating both sides w.r.t. x and using the chain rule for differentiation on the r.h.s.

we have,
1 dy i -.d e e 1.3 1 d
-l e (e T Sl TR, T L O ML I S
y dx x-ldx(x )+2 3x—1dx(r ) ¥ -2 6-+7x dx( )
2 3 7 21x
= + e
t~1 ~20x=3) x 6 ~7%
dy [ 2 3 7 21x]
= = =y . -— -
dx x=1 2@8x=1) x 6~7x
&
_(x—1)‘(3x-1)=[ B Pl e ]
x=1 2@-1) x 6-72"%

i

3
x’ (6 - 7x°)?

l EXERCISE 7(f) I

Find derivatives of the following functions in their natural domains :

1. ¥ | 2 (14 %]x
3. xSINX 4. (logx)tanx
5. 2@%) 6. (1 + .,/;)”.
7. (i) "F 8. (tanx)' %"
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N.B.

x1/x + (sinx)* 10. (cosx)* + xCOS¥

D(x +2)° (x +3)
. (241273 (3x + 1)/ 4x T AL e
(x2 +1)2/3 (3x )"/- (x—l)(x—2)2(x—3)3
Lo
(sinx)Vsinx (1 + )2 " 14. (secx + tany)COt¥
1+ -.lr;
(%)
When we write logx without mentioning the base in cases as above it is to be understood that the

base is e and logx actually means Inx.

7.8

Differentiation of Implicit Functions :

Let f be a real function. It we take x as an independent variable and y.és a dependent
variable in the equationy = f (x) (e.g.y = sinx, y=x2 + 1 etc.) we observe that the function
is given by an equation in which y is expressed explicitly in terms of x. But in case of some
equations (e.g. ¥y + x + y — 1 = 0) the dependent variable y may not be expressible explicitly in -
terms of the independent variable x. Even if we can separate the two variables it may not
uniquely determine y for a given value of x. For example consider the equation x? + 1% —a% =0
which implies a relation and not a function. We have two distinct functionsy = + va* — x* and
y=-+a’ - x* determined from it. These two functions are said to be implicity defined by the
equation x2 + y2 -4 = 0.

In contrast, the equal:ion 2x +3y-1 =0 determines a unique value of ¥ in terms of x
suchas y= -:1;— (1-2x). So the equation 2x + 3y -1 =0 implicity defines the function given

by y = -él-(l - 2x). Thus an equation F (x, ¥) = 0 in two variables in which x and y are the

independent and the dependent variables respectively may determine one or more functions.
Any such function as determined from F (, y) = 0 is known as an implicit function. It may be
noted however that every equation of the type F (x, ¥) = 0 does not determine y as an implicit
function of x. The study of the conditions under which F (x, y) = 0 determines an implicit
function is beyond the scope of the book. For our purpose, we assume that every equation we
consider in two varibles x and y does determine y as an implicit function of x. Our aim is to find
dy/dx in such cases. This process is known as implicit differentiation.

The advantage of this process is that it gives the derivative of every differentiable function
that is implicity defined by the given equation and we do not have to express y explicity in terms
of x for each implicit function. This is illustrated in the following example.

Example 24 :

Solution :

i B 9
Find s if x2 + y2 —a? = 0.

vt bt ) - oty 5F RN RS STy S iy, ey e SR L K e (1)
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Differentiating both sides w.r.t. x we have
dy dy X -
2 = =0 Lz,
i dx i dx y ] @
We note that the equation (1) implicitly defines two functions.

@ pn =va' -x*

and (i) 2 = ~Va* - «°
Their derivatives are given by

L et R )
i —-2(!?2 ) (-2 =

1

L O e e
and 22 =— 2 @-2) ? (20

Y2
which are already contained in (2).
Example 25:

Fmdd if y + 32y - 2x = 10,
Solution :

Differentiating both sides w.r.t. x we have

%!‘;_+ ("%.t:'-y)-—(Zx) 0

2 W) _,_
= 3y =< +3(2ry+x2dx) 2=0
_ .
= (3y2+3x2)-é—;+6xy—2=0
dy _2(1 - 3x)
x  3(x* +y’)

We note that in case of implicit differentiation the derivative usually contains both the
variables x and y.

Interchanging the role of x and y we may regard x as a dependent variable and y as an
independent variable and the above procedure will yield dx/dy without expressing x m:phmty in

terms of y.
Find —= y
dx
AT
L xP2+x2y+1=0 2. xly z'4xly ?
3. x22+32=5 el y2cot.t=x3(:oty
5. y=tanxy ' 6. x=yln(xy)
7. &Y +ysinx=1 8 Inyxt + =tan1 L

X
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9.

10.

11

7.9

g = iy

2
If sin (x + y) = y cos (x + ¥) then prove that % = _l_tg_

Yy

. ,jl -y
If ¥y1 - x* +Jl —y‘:k(x:—yz)thenshowthat%=t Y

y]l - x :
(Hints : Put x2 = c0s6, y? = cos¢)
Differentiation of Parametric Functions :
For a real-valued function f the set of points given by the ordered pairs (¥, y) where
y = f (x), determines a curve in R2 Sometimes the variables x and y are given as functions of
another single variable, say . For example, any point (¥, y) on the circle x? + y2 = 1% can he
given by )
R PO A e e I e T S 0 e T s (1)
The variable quantity ¢ is called parameter. [ The term ‘parameter’ is also used to mean a
quantity which is invariable for a given curve but changes when we move from one curve of a
given type to another. For example, the quantity m in the equation y - k =m (x - k) of a straight
line paissing through (h, k) which varies as we move from one straight line to another all passing
through the same given point (h, k) ].
The equations (1) are called the parametric equations of the circle  + y? = r2

Suppose in general
x=¢()andy =¥ (t).

where ¢ and ¥ are two differentiable functions of t. By eliminating ¢ between these equations we

may obtain a relation of the type y = f (x) from which we may obtain -3% . But the process of

elimination of the parameter t is not always convenient. So we apply the chain rule to obtain —j—i-

as follows :

d (]
dy_yd!_dy/f_x__g!t) 2

dx dt dx dt dt ¢ @

Example 26 :

Find %y; if x = a (cost + t sint)

and y = a (sint -t cost).
dx

. = @ (- sinf + sint + f cost) = at cost

d
and }% =a(cost—cost-—t(—sint)) = at sint
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dy dy ydx _ atsint -
Henceg — = — / — = — =tanl.
i dx dt/dt at cost
; I EXERCISE-7(h) I
Find &L .
dx
1. x=acosl,y=asind
2. x=af2,y=2atatt=—;-
3. x=acos3f,y=asin3t.att=£-
: 2 2t
4 sinx= ——, tany =
R i Anic i

5. x=3cost-2cos, y=3sint-2sin.
7.10 Differentiation with respect to a function :
Suppose we have two differentiable functions given by y = f (x) and z = g (x). To find derivative of

y w.r.t. z we regard x as a parameter and find f (x) = % and g’ (x) = % Then as in 12.6

Example 27 :

Differentiate tan-lx w.r.t. cos™1x.
Solution :

Let y = tan~!x and z = cos™1x.

d .
We have to find ‘—iy- Now
z

dy 1 dz =1
— 5 nd — = =
7 S dx 1 =9
dy d_y/fi_ 1-%"

dz dx’ dx 1+x°

Differentiate.
§ 5 -J; w.r.t. x2
2. Sinx w.r.t. cotx
ot 11—:-—2%‘:?‘; w.rt -1-1-:—-2—21

4, tanlxwrt tan! V1 + 27 \ y

s 2x 3 S
sin™! | w.r.t. cos™ - -
G 875 | AL+ ¥
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7.11 Differentiability and Continuity
Let us now make a short break to investigate a very important relation between differentiability
and continuity. In higher mathematics continuity of a function plays a vital role. The following
theorem gives us a helping hand in this connection.

Theorem 6 :
If a function f is differentiable at a point x = ¢, then it is continuous at that point. But the converse
is not necessarily true.

Proof :

‘Let a function f be differentiable at x = c. Then by definition,
lim fle+h) - f(c)

exists finitely and is equal to f* (¢).

. : ; Yo
Now M  [fc+m)-f©] =}:xi0[f(f+; f(c)_h]
=-]j‘rn f(C-{-h)-'f(c) ]jm h
h—0 h “h—0
: =f'(c).0=0.
= [mfeth=f©
= 1B fw=fo (Pulling x = ¢ + k)

X—>c
So fis continuous at x = ¢.

But the converse of the above theorem is not necessarily true, i.e. continuity at a point does
not imply differentiability at that point. This is shown in the following example.

Example 28 : _
Show that |x| is continuous at the origin but it is not differentiable there.
Solution :
Letf (x) = |x]|.
X, 20
We know that | x| ={ t_x:xx <0
Atx=0,f(0)=0.
lim - lim
x>0+ %] = hoxg 101B=0
s im o
| _'h—-b(]h_o'
ol SR S S o T
__,]im = L -
g T e

lim o
Thus ™ o |x| =0=£(0).

—  r— P
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= |x| is continuous at x = (.

o o i 10 ) =0
Now f (0+)_h-->0 > ,h>0
- lim .’.’.:1
h—=0 p L
: _ lim IO‘hI‘O
e 1 S
h—0 _p .

Since f* (0 +) # f* (0 -) it follows that f (x) = | x| is not differentiable at x = 0.

The student may verify the following.

(i) f(x)=[x]is not continuous at x = m, m € Z. and hence not differentiable at these points.
(i) f(x)=| x-2 | is not differentiable at x = 2 although continuous at that point.

X
(iii) f(-"') & 3
2

is not differentiable at x = % - What about continuity at x = % ?

Thus we observe that if a function is differentiable in a domain it must be continuous there
and if it is not continuous in some domain then it is definitely not derivable there. But if it is
continuous in some domain, then only from this fact we cannot conclude about its derivability. It
will not be out of place to mention here that there exist functions (we shall not search for them)
which are continuous everywhere on R but differentiable nowhere.

l EXERCISE 7("} I
Test differentiability and continuity of the following functions.

'1—l|atx=1. i
x L

x? |x| atx=0.

f(x) =tam‘atx=%

f(x) =cot¥atx_=-g-

f@) = | sinx | . ' atx=mn.

5 : .
f{x)—1+ x| - atx=0.
_Jxsin—, x= 0 & .

f(x) = x atx=10.
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I N

B f(x = L . atx=0.
. 0 =0
7.12 Miscellaneous Examples :
Example 29 :
. . Vo +x +Va-x
Differentiate y = .
S Ja +x - Ja-x
Solution :
By rationalization,
_Ya+x+Ja-x Ja+x +a-x
Jﬂ+x—40-x.Ja+x+Ja—x
_(a+x)+2Jrz+x~Ja—x+(a-—x)
X (@+x - (a-x)
a_'_,’az_xz
=
- |
.-.g% n[x.—%-(az-xz) 2(—2xJ-a—Ja’-x‘]/x2
.
[-w-2yig-a-dE -2/ 2
s ] il 2
P Eonmd S on simplification.
sz(az _xz) y
Example 30 :
Differentiate sinx?.
Solution :
Converting degree to radian
nx
—
y=sin =sin =t
= sind (say)
whereBisinradiansand():E-.
180
L R S S, TR 3
dx dx 180 180
Example 31:
F‘md—yify= X+ yx + Jx .
Solution : : : .
Here 2 =x + yx + vx
= (P-¥P=x+Jx
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= y‘—lxyz+x2=x+£

Differentiating implicitly w.r.t. x we get

dy ( 2 dy) : 1
e L2y == = T A
4y3dx 2y° +2x.2y —= +2x=1+

2y
1 A
1 - 2x + 2
R
dx 4y’ - dxy

2x +1 - dxix + 4\[;3;2
4y (v’ - x) 20x

2J§+1—4xJ§+4J;[x+\fx+J§I

]

By(\!x + J;]J;

ZJ;+4J;.1J.1'+ x-;l
BJ;+J.Y+J;.JJ¢+J;J;

ZJ;(I+2'\Jx+J;|+1
_SJ;#x+J;Jx+\}x+J;-

]

Example 32:
Find f* (x) where
: |x ~ 1}
= — [ # i e
i x +1 5
Solution : :

Sowhenx<1,f” (x =_d_(1—x]
dx \ x* +1

_ D (P ) (1-2)2x

(xz +l)2
ks ¥ -2 -1
* + 1)
1+2%-%

and s@hrly, when x>1,f' (x) = R
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Example 33 :
ey
Find E% if ¥ = y¥.
Solution :
Taking logarithm,
yInx=xIny.
Differentiating implicitly w.r.t. x

dy 1 1 dy
—Inx+y.—=1.Iny+x.— .=
eedan (dad i Al
dy X y
o' o] Sy oy
= - {Inx y) ny .
Iny—-!’—’
el L
L
y

I EXERCISE 7(k) !l
1. State True (T) or False (F).

(i) There is no function whose derivative is logr.
(ii) There is no function which is its own derivative.
(iii) A function f is not differentiable at x = ¢ = f is not continuous at x = c.
(iv) [ x?]is differentiable on (- 1, 1)
(v) |x+2 | isnot differentiable at x = 2.
(vi) Derivative of e31°8% w.r.t. x is 3x%.
(vii) The derivative of a non constant even function is always an odd function.
(viii) If fand g are not derivable at xo then f + g is not derivable at xo.

2. Fillin the gaps by using the correct answer.

dnr8

(i) If u is a constant and 9 is a variable then e = °Ins, 91, uPInu, u9v-l)
(i) If # = & then di o =- ('L, o, dina, t o)
o
(iii) Ifu = and 8 = sinf?, then%g- =- (Coszt,-SiI—;-t-,sec!'?,costz)
(iv) The tangent to the curve y = (1 + x%)? at x = — 1 has slope - , 4,-4,8,-8)
5 . SO dg dx dg df df dx df dg
(v) 1y =(gof) (x)mdx_ dy df " df dx" dx dg’ dg dx/
d T
N Ify= le;*l in-1 Jx th s 0, undefined, —, 1
(vi) Ify =sec T+sm 7 endx ( un: 2 )

(vii) If f(x) = vxt = 2x +1,x€[0,2]thenatx=1,f"(x)=- (1,0, - 1, does not exist)
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(0, 2, 3, does not exist)

(viii) Iff(¥) = [22] then " [%] 7
Differentiate from first principles

() & (i) sinZx S cosy?
(iv) & (v) Jtanx (vi) 22 sinx
(vii) In sinx (viii) sin/x " (ix) cos Inx

(Hints : write y = cosu where u = Inx. Then find limit of 8y /8x = :—i(ﬁufﬁx).)
Test differentiability, of the following functions at the indicated points.
i) f() =[x2+1]at:c=-%

1—2x,xs% :
(i) f(x)= atx=—
! 1 1 2
X —-—=,x> =
2 2

(iii) f(x)¥x+ | cosx | atx:%

Hence onwards domain of a function is to be understood to be its natural domain unless

stated otherwise.
Differentiate.
1 = Inx
(i) jl) -
In(xdx +1 e sinxy

(iii) &* (tanx — cotx)

cos3x — Ccosx
cos5x — cos3x
(x + 1) Inx

4x + 2

)

(vii)

(ix) sin? (cos™1x)

(xi) In Jx +4 =2
Jx +4 +2
(xm) 5ln5inx
(xv) x5 4 (tanx)*
(xvii) x*™

(xix) In cose*

(xxi) cos™ (x: — 1]

x +1

(iv) (JI + 71=] x tanx
X
(vi) x2e* cosecx

(viii) (x®—-1)? secix

(x) a"[x - i—)w

4x*@2x -7
(3:|r2 + 7)5

(xiv) 'Jsin Jx

(xvi) &

(xii) In

(xviii) sec™! (X + x)
(xx) a“-l '2

oxii) () + (@)
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(xxiii) 3 ")
(xxv) [5‘ In(3+1)- x‘]2/3
6. Differentiate

2
) ‘P1x+1]
(i) sec [xz—l

e
G X SIA X
(iii) —
Jl %
COSX
1 + sinx

(v) tan™!
Tax

a’ - 12x°

g ¥x =1

(ix) 'Czt‘Oh
X+ 1

(xi) tan"1 (-——”i““ )
1 - xcosa

(vii) tan™!

7 Find E‘I’—f if
dx

(i) ¥®+y*=12xy
(i) Y =c¢ _
(v) xcoty + ycosecx =0
(vii) (cosx)Y = siny
x m4+n
o e[
=t v
(xi) y = (siny)*in2x
(xiii) (x + y)<Os* =Y.
(xv) x° +y° =ktan™! (%} .

8. Differentiate

+x% cosec™!

J;+1
Jx—l

w.r.t. sin™

w.r.t. log (

(x+ =1

(x2 + 3)3 3"

(xxiv)

(xxvi) 10g10 siny + logx10, O0<x < 7.

-1.2
(i) €™
(iv) tan! e
(vi) tan-] (cos:c = sinx]
cosx + sinx

\(1+.1:2 +\[1—x2
-J1+x1—‘\/1—x2

(viil) tan™! (put x* = cos0)

(x) tan™!

1+41-%

S i 2/3 y 2/3 .
w (5 +§) -
(v) y=c
(vi) 2 +x2=In(xy)+1
(viii) 32 ="
(x) y=xcot! [1]
x) y 5

(xii) y2=x¥
(xiv) xtany +ytany =0

1+x

1-x

1+cosx]
1 - cosx/
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9. Find -‘iy- when
dx

(i) x=a [ cost + log tan (£/2) ], y =a sint.

sk 2t 2t
sl AN
(iif) cosx = J 3% gy w2
1+t 1+t
(iv) x= sin2u, y = Jcos2u
! 3 e
cos t ; sin” {
v} x= 5 = —_—.
) cos 2t ? Veos2t

10.  Assuming the validity of the operations on the r.h.s. find %

(i) y="[sinx+V{sinx+V(sinx+........) } ]
(i) y=1+[x+1+(x+1+(x+1+..........)) ]
(i) y=In[x+Mmx+n(x+... e S 0
11. (i) If cosy = x cos (a + y) then prove that
dy _ cos’(a + v)
dx sina

(i) 1f ™ = c + 404, show that § + 0 % =0

12.  Can you differentiate log log | sinx | ? Justify your answer.
(%) 8.(¥) hy(x '

13. IKF(x) =|f(x) g,(x) h(x) ,thenshow that
3(x) 85(x) hy(x

F (1) =|f,(x) &(x) ()| +[A(x) g2(x) hy(x) + 6(x) &(x) Hy(x

) g W@ (6@ 80 e E;(x; ot e
(X)) g(x) Mi(x

3 (%) ga(x) hy(x (%) g5(x) hy(x

[Hints : Prove a similar result for a determinant of order 2.]

2 s 20
14. If:rz_il—cosﬂ’ =]_L230thl?_ﬂ
cos cos O
: 2 2
show that [51] =n? [E}-ﬁ]
; dx x+ 4

15. Show the % is independent of ¢ if

x = cos™} : and y = sin! ¢
t* +1 £ o+1

16. Ifyx* + =log‘[\a‘:rc2 +1—x}then.provethat =

(2 +1) dy +xy+1=0.

dx
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17. 1feY/X= , then show that
a + 0x

s L (@) (2 ).

& \dx o

18.  Find the points where the following functions are not differentiable.
@) elx! @ii) [x2-4] (@) |x-1[+[|x-2] (@) sin | x|.
7.13 Second order derivatives

If fis a differentiable function of x then the derivative of f (x) may determine another
differentiable function of ¥. The new function f * (x) is called the first derivative of f. If f * (x) is
differentiable, we can find its derived function f ' (x) and call it the derived function of second
order. The process can be successively continued to obtain derived functions of higher orders.
These functions f* (x), £ (x), f " (%), ........ f* (%) are called respectively the first order, second
order, third order ......... nth order denvahves of f (x). Other notations used for higher order

derivatives are :

A
ylryzr y3! ---:yn; s

dy d’y dy dy

P T A "L
However, the scope of the .book restricts our discussion up to derivatives of second order only.
Example 34 :
Find y2if y=x> + 43 - 222 + 1.

Solution :

Differentiating successively we get

dx’ 3 dl

___xs —_—— — 4 —

n i e 5 e
=5x% + 12v2 — 4x

v =20°3+24x-4
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Example 35 :
If x = sint, y = sin (pt) then show that

dy . dy s
(1—12) E‘;z- -x-d? +P2y—0.

Solution :
y = sin (pt) = sin (p sin"'x)

dy
= —= =cos(psinly). Tf=
. dx (p ) 1 IS xz

2
(1-x2) [d_y) = p? cos? (p sin”x)

dx
= p? - p? sin? (p sin~1x)
| =p2-PPR.
Differentiating once more,

(@ ()= -l

Dividing throughout by 2 22

};r

2 v 2
(1-x?) zx—g-x%f—:—p’y or (1-x%) %%—xg-‘%+p2y=0.
Example 36 :
Find y» if :
(i) y=(x+b™, meR
(ii) y=e™

(iii) y = In (ax + b)

(iv) y = sin(ax+b)

(v) y = cos (ax+b)

(vi) ¥y =e™ sin(bx +¢)

(vii) y = e cos(bx+c)
Solution :

(i) y=@x+b)",meR

= y1=m(x+Db)™a

y2=m (m - 1) (ax + b)™2 a?

(i) y=e™
= . W= ae
n=ae™
(i) y =In(ax+D)
il : 2
= i( 1 J.. At A-2
/73 —a.dx ey _a'(ax+b)2 é(ax+b)

(iv) y =sin(ax+b)
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= y1 =acos (ax +b)
y2 =-a*sin (ax+b)
(v) Similarly incase of y = cos (ax+b) we obtain
y1 = -a sin (ax+b) and y, = -a?cos (ax+b).
It is a routine matter to find y: in case of other trigonometric functions.

(vi) Let y=e*sin(bx+c)
¥, = be™ cos(bx +¢) +ae” sin(bx +¢)

= ™ {asin(bx +¢) + beos(bx +c)}

b
(taking a = r cosg, b=r sing so that r = Ja* +b* and ¢ = tan'—)
a

= r e=sin (bx+c+9)
Similarly
y2 = rlessin(bx+c+2¢) (workout yourself)
(vii) Let y=e™ cos(bx+c)
yi = —be” sin(bhx +¢)+ ae™ cos(bx +¢)

= -re™ sin(bx + c)sin ¢ + re™ cos(bx +c)cos ¢
b
(taking a = rcosg , b = rsing so that r = Ja* +b* and ¢ = tan''—)
a

= re* {cos(bx +c)cos @ —sin(bx +c)sinp}
= re™ cos(bx +c+ @)
Similarly
y, =r’e™ cos(bx+c +2¢)
|_EXERCISE7() |
1. Hys= tan-lx prove that
(1+x%) y2 + 2xy1 = 0.
2. IHf2y=x [1 + j—i) show that v is a constant.
3 If y = ax sinx show that
- 2xy1 + (32 + 2) y = 0.
4 Ify= ™" then show that
(1=x")y, ~xy, = m’y.
5. If x =sint, y = sin 2 then prove that
2
S8 L.
| (1-x2) i o Ay
6. Ify=(sin”' x)°, prove that
(1-x*)y,~xy,-2=0. ‘ i
7. If y = tan'x , prove that (1+x*)y, +2xy, =0.
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*7.13 (a) Successive Derivatives of some standard functions

(Additional topic for interested students, not for examination)

Exercise 37 :
y =(ax+ by, meR
= y1 =mx+b™
y2  =m(m-1)(ax+ by™2a?
y3 =m(m=-1)(m-2)(ax+b™3a
Proceeding in like manner we obtain

Yn=m(@m-1)(m=2)........... (m=n+1) (ax + bymngn,

[ This does not constitute a proof of (1). For a rigorous proof we have to make use of the principle

of mathematical induction. |

Corollary 1:
If m is a positive integer,
then from (1)
mta"(ax + b)™" e
re (m —n)!
—(ax + b)y™ =
dx 0 , n>m

- In particular when m is a positive integer, 4 =1and b =0, then

m! m-n
pe m,' X n<m
..._,.I..xm=
dx 0 . 1> m
Corollary 2:

If m =-1 then from (1) we have
d" ( 1 ]= (<1)" nta"

(i)

ax" \ax + b (ax + "
dﬂ
(ily ——e™ =ean,
dx
Lety =e™
= ¥ =g g
Y. = &% g2
ya = g't* 03.
In like manner we obtain
yl‘l= _d"_em: =€I.\'ar|.‘

dx

e (2)

......... (5)
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M

(iii) di"— In (ax + b) = (= 1)™1 (n-1) 1 a™ (ax + by~".
x

Let y =In (ax + b)

= -
ax + b
i & ___1__) PRl SUSEEN. =2
v a'dx (ax+b (ax+b) o
y3  =—a?.(~2)(ax + by .a=(-1)22'a (ax + b3
In like manner we obtain
Yn= % In@EE+d)=CEtn-D1a@+br™ e (6)

n

(iv) -‘%:;sm(axi-b):a“sm(n-;— +ax + b)
Let y = sin (ax + b)
= W% =ace»<5(.r!.1r+b)=.'.15-.in(--;’2£ +ax+b]
2 =acos [% +ax + b) =a?sin (2-;- +ax + b]
¥3 =e3cos(2-i—+ax+ ) a3qm(3—+ax+b)

In like manner we obtain
n

yn=‘;i" sin(ax+b)=a“5in(n% +ax+b). P SO A R e X e (7)

Similarly we obtain

[ﬂ % +ax + b]. | s gadnsa )

Theorem 7 : (LEIBNITZ THEOREM)

If u and v are two differentiable functions having nth derivative, then the function uv is
differentiable n times and the nth derivative is given by

U =tun0 +c (M, D un-121 +¢ (1, 2) Un202 + ..o + (M, N Un=pUr + ..o WOR eeeeeens 9)

The proof is by the principle of mathematical induction. Hints for the proof are given
below.

Forn= 1 (uo) = W10 + Uy,

Assuming the statement (9) to be true for n = m and differentiating both sides we shall obtain

(U0)m+1 = (Ums1? + Um 01) + € (M, 1) (UmV1 + Um=1 02) + ...... + € (M, 1) (Umer +1 Vr + Umer Ors1) +
.................. + U1 Um + UDm+1.
= (ums1v + (c(m, 0) + c(m, ))umer + (c(m, 1) +c (M, 2)) Um-102+ ...... +(c(m,r=-
1) +c(m,r)) tmer+1 0 +....0.. + UTm+1-
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= Un+1? + C(Mm+ 1, 1) umv1 +Cc(m+ 1, 2) Um02 + ......... +c(m+1,7) Umsi-r0r +
......... + UDm+1

and so the induction is complete.
Example 38 : _
Find yn it y = x? sinx.
Solution :
_ Take u =siny, 9 = x2,

Applying Leibnitz Theorem,
In = (smx xz)n

‘= (sinx)n 2 + ¢ (1, 1) (8inx) n-12x + ¢ (11, 2) ($inx) n-22

= x2 sin (n—;- - x) +2nxsin{(n—1)—;— +x}+n(n—1-)sin{(u—2)% +x}.

It is worthwhile to note that while applying Leibnitz theorem, the success depends on the
choice of the second function. In the above example we chose x2 as our second function because
the terms after the third are all zero.

Example 39 :
2x + 1

PENEE o 5 N
sy e i

Solution :

Breaking into partial fractions, we have
TR N iy
Tx+2(x-3) 5 x+2

S yh'=§__.("_l).l+_7_ilr_"! by (4)

_ () n 3 g 2 ]
/ 5 (I % 2)ru-1 (I i 3):&1‘ 17

1
x -3

Y

7
+ -
5

Example 40 :
If y = cosix find yn.
Solution :
>, 2
costx = (cos?x)? = (}-%M)
- % (1 + 2c082x + c0s22%)
= % { 1+ 2cos2x + % (1+cm4::)}
- + 3 €cos2x + £ cosdx .
8 2 8

Hence using (8)
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Yn =0+%2“cos [n—;— - Zx) +% . 4" cos [n% - 4::) ’

=21 cos (n—g- + ZxJ + 22073 ¢os [n-g- + 4):).
Example 41:

Find v if y = & sin bx.
Solution :
y =% sinbx
= n = a® sin bx + & bcosbx .
= A% (a sinbx + b cosbx)
Leta =rcos¢, b =rsing.
Thehgainby ¢ bossbr =valnibr @) " % 5 o el rn sesesens (10)

1 =1 sin (bx +¢)
= =r{af¥sin(bx+¢) + & beos (bx + ¢) |
=r @ {asin (bx + ¢) + bcos (bx + ¢) }
= r2 @ sin (bx + 2¢), : using (10) -
Assume that
Ym = r™ HA¥sin (bx + m¢)
Then yms1 =™ {ad®™ sin (bx +mé) + & bcos (bx +m¢) }
= rm AX [ g sin (bx + m) + b cos (bx + mé) |
=+l A gin by + m + 14), using (10)
Hence by induction,

Yn = ™ & gin (bx + né)

1
where r = (a% + b?)? and¢=tan“1%.

7.14 Some basic theorems (Mean Value Theorems)
Theorem 8 (a) Rolle’s Theorem :
If a function f is
(i)  continuous on the closed interval 4, b ]
(ii) differentiable on the open interval (a4, b) and
(i) f (@) =f @),
then there exists at least a point ¢ € (@, b) such that  ‘(c) = 0.

The proof of this theorem is beyond the scope of the book. We satisfy ourselves with the
following geometrical explanation.
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N (@, f (@) (b, f &)

A 4

Fig. 12.10 Fig 12.11

If fisaconstantin[a, b], f* (x) =0 for all x (4, b) and the theorem is trivially true. Now
atx =a, f (x) has the value f (a). Since f (b) = f (a),if f (x) is not a constantin[a, b], f (x) either
increases or decreases as x increases and therefore must either decrease or increase respectively to
assume the value f (b).. So there must be a point ¢ € (g, b) such that for some 5 > 0,

either (i) f'(x)>0forx e(c-8,c)andf’(x)<0forx e (¢, c+5)as in fig. 12.10.

or (i) f'(x)<0forxe(c-8 c)andf’ (x)>0forx e (c,c+5)asin fig 1211,

impl)}ing thatf* (c) = 0 since f is differentiable at every point in (a, b).
Geometrical interpretation of Rolle's theorem :

' f’ (c) is the slope of the tangent to the curve represented by y = f (x) at the point (¢, f (c)),
wherea <c <b.

f* (¢) = 0 implies that the tangent to the curve y = f(x)at (c, f(c)) is parallel to the X-axis.

Thus if the function f satisfies all conditions of Rolle's theorem on the interval [a, b ], then
- there exists at least a point (¢, f (c)) on the curve represented by y = f (x) where the tangent is
parallel to the x-axis.

Example 42:
Verify Rolle's theorem for the function f defined by f (x) = x2 - 3x + 2 on the interval [ 1,2].
Solution : :
Clearly the given function satisfies the first two conditions of Rolle's theorem on I3 2
We observe that f (1) = £ (2) = 0.
So the third condition of Rolle's theorem is also satisfied by the function f on[1,2].
We have f' (c) =2c-3.
f@©)=0 = 20-3=0

3
c=2
=ers

c==€e(1,2).

W

Thus there exists a point ¢ = % with 1 <c <2such that f' () = 0.
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This is the verification of Rolle's theorem for the given function f on the interval [ 1, 2].
Theorem 8(b) Lagrange’s Mean value Theorem.
If a function f is
(i) continuous on the closed interval [a, b |
and (ii) differentiable on the open interval (a, b) then there exists at least one point ¢
such thata <c <D and

S L i
i b-a

Proof (for interested students; not for examination)

Here f satisfies all conditions of Rolle’s theorem except that f(a) = f (D). So assume
that g (x) = f (x) = Ax where A is a constant to be chosen suitably so that g satisfies all conditions
of Rolle’s theorem, i.e. g (@) = g (b) is satisfied. This gives

2 [tb)—{(a) :

Since g satisfies all conditions of Rolle’s theorem there exists a pomt c € (a, b) such that g’ (¢) = 0
jie.fi(c)=A (v g@=f"(x)-A)

= fo= %}& substituting the value of A.

Geometric Interpretation :

Geometrically the Mean value 'I'heorem says that under the hypotheses we can find a point P (¢,

£ (©)) on the curve where @ < ¢ < b such that the tangent line at P is paralleltotheghord)oming (af
(@) and (&, f ().

Example 43:

Verify Lagrange’s Mean-value theorem for the f'unt:tlcm f defined lay f (x) = 2x2 - 3x + 7 on the
interval[1,2].

Solution :
Clearly the given function satisfies all conditions of Lagrange's Mean-value theoremon [ 1,2 ].
We have f(x) =2x2-3x + 7.
Sof(1)=6andf(2)=9.
f'©)=4c-3.
fBer) 9=
2=1 - =

i b=
f© —'sz

6
13.

c =—g~ e (1,2).
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Thusthﬂ&existsapoh-;tc: % with 1 <c<25uchthatf-(c)= ftz;:{(l)

This is the verification of Lagrange's Mean-value theorem for the given function f on the
interval [ 1,2 ]. : ;
Theorem 8(c) Cauchy’s Mean value Theorem. (For interested students; not for examination)
(For interested students; not for examination) '
If f and g are two functions such that
(i)  bothare continuouson[a, D]
(ii)  both are differentiable on (2, b)
and (iii) g’ (x)=0forany x € (a, b).
then there exists at least a point ¢ such thata < ¢ < b and
fO-f@ _f©)
gW)-g@ g'@©

. Proof :

We define a new function F (x) as follows.

=f () —f (@) LO-f (@) % -
F(x)=f ()-f (a) e @ ()-8 @). sl

Me that g (b) - g (a) # 0. Otherwise we could apply Rolle’s theorem to gtoobtaing’ () =0
for some y € (a, b) contradicting (iii).

Now F (a) = 0 =F (b) and F satisfies other conditions of Rolle’s theorem. Hence there exists a
point ¢ such thata<c<band F (c) =0

- & e f(b)-f(a) ' o
s e

fO)-f@ _ f©
g -g@ g

As an illustration of the utility of these theorems in mathematical analysis consider the

following example.

Example 44 :

Prove that if the derivative of a function is zero in an interval then the function is a constant in
that interval.

Solution : :
Letf’(x) =0 for all x € (a, b). Let x1, x2 be any two numbers in (4, b) such thata < x1 < x2 < D.
Under the hypothesis, Lagrange’s Mean value Theorem is applicable in the interval [ x1, ¥ ] and
so we have a ¢ e'(x1, x2) such that
f: (C)= (IZ)_f(x])'
X =X

But f* (c) = 0 by hypothesis. This implies that f (x1) = f (x2) with x # x2. Thus f (x) has the same
value at any two distinct points of the interval (a, b) and hence is a constant there in.
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EXERCISE- 7(m)

Verify Rolle’s theorem for the function f(x)=x(x-2)?, 0 =x<2.

Examine if role’s theorem is applicable to the following functions :

@) = [x| on[1,1] (i) ) = <] on [-1, 1]

(iii) f(x) = sinx on [0, «] (iv) f(x) = cot x on [0, nr]

Verify Lagrange’s Mean-Value theorem for

F(x) = x*2x2-x+3 on [1,2]

Test if Lagrange’s mean value theorem holds for the functions given in question no. 2.
(Not for examination)

Verify Cauchy’s mean value theorem for the functions x2 and x?in 2



