CHAPTER-8

APPLICATION OF DERIVATIVES

8.0

8.1

To live is the rarest thing in the world. Most people exist, that is all.
- Oscar Wilde
Introduction
Derivatives and related concepts have found application in almost every branch of scientific
study. It is too difficult to enlist them here. Out of many applications we shall study in this
section some of the simple ones, particularly rectilinear motion, behaviour of functions, tangents
and normal to plane curves and extremization of functions. We shall further see how the method
of differential calculus saves much of the labour in computing certain limits of functions.

Velocity and Acceleration in Rectilinear Motion

In physical problems where motion of any kind is studied, time, symbolised by the letter t is
taken as the independent variable. The simplest case in this type of study is rectilinear motion
i.e. when the motion is in a straight line. If the moving object travels equal distance in the same
direction in equal intervals of time, the motion is called uniform. In this case the distance
travelled in a given direction per unit time, called the velocity of the object, is constant.
However, in nature, most of the motions are non-uniform. We study below non uniform
rectilinear motion.

We co-ordinatise the line (L) of motion by specifying
(i)  aunit of measurement of distance :
(i)  a positive direction

and (iii) a fixed point 0 called the origin of distance from which all measurements are made.
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Fig - 8.1
Let a moving object be at P with coordinate s at time f. Clearly s is a functions of t which we
denote by
‘ s=f (b).
When the positive direction of motion is from left to right, let Q be the point where the object is
at time ¢ + dt. The distance travelled in time interval ¢ is (s + 8s) — s = 8s. The average velocity

distance
" time
_ & _fE+M-f® - :
of ot
Hence on taking limit as 8t — 0, whenever it exists, instantaneous velocity at time t is given by
pulim & & g,
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When the motion is from right to left, ie. when s is decreasing as time passes, 8s becomes
negative. So the distance travelled in time 8t is - 8s and the instantaheous velocity would then
be given by

Hm Q“_, S5 ds

ot — 0 Bt = Tf; i
Thus the sign of % gives the direction of motion and the absolute value of %ii gives the speed

of the object at time .

Acceleration of an object moving with a velocity v at any time f is defined to be the
instantaneous rate of change of velocity i.e.-

_do _ds
St
Example: 1
A ball is thrown vertically upwards with initial speed of 98m/sec. If the motmn of the ball

satisfies the equahon s = vot = — gﬂ where vp is the initial velocity and g (= 9.8m/sec?) is the

acceleration due to gravity, find the height to which the ball will rise.
Solution :

Here s = vot - %gt.z

ds :
o= e = - gt - RS s LR 1 e R T g e 1
By e e g : )

When the ball rises its velocity gradually decreases and ultimately becomes zero. Then the ball
begins to fall. So putting v = 0 in (1) we get

0=0p~-gt
= t=ﬁ=-9isec5=1[)secs.
g 9.8

Thus the ball will begin to fall after 10 secs and by that time the ball will rise to a height of
5—98:«10—-;w x‘)Bxle 490m.

The idea behind the formulae for velocity and acceleration is that they are the instantaneous
rates of change of displacement and velocity respectively. Thus as pointed out earlier in the
introduction, the concept of derivative is useful to determine rate of change of quantities in
various fields provided of course that the quantity undergoes continuous change.

Example 2 '

At a certain instant, the side of a square is increasing at the rate of .3cm/sec. and at the

same time the area is increasing at the rate of 30sq.cm/sec. Find the length of the side of the
square at this instant.

Solution :

Let the length of the side of the square at the given instant be x cm.

i .
The rate at which it is increasing = E'—:- = .3cm/sec. .

The area of the square = ¥%sq. cm.

dx’ d ‘
The rate at whijch the area is increasing = —;;;— =2x d—: = 2x x 0.3sq.cm/sec.

According to the question,
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2—tx0¢3=30

el e
2 x03

Hence the length of the side of the square at the given instant is 50 cm.

l EXERCISE 8(a) I

i Find the velocity and acceleration at the end of 2 seconds of the particle moving according to the
following rules.

=5 x 50

() s=22+3t+1 (i) s=+t +1 (iii) §=

2°%1
(iv) s=62+15¢ +12.

2. The sides of an equilateral triangle are increasing at the rate of V'3 cm./sec. Find the rate at
which the area of the triangle is increasing when the side is 4 cm. long.

3.  Find the rate at which the volume of a spherical balloon will increase when its radius is 2 metres
if the rate of increase of its radius is 0.3m/min.

4.  The surface area of a cube is decreasing at the rate of 15sq.cm./sec. Find the rate at which its
edge is decreasing when the length of the edge is S5cm. '

8.2 Tangent and Normal to plane curves.

A .
Let PT be the tangent to a curve y = f (x) at

the point P (¢, f (c)) of the curve. As we oA

>
have seen in 12.3, the slope of the line PTis : T
given by '
tany =’ (c)

© =f @ Pl
provided that PT is not vertical. Hence y=f (e f@)

the equation to the tangent line -through o = X
(c.fle)is . : Fig8.2

I L e e NSRS S L S S SRS S S T (1)
provided the tangent line is not parallel to y-axis in which case, the equation is simply

A= e R N T e e T S N T S Ikl e e | e N b TG (2)

& s s :
A line PN perpendicular to the tangent PT is called a normal to the curve at P. When the
tangent through (c, f (c)) is not parallel to the y-axis i.e. when [ (¢) is finite, the slope of the
normal to the curve at (¢, f (¢)) is — 1/ f“(c) and the equation to the normal is

. 1
y-f (c)——f. ) (x=0)
e x-0+f' ©ly-f©@]=0 PRA. (STAE T D TR RS e ] (3)

When the tangent is parallel to the y-axis, the normal is parallel to the x-axis. Since it passes
through the point (¢, f (¢)) , the equation to the normal in this case becomes

y=f (c)- SiTies s 08)
“Example 3 : E
Find the equation to the tangent and normal to the curve 3% + 5y = 23 at (- 1, 2).
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Solution :
Differentiating the given equation implicitly we have
dy '
6x < =
+ 10y e 0

dy 3x

@5y

dy Sty
=L =- ——= = — =slope of the tangent.
dx](_L s T o

Hence the required equation of the tangent is
3
=2==— (x=(1
y=2=lz=tl).

= 33:-10_y+?3=0._

The equation of the normal is
a3
x-(-1) + — (¥=2)=0
x=(-1) + = (y-2)
= 10x+3y+4=0.

Example 4 :
Prove that the equation to a tangent to the curve

(-

at (x, i) is
2 2/3
2@ 1Y s

where X and Y are the current coordinates of a point on the tangent.

Solution :
Differentiating the given equation of the curve implicitly we have

32 1
3(.{) -‘,.1_+3[1]31,d_y=0
3 \a S R b dx
bt

1/3
) b
dx x]_,fa
5]
a

If (X, Y) is a point on the tangent then the equation to the tangent is given by

(i)lﬂb
b \ .

Yoy == 2t (X-2)

( xJ]‘f:l
v i
a

ot
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i [E'JUB

2/3 2/3 2/3 2/3 -
:*»1 (2) + X {5] =_(£) + (iJ =1 (since (x, y) is on the curve)

1.  Find the equations to the tangents and normals to the following curves at the indicated points.

(i) y=22%2+3 : atx=-1

(i) y=23-x atx=2
(iii)y=\/;+21+6 atx=4

(iv) y= \E Siny + cosx atx=%

(v) y=(logx)? atxz%

(vi) y= . atx=2

log x

(vii) y=xe* . atx=0
(viii) y=a (0-sind), y =a (1 - cosd) atﬂzg-

(ix) (§)2”+[%)m =1 " at(a cos®0, b sin®0).

2. Find the point on the curve
P-x2+2x-1=0
where the tangent is parallel to the x-axis.
3.  Find the point (s) on the curve
3at 3at’

_1+t2' "’“1+£:t

where the tangent is perpendicular to the line 4x + 3y + 5= 0.
4.  Find the point on the curve
¥+ -dxy+2=0
where the normal is parallel to the x-axis.

-

5.  Show that the line y = mx + ¢ touches the parabola y*=4ax ifc = Lt
m
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6.

Show that the line y = mx + ¢ touches the elhpse -5—2— =1if 2=a*m?+ .

[ Hints : Find equation to tangent at a point (x’, y') of the curve and compare it with y = mx +c. |

10.

11.

12.

13.

14.

16.

17.

Show that the sum of the intercepts on the coordinate axes of any tangent to the curve

J; - J_ = 'J; is constant.

Show that the curves y = 2¥ and y = 5% intersect at an angle

(Note : Angle between two curves is the angle between their tangents at the point of intersection)
Show that the curves ax? + by? = 1 and a'x2 + b'y? = 1 intersect at right angles if
T | 1 1

b B
Find the equation of the tangents drawn from the point (1, 2) to the curve
-2~ 4y +8=0. ' '
Show that the equation to the normal to
x2/3 4 213 = g2/3
is y cosf — x sin@ = a c0s20 where 0 is the inclination of the normal to x-axis. :
Show that the length of the portion of the tangent to x2/3 + y2/3 = 42/3 intercepted between the |
axes is constant.
Find the tangent to the curve
y=cos(x+y), 0O Sx< 2r

which is parallel to the line x + 2y = 0.

“If tangents are drawn from the origin to the curve y = sinx then show that the locus of the points

of contact is x%y? = x> - y2..
Find the equation of the normal to the curve given by ;

x =3 cos — cos’0
y=3sind —sin’0 - ate:%_

n : g T

If xcosa + ysino = p is a tangent to the curve (5)“'1 + (%)“"1 = 1 then show
. a

that (2 cosa)® + (b sina)? = p.

Show that the tangent to the curve x =a (¢ - sinf), y = at (1 + cost) att = % has slope [l - g-) .
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8.3 Increasing and Decreasing Functions
Definition :
A function fis said to be increasing in an interval L if f (x1) < f(x2) whenever x1 <x2 and x1, x2 € L
Iff (xﬂ <f (x2) whenever x1 <x2 and x1, x2 € I then f is said to be strictly increasing in L.

A function f is said to be decreasing in Lif f (x1) > f (x2) whenever xi <x2 and x;, 2 e L A
strictly decreasing function is defined with obvious modifications.

A function is called monotonic if it is either increasing or decreasing,

For graphical representation of such functions see fig.8.3.
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Fig. 8.3

Definition :
A function f is said to be increasing at a point c if there is an open interval I containing ¢ such

that foreach x e I, _
y<c = f)<f@andx>c= f (x)>f (o)

The definition of f decreasing at a point ¢ is similar.
We observe that if a function is increasing (decfeasing) in an open interval I, then it is

increasing (decreasing) at each point of L.
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The next theorem gives a useful criterion to decide whether a differentiable function is
increasing or decreasing at point.

Theorem 1:
Let f be a function defined in an open interval c.ontainiifg a point ¢. Then
(i) f'(c)>0= f isincreasingatc.
(i) f’(c)<0= f is decreasing at c.
Proof : :
We prove the first statement.
The proof of the second is similar.
We have

poe i LO16

K=20 xX—-c
Taking € > 0 such that € < f ’ (¢), we can find & for which
f'(c)_e(w <fl'-(c)+E
X =L
wheneverc-d<x <c+§9,

Ifxe {c—&,c+8),then.

x<c = [O=-/J& =f(x) =L@ >f'(c)—e€>0.
. B E-=% X =

= f@>f®),
and similarly, x> c= f (x) >f ().
So statement (i) follows.
Remarks :
When f is increasing at c; it is not necessary that f* (c) should exist (find an example), but if

f*(c) exists, we can only conclude thatf’(c) 20. The example of f (x) = x* shows that though
f (x)increases atx =0, (0) =0.

Further, Theorem 1 does not tell us anything about thé case when f’ (c) =0.1ff" () =0,
then for x =¢, the function f may be increasing or decreasing or may be neither of it.
For example (i) f (x) =x”is increasing at x =0, (i) f (x) =- +? is decreasing at x = 0 and (iii) f (x)
= x2 is neither increasing nor decreasing at x = (0.

In such cases we have to look for sign of f* (x) in (¢ - §, ¢) and (¢, ¢ + 8) for small values of 8.
If f* (x) > 0in both (= 8, ¢) and (¢, ¢ + 9) then f is increasing at ¢ and decreasing in case f’ (x) <0.
Example 5:

Test whether the function f (x) =x3-27x + 6 is increasing or decreasing
Solution : : :
f(x) =x-27x+6
= f()=3x2-27=3(x%-9)=3(x+3) (x-3).
Nowf'(x)>0 = (x+3(x—3)>0l
- = (x + 3) and (x - 3) have the same sign
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V=n x<-3orx>3.

Hence if |x | >3 then f is increasing. Further | x | <3 = f(x) <0 and hence f is decreasing for

xe(-33).
l EXERCISE 8(c) I
5 Find the intervals where the following functions are (a) increasing and (b) decreasing.

(i) y=sinx, xe[0,2n]

(ii) y=Inx, x € R+

(iii) y=a*,a>0, xeR

(iv) y=sinx+cosx, xe[0,2n]
(v) y=23+3x2-36x-7

1
i) y= , x#1
(vi) y o X
tvil) y= x2+1, b e
4 x’ -8x+13, x> -3

(viii) y:4x2+-1—

(ix) y=(x=1)2 (x+2)

(x) y= l, x>0

= tanx -4 (x=2 - & E)
(xi) y=tanx—4(x- )xe( 7" 3
(xii) y=sin2x—cos2x, x€[0,2n].
2. Give a rough sketch of the functions given in question 1.

3.  Show that the function 5:— is strictly increasing for x > p > 0.
P :

4. Show that 2siny + tanx > 3x forallx (O, g—) :

8.4 Maxima and Minima

Definition 1:
A functionf is said to have a maximum (local maximum or relative maximum) at a point x = ¢
if f (¢) >f(c+h)for 0< Jh| <& for somed> 0. "

Definition 2:
The value f (c) is said to be an absolute maximum if f (¢) = f (x) for all values of x where f is
defined.

Definition 3:
The function f is said to have a minimum (local minimum or relative minimum) at a point x = ¢
iff () <f (e+h)for 0< |h| <3 for some 5> 0.

Definition 4: \ ' .
The value f (c) is said to be an absolute minimum if f (¢) < f (x) for all values of x for which f is
defined.
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Fig 8.4 Fig. 8.5
A maximum or minimum of a function is a local property in the sense that it occurs in a
‘near’ locality of a point. A maximum value in some locality may even be less than a minimum
value in another locality (See Q. 1 (ix) in Exercise 8 (d)) .

Yf\

o
> J

a maximum value < 2 minimum value
Fig 8.6
By an extremum (plural extrema) we mean either a maximum or a minimum.
Necessary Condition for an extremum
Theorem 2 ‘
: If f has an extremum at a point x = ¢, then f’ (¢) = 0 or f* (c) does not exist.
Proof :
We have either of the possibilities, f'(c) exist or does not exist. .
Let us suppose that ' () exists.
(i) Suppose thatfhasa maximum at x = ¢. Then for 0< |h| <& for some &> 0.
f ) >f (c+h).
If we chose h > 0, then
f@©) >fc+hyandf(c)>f (c=h) R (e Ty e i (L0 (1)
Inequalities in (1) are true even though f is not differentiable at x = c. :
Now suppose f* (c) exists, Then from (1), we have, '
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fe+W=f@ o.g FE-D-f@ o

h —-h
Thus on one hand we obtain,
; _lim fle+h) - f(@)
f (Cﬂ__h—»O*- h s
and on the other hand,
; _ lim fle -h) - f()
f(c)_h—>0+ -h - 5

Since f* (c) exists, f* (c +) = f* (c-) whence f* (¢) = 0.
(ii) . If we suppose that f has a relative minimum at x = ¢ then by definition

f©)<f (c+h)
for0 < |h| <& for some 5> 0.1f f* () exists then we would obtain f* (¢) = 0 just in the same _
way as (i).
Definition 5:

A point x = ¢ is called a critical point of f if either f* (¢) =0 orf” (¢) does not exist.

The condition in the above theorem is not sufficient for a function to have an extremum, i.e.
the derivative at a point x = ¢ may vanish, i.e. becomes zero or may not exist without the function
having an extremum at that point.

Sl 58 Y/\

d

N N

i = i

S ., o X o) o) 5
Fig 8.7 ' Fig 8.8

(f’ (c) exists and is zero but f(c) is not an extremum) (' (¢) does not exist and f(c) is not an extremum)
We follow the following ﬁmrking rule:

Sign Test : Let ¢ be a critical point of f where f is continuous. Then
(i) - If there existsa & >0suchthatf’(x) >0forallx € (c-8,¢)and f’ (x) <0 forall x € (¢, c + ),
then f (c) is a maximum value of f. Here f(x) changes sign from positive to negative as x
passes through c. :
- (ii) If thereexistsa 3> 0suchthatf’(x)<0forallx e (c-3§,c)and f’ (x) >0 forallx € (¢, c + §),
then f (c) is a minimum value of f. Here f(x) changes sign from negative to positive as x
passes through ¢. '
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Example 6 :
Test the function y = (x - 1) (x + 2)* for extreme values.
Solution :
Herey=f (x) =(x-1P@x+2)?
2 o) =5x-1)4(x+2}+(x-10°.4(x+2)>°
Yt e R AR S D T e R B TR A s e e (1)

on factorisation.
Now f’(x)=0forx=1,-2and - % which are the possible extremum points. The function is

continuous at all these points.

(i) Atx=1:If x is less than 1, then putting x = 1 - §, where 5 > 0 is sufficiently small, we get
from (1) :

f'(1-8)=3(-9? (3-8 (5-38) >0

and when x = 1 + & we get

f(1+8) =35 (3+8)° (5+38) >0.

Since f’ (x) does not change sign as x crosses 1 the function has no extremum atx = 1.
(i) Atx=-2:

As before

f(-2-8)=3(-3-8) (-5)>(-4-38)>0

and f/'(-2+8)=3(-3+8)*5 (-4+33)<0.

Since f ‘ (x) changes sign from positive to negative as x crosses - 2, the function has a
maximum at x = - 2 and the maximum value is f (~2) = 0.

(i) At:c:-—%:
e % -8) =3(- 3 - 5) (% - 5) (~39)<0
and f‘(—- % +6) =3(— -g— +8J‘ (-g- +8)3 (38) > 0.
So f hasaminimumatxm-—g— and the minimum value is f (— %)=—[§J5'(%)‘.

We have yet another method to test a function for extreme points.

Theorem 3 : (Second Derivative Test)

A function f has a maximum at x = ¢ if f'(c) = 0 and f” (c) < 0 and a minimum at x = ¢ if
f'(©) =0and f” (c) >0. :

Proof :

Letf‘(c) =0andf” (c) <O0. . .

lim fe+h-f©

Sef 6= x50 h
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it follows that a certain neighbourhood (¢ - §, ¢ + 8) of ¢,
LexB=§1)

h
and 5 (C_h)h_f'(c) <0
where 0 < h < . Hence we obtain the inequalities f“ (¢ + k) < f* (¢c) < f’ (c - h) and since f (¢) =0,

we have
f'le+h)<0<f’(c~h) _
where 0 < h < 8. Thus f* (x) changes sign from positive to negative as x passes through c.
Hence f has a maximum at x = c.
Similarly the case for f“ (¢) > 0 can be proved.
Comment : '
What will happen if f'(c) = 0 and also f“(c) =02

Consider f(x) = x* at x=0. Here f'(0) = {”(0) = 0. In cases as such we need further discussion
involving derivatives of order higher than the second.

In this context we present the following theorem without proof which justifies that higher order
derivatives beyond the second are essential to decide extreme points of functions on many
occasions.
Theorem
If c € (a, b) and :
L fl=f"=f"=..=fnD()=0
2. fiie) %0, |
3. thenifniseven and
f(c) >0 = x = is a point of local minimum,
f™(c) <0 = x = is a point of local maximum,

but if n is odd then x = ¢ gives neither maximum nor minimum. It is a point of inflexion on
the curve y = fix).

As an application of this resizlt, take two examples :

Example (i) Test the function y = x6+5 for extreme values.
Solution : .
Here f’(x) = 6x5 = 0 for x = 0 therefore x = () is a critical point.
Here f(0) =f*"(0) = f®(0) =f® (0) = 0
But f® (0) =720 > 0 (6 is even)
= the function attains a local minimum at x = 0 .
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Example (ii)
Test the function f (x) = x? for extreme values.
Solution :
fx) =332 =0forx=0,s0x=0is acritical point.
also f"(0) =0, but f*"(0)=6>0

since the third derivative at x = 0 is different from 0 and 3 is odd, by the above theorem x = 0

gives neither local maximum nor local minimum. It is a point of inflexion on the graph of the
function. (Refer Example 12)

You can see from the graph of y = x3 how the tangent to the graph of y = x3 crosses it at the origin.

Example 7
Find the maxima and minima of f (x) =sinx + cosx, x € [ 0, 2r |.
Solution :
f (x) =sinx + cosx,x €[0,2n]
= f’(x)=cosx -sinx .
and the roots of the equation f* (x) = 0 are given by

Y janx=1=tan —
4

= x:i,ﬂ‘\‘-i.
4 4
Now f” (x) = - sinx — cosx
,,(n) X R on 1 1
~|] ==sin— —cos — =— - — <.
N 4 4= i

Sox= -E- is a local mz;ximum and the maximum value is f (g) =42.
y aa (n + %) ’=—sin (n + -E—) - COS (n + %]
(3L 3

NI e

Sox=n+§ isalocalmnﬂmumandmeinixumumvalueisf[x + -4’5-] PO YRTEE SR

To find the. absolute maximum or absolute minimum of a function over a closed
interval we have to consider the values of the function at the end points also besides the
extreme points. This is because the absolute maximum or absolute minimum may occur at
the end points (See fig 8.4 ) which need not be critical points.
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Example 8
Find the greatest and least values of x* =2x2 + 3in[-2,2].
Solution :
The extreme points are the roots of the equation,
f(x)=0
ie. 4r¥-dx=4x(x+1) (x-1)=0.
So the extreme points are x =0, -1 and 1 all of which arein[-2,2].

Now f“ @) = 120%2-4 =4(3x2-1)
= fY0) =-4<0

f“-1 =4(3-1)>0
(1) =4@3@-1>0

Hence x = 0 is a local maximum and x =~1 and x = 1 are points of minima,
f () =3 (maximum)
f(-1) . =2 (minimum)
f @ = 2 (minimum)

Further f (-2) =11 =f (2)
Since max. 3,2, 11 } =11
and min. {3,2,11})=2
the absolute maximum value is 11 and the absolute minimum value is 2. .
Note that the absolute maximum value is attained at one end point and absolute minimum
value is attained at two interior points of the interval [-2, 2 |.
Example 9 : .
Find the point on the curve 4x? + a%y? = 40°, 4 <a? < 8, that is farthest from the point (0, - 2).
Solution : 3
The equation of the curve can be written as

2

X yz
—_— i =1, 4<a®<8.
2> 4 :

Let P (a cos¢, 2 sing) be a point on the curve. Then the distance of P from (0, - 2) is
= J[ a’ cos’ ¢ + (2sing + 2)2]

= P =a?cos? ¢ +4(sin ¢ + 1) = u (say).

2 g d .
Now for [ to be maximum, 1 must be maximum. Hence d_: must vanish.

Now ﬂ= ;2a2cos¢sin¢+8(sin¢+ 1) cos ¢

d
= 2cosé[ (4 -a?)sing+4 ], - .
% = -2sin¢[(4-a%)sind+4]+2cos [ (4-a?) cos ]

2(4-}:2) (cos? ¢ —sin? ¢) — 8 sin ¢
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=2 (4 - a%) cos2¢ — 8 sin ¢.
dut

Fy =0= cosp=0o0r(4-a?)sinp+4=0.

(4-a%)sin¢+4=0=>sin¢= > 1

a -4
sincea’?-4 <4.

Hence discarding this possibility we have cos¢ =0= ¢ = % )
=22

gives the minimum value of ) .

Further ":] =2(4-a?) (-1) -8=2(a2-8) <O.
+=3

Hence the maximum value of / is given by ¢ = —g- for which P (0, 2) and /max =4

Example 10

Find maximum value of the following functionon [ -2,2 ]

3x+2,x%<0
Fa = {2—31, x> 0.

Solution :

a1 3 Hx<h
Here f*(x)= {—3 x>
The function is not differentiable at x = 0 because f* (0 +) =~ 3 and f‘ (0 -) = 3. Possible
extremum pointon [-2,2 |is x =0. Now for x <0, f * (x) >0 and hence f is increasing in (- §, 0)
and similarly f is decreasing in (0, 8) . Hence x = 0 is a maximum point . The maximum value
isf0)=2

Example 11

Show that the rectangle of maximum area that can be inscribed in a given circle is a square.

Solution :

latABCDbear&.tanglemscnbedmamnle with centre at 0 and radius = IOCI = a By
symmetry O is on the diagonal AC.

Let OE L BC.

4 A D
_Suppose [OE| e |AB|
and |EC| =y=% |BC|. 0
~A=Areaof ABCD = |AB|. |BC|
R B E C
=4x (@2 - x2)? . . Aot
Fig. 8.9
L. =4 % x2)=+4x (a2 x2)2(-2x)
dx 2
: - o o S T e — —a e



| Application of Derivatives 257 |

1 A
=4 (@2 -22) ~4x2(@2-x2) 2.
Since A is to be maximised weput% =0.

= 4(@-x2) =4x2 (2 -x2) ?
= 2-R=x

= x= —j% , discarding the negative value.

a

2y 1/2
Hencey=(z—52—] =‘E.

Thus 5 [AB| = o [BC| = |AB| =

~| = ABCD is a square.

Note that the same result would have been obtained if we had wanted to obtain a rectangle
of minimum area. But to obtain a minimum A which could be as near to zero as we please we |
should have either x or y sufficiently near zero (since A = 4xy).. But then the result y = x as

implied by % = 0 would certainly not produce a rectangle inscribed in the circle. Hence it is

only possible that the relative extremum produces a rectangle of maximum area.
Note : Concavity, convexity and point of inflexion.

We have used the second derivative of a function to determine the nature of an extremum.
Now we shall see how it gives important information about the nature of the graph of a

function.

Fig. 8.10

As we move from the point P (see fig 8.10) to the point Q along the curve y=f(x) the tangent
line to the curve gradually turns clockwise, its slope f’ (x) decreases and becomes zero at the
maximum point. Then it assumes negative value and decreases further till we reach Q after which
the tangent starts turning anticlockwise and f* (x) gradually increases to become zero at the point
of minimum and continues to increase as we move along the curve towards B. The part of the
curve AQ where f* (¥)isa decreasing function i.e. where f“ (x) <0 is said to be convex w.nt.
the x-axis (or convex upwards) and the part QB of the curve where f’ (x) is an increasing
function (f “ (x) > 0) is said to be concave w.r.t. x-axis (or concave upwards). The point Q where
the tangent changes its direction of rotation i.e. where g e (%) attains an extreme value is ca]]ed a
point of inflexion. We have the following definition.
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Definition :

A point Q on a curve is said to be a point of inflexion if the curve is concave on one side and

convex on the other side of Q w.r.t. x-axis.

It is necessary that at a point of inflexion f “ (x) = 0. But the condition is not sufficient. The
‘point x = 0 is not a point of inflexion for the curve y = x* because f“ (x) does not change sign as x
passes through the origin. A point on the curve may be an inflexion point even when the second
derivative does not exist there, e.g. consider y = x!/3. Thus in order to find points of inflexion we

* must have to

(i)  find the points where f“ (x) = 0 or f“ (x) does not exist.
(ii)  test whether f“ (x) changes sign on two sides of these points.

Example 12
Take the function f(x) = x?
We have f'(x) =3 x2 f’(x) =6x=0forx=0.

Also f (x) = 6x is negative for x < 0 and positive for x > 0.
Hence x =0 is a point of inflexion on the curve y = x?

Do yourself

Draw a freehand graph of y = x3 and notice that the tangent to the curve at x = 0, which is the x

axis, crosses the curve at the origin.

EXERCISE 8(d)

1. Find the extreme points of the following functions. Specify if the extremum is a maximum or

minimum. Find the extreme values.
(i) y =x2+2x+3
(i) y =5x2-2¢°

3x
. (i =
@) y x*+1

(iv) y =x2{1-x"

(v) y =2x3-15x2-36x+ 18
(vi) y =60/ (x*- 12+25)
(vii). y = =(x-1)p
(viii) y  =(x-2) (x+3)*

; Pl
(ix) y —x.+ =

(x) y =4c0s2x~3sin2x, X € [- % E)

2
. T
(xi) y =sinxcosxy, x € (8 2)
(xii) y =cosx(l+sinx),x€[0, 2n]
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10.

i & &
12

14.

15

16.

(xiii). y  =sinPxcosix, p,4>0,x € [0, %]

(xiv) ¥y =xe*xe(-22).
Show that the following functions do not possess maximum or minimum.
(i) »2 (ii) »® (iii) 3x3-12%2 +16x-5
(iv) 4-3x+3x2-x3 (v) In|x|,x=#0.
Use the function f (¥) = x1/X, x> 0 to show that¢" > 2.

g

Prove the inequality x> ¢ * <¢1,xeR.

If f (x) =alnx + bx2 + x has extreme values at x =- 1 and x = 2 then find 2 and b.

Show that e, (AT e (0, EJ is maximum when ¥ = cosx.
1 + xtanx 2

Determine the absolute maximum and absolute minimum of the following functionon[-1,1].

| e+, x <0
f @)= { (x=1)% x> 0.

Find extreme values of

X .
—— -1 < x<0
f@)=4 1=x on(-1,2).

3
=X Do

Find two numbers x and y whose sum is 15 such that xy? is maximum.

If the sum of two positive numbers is constant then show that their product is maximum when

they are equal.
Determine a rectangle of area 25 sq. units which has minimum perimeter.

Find the altitude of a right circular cylinder of maximum volume inscribed in a sphere of

. radiusr.

Show that the radius of the right circular cylinder of greatest curved surface that can be
inscribed in a given cone is half the radius of the base of the cone.

Show that the semivertical angle of a cone of given slant height is tan™! V2 when its volume is
A cylindrical open water tank with a circular base is to be made out of 30 sq. metres of metal
sheet. Find the dimensions so that it can hold maximum water. (Neglect thickness of sheeti

A cylindrical vessel of capacity 500 cubic metres open at the top is to be constructed. Find the
dimensions of the vessel if the material used is minimum given that the thickness of the

materialused is 2 cm.
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4

18.

19.

20.

21.

8.5

Find the coordinates of the point on the curve x%y — x + y = 0 where the slope of the tangent is

maximum.

Find the points on the curve y = x* + 1 which are nearest to the point (0, 2).

e a
Show that the minimum distance of a point on the curve -?—; + -b-]-» =1 from the originis a + b.
WX :

Show that the vertical angle of a right circular cone of minimum curved surface that
circumscribes a given sphere is 2 sin™! (Jf - 1).

Show that the semi-vertical angle of a right circular cone of minimum volume that circumscribes
a given sphere is sin™! (%) .

Show that the shortest distance of the point (0, 8a) from the curve ax? = ? is 22 Ji1.

Show that the triangle of greatest area that can be inscribed in a circle is equilateral.

(Hinls:ltBC is any chord then for the A ABC to have maximum area, the point A must
be on the perpendicular bisector of BC so as to have the largest height AD. Let mZBAD = a.

LetBO=0A=r.ThenamaofAABC='A=% |[BC| |AD| =% . 2r sin2a (r + r cos2a) = 12 sin2e.
(1 + cos2c). Then maximise A to obtain 2a = %)

DIFFERENTIALS AND CALCULATION OF ERROR.
Let a function f be differentiable on an interval (a, b). Using the notation y = f (x) we have by

definition of derivative
Bl lim &
T =f'(x)= =iy —151 ......... (1)

where 8x and 8y are increments in x and y respectively.

From (1) we can write

fin [%Ff'(x)] -0

Sx—0

or Sy=8xf'(x) +5x.a i
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where o is a function of & such that lim .= 0 as 8x — 0 and f* (¥) is independent of 8x. The first
term on the r.h.s. of (2) is the principal part of 8y. It is denoted by dy or df and is called the
differential of y relative to increment 8x.

Thus dy = 8x f* (x). _
Taking y = f (x) = x we see that dx = 8x h Ptk T g e 3)
sincef () =1 Hento iy =" () e -0 Ts ora SECastime L DS BRI e S e 4)

It is thus apparent that the derivative f * (x) of a function f is in fact the quotient of the
differentials df and dx. So f ‘(x) is also called the differential coefficient. Since ¥ . a is an
infinitesimal of higher order than 5x we have, from (2)

R W D~ T R ety o A R s e R St WA e T R S (5)
when 8x is small. '

Equations (4) and (5) can be used for the calculation of error or approximate values as illustrated
through examples. But first we have the following

Theorem 4
Let u and v be differentiable functions on an interval 1. IThen
(i) dutv)=dutde
(i) d (wv) = vdu + udo

(iii) d( ) ﬂa_ufﬂ , provided v=0

(iv) du=0iffuisa constant
The proofs are straightforward from the definition of differentials. As an illustration we

only prove (iii) .
Proof :
(iii) : Let y = — where u and v are functions of x. Then
Pt . :
Idy - [ET(U)] dx . from (4)
| du dv
L
dx dx g,
v’
[ g 0
—[vd dx udxdx]/vz
= (v du - udp) / v2.
- Calculation of Errors : .
If y=f (x) and 8xisan error in x, then the error in yi.e. 8y = f (x + 8x) —f (x). The relative error
s i'_y and percentage of error is ¥ 100. :
g Y
We use 8y = df =f" (x) dx to calculate y. 5
Example 13

Ify= ,}x + 1, find 8y and dy when x = 8 and dx = 0.02.
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Solution :
1
Here vy =(x+1)?
1 1

= 8y =(r+dx+1)T—(x+1)?
1 :
=(9.02)* -3 (putﬁng values of x and 6x)
=3.003331 -3
= 003331 (upto 4 significant ditgits)
dy =f'(x)dx

o~
-
+
—_—
S
e
=
-

@+1) 2 x002 (v dx =)

Example 14

The radius of a wire as measured by a screw gauge is found to be 1.26 mm. If the correct radius
is 1.25 find the approximate error, relative error and percentage error in calculation of area of its
cross section. '
Solution :

The correct radius = r = 1.25mm. Error in measuring radius = § r = 0.0lmm. Area of cross section
of the wire = A = nr2. :
Approximate error in calculation of A is 5A

~ dA

=t x 2rdr

=3.141 x 2 x 1.25 x 0.01 sq.mm.

= 0.0785 sq. mm.

2 2rrdr

Relative error = 22 5
A nr
g
r

_ o

- = 0.016.
125

Percentage error = _ﬁf x 100 = 1.6.

Note that actual error in calculation of A = rf (1.26)% - (3.25)2 } = 0.0788 sq.mm.
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Example 15

1

Find approximate value of (80.8 )I.

Solution :
1
Puty = x*
3 i
Thendy  =(x+8x)* —x*
3 1 1
=  (x+3x) =x* +8y = x* +dy

But dl;‘ = - x'7dx
;2 LR AT
= (x+&x)* %x‘+zx“dx
Now substituting x = 81, dx =dx =-0.2
we get

3

L 817 x (- 02)

1 i
(81-02)" = (81)* + 2

-
= (80.8)* ~ 3-0.0018 =2.9982.

I EXERCISE 8(e) II

1. Determine the differentials in each of the following cases. : .
e & > 1+vx
’(1) y = x> —1_ (ii) y=sin®x (iii) y= =
(iv) z=cos2t-2cot t (v) r= ]+s4in€i (vi) ¥%y=2
(vii) xp? +y?=1
2. Find &f and df when
() f(x)=2x2-1, x=1,8x =002
() f()=vx, x=16,5x=03.
(iii) f(x)=@x+1)?, x=8,8x=0.04.
(iv) f)=n(1+x), x=1,6x=0.04
3. Find approximate values of the following.
@ Y28 (i) Y63 (i) V4896
(iv) (1.99Y (v) 2302 (vi) sin 597

4. Find the percentage of error in calculation of the surface area of a spherical balloon of diameter
_ 14.02 m. if the true diameter is 14m. i

5. Find approximately the différence between the volumes of two cubes of sides 3 cm. and
3.04 cm. .
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6.  The height of a regular cone is 3 times the radius of its base. The radius of the base was wrongly
measured to be5 cm. where as its true radius is 4.88 cm. Find the relative error in measuring
the curved surface area of the cone.

*8.6 INDETERMINATE FORMS
(Additional topic for interested students, not for examination)

The quotient of two functions f (x)/g (x) is said to be in indeterminate form % as x tends to a

certain point ¢ if
im fy=0=m g@.

X—=>C X—C
We have earlier learnt that

1 lim_f(x) . :
im f() _ A5S , provided the limits on the right hand side exist and :’i‘__g(x)*&

¥—>c g(x)  lim g(x)
So we have to adopt some other methods to find the limit of f (x) / g (x) when ]x“i 48 (x)=0.

. lim . . lim g
G I x_)cf(x)mlstsandlsnotequaltqzeroand ey B g (x) = 0 then

lim f()
X—>C g(x)

=+ 00 O — 0,

& lim = lim = : :
(i) If x—)cf (x)=0and I_)Cg(x)—0therwnen'lakeusenfthe following theorem.

Theorem (L” Hospital’s Rule) (Pronounced as Lo-pital's rule)
Letf and g be two functions differentiable on some open interval containing ¢ such that g* (x) #
0 when x# c. Further letf (c) =g (c) = 0.

Then
im  f®) _lm f'®
x—c gx) x—cC g'(x)
provided the latter limit exists.

Proof :

Consider the interval [ ¢, ¢ + 1 ] for some h > 0. The functions f and g satisfy the conditions of
Cauchy’s Mean Value Theorem on this interval.
Hence we have an y € (¢, ¢ + k) such that

fe+h-f©) _ f'»)

gle+h)-gl) &'

fle+h)  f'(y) '

=L w f©)=0=g(c)

gern) T 8w (=1 $)
Further ¢ < y < ¢ + h implies that as ¢ + h — ¢ y also tends to c. Hence from the above equality we
obtain by putting x = ¢ + hand letting h — 0

lim  f() _lim ‘W :
X—=>C+ g(x) y—>c+ g'(y)
_ lim ['(x) (note)

Cx—rc+ g'(x)
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provided the latter limit exists.
Similar considerations applied to the interval [ ¢ -k, ¢ | would result in

im  fO) _lim [

x—c- g(x) X—=c-g'(x)

Combining the two results the theorem follows.
_ This rule can be applied repeatedly as long as successive derivatives of f and g continue to

satisfy the conditions of the rule and their quotients are in the indeterminate form % :

Note (1) The same rule is also applicable for finding the limit of {gﬁ"l when f(x) - + = or

(x)

- @ andg(x)—>+aoor—:aoasx—)c.Insuchacasethefunctionissaidtobeinthe

indeterminate form L asx—c
oD

(2) The ruleis also applicable for the indeterminate forms % and £ whenx —>®or-.

oo
(3) We define in an analogous way other indeterminate forms viz. 0 x %, 0 =@, 0, 1% and =°
For example, we define the function [ f (x) 18 (x) to be in the indeterminate torm wasx—» ¢
hm f (x) =« and hm g (t) 0. All such forms can be reduced to 6 or — form by

takmg logarithms or other s1mphfxcanon procedures (See examples) .
We shall not discuss the proofs of all these cases given in the notes as they are beyond the

scope of the book.
Warning : When we apply the L’ Hospital’s rule we take the derivative of f(x) and g (t)
separately and do not take derivative of the quotient f E ;
Example 16
Evaluate the following limits.
4 lim fanx v “Hm (1_, )
(1) PR (ii) A otx
Blabn- o e e
(i) X—rw % &) x> ¢f
Solution :
lim tanx (0O
— fi
0 =50 % (0 ormJ
_ lim sec’ x P ‘o
= e (by L’ Hospital’s rule)
= 1
o lim ( b ]
(ii) P cotx
_ lim sinx—-xcosx| (0 :
_1"'*0( xsinx ] (O form.] 2

_ lim cosx—(cosx—xsinx)
x=0 sinx +x cosx




| 266 Elemenits of Mathematics, Class-XII ]
lim xsin x 0 ]
& —— | = form
x>0 sinx+xcosx (0
_ lim SiNX+XcosY 20 -
T x>0 COS X+ COSX—Xxsin X TR
1
(i) Let y= x* (o form)
1
Iny = = Inx
= Y T
i Iny = - )l (ﬁ fnrm)
X X—3®o x ®
_lim - (/x) il
x—>wo 1
Hence In im y=1im Iny =0
x— X—>®
= lim y=d=1
X—>w
. 1
= im x_4
x>
0 5 (2
(iv) A wform
n-1
_ lim ﬂxx (_cg form]
X0 ¢ o«
a8l (Applying L’ Hospital’s rule successively)
X—>wo gr -
l EXERCISE 8 (f) I
(Not for examination)
Find the following limits.
1. lim tan ax 2 lim sinax
T x=0 x " x>0 sinbx
5 lim - Inx 4 lim l1-sinx
Cx>1 xto 22 ooy
5 lim X-—sinx 6 lim x -12x+16
" x>0 tan’x S x2 3x° -8 -4x+16
7 lim In(2-x) g lim y1-x -y l+x
T T " x>0+ Jx
g, lim 24x-3¥x +1 o lim _x*-3x+1

21 (x-1)°

X¥® 2y’ _7x" 45
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11.

13.

1z
19.

21

27

29.

31.

33.

41.

hm _41:_2.5-” +16
x>2  (x-2)
im € —¢ = 2sinx
x—0 xsinx
lim =T
X0+

-

x
lim g —€
x—=0 xcosx

lim
1 tan2x
x—0+ Shany

1

lim 1-%

x—>1x
lim [1 _1)
x—=>1 lx-1 Inx

lim [:r— 1’x2+?_r|
X —>

lim
x3x1D (taan_-tanx)
lim &Y
i

- 14X
lim smx)-e -
x—0 ( L' J

im ooty - cosecx)

x—0

2]
. [x2+2r—1)’
=0 \ x¥-1

' lim (tamc)”h"x

x>0+
X

fimt 2 -1

x=>0 ;; (1+x)-1

lim Xcosx-—sinXx

2 .
x—0 x sinx

12.

14.

16.

18.

20.

24

26.

28.

32.

38.

42,

Em In tanx
x—=>0+ Insin2x

iim In (1/x)

X—> 0 ng

i1

lim X
x® (x+2)"

3 s =1
lim sin_ x
X—® £

lim

x—>m/2 (tan) 05

lim LSinx

x—> 0+

X =300
)
x>0 \gin®x x
5 x_bx
lim g ,a>b
x>0+ Jx

1y In(1+x)
lim [93]
x—>0+




CHAPTER 9)

Integration

9.0

9.1

9.2

I fear the day that technology will surpass our human interaction. The
world will have a generation of idiots.

- Albert Einstein
Introduction

In the previous chapter, we have studied the derivative of functions and its applications.
If a function is differentiable then we can find its derivative. In this chapter, we shall deal
with how to find a function if its derivative is given. The process of finding the function
when its derivative is given is called integration and the function found is known as the
integral, primitive or antiderivative of the given function.

ANTIDERIVATIVE (PRIMITIVE)

If g (x) is the derivative of f (x), then f(x) is said to be an anti-derivative. (or integral) of
g (x) . For example, as cos x is the derivative of sinx, sinx is an anti-derivative of cos x. This
fact is symbolically written as j cosx dx = sin x. The symbol I (an elongated S) is used to
denote the operation of integration and called the integral sign. The function (here cos x)
to be integrated is called the integrand, ‘dx’ denotes the fact that the integration is to be
performed with respect to x (i.e. x is the variable of integration).

Observe that each one of sin x+31, sin x—?ﬁ , sin ¥+5.7-1143 has the same derivative,
cos x. So each one of them is an anti-derivative of cos x. That means, anti-derivative of a
function is not unique. In fact, the anti-derivative of cos x is sin x+K where K is any
constant, not necessarily the same at each occurrence.

* If g(x) is the derivative of f (x) (and so of f (x) + K), then f (x) + K denotes the family of all

anti-derivatives of g (x). Here K is an indefinite constant (though can be given any
particular value depending on physical circumstances) . Therefore, f (x) + K is called the
indefinite integral of g(x). We write Ig (x)dx = f(x) + K, K being the constant of integration
which is arbitrary. One may use any other symbol for constant like A, B, C, ......... ,4,b,
¢, A, u, etc. for the constant of integration.

If two functions F(x), f (x) represent the integrals of a given function g (x), then they
must differ by a constant.

Because F'(x) = g(x) and f '(x) = g(x),

L F@-f@]=F' @)-f (@)=g@®-g®=0.
Hence, F (x) - f (x) must be a constant.
SIMPLE INTEGRATION FORMULAE .

The following formulae for integrals are directly obtained from the corresponding
formulae for derivatives.
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9.3

Proof :

(i) Letf(x)dx=F (x)+K, and g (x)dx=G (v) + K,
So that F’ (x) = f (x) and G’ (x) = g (x).

_[f(x) dx + _[g (¥)dx=(F(x) +K) £ (G (x) + K)
=F(x)tG(x)+K,whereK=K K,

n+l

I x"dx=n+l

I %dx:!n x| +K
Icosxcix=sim:+l<
Isinrdx=—cosx+l(
_[seczxdx=tan:c+l(

J cosec’x dx = - cotx + K

J- secxtanxdx:sécx+l(

f cosec x cot x dx = — cosecx + K

'f e’d:.c=e‘+K

X
TR P L
Iadx—hm+l(

1

_[ rﬂl-xz dx =sin'x + K or-cosx +c¢ -

1 -

_[ T adx=tan'x + Kor—cot'x + ¢

Yx?

1

j 2 1dx=sec“x+l< or —cosec'x + ¢

X

ALGEBRA OF INTEGRALS

0 [fwrg@ide= [fedet [gode
(ii) jkﬂx) dx = Af (x) dx, for a constant A .

But %[F(x)iG(x)+K]=F' (x) G’ (xlzf(x)tg(i}.
Then j’[f(x):g(x)]4x=1=(x)1(;(x)+1<.
Form (1) and (2) [[f()tg ) Jdx= [ f)drs [g) dx.

$K @mi-1)
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d d '
() —[n[fede]=h -([f@dx)=2f ).

[af@)yde=2 [f(x)dx
Combining the above two rules it can be established that

I[ A f @+ 21, () + i AL () ]dx

=0 [ @ de+ 2, [f, ) dx + 42, [f, () dx.
Example 1: Integrate the following

| A IR
(i)_I (x® + x>+ x+1)dx (ii)I {J;W] dy

f

(iii)j [4cos-r~3e" :xz ]dx (iv) j' 62 (x + 5)° dx

2 : __x“ : Ix ;
| (v) _{ 5 tan‘x dx (vn)_" = dx (vu)_[ e dx
Solutions :

(i) I (x"+x‘+x+1)dx=j x"dx+j x’dx+j xdx+f 1.dx

= 2. la- + 2= 4 x + k [The constant of integration 'k' is mentioned in the final

A
7 2
answer|

3 1 .
) | { J’+—+—-—’-l~]dy= [}'5+y'5+y‘2+y'3]dy

1 | .
R 241 “3+1

1
3t 3 1
e JFl y p y }‘ = -.-2 a2 T o 2
N Yo —2+l+ 3 +K = _-5} +2yi—y y +K
jZ~+1 —:,Z—I-l

3 yJ; + 2\/— z +K
Remark: The integral is expressed in that variable in which the variable of infegration in given.
e .

(iii)j [4cosx—3e‘ %]dx 4.[ cosx dx - 3.[ e’dx+21. vi-x*

=4 sinx -3¢ +2sin'x + K

) [ 6x@+spde= [ 600 +10v+25) dx =] (6x+60x*+150x)dx

=6 dx + 60 |  dx +150] xdx
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5] 6
= 6%+ 60 +15—0x" +K= x° + 12r5+—x" + K.

(v) Herea trigonometnc formula helps to convert the given integrand to standard form.

_f 5 tan’x dx = I 5 (sec’x — 1) dx=5_[ sec’x dx-5 _[ 1.dx

=5 tanx - 5x + K.
(vi) When the highest power of the variable in the numerator is equal to or higher than
that in the denominator in a rational fraction, a division will help.

4

x2+l=x2_1+ A

3

I x’i jé = .[ xdx ~ j .l.dx "‘J. leJrl'dx =f3——x + tan™'x + K.

wii) [ S ax=[ (2 }'dx—uu( -£+1<

3
Points to note :
(i) Like differentiation, integration is an operation on functions.
(i) Differentiation and integration are processes

such that (a) %[! f(x)dx ]: f(x)

and (b) I [ (x)]dx f(x)+c

(iii) The integral of a function is not unique. Two integrals of a function differ by a constant.

(iv) If the degree of a polynominal is n, its integral is again a polynomial of degree n+1. But its
derivative is a polynomial of degree n-1.

(v)  There exist functions which have no antiderivating, eg. f(x) = 0, when x is rational and
fix)=1 when x is irrational. In either words integrals of all functions cannot be found.

(vi) Geometrically indefinite integral of a function represents a family of curves placed parallel
to each other having parallel tangents at the points of intersection of the curves of the
family with the lines perpendicular (orthogonal) to the axis representing the variable of
integration. For illustration, draw the graphs of the family F(x)=x%+c, ceR which is the :
integral of f(x)=x and consider their intersections with x=k. -

EXERCISE-9(a) |

Integrate the following :
L@ [ 24 i) [ 3% dx Gii) [ 42 dx

(iv) J' dx (V)I % dx. 2 (vi)j [2\/;*73;]113:

i) | :_-\I/de (viii) [ (X“T-iﬁ]dx (i) |
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3 1) : . -
x| |7 ) i) | (xS dx xii) [ (c+3)(2-x) dx,
(xiii) | ’Eﬁz dx (xiv) | L——)———”‘[’_‘xfz”” dx.
4 dx
s S I cosx dx (ii) j o =
dx i siux‘
(ll.l) -‘l l—COSE X (].V) I ,COS': 5 dx
2cos x ) I-sin’ x
V) .[ l-cos® x (vi) I in’ x dx
< sin® x cos 2x
(vii) I - Trecsn % (vil) I cos x+sin x
: cos” x-sin’ x cos2x
(%) I cos x—sinx dx (x) I sin’ x.cos” x dx
_ a’ sin® x+b’cos’ x .
(xi) I s T dx (xii) I (tanx + cotx)’ dx
i %
(xiii) I 1:2:: ; dx (xiv) .[ sec’x . cosec’x dx
asin’ x+bcos” x :
ooo) - foroy (evi) [ yfTesinax dx
(xvii) | yficos2x dx (xviii) | |Treos2x dx
. cos3xcos 2x+sin3xsin2x :
ix) | i dx (xx) | (acotx + b tanx)* dx.
3. ) [ @ +2ax @ | 3%ax
_ 2x
g 3 o e +1
(iii) _[ @t dy (iv) I a* dx (v) I = dx
- 5 ? -w 3x: e x6
3 =95 I [ \H: 1 -Hl'l]dx (ii) I % 751 dx (iii) I o 3 dx
et ex2 ’ A x* ﬁf x2 -
. \ l-x - e Neairres
(iv) I Yl dx (v) I [ : ?=1—x2 } dx  (vi) I = [ dx
5. Find the unique antiderivative F(x) of flx)=2x"+1, whese F(o) = -2.
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9.4 INTEGRATION BY SUBSTITUTION.

When the integrand is not in a standard form, it can sometimes be transformed to integrable

form by a suitable substitution. The integral
I fl1g ()} g (x)dx can be converted to

| f(8)d6 by substituting g (x) by 6, so that if
[ £(®)d0 =F (8) + K, then

J‘ flg(x).}g’ (x)dx=F{g(x)}+K.

This is a direct consequence of chain rule, for

d
" [Fig(x)}+1<]——[r=(e)+xl — f(e}@ =flg@} g @.

dx

There is no definite formula for substitution. Keen observation of the form of the integrand
will help in choosing the function for which substitution is to be made. However, one must be
sure that the derivative of the function so chosen must be present along with dx as in the above

case. Occasionally, mere adjustment of a constant may be necessary.

Any symbol for variable viz. s, t, u, v, w, x, y, z maybbe chosen for substitution other than the
variable of the given integral. However, after the integration is over, the original variable should

be put back .
Example 2:
| Gax+bpdx,nz-1.

do
Put ax + b =9, so that ?h‘-— =a or dO=ad x.

Hence,j (ax + by* dx :%I (ax+l:)“tm‘x=%_[ 0" do

s s AP T

a n+1 a n+1

+ C putting back for 0.

(ii) I cos (ax + b)dx = lj cos (ax +b) . ad x
a
=lj cosOdB,putting ax+b=0andadx=do

sin 8 + C, where C is an arbitrary constant.

:ai»- h|.—-

sin (ax + b) + C, putting back for 0 .
Similarly,
_[ sin (ax + ) dx = - %vcos(ax+b)+c

I secz(ax+b)dx=;1- tan (ax + b) + C

I cosecz(a:rw)dx:—-}; cot (ax +.b)+C
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(iii)

(iv)

)

_ I cosec x dx =I]'

I sec (ax + b) tan (ax + b) dx = i sec (ax +b) +C
I cosec (ax + D) cot (::,;: +Dydx=- % cosec (ax + b))+ C

I SAXHD 20 1 p0xt+b ¢
a

_[——E— =_-l sin! (ax +b) + K,
,/1—(su+b)2 o

j- e =-]' tan"l(ax+b)+K
1+ (ax +b) a

g d
.[ i((_-:; d.\‘=! _Be- 'P“ftﬁ‘gg(xhﬁsothat% :g' (t]::,g’(\)drzde

=In |6]| +C=In lg @] +C.
Taking different functions for g (x), we get

dx 1
M b =—In|ax+b| +C.
ax+b a ax+b a
: : d (si
I cot x dx =J Of;sf:(-dx=j {émx) =In |sinx| +C
sin x ) sinx -
tan
I tan x dx =I R = I d(sec"c) =In |secx| +C
secxy secx
>cx (secx + tan ) :
j' Jh :I secx (secx + tan x) dx=_[ secx tanx + sec X e
secx + tanx secy + tanx

j d (secx + tan x)
‘secx+tanx

= s8¢ 1an 2 =
In |secx+tanx| + K In|tan[4 2)|+K

2
cosecx (cosecx — cotx) dt"J' —cosecx cotx +cosecx

‘cosecx —cotx - cosecx —cotx
d (cosecx — cotx
s I ( ) dx

Cosecy — cotx

x :
=In |cosec x—cot x| + K =In|tan 5 | + K.

o+ 4y 1 5x* + 20x°
[ A g 1
x +5x +7 5

J-de

e
X +5x +7

takmgG 15 + 54 + 7 s0 that dO = (5x* + 2083) dx = 5 (¢ + 4x%) dx

In |®+5x+7| + K

I sin’x cos x dx = I 67 d0, putting sin x = 8 so that cos x dx =46 .

8* 1
=—+C= = qm3x+L

8

2 :
(vi) I 2 " * tan x sec?x dx = J- ¢® do, putting tan®x = 0 so that 2 tan x . sec2x dx = do

2
=P+ C=e""+C.
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A (tan ' x)’ S . 2 1
vii o e 23 dz, taking tan™! x = 2 so that dx = dz
( )I 1+2° '[ 1+x°

% Zd‘ _l _i 4 -

=— +(C=— (tan'x)*+ C.

4 4
2 ;

(vijj)_[ _3(1?1:() dxzj Bszz,puttinglnxzzsothat%dx=dz.

=22+C=(nxP+C.

l EXERCISE 9 (b) I

Integrate the following : (In some cases suggestions have been given for substitution)

1. G [ sin3xdx i) [ cosaxdx
(iii) [ cos(@-7x)dx (if} [ sin % dx
" ] _ R
(v) I sec14xfix ‘(VI) I cosec? = dx
o S SR o L13 T n —
(vii) J. sec (x +2) tan (x + 2) dx (viii) _[ cosec (x-i—) cot (x-lz) dx (x+——zJ
(ix) I x2 cosx® dx (x®=2) (x) I et seceXtaneXdy - (X =2z2)
w [ = (e,
2 () J. sinxy cosx dx (sinx = 9) (ii) I tan’x secix dx  (tanx = 9)
cosec x : : sin x
(iii) I T dx (iv) I v % dx
; 2
(v) _.' coa:._l:r dx _ (vi) I Mﬂx—) dx (Inx=2)

sin x
(vii) I J1-sinx cosxdx.
% @ I xyx'+3 dx (x2+3=9) (ii) I 2?;:

x2+1

(i) [ ﬁ dx i) | T (@ +3x+7=9)
@ [ (#-32+1)f @3 -3ndx, (¢-32+1=9)

4 (i) j X dx (i) [ &7 ax
(i) | i % i) | SRl =3

v) _[ aZX gy wi) [ 24 xdx, (2=9)
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(vii) [ @0 sec2xdx  (2tanx=9) (viiy [ _‘ex_j'dx, .(e"—2: 9)
(e-2)
@) [ £ gindx d..

P | b
& @ | L (i) dx

;]1—.:2 | J ,}1—(x-1)’.

i) [ goc LX) 2

: dx
x;sz -1 s I xll + (In x)zl

dx dx
et TS In L
¥ I i+ 2x 2 e ( tegratef (x+1)2+1)
6 @ [ tandvax i) | cot % dx
(iii) I sec (2x + 1) dx (iv) I cosec 7x dx
W) [ 2xcot(@+3)dx, (2 +3=2) (vi) [ ¢ tane¥ax
(vii) | (sec2x-3Rdx.
- o gl : " :
7. M [ > @) [ 3% ax
(x+1)In(x2+2t+2)
() '[ X’ +2x+2 e
- sin x L pt - sinx
8. (l) I m dx, (x+a=2) (I]) I —cos (_‘t’ > (1) dx
tan x + tana -
) iere s

9.5 INTEGRATION OF SOME TRIGONOMETRIC FUNCTIONS :

If the integrand is of the form sin mx cos nx, sin mx sin 71X or COs MX COS NX, a trigohometric
transformation will help to reduce it to the sum of sines or cosines of multiple angles which can
be easily integrated.

sin mx cos nx = % . 2 sin mx cos nx = -;- [ sin(m +n) x +sin (m-n) x|
sinmxsinnx:% [ cos (m—n)x—-cos(m+n)x]
cosmxcosnx:-;— [ cos (m—n)x +cos(m+mn)x]
In case where there are more than two factors, successive transformations will help.
For example, sin mx cos nx cos kx = % sinmx[cos(m+k)x+cos(n-k)x]
= % [smm_xcos(n+k)x+sinm5rcos(n-k)x] *

[sin(m+n+k)x+sin(m-n-k)x+sin(m+n-k)yx+sin(m-n+k)x].

1
4
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Example 3:
Evaluate (i) I sin 3x cos 2x dx (ii) _{ sin 2x siny dx
Gii) [ cosdxcos 3xd (iv) [ sin3x. sin2v cos x dx.
Solution :

(1) I sin3xc052.tdx=%j 2 . sin 3x cos 2x dx

:% I (sirt.'i:r+sinx)dx=% (—% cm‘.Sx‘-cosx) +(“=—- —1% (cos bx +‘5cosx)+C.
(ii) _[ sin?.r.simdx:% I 2 sin 2x sinx dx

=%I {cosx-cos:ix)dx:%(sinx—%sina.\-)«»(:

—l(Ssim:—sinSx)-t-C.

[AlsoI sin2.rsinxdx=j 25in2xcoa¥dx=_[ 2z%dz, putting sinx = z

=2 B4+K=2 sidr+K
B s 3

(Verify if the results obtained in the two processes are consistent.)

(i) | co'sétcos.’ixtir:% | (Cos7x+cosx):ix=—;- (-%sin?x+sinx) +C
=ﬁ(sin7x+?sinx)+c.-
(iv) sin3x sin2x.cos4x=-;- (cOs X — €08 5%) cos 4x

(cosx cosdx — cos 5x cos 4x =Z(2cos4_tcosx 2 cos 5x cos 4x)

Il

-:-l»- ml-s

(cos 5x + cos 3x — cos 9x — cosx)

&

si.n‘x.-si.ans,‘osctxdx:% I (cos 5x + cos 3x — cos 9y — cosx) dx

[%smS:H % sinSI--% sin9x—sinx] &€

shl’—ﬂ

180 [9sm5x+155m3r 5sin 9x - 455nv:]+C

Higher powers of sine and cosine in the integrand (sin™x cos™x, m, n nonnegative integers)
may be treated in the same way or better may be simplified to sum of sines and cosines of
multiple angles by using multiple angle formula.

For example,

sin2x = sinx . sinx = % (2sin:c.sinx)=% (cos0 - cos 2x)

(1 - cos 2x) as has been done above.

M| ==
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Butsinx = % 2sin?x= & (1 - cos2x) is a simpler process using the formula of cos 2x .

2
Similarly, cos’x = % (1 +cos 2x)
cos¥x = L . 4cos%x = - (3 cosy + cos 3x)
4 4 -
sin®x = -1- 4 sin®y = % (3 sinx - sin 3x)

2,0 (1+cos2x)’
costy = | 2898 x] = [ ) =% (1 + 2 cos 2x + cos?2y)

2 2
%(2+4L0521+2L09221') %(3+_4c0$2x+c054x)
o oL 2
; 1— cos2x
sindx = (2512 "] =( L;:s ) =% (3 — 4 cos 2x + cos 4x)

sin2x cos2x = % ( 4 sin?x cos?x) = i— sin22x = % (1 - cos 4x)
sin®x cos?y = sinx. % sin?2x = % sinx (1 - cos 4x)

& Ilg (2 sin - 2 cos 4x sinx) = -.1% (2 sin — sin 5% + sin 3) .

Example 4:
Integrate (i) I sin®x dx (ii) I cos’x dx
(iii) | sindydx (iv) | sindxcosdxdx.
Solutions: . I
[ sinvar = | % (1 - cos 2x) dx = -;. (x—%sin}lx) +C
:} (2x - sin 2x) + C.
(i) I cosx dx = % I (3 cosx + cos 3x) dx
= -i—l(Ssinx -% sin3x) +C= 1— (9 sinx + sin3x) + C.

[ )dx | [1 msz") dx

(i) | sinfrdx =

|
S

':%j (1-2cos?.r+cosz2x)dx=%j (3 - 4 cos2x + cos 4x) dx
g 4 . 1,
= — 3x-— N 2%+ — 4 + G

- [ 3 sin2x + - sin x]
=%[llx—8$m2x+sin4);]+c.




l Integration : 279

(iv) I : sin?x cosdx dx = % j (2 sinx cosx)? dx =
1 : ; ;

=== 1§ iy gr= 3 - :

- I 4 sin2x dx = f (3 sin2x — sin 6x) dx

e ol g ~oszx+lmsﬁx]'+C=i(..-.os_ﬁxwe;coszxnc.
32 L7 6 192

When one (or both) of the powers in sin™x cos"x is an odd positive integer, there is a more
convenient way for integration. If # is odd, keeping one cosine factor (to be the derivative of
sinx), the remaining even power of cosx can be converted to sine function. Then we get a
polynomial (or rational fraction) in sinx with the derivative (cos) of sinx. A substitution for sinx
will help to integrate the function. Similarly, if m is odd, keeping one sine factor, the remaining
even power of sinx can be converted to a polynomial in cosx and a substitution for cosx may be
made.

Example 5:
Evaluate,

(i) J sindx dx _ (ii) I cos®x dx
(iii) I sintx cos3x dx (iv) _[ sindx cos?x dx

5 :
W [ 2Z (vi) [ tan‘0do
sin® x
. sinbx+sindx
(Vl‘.l} I e e b LTIE
cosbx + cos4x

Solutions :

(i) I sindxdx = I (1 - cos?x) sinx dx.

= I —(1-22) dz putting cosx =z

=—z+%+c=—cosx+loos3x+c.
(ii) cos’xdx =I (1 —sin?x)? cosx dx
= [ (1-022d0 putting sinx =0
= | (1—292+B4)d9=9—%83+%05+C
YRy S N ST o
e 5
(idi) J sinx cos®x dx -=.I sin®x (1 - sin?x) cos x dx
' = [ et -e)do puttingsiny=0
& 4 e b s
= [ @ -09d0= < 05—~ 074 C
' ) 7
1

=1 ginsy- L sin7x + C.
5 7
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(iv) I sinx cos®x dx = I sin?x cosx . cosx dx = J sin3x (1 - sin?x)? cosx dx

= [ ©*(1-0)2d0  putting sinx=6

4
= [-(93-295+9?)d9=%-— 0% +

sindx -

i L sinby + L sinfr + C.

4 3 8

Alternatively, sin®x cos’xdx = | cos®x (1—cos®y)sinx dx
b

= I 22 (1-2%)(-dz)  puttingcosx=z

=I (—:5+z7)dz=lzﬂ-lzﬁ+l<
8 6
=Lostr-1 cosfx+ K.
8 6
cos’ x . 1-sin’x ; e,
(v) I C—— dx :I ——— cosxdx = J. d9, putting sinx = 0
sin' x sin x '

=3 =
= (9-4-3-2)de=9—-9— o
-3 -1
1 1 1 1

3 +C.
30° 0 sinx 3sin x

1 5
= cosecx - — cosecx + C..

&

Alternatively, J' ms X dx= I cot>x cosecy dx = I cot?x . cotx cosecx dx
sin x

-——I (Losetﬁx—l)cotxcosecxdx:‘[ (z2-1) (- d2) putting cosecx =z

3

=I (l—zz)xiz:z—% +C
‘:COSECJ‘C—% cosecx +C.
o) | tan0 0 = [ tan®. tan? do - j' tan0 (sec26 — 1) d0
=I tan"'e.seczede—j tan48.d9=%tan5e—_|' tanzﬁ(secze—'l.)dﬁ

=~51- tan59—j tan?0 sec20 do + I tan2 d9=% tan59——§ tan®0 + j (sec?0-1) do

(o

= -;- tansﬁ—%— tan30 + tan0 -6+ C.
sin 6x + sin4 :Si i . i
i) [ SEEEERE g EENEDE 005K = [ sindx g,
Cco8 6x + cosdx 2.cosbx. cosx : Ccos by

n |cos 5x| +C=%In |sec5x| + C.

| =
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I EXERCISE 9 (¢)* I
Integrate the following :
15 (1) I sin 4x cos3x dx (ii) I c0s 5x cos2x dx
(i) [ sinvcosavdx (v) [ sin6vsin3xd
: .
(v) I cos 4x cos 5x sin 2x dx (vi) I sm%wqidx
(vn) I cos 2x Cos 2.dx (viii) I sin 5 sy1 3 oS 1 dx .
2. (i) J- cos?x dx (ii) I sin®x dx
(iii) I cosx dx (iv) I sin®x dx
(v) I cos’x dx (vi) j sin®x dx
(vii) I cos®x sindx dx (viii) I sin?0x cos3x dx
(ix) I ﬂ‘T{ dx (x) I cotx coseclOx dx .
: cos X -
(xi) I sec¥x tanx dx (xii) I sindx sec4x dx.
3 @) I sinty costy dx (ii) I sin3x cos?x dx
(iii) I cos2x sin3x dx (iv) I sintx cos®x dx.
4 (i) j tan®0 sectd 40 (i) J’ cot0 cosectd do
(iid) I secl10 tand do (iv) I cotd cosec”0 do .
(v) I tan do (vi) | cortode
+ (vii) [ tan%0do (viii) | cot0 do-
5. ( Ismax sin bx P (i) J-c?ﬁpx+cu§qx
cosax — cosbx : sin px + singx
(i) Ism 4x — sin 2x = (iv) J‘ : sin 2x i B
COs X acos x+bsin x+c¢
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9.6 INTEGRATION BY TRIGONOMETRIC SUBSTITUTION :
The followﬁlg trigonometric identities can be utilized to simplify certain forms of functions
in the integrand with trigonometric substitutions. -
1-in?0 = c0s28 (or 1 - cos?6 = sin?0)
tan20 + 1 = sec20 (also cot?d + 1 = cosec?0)
sec2 — 1 = tan?6 (also cosec6 — 1 = cot?8) .

The irrational forms J;’— 2, sz +a, sz ~a' can be simplified to radical free
functions by putting x =a sind, x =a tan®, x = a sec0 respectively (or x = 2 cosB, x =a cotf, x =a
cosect) respectively). The substitution x = a tan8 (or x = a cot6) can be useful in case of presence of
x2 + a2 in the integrand, particularly when it is present in the denominator.

Example 6: _
) [ == i) [ =

: d.

sl I _;;fu;; X +a *+a
: d dx .
e I s e

(i) Letx =asin®, so thatdx =acos® do and 6 = sin~! =
a

Solutions :

acos®dd j‘aoosﬂ

e de=]'de

s = dx =
; I Jaz_xz IJaz—RZSinIB

=04C=sin! £ +C.
a

(ii) Letx=ﬂtan8,sothatdx=asec20dﬂam9=tgn‘1§.

j dx j‘ asec’ 0

1 1 1 z
= d8=|=-d6==-0+C==tan”! = +C.
v+at atan’0+a Ia a

a a

(iii) Let x =a tand, so that dx = a sec) do

2 2
asec 6 46 = J'asec 0
tan’ 0 +a° asec

2
1”‘_2+1+£{+c
a i

2 =
xﬂ/: +a +C‘=!n(:r+ ‘+a’ | +K (where K=C=In |a|)

d&:fsecede

I JX’-!-E’ 7 IJQ:

=In |secO+tanB| +C=1In

=In

(iv) Let x =a sec, so that dx = a secO tan6 dO

dx _ [ asecOtan® _ fasecH tan®
.[Jx:_ﬂz -J'Jazsecze—az de“.[_nifaﬁe_de

2
-’5+J%—l\ +C
a a

=J’ sech d =In |sech + tan6 | +C =log
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2 - 2|
X+qx ~—a
HERE AT T R

a

=h’[ =£ﬂ

x+1fxz—a’| + K.

(v) Letx =uasech, then 0 = sec! g
a

j asect tan 6 46 = J-asecﬁtanﬂ
asecO.gtan @

de
asecO ya sec’ 0 —a’

J‘ dx i

; :J::,,{:r’—a2

=1 fao=lo+C=dsect X 4
a a a a

The results obtained above can be used as standard formulae.

dx Loy
1 Iﬁ- =sm1§+C.

2 7 =-1~tan'1-—+C.
a? +x? a a
| & e
xx*-q®> @ =
4 I 2 =In [x+yx* +a?| + A

xt +q*

dx
I— =In x+\jx’—a’ + A
yx?-a? l Te il

Example 7 :
Integrate
I dx e
2x
\f25—16x2 £k
dx : [ cos0de
i) |—— G5 |~ em——
’[x o | I\f‘!sinzﬁ-l»l
) J- x+5 d
x+6x-7
Solutions :
dx 1 dx I oo gt
—_ = | Y—— = —gin"} —— +C
J‘\/25—16x’ 4 J I(sz ok By
=] -x
<+
i sin~1 4; +C, using formula.
ex dz \ -
(11) J- 21+9 dx=jm (wherez:e"‘}
=ltan1 2 yc= 1 tant [iJ +C
3 3 3 \ 3

(whereK=C-In |a|.
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4sin’0+1

=-1—In
2

sina+Jsm’e+%‘ +C..

x+3+2 dx=I z+2
2

xX+5 e ; R=r%
% IJstx-? 9k I;ﬂ(na)’-- 16 V2 -16 dz’punmg,ﬂs ;
. z dz :
4 I;}z’ -16 de‘I;]z’ ~16

_1(4E-19 ¢ dz
| 2IJz’-16 : IJ;’-ls

1 1du dz 2 : : :
== |—= +2 (where z* - 16 = u in the first integration)
2 IJ; j iz: _16

z+42° —16\ +c
= ‘122-16 +2In z+Jz2 -161 +c

= J(x+3)" =16 +2iIn x+3+1}(x+3)2-16| +c
= yx* +6x-7 +2In

=u +2In

x+3+4x’ +6x-7

l EXERCISE 9 (d) I
Integrate the following :

3x
1. @) [ﬁ; | (ii) jﬁ dx (% =2)
| s '[Jc;;‘25?:(]11:(:)"t o I = »
(v) '[_3-6‘/—3:{__:—: dx (P=2z) i =g

+C
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(vii) j

\’5—3:2~4x

2 (i) _[ 3xf"‘

ri(!n x)* +25}

(i) i
xin xJ(In x)’ -4

v) J‘ﬁ? (7 =z)

dx
(x+1}Jx2+2x—3

) IE%
(iii) _" :?J%__ZT_Q
® [ Jﬁ ax
(vii) J..J:;_:‘::-—g dx
W [ J«th_-s
(i) &

J‘x;i(fnx)z—o! et
(v) j‘ era_ (va =2)

(vii)

(x+1=2) (viii)

(viii) I e — dx.

(i) J'—gi'—-—dx @ =2)

o) [t

(vi) j‘3f*': dx

x+5
x* 4 6x+13

(ii) IE (@ =2)

(iv) secH do
gl IsmBJManB 1

(viii) [

x*+3
(vi) Ix P dx
X’ +2x+ 4 -
(x+1)\(x’+2:—3
2 4e*
e
(iv) do
sin” 0 y/cot* 0 + 2
¢ 3x+4
o et
(vii) J‘ 2x + 11 - G i)

x* +10x +29

(ﬁ}'fgﬁ_—;ax
cosO do
i J'atm GJmsecB -4

v [ m dx
(vﬁj) j‘::-: +x22x_+42 &

x+7

oL et
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9.7

INTEGRATION BY PARTS :

Ifr9 and  are differentiable functions of x, then
dw s
=g 22 i

(9( = dx 2 dx

dm d a9

gdo _d a3
o Fadue o e

Integrating both sides,
_[s LLP jd (Sm)dx-j'm 2 4

®»3 - Io)-—-dx

Setting ‘;: =U,0= Iudx,the result can be written as

Ju 9dx=(Jludx)x9-J-Uud,r)x§—ii\' ......... (A)

This rule is called the rule of ‘integration by parts’ and is used to integrate the product of two
functions.

In words, Integral of the product of two functions
= (Integral of first function) x second function
- Integral of (integral of first x derivative of the second).
Briefly, Int. of product = (Int. first) x second - I (Int. first) (der. second) dx .

Application of this rule does not end the work of integration, but leaves another integral . If
this remaining integral is easier or simpler than the original one (integral of product of two
functions) the rule has been properly applied. The success depends on the proper choice of the
first function (function to be integrated in both terms on the right of (A)) and the second function
(function to be differentiated in the second term on the right) .

In fact, since «89 = 9u, ‘first’ and ‘second” have no significance of order of writing; these two
terms are used merely to fix the idea that one function (first) is to be chosen to be integrated in
both terms and the other (second) to be differentiated in the second term on the right of (A) .

2 2
For example, in integrating x ¢* as I:r £ dx = —1‘2— & - I %g" dx, the rule has been applied
without proper choice of ‘first’ and ‘second’ function and the resulting new integral is more
difficult than the original one. In this case, ¢* should be chosen as the ‘first function’.

Then, Ie“' xdx =(J.exdx)x—I (Ierdx] :’; dl‘—‘t’t x-je“'.dx

so that the resulting integral is easier than the original one and can be easily integrated.
The following table gives a proper choice of ‘first’ and “second’ functions in certain cases.
Here m € N, n may be zero or any positive integer. 2

Function to be integrated First function Second function
x™ cosx ' CosX ¥
A" sinx sinx x-
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X" (In x)m x® (In x)m
x sin~1x - xn sin~ly

X cos~ty By 1 cos™lx
x™ tan~ly an tan-lx

Usually from among exponential function (E), trigonometric function (T), algebraic
function (A), logarithmic function (L) and inverse trigonometric function (I), the choice of “first’
and “second’ function is made in the order ETALL

Example 8:
Integrate (i) I:«' cosx dx (i) quczexdx
(i) J.tan_lx dx (i) j(fn ¥ dx.
Solutions : '

(i) Ix .cosdxy = (Icosxdx) .x-—I Ucosxir) X % Ldx .

= x sinx — jsin.t .1l.dx= xsinx +cosx + C.
(ii) J-xz Kdx = Uexdx) ..1*3—J. Ue't dx] f; (x2). dx

:x?e"—zj';e”dxﬂze“-'z[ (J* ax] .x;J' (Je ax) A

=x2 -2 +265+C
=@x2-2v+2)F+C. -

When the integrand is x" ¢* , the rule of integration by parté has to be applied n times
in succession followed by an ordinary integration. Similar steps are to be taken when the
integrand is either x™ cos ax or x™ sin bx .

(iii) Itan"x dx = II. tan~lx dx . (here "1’ is the first function)
=x.tari‘1x—'-‘.x. 12dx
1+x
=y tanlx— 1 I sz dx
1+x

=x'tan"1:r-% In(1+x%+C.

When sin™lx, cot™lx, tan~1x etc. or logx is present alone in the integrand, 1 = x° has to
be taken as the first function.

) [n' dx = [1Lanapdr=x. nep- [x 2002 g,

=x(lnx)?-2 Il. Inxdx=x(nx?-2|x.Inx- Ix. -l-dx]
X

=x(nxP-2xInx+2 Idx

=x(nx)-2xInx+2v+C
=x[(nxP-2@nx)+2]+C.
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When the integrand is of the form & { f(x) + f* (x) }, the integral is &* f (x) which can
be verified by differentiating the later. Using integration by parts

j'e-‘f(r)dxzex.f(x)— J'e" S () dx+C
S0 Ie’{f(xh-f‘(x}ldx':exflxhc.

Any function ¢* g (x) can be integrated in this way if g (x) can be expressed as the sum
of a function and its derivative.
Example 9 :

- 1+ sinx p o UEInY
J‘e" dx = J.e" ——dx+j'
1+ cosx 1+ cosx

X

1+cosx

(obser\.'et.l'xaiii [ sinx ]: 1 )
. dy \ 14 cosx 1+ cosx

V- J
=ef I [ gracs [
1+ cosx 1+ cosx 1+ cosx

sinx
= —=——— 4+ C.
1+ cosx

In some cases, integrating by parts we get a multiple of the original integral on the right
side, which can be transferred and added to the given integral on the left which then can be
evaluated.

Example 10 : _
Evaluate (i) I ™" cos bx dx (if) I ¢ sin bx dx

(i) j Jat-x* ax (iv) j V¥ +d dx

(v) Jl ¥-a dx

Solution :
ftl.\' edl,l’
(i) ‘Ile""'r cos bx dx = -—;-— . cos bx - IT (- b sin bx) dx
ax
=% cosbx+ L Ie‘“ sin bx dx
a a
ax - ax ax
=& cosbx+ L [e—sinbx— j‘e__ (bcosbx)dx]
a atoa a
ax 2
=5 cosbx+ % & sin bx - -b—z- Ie"xcosbx.dx+c
i a a a
bl‘ eﬁt
= l+-.;J Ie’“ cos bx dx = = (a cos bx + bsinbx) + C
a a
305 : 3 , 2 i
.',Ie"-‘” cosbxdx = - (acosbx+bsinbx) +K, whereK= ——. ... (1)
a +b a +b
(i) Similarly j'e*“ sin bx dx = f:; PR S TR A @)
a’+ :




' - tegration ' 2ﬁﬂj

(iii) I\W R - II. at=x? dv=x \/u" 3 iy [ﬂﬁ-—‘g*l——

=X ]fa" Sty j’”.l (“ —: } dx,

:i' =

= ..‘ uf-J'J”'fz_\ J“frf oy

i T AN
ZI\IH 2 dv=xqJa’-x° +n‘2j L =y oa' =2 +adsin! 3—_+2('.

]

=5 I,fu =xt d\:: = Jat-x' ¥ = gin? — + C. =)

Similarly it can be pmwd that,

1

I\/ R '—. \[ +a® & % n .\'+\[.\'!+n! +C vivveiia 1)
I\f.\-l—«: dy = l;— \f.\" e f;— In .\'+\}.\'2—ﬂz il e b 8 SRR (5)

The results established above in (1), (2), (3), (1), (5) may be used as formulae.

EX'ERCIS‘E 9 (e)

Evaluate the following :
1 i [a+x e i) [x'etdy

(i) J'.r-' AN : (iv) I;:a,wz)’ o2X i
2 (i) I,\' siny dx (i1) I\ cosy iy

(iti} I * simax dy (iv) I.\' Cosex dx

(v) J.n sindy dy (vi) jz.\‘ sin 2x cosy dy

(vii) [ 2v cos 3x cos 2x d (viil) [ 20" conx? dx

(ix) I_\‘ coseey dy ' (x) I_\' !anz.\":f.\'..
3 (i) I\- I (1 + x)dy (i) _[.v" In x dx

(iii) J' vy’ dy (iv) I In (3 + 1) dy
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10,

(v)

(vii)

(

—

(iii)

v)

(vii)

(

—

(iii)
®
(i)
(iii)
v)
(i)
{i;:i)
v)

a

=
——

(iii)
V)
@i
(iii)
@i

(iii)

[ 2
=

Ilﬂ (x+ Jx2+ a’ l dx
Isin 'xdx

feos e

I v tan~lx dx

[x cosecrix dx.

[ cos2xds

[ costrdr

]‘l.-'-‘ sin (bx + ¢) dx .
fyo- dx

jm dx (x+1=2)
Icm«‘-ﬁJS——_sin—za de.
[ o

(vi)
(viii)
(i)
(iv)

(vi)

(ii)
(iv)
(vi)

(i)

(iv)

(ii)

I1’411+ 120+ 13dx 2x+3=2) (iv)

[secto Jeec0+3 do
Im dx

[ ez ace-2-9
J'metanm do .

Ie" (tanx + In secx) dx

IE‘— (1 +xInx)dx

]‘ igdti - s de
Inx (In t)

I sinx In (cosecx — coty) dx .

(v

(ii)

(iv)

(ii)

(iv)

. (i)

J-In (2 + x4+ 2)dx

Ihr [.\'+ szu a* | dx .
jx sin~1x dx
Ix tan~1x dx

Iaeg' x dx

[e* sinvdx

[xe < siny? dx
[ +1) ¢ dx.
==

Ie‘ 4 - dx

| J??TE dx:
[#yet +6 dz
I(zx" +1)edx
jm dx

Ia“,/}’*_ﬂ; dz

Ié“' (cotx + In sinx) dx

"
I X dv.
(1+x)

Jsin (fﬁ x) dx




[ Integration 291 |

9.8 PARTIAL FRACTIONS AND INTEGRATION OF RATIONAL FUNCTIONS.
P(x)

A function of the form m » where P (x) and Q (x) are polynomials, is called a rational

function. It is a proper algebraic fraction if the degree of P (x) is less than that of Q (x); otherwise
it is an improper algebraic fraction. In the latter case, a division can be performed and the

.
rational function can be written-as : ((?) 0 (x) + R(T; , where @ (x) is a polynomial and
gt ; is a proper fraction (i.e. degree of R (x) is less than that of Q (x)). Since integration of a

polynomial is quite easy, discussion of the method of integration of proper algebraic fractions
alone will be sufficient in the context of integration of any rational function.

R(x)

Q)
and each simpler fraction can be integrated separately by the methods outlined earlier.

A proper fraction can be decomposed into simpler fractions, called partial fractions,

Four different cases arise depending on the factors of the denominator Q (x).
(i) The partial fraction (p.f.) corresponding to every non-repeated linear fractor ax + b of Q (x)

is of the form , where A is a constant.

ax +

IfQ (x) = (mx + br) (a2x +b2) (asx + b3)
Riay, 8 - ke oA
Q(x) ax+b,  ax+b, ax+b,

(i) To a'repeated linear factor of the form-(ax + b)", there corresponds n partial fractions of the
L e n).

form
(ax+ by’

If Q (x) = (ax + b)? (cx + d)
Rob . Ay, o SRE R Ay
Q(x) ax+b  (ax+b) (ax+D)’® cx+d’

(ili) To a non-repeated quadratic factor Ix> + px + g, there corresponds a p.f. of the form
Ax+B,
I +px+q
1f Q (x) = (Ix* + px + g) (ax +b)
R(x) < A x+B, 4 Az_ _
Q) I’+px+q ax+b

(iv) To a repeated quadratic factor (Ix* + px + ¢)°, there correspond n p.f.s of the type
Ax+B, :

(x* + px+q)
If Q(x) =(Ix2 + px +g)* (ax + b) _
R(x) A x+ B, A,x+B, A,
= + o
Q) IX+px+q (X +pr+q)] ax +b

When the given proper algebraic fraction gixi
X

e S e S n).

is equated to the sum of all its p.f.s., we

get an identity. To find the values of the constants, both sides are multiplied by Q (x), thereby
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_ clearing the fractions, and the coefficient of like powers ol v on both sides are equated. This

results in as many equations as the number of constants to be determined which can be solved to
determine the constants.

Alternatively, any suitable particular value can be given to v on both sides to get an
equation involving the constants. This can be repeated by taking different values of x to get as
many equations as necessary to determine the constants.

It is very easy to find the constants in the p.Ls corresponding to non-repeated linear factors
of Q (x) and also in the p.f. corresponding to the highest power of a repeated linear factor by
putting such value for x as to make each such factor zero in turn after clearing the fractions,

Example 11 :

4x+5 _ v
Int te (i —— i B el (.
. e i Ix'+.t'ﬂ2 : i -[{.1'|l)'(.vr~_'.!}”t
' +x+3 : 4x°
dx _—d
(i) j(\ R Ty (W) J{.\-- T
dx ! . iy
(v) I.\': ny dx; (vi) I(,\'Hl}(,\'f-h}

Solution :

() 2+x-2=(@x+2)(x=1)

J‘4:r+5 lam sl < 13 Gav) \
P R T, S| o

clearing the fractions,
dx+5=A(x=-1)+B(x+2). PRy |

Method 1:

Equating the coefficients of x on both sides of (1)

4=A+B. |

Equating the constant terms 5 = 213 - A

Solving these two cquatimui weget, A=1,B=23
Method 2: '

Altematively, setting x = 0, x = 2 in succession in (1) we get

-

we get h=2B-A
and 13=A +48

which can be solved to yicld A=18=3.
Method 3 :

Any two arbitrary values for v will serve the purpose, (as we observe in method 2). But the
most convenient values for x which will yield the solutions readily are those which make the
factors x = 1, x + 2 zero in turn.

Setting x = 1 in (I), onegets 9 =38 5 B -

Settingx=-2, ~3=-3A e s Sl
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This method, called the method of suppression, yields the value of the mrreqpondmg

constant at once by suppressing the other constants.

Thus by using any of the methods, the constants associated with the p.f.s. can be determined.

(i)

(iii)

(iv)

4x+ 5 | 3
Here — = )
RN =2 . x+d x—d

v 5 k! :
J'—-i‘—f—-— dv= 20 | By xe2] + 3 [x=1] +C.
X bl

S Hx-2 Xk
b2 A
I 1} XN 4] o3 ( (say).
+1) (x=-2) x+1 (x+1) »
Clearing the fractions, ¥* = A (v + 1)(v=2) + B (.\'-i’.) SEEUREANE A < e kb (2)
Putting x == 1 in (2), 1==3B= B=- ::'
B s
utting x =2, 4= "= C= 5
A cannot be found by method bf suppression.
Equating the coeficients of ¥ on both sides of (2)
bl A
9
5 | ki
2 P St MR
G -2 ¥+l (1)  x=2
= J‘ 1 A o S J‘ dx = 4 [ _dx
@x+1) (x-2) A S (x4 1) 9.3 x~2
:_i_!u [x+ 1] + b g Sopees oo |¥=2] +C.
9 - O (Sl
2t ¥ x+.3 A\Hl {
Let I = .
(+2)(x -1 X 42 ,\'—I
22+ x4+ 3=-(Ax +B)(x= 1)+ C (32 + 2) &2, feo
setting ¥ = 1in (3),6=3C = (=2, '
Equating the coefficients of ¥, 2= A + C = A = 0.
Equating the constant terms , 3 =20~ B = B = 1.
2 4 x4+ 3 - -1 o 2
@+ (=1 2 =1
g i B .'.'. : . "
= I,— rh--:j fh +2J. e at tan‘li+2fn|:r—l|+(‘.
o+ 201 Mo =ty U
2
& is not a proper fraction. Since the coefficient of ¥? in numerator is 4 and that

(v—=Dx+1)

in denominator is 1, the quotient will be 4 and the remaining part is a proper fraction.
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2
Let Ax =4 + 2 - B =T
(x-3)(x+1) x=3 x+1
=4 (x-3)E+D+A@+D+BE=-3. e (@)
Setting ¥ =3 in (4), 36=4A=A=9. Settingx=-1,4=-4B=>B=-1
4x° 9 1
en —————— =4+ <
(x-3)(x+1) x-3 x+1
'2 -
I——ﬁ:—dx =I4d.\'+ 2 dx - dx
(x=3)(x+1) x~3 x+1

-In|x+1] +C.

) 1 =_1_[ e 1]
7 ¥ (x-a)(x+a) 20 \x-a Xx+a

j-c gt =% I{ x+a] dx:a??‘n X+a e

s 1
v) x+afx+d) x+b x+a

dx 1 1 | x+b 2
I(x+a](:r+b} T ab .I[x+b —x—.aJ i a-b & 'x—a\ i

The results of (v) follows from (vi) by taking b= -2. These two results may be used as

standard formula .
-a
i—‘ +C
xX+a

s N
(1) J'x,_a, = n
dx I, |x+8]
= ! &
.[(x+a)(x+b) Bl |x+a| | v

N.B. () Sometimes special techniques can be used after careful observation. When the integrand

contains only even powers of x in both numerator and denominator we divide the

numerator and denominator by x2. For example

-j—de =%I(xz+l)+(x2_l)dx

L+l ext 4l
1 1
1 1+ 7 1 1——1
_—"EI X 1 dt+§ ——2;—1dx
ol L rle—5
X X
(1+3) -2
1+ dx 1——2 dx
¢ (x—l) +3 £ (x+l] -1
x X
1 du II dv
== |—=— + = |7 /puttingu=x-—, = X4
2)Ju"+3 21 ERD >
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(i)  To integrate I ‘d:rl we write

[ Ll

x+1 2 x +1
1 (x +1 1px-1
== dv - = dx
2J) ¥ 41 ?-I.r'+|
1 1
1+ 1-=
= 5ty o 5 [t i
v 4 3 g
X x
1 1 : 1
+—2 1——2
=_1.I_x3__d _lj+.
) i U0 &
P ) ST S x+ s
X
JLfdu 1 dv | l
_2-[:1’+2 > pnttmgu x andv X+

§i2::4 N e el v—2
—IE—. tan( ]—E log +C

T m'v+2

x‘—l]ﬁ] | = 2x+1

- tan"[
22 - MW i P o

l EXERCISE 9 (f) I

Evaluate the following integrals.

» ® I% = @) -[(x 4)(\'+2)

(iii) 1(2—;}"‘;—(%5 dx (iv) I 20j;'%2

® (r—l)crzfzz){x—s) b o J2 e = : 122”_3 o
5 o | (~2:++3?‘ Ay @ | (:x 2; ;:;

o . e,
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o poaxt=x+B vy A : 5x
3 ax : ux
! J (' + DG o I v - 2x 4 2) (x+1)
3 v 4 4x '
(iii) I e [TAY (iv) I - o i 3. dx.
i Iy 3 3
b RS SR Py
Y43 4x' +20x+25
@ Jora w (AR .
e R o [lani04 10.
W) ,It"" + 3¢ %1 " i) Itﬁnz(l -1 ;
v
5 @ J""—‘\" “l] I X 6y
v-5 ﬂ)al}
I
e I? x4 6x i ) I 3 - sin l}
vy : ¥'dx
v vi) P = ut ¥2 =t
i I(\ +1H\ +2) ( J'.\"+3.\" +2 L )
dx L

(vii) I

sin x {3+ 2co0s x)

(put cosy = z).

9.9 INTEGRATION (Continued) e
Some functions which  are not rational functions can be converted to rational form by
suitable substitution and then can be integrated by standard formulae.
Example 12:
(i) I Tty = I-—— 2 kdt setting, x + }—12
Yo | -
1 : '-l_
:2]'—',5~—~4 dt =1 I[l kit ]dt
£ -2 =2
I -2
=21 14 g V2 -
232 Fev2]
1
—2',}.\'+3+ h i
72’ X4+ 3442 I
i _
. o+ 1 ; i
(ii) I = dx % I 43 do, putting x -1 = o ‘
n
(x - 1)

—4!(2- + 0’ 11"'—4[——+-i-—] +C

8

= e—

o 3ot + 7) 40 = — (1‘ 1) Br+d)+c.

@y z+b.t-u*

Integrands of the type 7=.= (@2 + by + o) |/ px+q , 7=-=—=— can be mtegraled in terms of
px+q

powers of px + ¢ .
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bp-aq
p

Sinceax + b= -g— (px +q) +

Ia"'+b ﬁ‘[ px+4 d:r+bp_

aq
Jx+q s P '[JPH#

&

3P (p\+q)? (bp %) (p\+q)J L,
a

i

Similarly ax2 + bx + ¢ = (p +qP+L(px+q)+m

where . = ”’."f"“ R AT e

p P

(ax* +bx+c) Jpx+q —‘;- (p'r+q)Z +L(‘m’+r§)2 +m(px +q)*

and 2 e i, (px+q)? +L(px+|qr)2 +m(px+4q) :
Jpx +q P : ;
which can be easily integrated.

2 2
dac - dac-Db
: — =Kor-K

by’ b
Sinve (@x2 +bx + ¢) =a [[x + E) + ] setting x + = :. v and

depending on its sign, ~Jm'2 +bx +c¢ can be put in one of the forms Jv‘ +i J!z -k or

K - o Thell T=——==- as well as yax’ +bx +c can be integrated using standard

+bhx+c

formulae. Problems of integration of such forms have been dealt with earlier.
dx

The integral can be converted to the form & by the
I(Px‘*.‘l)\/‘-"zm*f '[;;If +mt+n

substitution px + g = —1- and can be evaluated .

Example 13:
1

dx : t’m : 1
I I - (puttmgx+1=—)

(x+1)yx’ +1 ‘1_J[1_1)2+1

- [t - T;Ij,f.z:

1 o '_1)‘ 1
-751’:: t 2+ (t 2 +4

o in 1-x+4y2(x +1) SE
72= ; x+1

ca
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L EXERCISE 9 @ J o
Evaluate the following integrals. &

) i j“z’:’?’ dx (ii) j-@ dx

(iii) j' fz dx ) [r@Ex+ 2)° dx
x+2 : . 1
(v) I 7 dx (vi) I(.\* +2)(x+1)* dx
@2x - 1)° il -
(vii) x_]_;_ dx (viii) j ,""‘3 - (x=19).
(x+2)* g

2 (i) J' % dx (i j(?x+4) JBx+2 dx

P i 2x'+5
(iii) J(33r+1)(x—2]‘ dx (iv) _f—+—7— dx

(x+ 2)E

(v) Iij%%%—[ dx (vi) j(.x2 + 2x + ‘?]'Jm dx.
3. (i) I 7:%&:: (i) j' Jax —4x+5 dx

(iii) IT\.;:‘%; (iv) I,’x'* —6x+5 dx

(v) I# (vi) ,‘_IJI%-Zx—'xI dx.

: dx 2wy o &
S Jtr (BT

dx 1+

i : 7 =f2 ii X——=79
: : I(2x+5);]x+2 e ot 5 B I:I::‘:‘dx _ (1 x :_)
i —-x ) (x -
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9.10 INTEGRATION OF SOME MORE TRIGONOMETRIC FUNCTIONS

dx
a+Dbcosx +csiny

The integral J can be evaluated by converting cosx and sinx to tan % (=t).

J‘ dx =J‘ dx
a+bcosx +csiny 1=t 2 g
a+b 3
1+ 1+¢

=I : I+f2 . dx=J. dx
a(l+)+b(1-t")+2ct (a=Db)t* + 2t +(a+b)

<3 2 + j - 2fdf 7+h - Which is a standard integral, the denominator being a
= et b —— :
NPT L
quadratic in ¢ . It can be written in the form
2 J‘ dt - do
a-b [ . )’ ., a-b o4k
t+——| +k
a-b .
2 dt 2 do
- - ' ‘an be in ted.
or e I( . J, ot = g and can tegra
t+——| -k y
a-b
- de dx
Integrals of the t ,
il ypEIa-n—bcus:r Ia+bai:n:r
or I USR] - SSSEALT N, particular cases of the general form discussed above.

acosy + bsinxy
Example 14 : '
: A s _dx
® I2+sinx = -'.2_1__2_1‘_@.‘(_1‘_{&2“)_
1+ tan’ (x/2)

-—1I |+ tan (x/ 2)
C 2 d4an? (x/2)+1+1an (x/2)

g J‘ sec’ (x/2)
~ 2 dqan’ (x/2)+tan(x/2) +1

dt : X
= setting tan — ={
L*+;+] ngan2

1
t_
=I dt_ zr__._l_tan-r_+1.
V(B B h
J*T 2 2
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d . a3tz
(ii) J'_d.__ = I s IM dx
1+2cosx ” I-tan” (x/2) 3-tan’(x/2)

l+tan’ 2(x/2) ‘
i

sec’(x/2) . X

= R utting tan = =1
I.’!—mn’(x/Z) -[ e 6 R

2 1 |f+f| e V3 + tan x /2 X
IJ_—EI ¥3 ﬁ—tan:r,’z

pPoosx +¢sinx+r

acosx +bsinx+c¢

In

If the integrand is the numerator can be written in the form

peosx +qsinx+r
AC0sX + bsinx + ¢

Macosy + bsiny + &) + p (=~ asiny + b cosx) +Y, so that I a4y =

acosx+bsinx+c¢ : : :
j[l pd ) + L ]dx=3\.r+p!n |a cosx + b sinx + c| +
acosx+bsiny+c acosx+bsinx +c¢

TI dx when the last integral can be evaluated by the method outlined above.
acosy +hsiny +¢ .

Example 15:

2sinx+ 3 cosx

: dx, it can be seen that
3sinx +4 cosx

To evaluate I

2 sinx + 3 cosy = A (3 sinx + 4 cosx) + p (3 cosx — 4 siny) implies 3. =4p =2 and 4A +3u =13,

giving

>
]

oF
25"
o 3siny+4 + : 3 - 4 sinx)
I2sinx+3-:os.\' 25'{ WARLY cosx) 25( cosx — 4 sinx
——-—dx I dx

Jsinxy +4cosx 3sinx + 4 cosx

p.‘—"

Ml-—-
oo

3 sin; 5
18 Id.t+l j-d( -_;ln\'+4msx)
25 3sinx + 4 cosx

;: X+ E In ]'i-nm +4cosx| +c
g dx '
Integral of the type I - can be evaluated by multiplying the numerator and
BT ype AR D T Y plymg |

denominator by sec2x (or cosec?y) , thereby converting the denominator to a quadratic of tan x

(cotx).
Example 16 :
dx sec” x
‘[ A ] 2 = 2 dx
3sin" x+2cos x Jtan"x+2
1 j dt .
= - putting tanx =
. 3o gty i ,

w

;

1 Vat 1 tan-! [:E-tan J.]

Ftaﬂ- E"I-C:—-—
3

'.»l-—
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I EXERCISE 9 (h) I

Evaluate the following integrals.

L0 [ B e
(v) Im%m (vi) ITIIIL%:T&T
B g 57
iy [ a o) [T o
i ® Izcos2.\ft:3cos.t' ,(m Iﬁ:;:
¢ mfer R e
G | 4coszudfgsm’u w | 2+3C°S;:?*45i“_!“.

5. {I) J' sin 3x d.\' (Ii) I cos 2x dx

cos 7x cos 4x sin 7x cos 5x

=5 dx - dx
B @ ICOS.\'(S+3C051‘) (i) .[cns.ri] +2sinx)
9.11 DEFINITE INTEGRAL

It was stated earlier that integration can be considered as a process of summation. In such a
case the integral is called definite integral.

Let us consider a function f (x) continuous in the interval [ a, b ]. Let the interval be divided

into n sub-intervals of lengths In, ha, ........... lin by the points x1, x2, ... ¥n—1 such that
A=X0 <X <N XD werinininnnnnennnns <¥p-1<¥n=Dh
Thenhy = xr=21. (r=1,2,....5.... n)
Let 9¢ be any pointin [ xe-1, x| (r=1,2, e n)
e g ittt 5
a=x, : g K -3\
o % % X
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Taking S =h1 f(v1) + h2f(v2) + ...ooooos. + i f(vn) , if the limit of S exists as 1 — o and maximum
of hy = 0, then this limit is called the definite integral of f (x) from a to b. It is denoted by

b
(£ ax.
b
SoIf(.t) dy=Lt[lnf(m)+h2f(@)+ . .ccocorninnannnn +hnf(vn) Jasn — 0.
[Here a is called the lower limit and b, the upper limit of integration. Here the term ‘limit’ has
different implication from limit of a function. |
In this discussion, which is quite general, the subintervals are taken with arbitrary length
(but with the condition that the maximum of these tends to zero). It is often convenient to take
equal subintervals each of lengthh = > . Thenxy=a+rh (r=0,1,
SRR n) . It is also convenient to take vr as one of the end points of the corresponding
subinterval. Then, if the limit exists,
I P
!f(:r)dx R @ @R e sf@sn=1h]
It n-1
SRR h r;df&u rh)
b ! ;
: -t
Also !f(x) dx n_,m_h[f(u+h)+f(a+2h)+ ............. +f(a+nh))
It
. h r;f{aw rh).
Example 17

2 :
Find J-x dx as a limit of sym.
-

b .
Solution: If(x)dx = lim h [fla)+fla+h)+....+fla+(n-1)h] where h= el

Here, a=1, b=2, h= —-andﬁ\')-
der Hm [f(l%f[l«k—)-!— +f(:)[1+"_..].]]

=h‘m-l- I+I+l+....+l+£-l-:|
n n

n—sn R

. NS
=lim—|n+—+—+...
nwr-"- n-.n n

| |
= f{ﬁ;_n +;—(l+2+....+(n—l)]
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| EXERCISE 9 (i) I

‘Evalnate the following as limit of sum.
1

1.isx2dx, | 2.iefdx, ..S.j'xdx, 4 (2 2xs8)ar
1 -1 0 '

]

9.12 FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS:
This theorem establishes a relation between definite integral and indefinite integral. Here
the theorem will be given without proof.
Statement :

If f (x) is continaous in the interval [a, b ]‘and F (x) is an anti-derivative of f (x), then
b

If(.r)dx:F(b)—F(a).

a
From indefinite integration, it is known that I_f (x) dx = F (x) + K where K is an arbitrary
constant. For any K, the difference of the valuesof F (x)+Kat x =band at x=ais|[F(x) +
Kly=b-[ F () +Klx=a =F () + K-F (@) - K = F () - F () and this is equal to the definite

b
integral j f(x) dx.

b
So we can write jj' (x) dx= |F(x) + K] g - 2 (b) -F (a) . As K is eliminated in the process,

b
we can also write If(.\') dx = |F(x)| 2= F (D) - F (a).

In case of definite integrals, the results
b I b

(i) I[g (x) +h(x)]dx= Ig(x) dx + I h (x) dx and

a a i

b h \ .
(ii) I Lg(x)dx=2 I g (x) dx follow &um the corresponding results of indefinite integrals.
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Example 18

sinx dx = |-cosx |* = (— cosltz—] —(=cos)=0-(-1)=1,

0

(ii)

= ot

- e tair e E <0 E
(i) _[-—-5- | tan ' x|} =tan1 - tan10= 2 —0= 2.

L]
n
2
- (iv) I\' cosx dx
]

We first find the indefinite integral

I.\- cosx dx =sinx . v - Isinx . 1dxy = xsiny + cosy + K,

e LA |

: n/2
x cosy dx = [x sinx + cos " = (-E sin = + cos E) = (0. sin} + cos0) = - = 1.
0 S 2 2

) -[{:r + D(x+2)
The indefinite integral is determined first,

1 HE
F0)(x+2) (x+1) (x+2)
I dx =I " ST L T I.t+1|+K
(x+1)(x+2) x+1 42 [x+2| :

‘ 1
d\ = x+1 i '%-- l— i
) (v+ 1) (x+2) [l" lﬂ—zl]u sl = = =if 3

2 2 : ;
(vi) I (3x2+2t+¢'(ﬁt)d.t=I&t2 dx+_[2t dx+Icus-x dx
i} 0 (i}
3 2
X giny? = to el
1T ol ol -

In case of substitution it is often convenient to carry the limits of integration with the
substituted variable, so that conversion back to the original variable after the integration

will not be necessary as is done in case of indefinite integrals.
9

i 2
(vii) IZJ e' dx= Ic dz, putting 2=z, sothatz=4whenx=2andz=9 whenx =13,

4

Then the mtegtalmnbceva]uatedah j dz=|& s ==t

<, i3
L3l

5

i
(viil) Isin5 x.cosxdxy= {2z dz (putting siny = z)
(1] 3

o t—

———————— - SR S
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1
e
:i'l =__1_—0=i_
6 8.6 48

a

9.13 EI.EMENTARY PROPERTIES OF DEFINITE INTEGRALS.

]‘f(x)dx j fx) ax

i) j'f(x) dx = J’f(y) dy = If(z) dz
1 e. definite mtegral is mdependent of the symbol for variable of mtegratlon.

(Gii) If(x)dx=lf(x)dx+ff(x) dx, a<c<b.

Proof:
Let F (x) = f ().
b :
0 [foa  =F@|d-FO-F@
[fmax = F@ | =F@-F@)
b
b a
So If (x) dx =—If (x)dx.
a b
b
@ [feax  =|F@ (L =FO)-F@
: |
[foay  =IF@)|a =FO)-F@
b
[foe  =Fed-Fo-F@

b b b
So [f(x) dx = [fa ay=[r@ a.
c b
) [f)+ [fx)as =1F@ S+ IF@ |
=F(c)—F(a)+F(b)-—F(c)=F(b)—F(a)=|F(x)|g

b
= j f (x) dx, by the Fundamental Theorem.
a

When the left limit and right limit at a point of discontinuity of a function differ by a
finite number the discontinuity is called finite disqontinuity. When the integrand is not
continuous in the interval of integration but has a finite number of finite discontinuities, the
integral can be evaluated by dividing the interval into subintervals by the points of
discontinuity within the interval. The finite discontinuities, if at all, at the two ends of the

interval of integration should be ignored.
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Example 19 :
(i) j{x} dx = i[x] dx + j:[x] dx + j-[x] dx
1 - 2 k|
= jll dx + iZ dx + iB dx

=2-1+2(3-2)+3@-3)=6

-3

(ii) j]x[ dx = = i|x1 dx + ilxi dx

[ EXERCISE 9 ) I

Evaluate the following integrals.

3 ? S |
¥, (i) jx‘dx ) [+ dx
: =3/ 0
td f dx
e . 4
(iii) J:—ﬁ- dx (iv) _[;? dx
( e P
(v) I(4x+\/;+—,ﬁ+-—;}dx (vi) j(2x+1)(x—2)dx
A x x s
1 1 <
(i) I(2r+1)‘dx (viii) jx’(‘t+x“)3 dx
0 (1] 4
& 2 4 2
: x —3x+5 (x+2)(x +3)
(ix) J:__—J; dx .. ) J:—T_ dx.
2 i
2 (i) I(cosx—sin X d@x (i) Icoslx dx
0 0
i ¢ x x
(i) J;tanzx dx (iv) _[ 3sin > cos dx
‘I[ . 4 : il+cos2x
v) 0sm ¥ cosx dx _ (vi) "___—_1—0052:: X
6
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(vii)

(iif)

(v)

it (iii)

(iii)
6 (i)
(iii)
7 (i)

(iii)

(vii)

3
jcotx dx
_:
2
Ieh”dx
1
1
Icoshf!xdx
0 .
2
3
Ixzel dx
0
j dx
S
3
I dxzdx
a5 B 5
1
I dx
A Ix+2
dx

s AL

|
i

-[ 2t+1){x+1)

P S——

"Jl_-.-... e ]
_——
a8
IR
-t

=
=

=
o
|
2]

x) dx

E
&

e (x+1) dx

x logx dx

e* cosxdx.

(vii)

(ii)

(iv)

(ii)

(iv)

(ii)

(iv)

(i)

(iv)

()

(iv)

(vi)

cos’ 2x sin34x dx.

= e LI L]

\'+2 dx

N

e

[
o,

"ﬁ

+e

‘m|N'———.H
=
Hr.) &.
|
et

0‘—15
™

|
o=y

5 ey,
=

.
£ |17
A=)

j\jxi +9 dx.
]

i[xldx

"
»~
o

x sinx dx

x tan~lx dx

cosx dx

e L I e e T T

(sinx + 1) (sin x + 2)
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9.14 SOME MORE PROPERTIES OF DEFINITE INTEGRALS.
The following properties are useful in enlarging the scope of definite integrals.

(i) }f{x}dx: Tf(a+b—x)dx
In particular j f (x)dx=j' f(a-x)dx.

# j‘-f(x)dh 2If(x)dx if f is even function
“a 0 iff is odd function
2[fydx iff Qa-2=fx)

2a
i) [f () dx=
" 0 if Qa-n=-f@

al T
(iv) Iffis a periodic function with period T, then [ f(x)dx =n| f(x)dx, ne N.
0 0

Proof :
(i) leta+b-x=z thenx=a= z=bandx=b = z=a Further-dx=d=.
b a i b b
J'f(a+b—x) dx = J'f(z) (- dz) = If(z) dz = J'f(x) dx
a b a a

(Replacing a by 0 and b by a in the above result we get I f(x)dx = I £ (a-x)dx.)
0 0
0 - 0
G) [f(x)ax=[7(-v) Cdv) (settingx=-0)

- if(—v) do = :ff(—x) dx
] (]

For an even function f (- x) = f (x)
and for an odd function f (-x) = - f (x)

Tf(x) dx = if(x)a‘x+ if(x)h=ff(—x) dx+ff(x) dx
-a -a Eale 0 0

_[ [f-0+f()] dx

I[f(x)+f(x)]dx=2 If(_x)d.x, if f is even function

0 0

I

I [ = f(x) + f(x) |dx =0 if f is odd function

]

2a 0
(iii) If(x) dx =If(2ﬂ-—t)(—dt) setting2a—x =t
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= Jqf(Za—t) dt.z if(Za—x) dx.
. 2a : a ¢ 2a
_.-f(x) dx = If.(x) dx + If(x) dx
& if(x) dx + j‘f(Zﬂ—x) dx= T f(x)+f(a-x)] dx
0 P 0

2[fEydx iff Qa-x)=f ()
0 iff (a-x)=—f ()

T
s n
(For example Isinx dx=2 Isi.nx dx since sin (x - x) = sinx ; but Icosx dx =0 as cos (n —x)
i} !
=—COSX.)

(iv) Since fis periodic with period T, f (x+T)=f(x)
We have, for neN,

(n=1)T

Tf(x)dx=]tf(x)dx+:]?f(x)dx+....+ T £ (x)dx

-3 | reax ' )

r=l (p-1)T

Now, = J‘ F(x)dx = J‘ £~ (r—1)T)dy, putting x=y+(r-1)T

(r=1JT

al—-.'-g = |

f(dy (.. fis periodic with period T)

S

u T T
Hence from (i) = ff(x)dx = ij('_x)dx =nIf(x)dx.
0 =1 g 0

2
Example 20 : Evaluate I%—Eﬁ_f
=X+

. F 3 — xdx ; :
Soluhon:LetI—IJ3 g IJ;J_ using (i)

IH_IJEI X +x IJ;+J3 — o

—x],_z ~1=1.

-[J?T}+J_ f“'

L5
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Hence2l=1 = I=%.
Example 21
100
Evaluate I (x—[x]dx
1]

Solution
Let f(x) = x-[x]
flx+1) = (x+1)-[x+1]
= (x+1) - ([x]+l)
=x-[x]
=f(x)
= fis periodic with period 1

100

100
o | feode= | - lxDax
0 0
=100[ (x—[x])dx, using (iv)

=100ixdx s i[r}dx=0)

=
= 1
= 100|:—2-:L = lUO(E-—OJ =50.

log (1 + tan®) d0 .

Example 22

(i)

O | 1

m n
Y ry
7
Let I = Eln (1 + tan0) d6 = !In[l+tan (Z—G)]dﬁ
=
a 4
300 a0 = [in 0
1+tan0 o 1+ tanf

i

4
log2d0 - [In (1 + tan6) do
o

i
O e | O —i |
T
-
J————
—
+

=ifﬂ2—1
e | =ifﬂ2 ;
orl =i~!n2.
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"
1 4
(ii) J'cos’x dx=2 Icos"xdx (as cos®x is an even function)
_1— u
=
4
=2I(]—sin2x) cosx dx
0
= 1
2 -
=72 I(I-zz) dz (putting sinx = z)
1]
3_1_ . I
|2 .
~ J2 3.282) W2
0
25
)
6
s
(i) [sin'x dr=0 (as sin®v is an odd function).
. 3
(iv) Isin:’x dx =2Isin’x dx (as sin? (1 - %) = sin’y)
(1] -0
2 S
=2j(1—coszx) sinxdx:ZI_(]—z") (- dz) setting cos x = z
Olh 1
1 "z:il : .
=2 Q-2 dz=2F" =2(1—-) ==,
!( ao 3 3 3
: : :
|
(v) Integrate Ilnsinxdx.

=
2

Insinxdx = J.In sin (%—x)d.r = |In cosxdx
0 -

—
1]

© ey i |31

0 ey 1] 3

U
B
Il

2
In cosxdx + IIn sin xdx
0

=

L

2
(i cosx + Insinx)dx = Iin (sinxcosx) dx
o

in(S222) gy = [t sin2vdx- j'-zn o R e 1)
0

2

Il
O ey 13 D ey | o C—
e il

£

2 = : .
Now [insin2edx = %J'm sinzdz (Putting z = 2¥)
o « &
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Hence from (1) we have
7
21_=1-.J'zn 2dx
]

el Lt &% e Xl
1-2im = 1=2m2 2ln(2]

_ EXERCISE 9(k)
Evaluate the following integrals.
: 2 :
1. (i) _[ gy (i) I R
¢ 1+tanx  VSIN X +VCosX
1 R
(iii) J'——»’"(“,x) dx (x = tand) T L
A 14+x ° 1+sinx
a a
2 (i) f x* dx (i) j (° +2x" +x) dx
. e -1
i . | :
(iii) jcosz:r dx (iv) _l'sinﬁx dx.
5 $
3 () jcm3 x dx (ii) J.coszx dx
- 0 0
(i) _[sin“x cosx dx (iv) J' sinx cos?x dx .
0 0
4, Show that
i x
: Inx o 3 S ]‘ cosxX—sinx . _
@) .[ - dx-21n2 (i) 01+sinxcosxdx %9
% 2
(iii) _!xh: sinxdx = 5 irxz
(Use 9.14)
n/2 R
. x x tanx dx
S 1 Iln(tanx+cotx)dx : (ii) j;secx-rtanx
Jx dx . fxsinxdx
iii iv) |———
(8 )IJ—;.,__J_ il J.l+ccosx

=73

l— 100 a’x : [x] dx
v) { x(1-x) o) f — m (vii) j

]

n/6
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*9.16

REDUCTION FORMULAE ;
(For interested students, not for examination)

In the process of integration we come across integral of a function which involves certain parameter.
In this case it is sometimes possible to relate the intregal with another which involves a smaller
value of the parameter. A formula which relates the two integrals is called a Reduction formula.

The successive application of this formulé enables us to evaluate an integral of the above type.

Reducation formulae are generally obtained by the application of the rule of integration by parts.

In this section we shall mainly be concerned with the reduction formulae for integrals of some
trigonometric functions.

Reduction Formulae for [ sin"xdx where n2 1 is an integer :
Let n>2
We write | sin” xdx = | sin™" xsinxdx
Integrating by parts, we obtian
[ sin" xdx = —cosx sin™' x - [ (~cosx)(n-1)sin""? xcos xdx
= —cosxsin™ x +(n—1)f sin"? x(1-sin®x)dx

= —cosxsin" "' x+(n-1)[ sin"?xdx —(n-1)[ sin" xdx

o nf sinxdx = —cosxsin® x+(n—1j sin"xax

- -4
or j'sin"xdx:—cosxzmn x+[n;1]j sin™? xdx

which is the required reduction formula. Successive application of this formula enables us to
integrate any positive integral power of sinx. We observe that this formula is also valid for n=1.

Reduction formula for | cos”xdx where n21 is an integer.
letn=2
We write | cos” xdx = [ cos"" xcos xdx
Integrating by parts, we get
| cos” xdx = sinxcos™" x+(n-1)[ cos™* xsin? xdx
= sinxcos™"' x +(n-1)[ cos"? x(1-cos” x)dx

=sinxcos"" x +(n—1)[ cos"? xdx—(n-1)[ cos” xdx

or  nf cos”xdx = sinxcos" " x+ (n-1)[ cos"*xdx
This implies that

j' cos™? xdx

stnxdx:sinlxc'::s'*‘x+[h;1]

which is the desired reduction formula. We observe that this formula is true forn = 1.
Walli’s Formulae
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ik il s P 2 i nis odd
(a) [sin“xdx= n n-2n-4
A n-1n-3 n-5 in
—— e —.—if nis even
n n-2n-4 22
n-1n-3 n- ;
i —_— ~if nis odd
(b) stnxdx= n n-2n-4 3
o n-1n-3 n-5 1n -
—_— e T NS €VEN
n n-2n- S i -
Here p > 1 isan integer.
ni2
Proof: Let L, = [ sin" xdx
0
Using the reduction formula for [ sin” xdx
|~:>os:<sln"“zn:|ruz n-17¢ . .
t 1= 4 sin™* xdx
we ge : | n |o n 3
_qni2
=1 g2 xdx
n g
n_
e
n-1n-3
%
. R=] n-3 r1—5I
e T
n-1n=3n-5 2, i nisodd
= B D2 M-8 |
n-1n-3 n-5 Lt
—_——— ——.....=]jifnis even
n n-2n- 2
nl2 - win
we have I, = [ sinxdx=|-cosx|; " =1
0
m2
n
and = I‘*‘:E
0
. o L B TN
I _‘I sin® xdx = n n-2 n—-4 3
b 53 9 9;12:3"*5 1£ifniseven
o e )

xf2

The formulafor | cos” xdx fol!owsfmmj f(x)dx = _[ f(a=x)dx.
9 0 0

/2 ni2 T nl2
So | cos"xdx= | cos"[——x}:lx:
0 0 2

[ sin" xdx
(4]
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w2
Example 23 Evaluate | Sin’ 6do
0

Solution: 7 is an odd positive integer.
So using Walli's formula, we get

i 008 8218
0

nl2
Example 24 Evaluate f cos® 0do
0

Solution: 8 is an even positive integer.
So using Walli's formula, we get

n/2
I cosaed(a:Zi?.lE 357
o

x5

1
Example 25 Evaluate | dx
0

Solution: Letx =sing
Then dx = cos 6d6
whenx=0, =0

whenx =1, 9=%

Example 26 Evaluate T[—d—x——-;
0 (1 + xz)

Solution: We put x — tano

Then ¢ =0 whenx =0and B—r% from the left, when x —»

e i [ ‘sec’ 0dp
NCe 0 (14 x®y 0 (15 tan?ey
2 g -
= f;fz seczne d6
' sec™ 0

= j;mcof“‘z 6 do
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;-3 2n-52n-7 1

b
. — = ifn>1
_Jzn-2m-42n-8 22
T
= ffn=1
2
(2n-2 is always even)
EXERCISES—9(I)
Evaluate the following integrals:
2 n/2
1. [ sin'®6de 2 | cos'ede
1] 0
nl2 ni2
3, | sin'"6de 4. j cos® 6d0
i 0
e 1%° (4 -x
5 [0 R o e (,r—*)
ovl-X 0 vi-Xx
j- 3( 2 Z)Atix : 5 1+X2
x(a —x)° x°  |[——=dx
7. ) 8 £ 1-x2
0 i ik fo.  |sin®ede
. o(1+xs)n '

(1) 1-sin2x dx

sinx
©) jl+sinx,
1+sinx
®) l-sinx
cos2x —cos2a
@ I COS X — COSQL &

dx
® ; j\/x+l+\/x_+2

(11) IJ;+x

Additional Exercises

dx
1+ sinx

secx
sec x+tanx

@ |

Jlan"(secx+ tanx)dx

I!an" ’l—coslx [
1+ cos2x

2+ 3x
“(10) Is—zx dx

(12 |

l+tan x

X+ -. 51 X . e 2
(13) J' s dx (Hmtsput Jx+l=1) (14) Ism Ja—:;dx (Hints put : x =a tan’?)
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(15)

(17)

(19)

(21)

(23)

(25)

@7)

(29)

(31)

(33)

(35)

@37

(39)

Ie, 2+sin2x "
1+ cos2x

j' b o |

e D |

[Veotx ax

dx
I X +1)

I G-1)(e-2)(x-3)
(x+4)x-5)x-6)

I dx
sin x cos’x

T ’a—x!
:[ a+x -

n/2

cos x dx
g l1+cosx+sinx

n/2
I sin2x log(tan x)dx '

0

" sin’x dx

. 1+sin x cos x

Prove that Ix sin:‘x dx:_l;_n '
, .

.
II cosx|dx
L]

n/2
I (sin | x|+cos |x|dx
-x/2

(18)

(20)

(22)

(24)

(26)

(28)

(30)

(32)

(34)

(36)

(38)

(40)

I(f +1) (f
(x+l)‘

j- x? dx

xt +x2 +1
I(Jtan x+\fcotx__) dx
5 e

X

e -1
dx
,‘l(ex_l)z

I(f + x )dx
2x+1

T(m+ cnrx) dx
0

j- x(1-x)"dx

72 -
"%*  sin’x dx

-! sinx + cos x

:r‘.i‘_z xdx
4 sin X+ cos x

in/i0 .
g sin x dx

Je SiInXx+cos x

JChe— 11 —2pe-3]) i

ilog(lﬁosxﬁ




CHAPTER - 10

Area Under Plane Curves
 (Application of Definite Integrals)

All birds find shelter during a rain. But Eagle avoids rain by flying above
the clouds. Problems are common, but attitude makes the d:ﬂerencé.

-A.P.J. Abdul Kalam
10.1 Area under a plane curve between to ordinates
.The definite integral was defined in 9.11 as the limit of a sum. If the limit exists, then

b n-1 X
j f (x)dx=limhY f(a+b) i e
a = g > i,
. . y=f(x) :
=limh) f(a+bh) . i L
A=bety Sy = - :
b ;
where h=—— | X
0 a a+ha+2h yul K
Fig. 10.1

Let us see what this fact means geometrically. Suppose / (x) is positive and increasing in [ a, b]
(fig 13.2). Let the ordinates corresponding to x =a + rh (r= 0, 1, 2, ..... n) be drawn and the inner
rectangles (rectangles drawn in the figure just below the curve) and outer rectangles (rectangles drawn just
covering the curve) each of width # be completed.

n—1
Then Sy =hY f(a+rh) is the sum of the arcas hf(a), hf (a+F)............ hf(a+n—1k) of the
r=0

angles. The actual area A under the curve y = f{x), above the x-axis (y= 0) and between the ordincates at
x =aandx = b lies between §, and S, ie., S, <4<S,.An n—>w, h—0, the difference between S, (or

S,) and A.is reduced and ultimately S, (or §,) approaches A.
n-1
Then A=limS, =1lim#)’ f(a+rh)
n—¥r n—a r:o
=hm S, = lim hzn:f(a + rh)
ot n-pL s
b
ie A=[f(x)dx.
i .
Thus the definite integral 4= [ f(¥)d%. represnets the'area under the curve y = 1(x), above.the x-

axis and between the ordinates x = @ and x = b.
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If f (x) is decreasing in [ 4, b ], then S1 is the sum of the areas of the outer rectangles and S that of the
It S
S1=

S2 = A and the same result follows.
H—> 0 H—

inner rectangles and 51 > A > Sp. But

If f (x) is constant in [ a, b ], the whole
area is under one rectangle and
then 51 = A =S for any mode of
subdivision of the interval | a, b].

Area between the curve x=f
(y), x=0 and the abscissae y=c,
y= d can be similarly shown to be X

d
[r () dy.

x=f@)

Fig 10.2

10.2 AREA BETWEEN TWO CURVES :
If there are two curves y = f (x), ¥ = g (x) with g (x) < f(x) in [ 4, b ], then the area between
them and between the ordinates x = 2 and x = b is given by

W

b b Y
A = [feax- g ax A
a a
b : y=f(x)
= [[f0-g )] dx
i
as can seen from fig 13.4. This formula
holds good even if g(x)<0in[a,b] In ¥ i
fact, this is the general formula of r=a y=g(x) x=b
h
whjchjf (¥)dx is a particular case as the "¢
a

latter is the -area between the two )
curves y =f(x) and y = 0. Fig. 10.3
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Example 20:
Area of the region enclosed by
y=9 -2, y=0and the ordinates
x=0and x=2 is givenby

2
A = I(9—.1‘2) dx
- %
|
_‘91'.——; =18-§=ﬁé.
B
0
Fig. 10.4
Example 21

The area bounded by ¥* = ¥,
the y-axis (x = 0) and the lines
y=1and y =2is given by

p: 2

A :lxdy:j\[;dy

Example 22
To find the area of the region bounded
by the curve y = (x = 2) (x + 3) and the x-
axis (y = 0) [fig 13.7], we observe that the
curve meets the x-axis at (-3, 0), and
(2, 0) and lies below x-axis in the interval
(- 3, 2). So the area between the curve (-3,0)
2 ;

and x-axis is given by I(x —-2) (x +3)dx (2,0)

3 2 2
R PO B
Xy S Y s .
3 2 ] = __6_ 'Flg- 10.6

2

= I(x’ +x—6)dx=
-3

-3

The integral is negative as the area lies below the x-axis. However, the magnitude of the

integral, l? is the required area. .
i 125
A = 24 x-6)dx| = —.
| j; (2 + x-6) dx| = ==
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Example 23

To find the area of a quadrant of the
circle x2 +y? =a?, we observe that

V= ‘]az -x" in the first quadrant

(Fig 12.8).

al
ki =I a -x' dx
o

i
b ba]e
hM
|
HM
+
NS,
o
—
=I
==
& &

at.

Fig. 10.7

As the curve (circle) is symmetrically situated about y-axis the area of the semicircle

na
above the x-axis is twice the area of the quadrant i.e. < Also the circle is symmetrical

about the x-axis. So the area of the circle is twice that of the part above x-axis i.e. ma?.

Example 24

The area of region bounded by the
parabola y* = x and the straight line y
= x (they intersect at (0, 0), (1, 1)).
(See Fig. 13.9) is given by

1
A = I (J; - .\') dx

! /
1

LR

|

2 x 1
e R S e
3 2 3 2 6

0

Example 25
To find the area of the parabola
y? = 4ax bounded by its latus rectum
x = a, we observe that the curve is
symmetrical about x-axis and the
region lies between x =0 and x = a
(Fig 13.10)

v A =2Tydx =2fJ4F dx
0 0

yz =UA
Fig. 10.8
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The situation can be viewed in another way. For the part of the curve above x-
axis y = Y4ax (say f (x)) and for the part of the curve below x-axis y = - Jaax (say g
(x)).The two parts of the curve may be thought of as two different curves and the area
between them and between x = 0 and x = a is given by

A s I [f ()-8 ()] dx = j‘ [Vaax - (- Vaax) | ax

: =2I\l4ax dx:%az.

" Note: Definite integral can be used to find the length of a curve, volumes ancl surface areas of
revolution, centre of mass, moments of inertia etc..

-1 ; Find
)
(i

EXERCISES-10

the area bounded by
y=¢e, y=0, X=d =2
y=x%, y=0,x=1

(iii) xy=a% y=0, x=a,x=B(p>a>0)

(iv)

2.  Find
(@

(i)

(iii)

(iv)

W

(1

(ii)
(iii)

(iv)

4. (i)

*(if)

(iii)
(iv)

y=sin:r,y=0,lx= z

~ |

the area enclosed by

y=¢, x=0,y=2,y =3

w=x x=0,y=1

xy=a?, x=0, y=a, y=p (B>a>0)
yzzr:‘, x=0, y=1

Determine the area within the ellipse l‘,.- + ii" =1.
a

Find the area of the circle x? + 1% = 2ax.

Find the area of the portion of the parabola y* = 4x, bounded by-the double ordinate
through (3, 0). '

Determine the area of the region bounded by y* = 1* and the double ordinate .
‘through (2, 0). '

Find the area of the regions into which the circle X2 + y2 4 is divided by the
line x + V3 3y=2

Determine the area of the region between the curves y = cosx and y = sinx,
bounded by x = 0.

Find the area enclosed by the two parabolas y? = 4ax and x* = 4ay.
Determine the area common to the parabola y2 = x and the circle x? + y* = 2x.



CHAPTER - 11

Differential Equations

The science of Pure Mathematics, in its modern developments, may claim to
be the most original creation of the human spirit.

- A.N. Whitehead

11.0 INTRODUCTION

We have already studied about derivatives and integrals of functions. We know that an integral of
a function f is another function F whose derivative is £, In fact while integrating fix), we search for a

d
solution of y of the equation d_i =f(x) (which is also expressed as dv = flx) dx).

Such an equation, involving derivatives (or differentials) of dependent variable(s) with respect to
independent variable(s), is known as a differential equation.
Differential equations often arise in studies relating to engineering, physics, chemistry biology and

other natural sciences. It finds application in economics, psychology and many other social sciences. In this
chapter we shall study the nature of differential equations and some methods to solve them.

11.1 DIFFERENTIAL EQUATIONS AND THEIR CLASSIFICATION

First let us take some examples of differential equations :

X Ax Hy Ay =10 ..oininsiioia (1
% e SR SRR . (2)
%Z; T, s 3)
g:: + % O e S e (4)

.(%)2 LI e )
%+ [%)5: X ................ (6)
e B (RS- S M
% e "di? ®

dx

When an equation contains derivatives with respect to a single independent variable, it is called
an ordinary differential equation. In case of more than one independent variables involved in the
problem, the derivatives occuring are partial and the equation is called a partial differential equation.
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We shall have no occasion to discuss partial derivatives or partial differential equations
within the scope of this book. We shall, in this chapter, only discuss ordinary differential equations.

The order of the highest order derivative occuring in it is known as the order of the differential
equation. The degree of a differential equation is the highest positive integral power of the
derivative that determines the order of the equation. The degree is, of course, determined after the
equation is cleared of fractional indices with regard to all the derivatives involved and after the
denominators are cleared of derivatives.

Equations (1) and (2) above are of first order and first degree; (5), (8) are of first order and
second degree; (3) is of second order and first degree while (7) is an equation of second order, and
second degree. Equation (6) is of third order and first degree and equation (4) is of nth order and
first degree.

Note that in (6), the order of the equation is three and the third derivative has power one; so
the degree of the equation is one. It is immaterial if any lower order derivative has a higher degree.
In (7), a derivative is within radical sign. After making the equation free from fractional index, it

d’y ) d _
takes the form [E}%J =3+ay which is of second order, second degree. However, such

consideration need not be carried to (5) where x is within radical sign but no derivative has fractional

index. In (8), % is in denominator. After clearing the fraction it becomes clear that the degree of

the equation is two.
11.2 SOLUTION OF A DIFFERENTIAL EQUATION :
A relatlon like y = f(x) or f(x, y) = 0 between the variables is called a solution of a differential

equation if it reduces the equation to an identity when substituted into it.
For example, y = e*is a solution of the equation

Yy s ()

since taking y = ¢* and so % = ¢*, (a) is reduced to ¢*= ¢* which is identically true. But, in this case
y=2¢*, y = Te', y = ¢ are each a solution of (a). In fact, y = ce*is a solution for any constant value of c.

Here, y = ce* is known as the general solution of the equation (a), ¢ being an arbitrary constant. y = 2¢*,
y = 7¢%, y =[3¢*are known as particular solutions. Particular solutions are obtained from the general

solution by taking particular value (s) of the arbitrary constant(s). There are some solutions which cannot
be obtained from the general solution by taking particular values of the arbitrary constant. Such solutions
are known as singular solutions whose discussion is outside the scope of the book.

A differential equation of order n involves derivatives upto n* order. A solution does not contain any
derivative. Generally speaking, the process of solution of a differential equation involves as many integrations
as the order of the equation. Since each integration introduces one arbitrary constant it is natural that the
general solution would contain as many arbitrary constants as the order of the equation.

11.3 GEOMETRICAL MEANING OF SOLUTION OF DIFFERENTIAL EQUATION
Consider the differential equation

d
'&% =2x (a)

2le
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FoAMe ol (b)

as the general solution of (a) where ¢ is an arbitrary constant. Taking ¢=0, y=x* is a particular solution
which represent a parabola with vertex at the origin. Taking values of ¢, we get a family of parabolas
some of which are shown below.

1Y Ay
&)
o s
A--_.-—/ i
x’ o *
! vy 'VY!
Ye 4+ Y :'-rc.,z +Cy e ‘3=z+c‘-x+f‘_’&=°

Fig- A ‘ Fog-B Fig-c

It is pertinent to note that this family of pﬁrabolas are shifted parallel to one another. (see figure).
Note that equation (a) is a first order differential equation and its solution (b) is a one parameter family of
curves, ¢ being the parameter.

Next consider the equation
42
E‘; e N M IR RS by o)

Integrating once we g % =e" +¢; and integrating again we get

y=e+cxte, s )
Equation (d) which is the general solution of (c) is a two parameter family of curves. We get different
systems of curves by varying the two parameters separately (see figures B,C) or simultaneously.
Thus we see that the general solution of an ordinary differential equation represents a family of
curves whose equations involve one or more parameters.
On the other hand, given the equation of a one or more parameter family of curves we can obtain the
. differential equation free from the parameters whose solutions are the given family of curves. We describe
it below.
11.4 FORMATION OF DIFFERENTIAL EQUATION :
For every real value of m, y = mx represents a straight line through (0, 0); taking all possible
real values of m, one gets all possible straight lines through the origin.
y=mx ()
is said to represent the family of straight lines through the origin where m is an arbitrary constant.
Differentiating (1) with respect to x,

Qy _ : s
o =m (2)

Eliminating m between (1) and (2) one gets,

&y oy
ax X et 3)
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which is free from the arbitrary constant m and is the differential equation for the family.
Similarly,
x? +y? = a? (4)
represents the family of circles with centre at origin \\here a is an arbitrary constant.
Differentiating (4), we get -

dy
y—— 5
X+ Yo 0 (3) .
which does not contain a and is the differential equation to the family of circles with centre at

origin. : -
In general, f(x, y, A) = 0 represents a family of curves in cartesian plane where A is an
arbitrary constant (the term parameter is used for it). If A is eliminated between this equation and
its derivative relation

a‘f(x. v.A)=0

one gets an equation free from the arbitrary constant A, which, containing % , is a differential equation

of first order.
As a rule, one requires n + 1 relations to eliminate n quantities. If a relation
fx,%C,C,......C)=0 o E)

containing n arbutrary constants is given, it is differentiated successively n times with respect
to x to get n new relations. These together with the given relation (6) constitute a set of n+1
relations among which the n constants C , C,, ..., C_ can be climinated. The resulting equation
will evidently contain derivatives upto n order and, therefore, be a differential equation of
n" order.

Example 1 : : _
Let y = A sinx .o €D
be a relation where A is an arbitrary constant. To eliminate A another relation is required.
Differentiating (7) with respect to x,

= S Acosx (8)
Elimination of A between (7) and (8) yields
o
3 Y cotx i
which is a differential equation of order one.
Example 2 :
y:Aex+Be—x . (]U)

is an equation with two arbitrary constants A and B. Two more relations are required to eliminate
them. Differentiating (10) successively twice with respect to X,

L. ANEPIE oo

dx Ae* — Be (11)

d’y

and —5 =Ae*+Be™ (12)

dx :
Comparing (10) and (12), one gets,

d2

___m;’ =y s aadil)

which is free from the arbitrary constants and is a differential equation of order two.

—————— — SE—
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Example 3 @ :

Find the differential equation of the system of straight lines (in cartesian plane) with slope 3.
Solution :

With the given slope, there are infinite number of parallel lines. They constitute a system or family,
all of them having the same slope but different y-intercepts (just like the members of a family having a
common title but different names). If ¢ be the y-intercept of any one of them, its equation is

y=3x+tc (14)
To include all members of the family, ¢ is taken as arbitrary. Differentiating (14), one gets,
&
Y =3 e (15)

which does not contain the arbitrary constant and is a differential equation of first order representing
the given family of lines.
Example 4 :

Find the differential equation of the system of circles in xy-plane with centre at (l 2).
Solution :

With the given centre, there can be infinite number of concentric circles with different radu which
form a family. If |a| be the radius of any such circle, its equation is

x-1P+(y-2y¢=a \ (16)

Taking o arbitrary, all members of the famlly are represented by (16). To eliminate a (16) is

differentiated with respect to x, yielding

x=-1)+(y- 2)~dl= e AETY

which does not contain the arbmary constant. (17) is a differential equation of first order and:
represents the family of circles (16).

11.5 METHODS OF SOLVING DIFFERENTIAL EQUATIONS

It is not always possible to solve a given differential equation. Some particular types of equations
.are amenable to solution. Only two of these types, one of first order and the other of second order,
will be discussed in this section. They are
2

. dy P
M) 3 =/®g® (i1) 5 =h (x)
Type 1l :
The equation
i :
=T f(x) T §
can be written in the form dy = f (x)dx. Integrating both sides one gets
y=lf(x)dx+C S
as the general solution of (1). Similarly, the equation
S
it (y) e 1 43)
can be written in the form i g dx. Integratmg
gly) .
j'@ =x+C (4)

is obtained as the general solution of (3). But both of these forms are special cases of the equation
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dy .
5 =f(x)g ) L -
which can be written in the form
‘E’%=f(x) dx (6)

This process of collecting all functions of x with dx and all functions of y with dy (so that
integration may be possible) is known as the process of separation of variables. Integrating both
sides of (6) one gets

X 97
Jg(y =[f(x)dx+C . L ke

. as the general solution.
Example 5 :

Y _ .
Somdx xX2+2x+5

Solution :
The given equation can be written in the form
dy =(x*+ 2x + §) dx.
Integrating both sides,
fdy = [(x* + 2x + 5) dx.
X3
or y= = +x2+5x+C

This is the general solution, C being an arbitrary constant.
Example 6 : :

Solve % =tany

Solution :
Writing the equation in the form of cot y dy = dx and integrating,
Insiny=x+c¢,
Or siny = e*.e° = Ae*, taking e* = A,
This is the general solution,
Example 7 :

Y
Solve e 3
Solution : . :
By separating the variables, the equation can be written as
dy 2dx

¥ oot

dx
x2 +1
ormy=2tan'x+C
This is the general solution, C being an arbitrary constant.

Differential equations of the form %= f(ax +by) or flax+by+c) can be reduced to the variable

Integrating, I%- =2

separable form by substitution ax+by=V or ax + by + c=V.
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Example 8

Solve % =(x+y)’
Solution:

Let x+y = vSod'}‘Vl

Differentiating x+y=V,
dy dv

; dx_?i;
dy dvV I i
ﬁ?&-—j‘?— ...... (1)
From (i) & (ii)
dv 5

s 2 S

dx

L -
ﬁ;ll

dv
=9-‘I+V2 =Ia!r

=tan"'V=x+c

i)

=tan(x+y)=x+c

Type II :
The second order equation '
‘;y = h (x) e

can be solved in two steps each time a first order equation being solved. In the first step,

taking % = p and so

2 i[sz)ﬂ
dx*> dxldx) dx’

d
the equation (8) becomes ap = h(x). On integration,

p=Ih(x) dx+A

or %— =lhx)dx+A (9)
=0 (x) + A where 0 (x) = [h (x) dx.

This is called a first integral or an intermediate integral. (9) can be mtegrated again to yield the final solution.

Thus Jdy = [[6 (x) + A] dx
or y=/0(x)dx+Ax+B f piasine i
which is the general soiuuon containing two arbitrary constants A and B.
Example 9 :

2
Solve %g* =6x +2
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Solution :
Taking % = p, the equation becomes
dp

— =6x+2

dx
On integration, [dp = [(6x + 2) dx

or p=%=3x=+2x+A

Integrating again, jdy = J(3x> + 2x + A)dx
: ory=x'+x*+Ax+B
which is the general solution.

Example 10 :
2
Solve g;-éy- = sin X — €OS X
Solution :
Al - * S dy . : .
The substitution & _p may be avoided by thinking that o 1S some quantity and its
deivaiosis S Y e
vative is -3, e s

d
Soja;'g*dx=_[(sinx—cos x) dx

yields % =-—osX—sinx +A
Integrating again, [dy = [(~cos x — sin x + A) dx
or y=cosx-sinx+Ax+B
_ which is the general solution.
PARTICULAR SOLUTION :

The general solution of a differential equation contains as many arbitrary constants as the
order of the equation. Particular solutions are obtained by putting particular values for these constants.
‘Sometimes, some conditions are required to be fulfilled by the solutions, often because of the need
of physical situations. Usually the number of such conditions is equal to the order of the equation
(and so to the number of arbitrary constants). The particular values for the arbitrary constants are
determined so as to satisfy the given conditions.

Example 11 : '

Solve the equation % = cos x subject to the condition, y = 2 when x =0

Solution :
The equation is dy = cos xdx
Integrating both sides,
y=sinx+C
This is the general solution. Putting the given condition.
2=sin0+C : .
or C=2
. Hence the particular solution that will satisfy the given condition is y = sin x + 2
Example 12 :
Find the particular solution of the equation
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d? :
Kﬁ = 2x, given that when x = 0, y = 2 and % =3
Solution :

The equation is
.E’_[E‘l] M
dx\ldx) ~ <%

: S A -

On integration, v st +A (1)
. Xs

On further integration, y = 5 +Ax+B (2)

This is the general solution containing two arbitrary constants A and B.

Using the condition, % =3 when x = 0, from (1) we get

3=0+A=>A=3
Using the condition, y = 2 when x = 0, we get from (2)
2=0+0+B=B=2

: el 1
So the required particular solution is y = 5x3 +3x +2.

EXERCISE - 11 (a)

1. Determine the order and degree of each of the following differential equétions.

e : 5 Y &y
(1) ysec’xdx+tanxdy=0 (i) (a) + ==

3
2 212 dy
(iii) a-ng = [1+[%) ] (iv) mﬂg —x

& ay
™) m[u] oy 4=
v = vi i
0 g+ o
dt ot
; d2 3y+ g_y . dy
(vi) —5= BRG. ° | (viil) e¥ = x?
b 8y
duz
2 Form the differential equation by eliminating the arbitrary constants in each of the following cases.
(i) y=Asecx (i) y=Ctan'x
(i) y= A¢' + Be* (iv) y=Ax* + .Bx
(v) y=acosx+bsinx (vi) y=asin'x + b cos'x
(vil) y=at+ be (viij)y_=asint+be‘

(ix) ax*+by=1
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!

3. Find the general solution of the following differential equations.

Lody . e oGy
DL e (@) 5= xcosx
Ldel s ST, Db
(1) dt_lh“ (iv) dt—3t+4t+scc21

Sloassd . N ek L.

/ M) ax” x2-7x+12 M) du f3u? +6u+5
X R __dy _sin’ i
(vii) (x—+3x+2)dy—dx=0 (vii) :IT_ P
4. Solve the following differential equations.

@ %=v+2 (ii) %= 1-y?

d : d

i) o=y i) o=¢

W Z=yvezy (vi) dy+(P+1)dx=0

dy €'
(vii) Ei—'+7=0 - , (viil) dx + cot x dt = 0.
5 Obtain the general solution of the following differential equations.

(1) %=(x’+1)(}'z+1) (i) %tl=ez'*”

gy _dy__xinx

(lll) dz r'1 = zz (“‘) dx 3y2 +4y

(v)  x%Jy*+3 dx+yvx® +1dy=0 (vi) tanydx+cotxdy=0

(vii) (x*+7x+12)dy+ (yy—6x+5)dx=0 (vii) y dy + ¢* x sinx dx = 0.
6. Solve the following second order equations.
-
0) &% = 122+ 2x
=l
@ oo

d%y

(1) —= = _sinv +cosv +sec’v
dv?

* d?y

(iv) cosec X _dxz =X

2
(v) X2%+2=0

) d? :
(vi) secxa—;% = sin 3x
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2

(vii) d—g = gsec? X + cos® x
X

SR
(viii) e”ayg-zx.

7. Find the particular solutions of the following equations subject to the given conditions.

(i)

- = cos X, given thaty =2 whenx = 0
(ii) o =¢os” y subjecttoy = = when t = 0.
dt 4
L Uiy s _ s
(iii) Ex——1+x2.g1venﬂaaty—w!3whenx—l

Q
N

. : dy
(iv) o 3 =6x.gwcnthaty=landa— =2whenx =0

- -«
8. (1)  Solve: Ty = sec (x+y)

(1) Solve: % =sin(x+ y)+cos(x+ y)

Ldy - ,
(i) Solve : o cos(x+ y)

. : d.v -
(iv) Solve: dx+l_e

11.6 Linear Differential Equations

A differential equation is said to be linear if the. dependent variable and its differential co-
efficients occuring in the eqation are of first degree only and are not multiplied together.

The general form of a linear differential equation of the first order is

dy = :
i i 2 e S LR S U R (n
_ where P, Q are functions of x. : _
In this section we shall be concerned with linear differential equations of first order only.

The standard technique to slolve linear equations of the form (1) is to multiply both sides with ¢/
After multiplication, we get

°IW%+(P°IMJ y=ael™ )

If may be easily seen that the left hand side of (2) is the derivative of the product )’9'[ - with
respect to x and the right hand side is a function of x alone. *

So we can write (2) as

dix[vej MJ= ael™ wre(3)
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Integrating both sides of (3) with respect to x, we get
yejpm = erImdx +C,

where C is an arbitary constant.
- [ Pax Pdx
SoY=¢€ I [.[er dx+CJ e (8)

is the general solution of the differential equation (1).

Note : The factor eJ Pdx on multiplication with the left hand side of (1) reduces it to an exact differential
and is called the integrating factor of the differential equation (1).
We summarize below the steps involved is solving a first order linear differential equation.
(a) Write the equation in the standard form :

dy
—~L +Pv=
|+yQ

(b) Determine the integrating factor eJ 5 !

{c) Multiply both sides of the equation with eI " when the equation is in standard form.
(d) Integrate the resulting equation to obtain the required solution.

Note : (1) There are differential equations which are not linear in y but linear in x. Such equations in
standard form look like

E’_‘_+ Px=0Q
dy

Where P, Q are functions of y alone.
In this case the integrating factor is e-[ i
(2) A differential equation of the form
:_i-ppy:Qy“.n:l kD)

where P, Q are functions of x is called Bernoulli’s equation.
This equation can be reduced to the

dz .
form a-+ (1 =n) Pz= (1 — n) Q which is linear with z as dependent variable, by putting z = y .

d
Example 13 : Solve : (l+x’)a—i-+2xy-x3 =0

Solution : (l+xz)§;}:+2xy—x3 =0

dy x’
T P don 3
dx 1+x° 1+x

which is a linear differential equation of first order.




| Differential Equations 335 |

3

2
Here P = ..x’ and Q= X -
I+x° 1+x"
[pax

So the integrating factor = ¢
2x
= ej:xfdx
=eloul+d) = ] 452

Multiplying both sides of the equation with 1 + x? we get

(l+x:)§%+2xy=x3

ie., -ac*l;{(l+x3)y}:xs )

where ¢ is an arbitorary constant. Hence the general solution of the given differential equation
is given by - A5
o ¢

55 4(l+x3)+ 1+ x3

Eiample 14 : Solve : (1 +y?) dx + x dy = tan"'y dy
Solution : (1 + y*)dx + xdy = tan''y dy
.'l
dx 1 c=tan"y

=—+ =—
dy 1+y* 14y - e

which is a linear differential equation of first order.

- -1
Here P = l 1,Q:tan Y
l+y° 1+y? =

So the integrating factor = cj oy

I ::’

Multiplying both sides of the equation (1) with e™ ¥, we get

tan "yg cm Y = tan'y tanvly
dy l+y2 | 1+y2
d 1 a, tan”y
. e etm ¥ - el-nll Y 3
e dy( ) I+y? - 42)
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Integrating both sides of (2) with respect to y, we get

Ay tan ' y
1+y

= [ te'dt + ¢, where t = tan“y'

=et—-1)+c¢

== 'y (tan ly—1)+ec.

3%
xer 2 =Je""

dy+c

Sox=tan'y-1+ce™"
where ¢ is an arbitrary constant.
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.. (3)

(3) is the general solution of the given differential equat_ion.

dy

™ .
Solution : The given differential equation is Benoulli’s equation.
Dividing both sides of the equation by y*,
we get

y

F==xy?

So (1) becomes
dz .z

—— e —

iy

dz 2z 2
O fom e o
ax “x

which 1s a linear differential equation of first order.
1
L
The integrating factor = eﬂ' ¥
= e‘l"ﬂ

1
= e'q;

L)
X
Multiplying both sides of the equation (2) with % , we get

v (L)
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11.7

So i-=—fdx+c=—x+c

|
—_=C—-X
Hence xy]

Or Y= 5e)

Thus y= x(cl_x) where ¢ is an arbitrary constant, is the solution of the given differential

equation.

EXERCISE 11 (b)
Solve the following differential equations :
dy

: dy
Feal b > & —_— =
l. dx+y =¢* . 7 . l)dx+2xy |
<% (1-x% ﬁ+2KY=K\“'*XI £ iogxgz +y=2logx
dx dx
5 (l+x2]d—y+2xy=cosx 6 d—y+ysecx=tzmx
4 dx BIEREY . '
B (x+tany) dy_= sin 2y dx 8. (X + 2)"‘ )'g—z" =Y
L2 d
9. s:an:—-i-By = COSX 10, (x+y+1) ﬁ =]
x : I dy 2
1. (I+y) dx + (x—¢ "™ ) dy=0 : 12, xEx-+}'=xY
dy & 2y dy g
x—+y=y'lo 1+x° )—==xy-y"
13, x g +y=y"logx 14. | ]dx Xy -y
e, e dy vy >
S — - s et 3 l :l
15. dx+x——l Xy | 16. i x,y(H
17. —i‘!—+2ytanx=sinx,y(£]=0
dx 3
Homogeneous Equations.
A differential equation of the form
dy _flxy) _
%) g‘x‘y) e |

where f (x, y) and g (x,y) are homogencous functions of x, y and of same degree, is said to be a
homogeneous differential equation.
Such type of equations can be solved by putting
y =X,
where v is a function of x.

dy dv g
_ ......—.v+ ——
If y = vx, then xdx

Then the given dtﬁ‘crcnual equation becomes
dv _ f(x.y)

+,_...—

dx  g(x.y)




r338 _ Elements of Mathematics, Class-XII ]

if f (x, y), g (x,y) are of degree n in x, .

e fl(“')
r gt(")
This implics that
g,(\')dv _fli
fv)-ve() x o

In equation (2) the variables 8 and x have been separated.

So integrating both sides of (2) and réplacing v by -} we can obtain the required solution.
Example 16 : Solve (x* + y*) dx — 2xy dy = 0.
Solution : The given differential equation can be written as
dy x’+y’
o oy )
which is a homogeneous equation,
We put y = vx, where v is a function of x

dy dv
Then dxuw'xdx
So from (1), we get
dv  1+v
VdX—=
dx 2v
r xd_v_l—'v:
? dx  2v
. A dx '2
f—% % ks

Integrating both sides of (2), we get —log (1-v*) = log x — log ¢
where ¢ is an arbitrary positive constant.

This gives

S

|l —v=—,

X

2

c
or l—-y-5-=—.
X b 4

or xX-y'=cx
which is the solution of the given differential equgtion.
11.8 Equations reducible to homogeneous form
The differential equations of the form

ﬂ_ ax+by+c
dx _ ax+by+c, sages AR)
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where @, bl, ¢,, a,, b,, ¢, are constants

a b
and '&f # ﬁ can be reduced to homogeneous form by changing variables

X, y to the variables X, Y respectively by the substitutions
: x=X+hy=Y+k
where h and k are constanls to be chosen later so as to make this reduction possﬂ:le We have

dy_d iy, dY &
dx dx dx  dx
_dy dx

T dX dx

dy [ dx _dx-h)
=X dx dx

Now the equation (1) becomes
dy (aX+bY)+(ah+bk+c,)

dX  (@X+5,Y)+(sh+bk+c,) - (2)
* We choose h, k such that
ah+bk+c =0 I
and ah+bk+c,=0
b, Y d— Cod
T h_f:; —a? ks :i;;—a;bll
Thus if h, k have these values, then (2) becomes.
dy a,X +bY
ax a,X+bY ©)
which is a homogenous differential cquanon and can be solved by putting Y = vX where v is

function of X.

-k
In the solution of the equation (3), replacing X, Y, v by x-h, y—k and i_ h respectively we can:

get the solution of the original equatidn (1).

b
If b‘—r then a, = a, randb b,r.

The equation (1) now becomes

dy r(a,x + b,y) +¢,

dx ax+by+c, “(4)

dy dz
Putting a,x + b,y = z so that a, + b, Y - cangetfrom{4)

2 dx
_(Sz_a,];z_w,
b, \ dx z+c,
.Ez__b(rz+cl]+ ] Hrae
i z+c o B
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so that the variables are separable. In the solution of the equation (5) we replace z by a,x + ";:Y

in order to get the solution of the equation (1).
. Example 17 : Solve (x—y + 1) dx — (x+y+5) dy = 0
Solution : The given-differential equation can be written as
A . i
dx x+y+5

(n

Putx=X+hand y=Y + k in (1), where h, k are constants to be determined later.

dY (X-Y)+(h-k+1)
e R EE(X+Y]+(h+k+S)
We choose the values of h, k such that
hk+1=0
h+k+5=90
Thenh=-3andk=-2
Substituting these values in (2), we get
. dY X-Y
dX X+Y

and

d d
Put Y= vX.—y=v+XE;-(— in (3), where v is a function of X.

dx
Then (3) becomes
dv  X(1-v) S =%

Vv X—= = ;
dx X(l+v) 1+v
. ﬁ__l—Z\»'—\.f2
9 dx l+v
(1+v) dx
—_——dv = —
= 1-2v—v? X

Integrating both sides, we get
—%Iog(l -2y~ vz) = log X + logc.

l I 7
50 | erm——mme R
1-2v-v*

We ha vea = Y12
L A AL

IR L DR
eplacing yx+3 in (5), we g

: 2' o7 =M (x+3)
y+2) (y+2Y
“z{m)‘[;s]
l :
o  Grdf - Ax+Ny+D)-y+2)

(2)

3)

(4)

(5)
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1
or x=+2x-2xy-]0y—-y‘—7=;3

or x:+2x—2xy—l(ly—y2=]+—-lz—=l (say)
¢

where A is an arbitrary positive consténl.
Thus x? + 2x — 2xy — 10y — y* = A is the solution of the given differential equation.

I EXERCISE Il(c)l

Find the solutions of the following differential equations :

&y Ay, ¥
L (x+y)dy +(x-y)dx =0 | 2.4 2% %
. g2 dy. 503
3. (x*—y)dx +2xydy =0 4.x'§+ X“+y =y
5.  x(xty)dy=(x*+y’) dx. : 6.y +31%‘-’ "Y%
L el R >
2 xsnn;d)’—[YSIl'l;—de«‘- 8. xdy — ydx = /x* + y*dx
SR Sl Ao N .
9. dx___y+x+5 l.O.(x—yjdy—-(x+y+l)dx
dx 3x-7y+7
AL (x=y=2) dx + (x=2y-3) dy =0 12. dy _—_3y—7x—3
d
13. Qx+y+Ddx+@x+2y—1)dy=0 l4.{2x+3y—5)'-d—:+3x+2y—5=0

15.  (4x+6y+5)dx—(2x +3y+4)dy=0



CHAPTER - 12

- Vectors

My pain may be reason for somebody's laugh. But my laugh must never
be the reason for somebody's pain.
- Charlie Chaplin
12.0 Introduction-:

In nineteenth century, the Irish mathematician Sir Willam Rowam Hamilton (1805 - 1865)
introduced the “Theory of Quaternions”, a new method for better understanding of both algebra and
physics, which in its simple form is the vector analysis of today. Now a days, vector analysis has
become a very important tool for Physics, Mathematics, Engineering and other branches of science.

In our day-to-day life we come across two types of physical quantities namely, (i) Scalar quantity,
otherwise called a scalar, and (ii) Vector quantity, or a vector.

Some physical quantities are completely determined when their magnitudes are known in terms
of specific units. These quantities are called scalars, for example, height, mass etc.

However, in the application of mathematics to physics and engineering, we come across certain
quantities that possess both magnitude, as well as direction. These quantities cannot be specified or
characterised by a single number. For example, complete motion of a moving object, say a car, with a
given speed, can not be described until we know the direction of its motion. Such quantities which have
a magnitude as well as direction are called vectors. Examples are force, velocity, acceleration, etc.

12.1 Representation of a Vector (Its magnitude and direcdtion)

Suppose we want to move an object from position
A to position B. It can be done in a number of ways as
shown in Fig.12.1,i.c.

(i) from A to X and then from X to B

(ii) from A to B along the arc AXC %

(iii) from A to Y and then from Y to B > B
(iv) directly from A to B as show by the line segment
AB, directed from A to B by an arrow mark. A

We have described four different paths along
which we can move the object from A to B. There can
be many others. The distance of movement of the object A gy )/
is different along different paths. However, along all these (Fig. 12.1)
paths, the change of position of the object is from Ato B :
and it is shown by the directed line segment as shown in
the figure. ; s

The change of position which is called displacement is thus associated with two entitics, the
magnitude whug‘ is the distance AB and the direction, which is from A to B. The displacement is
represented as AB .
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AB is called a directed line segment. (which is different from a ray AB in geometry). The length AB
is the magnitude of the displacement and the arrow mark above it signifies that the direction of the change of

position of the object is from A to B. (So obviously AB and BA are displacements of same magnitude, but
opposite directions).

Quantitics as above such as displacement are called vectors which are charactcnzed by both magnitude
and direction.

It is customary to represent a vector by a directed line segment AB .
Coming back to the above example, the distance covered in the given cases (i) to (iv) are
(H)AX + XB

- (i) length of the arc AXB
(1i1) AY + YB
(iv) AB.
But in all the cases, irrespective of the distance of movement, changc of position of the object is given

by the vector AB , with magnitude AB and direction as explained carlier.

= —» -4

N.B. It is also a practice to represent vectors as u, v, W etc., but in all cases they are elaborately
represented by directed line segments. Thus we can write

u=AB, v= PO, w=RS etc. The arrow marks above the letters u, v, w simply indicate that
u, v, W are vector quantitics.
12.2 Further terminologies and notations

For the vector AB (see Fig. 12.1)
(i) A is called the initial point and B, the terminal point.
' The direction is always from initial to terminal point.

gl :
(1)  AB is called the line of support
(i) If u = AB, the magnitude of u is represented as | u |

So|u|=AB
In general
(iv) Vectors with same initial point are called coinitial vectors.
(v)  Parallel vectors - Vectors whose lines of support are parallel.
(vi) Coplanar vectors-Vectors which lic on the same plane or are parallel to vectors lying on the
same plane
(vii) Skew vectors - Vectors which are not coplanar
(viii) Relative directions of two vectors

C

(Fig12.2)

(i) (i)
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(1)

(1)

(1)

(ix)
(x)

(xi)
12.3

> > » —> .
Let u=AB and v = CD be any two vectors. To decide whether their directions are (i) the same, (ii)
opposite or (iii) different, proceed as follows :

i > >
In the planc of A, B, C draw CE parallel to AB such that B and E lic on the same side of AC and
also AB = CE, then

— —> Tk =
If CD and CE . considered as geometrical rays unite into one ray, then vector u =AB and v =CD are
unidirectional, i.c. they have the same direction. [Fig. 12.2 (i)]. They are called like vectors.

4 > » > »
If CDand CE . considered as rays of geometry form a line as in Fig.12.2 (ii), then u =AB and v =
—)
CD have opposite directions. They are called unlike vectors.
' —> = R i
It may so happen that CD and CE neither unite into a ray nor form a line [see Fig.12.2(iii)]. Here the
o 3
plane of C,D,E and the plane of A,B,C (on which CE lies) may or may not be the same plane. If they
“» - ‘
arc onc and the same plane, then ABand CD are coplanar vectors. But if they are different planes,
> P = :
AB and CD arc non-coplanar, hence skew vectors. However CE has the same magnitude and

._F) 13
direction as AB . (You can confirm it by the procedure laid out in 12.2(1))
This shows that vectors which are not coinitial can be made coinitial.

T I
In case of 12.2(iii) vector #=AB and v =CD have different directions.
Equal Vectors : Vectors with same magnitude and directions are called equal vectors.
Zero (Null) Vector : It is a conceptual vector whose magnitude is supposed to be zero. It has
indefinite direction.
Unit Vector : A vector whose magnitude is 1.

Definition (Inclination between two vectors)

(i) If two vectors l; and \; have the same direction, the inclination between them is O (degrec or
radian or grade).

() If l.; and \: have opposite directions then inclination between them is 180%0r 7.

(iii)If w=AB and v =CD have diffcrent dircctions [sec Fig 12.2(iii)}, then inclination between
then is given by §=m /2 DCE.

Note that an inclination § € |0, t | whereas an angle-measure § € (0, 7).
Direction Cosines and Direction Ratios of a Vector

o » _) >
Take any vector v . Draw OP with same magnitude and direction as v , where O is the origin
of Cartesian co-ordinates. : . ;

....)
If «,pB,y are the inclinations of OP with x, y and z-axes, then / ~ coso, m =cosfand n =

»
cos Y arc called direction cosines of the vector v .
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If P has Cartesian cé-ordinat@ (x.5,2) then obviously
OPcosa=x, OPcosP =y and OPcosy =z

= OP*(cos’ a +cos’ B +cos’ 7)
= OP*(Ftm’+n) =x* +y’ +2° = Op*
= Ftm’+n’ = 1
—_— > 2 :
Note : The symbols AB. PQ ectc. have already been used in geometry to mean rays, but here, in

case of vectors, they are not rays. When Il? is taken to be a vector, it has a finite length AB. The

arrow-mark simply indicates that direction of the vector is from A towards B. Note that a ray ﬁ
does not have a finite length AB.
Types of Vectors :

Let vV bea vector. If |V |=0, then V is called zero vector(a ) or a null vector or a point
vector. (It has infinitely many directions.) '

If [V|=1then V is called a unit vector, and is usually denoted by V.
12.5 Multiplication of a Vector by scalar :

If v is a vector and k (# 0) be a scalar, then multiplication of the vector 1: by the scalar k is a

vector denoted by k v whose maginitude is | k | times that of v and the direction is same as that of v

* - —)
if k is positive and opposite to v if k negative. If k =0 then k v is zero vector () .
Two vectors said to be collinear if they are parallel.

+ 4

If V¥ is a non-zero vector, i.c. [V [# 0,

» »

E=41
Il

then v = L' is a unit vector in the direction of v, V} = | Thus —
| U g [Vl v
Thus a vector can be thought of as product of its magnitude with a unit vector in its direction.
12.6 Addition of Vectors :

If ¥ and V are two vectors represented by

-+ 3 » 3 * +* i
U= QA and ¥ = AB, then the vector ¥ + V is
+ ——y — —p

represented by # + Vv = OA+ AB=0
L.e. the sum of two vectors is a vector represented by
the diagonal of the parallelogram, whose sides are the

» *

vectors ¥ and V. The initial point of ¥ + V being the

- 4 A
" c L b
same as that the ¥ .

’
- -+

The vector # — V is represented by the other diagonal whose initial point is the terminal point

-»

(e, Ll
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Since a vector is represented by a directed line segment, a vector ¥ = 0_.4{ can be thought of as
a force displacing point O to A.

If uand v aretwo forces, displacing the point O to A and A to B (respectively) then the final

displacement is from the point O to B, which is represented by U+ v,
This is also known as law of parallelogram of vectors. From the above definition of addition

of vectors we see that [fig - 12.3 (b)]
v+u=0C+CB=0B=0A+AB=u+v
i.c. vector addition is commutative.
Ao, if 4 = OA, ¥-= AB and'w=BC thea
(J+ \:) +§\;=(OA’ # .AB))+ B(:

—y

= 0B + BC

= OC = OA + AC

= OA +(AB + BC)

[Fig 12.4]

» -» -
=u+(v+w)
1.¢., addition of vectors is associative. So, vector addition satisfics commutative and associative

laws. _ _
From the above definitions of addition and multiplication of vectors by scalars it can be casily scen that,

for scalars o, B and vectors u and v , the following results hold good:

» - + .

@ a(u+v)=auv +av O S L
(1) (a+ﬁ);=aﬁ+ﬁ; (v) 0:1:6

i) (aP)u =a(Bu)

Additive Inverse of a Vector
With AB || PQ if u= AB and v = PO andAB=PQthen u = v and u =—v if u = AB and

v = QP . (i.c. one vector is the additive inverse of other, if they have the same magnitude and

opposite direction) In fact, - \.: = (-1) \: >
12.7 Position Vector : ‘
Let O be a fixed point (Fig.16.5) Then the vector OP is called the position vector of point P, relative

to O and is denotd by p = OP . )

Similarly position vectors of points Q, R ..... are q J . ;

-+

... respectively where ©Q = g, OR = r and so on.
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[Nete : The position vector of any point is dependent on the
choice of the fixed point O and hence differs with choice
of different fixed points. | :

From Fig. 16.5, we have,

OP + PQ = 0Q
Hence,

R(r)

-P-Q-.'Iaa_a];:;_; . [Fig12.5]
= position vector of Q — position vector of P,
So, any vector is given by the differnce of position vectors of its intial point from that of its terminal

point.
Let P and Q be two points with position vectors

p and q andR bea point on line segment PQ , which
divides it in ration m : n (fig 16.6).

»

Then,Pif=q—p.

>
If r is the position vector of point R, then

Ed — =3 -~ Y LICN -» m =LA
r=OR = gp + pr = P fye= il

O 54 Bhpe s ma_i_ni; O
™ o G m4+n [Fig 12.6]

[fR ( r ) divides PQ externally in ratio m : n, then it can be shown that,

* —
*

r:mq-np t B
m-n

IfR ( r ) is the midpoint of PQ, thenm=n
and, ¥ = 24

e —»

[ Note : Three distinct points with position vectors u, v, w will be collinear iff we can find three

—» =1 — >
nonzero scalars /,m, nsuchthat v +mv+ ow=0 andl+m+n=0]

12.8 Resolution of a Vector into components :

Consider the XY-plane and let i and J be unit vectors along 6? and a’) respectively.
(Fig 16.7)

Let PQ be a vector-in XY - plane whose initial
point is P (x,, y,) and terminal point is Q (x,, ¥,). Then,

piiely

PQ = PR + RQ
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But, PR=[x, - x,, QR =y, - y/|
Since PRP is parallel to unit vector
to } we have

El. =(x,—x,) i

and RQ =(y,-y,) ]
Hence, .

=0 ~-x) i +¥ =Y, i:

i and RQ is parallel I
I
(x, ¥ |
3 |
: |
>- L
Y i
[Fig 12.7]

where (x, - x,) and (y, — y,) are (scalar) components of vector PQ along x - axis and y - axis

respectively. The vectors (x, — x,) i and -y j are called component vectbrs of PQ along x -

axis and y - axis respectively.
Also,

PQ = y/(x,~x,)’ +(y,~,) (By Pythagoras Theorem) y

>
Since any vector u can be equal to some vector

OP where O is the origin and P is some point (a, b) (fig.

16.8) we can writc

| Fig. 12.8 |

-»
Thus we see that every twodimensional vector u can be written as

- s -

Uu=xit+ty)

where x i and y ] are vectors along x - axis and y - axis respectively and magnitude of

. ]
|ll|: xl_‘_y‘_'_

" : 8
Further, if 8 and b are twoequal vectorsand a =a i +a,]

thata=b anda, = b,

»

»
u iIs

-

+ b =b,§ ¥sz.thcn it can be shown

Similarly, if v is a three-dimensional vector joining the points P (x,,y,.z,) and Q (x,, y,. z,) and i, ] :

k are unit vectors along x - axis, y - axis and z - axis repectively, then it can be proved that

-

v =(x,-x,) i +,-y)

]+(22*Z|)E -

and |.\: | = \[(v'.\t;!—xl)2 +(

Sy 2
y. =) +(z; =)
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Note : Any vector u can be taken as
u = OP where O is the origin and P = (x, v, z)’

Hence any 3 - dimensional vector u can be written as

» -~ .

uw=xi+ y J +zk
and |u|= 1/::3 +y' +2° =r(say)

If u has inclinations a, B, y with positive x - axis, y - axis and z - axis respectwely (This means that
the ray OP has inclinations o, and y with OX OY and OZ respectively) then the direction ratios
of u are <x,y,z> that is, the scalar components along the co-ordinate axes. Therefore, every3-
dimensional vector u can be represented by a triad< x,y, z> where X, y, z are componets along co-ordinate
axes and are direction ratios of u and modulus u = lul= JxP+y*+22.

In case of a two-dimensional vector  , (say in XY-plane) the third ‘component is absent and

hence v can be reprcsented by an ordered palr (x, y) such that x and y are components along x-

" axis and y-axis and IVI“ Jx +y°

Example 1

Four vectors 0 b f— :mda' aregwcnbyﬂ =(I, l 1), b =(2,3,0), C =(3,5,-2) and

--(0 —1, 1). Prove that the vectors("’ - f-' )and(d _e ) are parallel and find the ratio of their

moduli.
Solution :

b a=0230-011=(2-1)

and, d — ¢ =(0,-1, 1)~ @3, 5,~2) =(3, 6, 3) = (-3) (1, 2. 1)
Hence

(h _a}“(d_c)

Also | b- a |= \’l:~:r2’+(—'l)2 = JF,

and | d - C:-|= ‘/(—3)2 +(_6).2+3: =3J6

Zib =~ a:|d-c|=1:3. :
Example 2 .
If the position vectors of two given points Aand Bare 7] +3] + k =and 2] — 5] + 4k

respectively, find the magnitude and direction AB .
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Solution :
We have
AB =27 -5] +4k)-(7i +3] - k)=-5i -8] + 5k
| AB |= \((—5)2 +(-8) +(5)° =114
If AB has inclinations o, PB. y with positive x, y and z axes respectively, then
coso = = cosP = ;8 and cosy = 2
Jiia’ V114 Jiia
So the direction of AB is given by its direction cosines which are usually mentioned
4 < -5 -§ 5 >
Jiia 114 s
Example 3

Calculate the modulus and the unit vector in the direction of the sum of the vectors i + 43 +
2k .31 -3 -2k and 21 +2j +6k

Solution :
Then sum of the given vectors is
f=(;+43+2E)+(3E—3}—2§)+(—2f+25+6f()=2f+3j+6ﬁ
1)="Y st pp* »1
* v SN ok - 2. B34 v6s
Hence a unit vector parallel to r is 1 = _’_z_'+3_1+_".=_1‘+_1+_k
¥ 7 35 6 T
||
Example 4 :

Find the vector joining the points (2, -3) and (1, 1). Find its magnitude and the unit vector
along the same direction. Also determine the scalar components and component vectors along the
co-ordinate axes.

Solution :
" Let P be the point (2, -3) and Q (-1, 1). Then the position vector of P is 2 — 3 and that of

Qis—i+ )

-

Then PQ =(~i+ j)-Qi -3])=-3] +4]

| PQ |= J(-3f +4° =5
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, A 3. 4.

Thus unit vector PQ = —S-I +-3_-J
-3 4
Therefore the scalar components are - and 3

-3 . 4 .
Whereas the component vectors along the x - and y - axes are respectively < i and 3 ks

Example 5 :

The position vectors of the points A, Band Care 2i +) — k,3i ~2] + k.and | +4] —
3k respectively. Show that A, B, and C are collincar.

Solution :
AB =(3i-2j+k)-i+]j-k)=1i-3]+2k
—_— = . 1 - - = e - & —
AC = (1+4)-3k)-QRi +j-k)=-i +3) -2k =—-AB
=> AB and AC are parallel with A as common point and hence, A, B, C are collinear.
Example 6 : Z _
Three vectors of magnitude a, 2a G D
and 3a act along the diagonals of threc
adjacent faces OABC, OCDG, OAFG of E —AE
a cube. Find their sum and its direction A
cosines. A
el d 7%
Solution : y,
Let the three vectors of magnitudes a, 2a, i
3a act along diagonals 08 , 0D and OF and let . 0 C Y
us consider x-axis, y-axis, z-axis along sides OA /K B
OC, 0G of the cube. X [Fig 12.9]

-~ -~
——

ol = A — 1 4 1
- The unit vectors along OA and OC being i and j the unit vector along OB is ﬁj' and

since OB = a. we have,

s
OB =u(’7{)

30 . — - —» 4k i1k
Similarly, unit long OD OF ively.
imilarly, unit vectors along and are e and 7 respecuvgly S_o

iy 3+R
OD =24 \5
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Hence
ARSI eI (e A
r=0 +OD+0OF =4 7-2-+20 75--#-30 —‘7;-
] 4ai+3a]+5aﬁ (2\/—2—0);+[ 3 ]3+ -5 R
i 2 V2 2

So,

Its direction cosines are,
2\f2-a 3a Sa
sa ' 5v2a’ SV2a

1 <.2_.[2_ $ 1>
LE., 5 g"ﬁ"ﬁ

Example 7

Provethatthcvectorsﬁ_—] +k, i -33-—512 and 31 —4] _4k form a right angled triangle.

Solution :

»

Letu=20=J+k, v =3 _3} -5k, and w =31 -4j-4k.
Then

G+0=31-4]-4k=w, which shows
that ', o satisfy the triangle law of addition

and hence form the sideé AB, BC. AC of a

triangle respectively.

AB? =6, BC =35

And, AC? = 41 = AB? + BC? B digj sk €
— mZABC = 90° . - . [Fig 12.10]
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[ EXERCISE - 12 (a) |

. Each question given below has four possible answers out of which only one is correct. Choose the
correct one. _

@ If;=f+23+i,3=2’i’—2j+2fzand3=._;+zj+gm
(a) a and 5 have the same direction
(b) ; and ; have opposite directions

(c) 3 and Z have opposite directions
(d) no pair of vectors have same direction

(i) Ifthe vectors @ =2 +3) — 6k and 5 =ai - j +2k are aarallel, then o= —

2 2 1
(a)2 (b) 3 (c) 3 (d) 3
(iii) Ifmeposiﬁonvectomofmopommndaareshiand2i‘+j-fé,:hmhe
vectorEXis
@-i+j-2k @) i+ ] ©i-]+2k @i-j-2k

(iv) If |ka|=1, then

D

(b a=

—

|
(© k=— @ k=31
|al la

7| -

(a) a=

i
(V) The directoion cosines of the vector PG where OF = (1, 0,-2) and GG =3, -2, 0) are

1 1 2 1 |
(a) 2, _'2. 2 (b) 4, —'2, —2 (c) 73'! = 3 » 73' (d) FG e 6 = 6
2. Rectify the mistakes, if any

@ a-a=0

(i) The vector g has unique direction.

()  All unit vectors are equal.

) lal=|5|=a =5

(v)  Subtraction of vectors is not commutative.

3. () ‘Ha=@1),5=(l,0),find3s +25

ol

b |

@ Ka=(1,1,1),5=C130and ¢ =2,0,2) find 3 +23 -
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4, lfA,B,CandDaretheveﬂicesofasquare,ﬁndIg+ﬁ?+a),+m.
5.- The given points A, B, C are the vertices of a triangle. Determine the vectors TATB) + 'B_C’ and a)
and the lengths of these vectors in the following cases.
i A@45,5,B3,3,3),C(,25)
(i) A(B,6,1),B(2,0,1)C(4,0,-5)
6.  Find the vector from the origin to the mid-point of the vector PP, joining the points P (4, 3) and
P,(8, -5). '
7.  Find the vectors from the origin to the points of trisection the vector p]p_zI joining P (-4, 3) and
P,(5, -12). ¢ _
8.  Find the vector from the origin to the point of intersection of the medians of the triangle whose vertices
are :
A(5.2,1)B(4,7,0)and C (5,3, 5)
9.  Prove that the sum of all the vectors drawn from the centre of a regular octagon to its vertices is
the null vector. '
10. Prove that the sum of the vectors represented by the sides of a closed polygon taken in order is a
zero vector.
11. (a) Prove that:
@ |a+bl<lal+Ib]
State when equality will hold:
" -3 = 3 ~>
@ la-blxlal-Ibl.
(b)  What is the geometrical significance of the relation
la+bl=lal-]b|?
—
12. Find the magnitude of the vector PQ , its scalar components and the component vectors along the
co-ordinate axes, if P and Q have the co-ordinates
@ PE1,3),Q(,2)
@ P(1,-2),Q-5,-6)
(ili) P(ll 4' _3)1 Q(.zg _2) _l)
A
13. In each of the following find the vector. PQ , its magnitude and direction cosines, if P and Q have
co-ordinates :
@ P@,-1,-1),Q-1,-3,2);
(ii) P(3i _ls D;Qﬂk _3' _])-
4. Ifa=@-21). b=(23.6)and ¢ =(-1,0, 2) find the magnitude and direction of a —b + 7.
15. Determine the unit vector having the direction of the given yector in each of the following problems:

@ 5i-12) , ()27 +

()31 +6) -k (iv)3i +j -2k
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— — T ~ “ . v = &
16.  Find the unit vector in the direction of the vector 1, — r, , where ;= i+2j+ k and ©, =3 +
j—5k.

17. Find the unit vector parallel to the sum of the vectorsa = 2§ + 4)— Sk and b =i + 2+ 3k.
Also find its direction cosines.
18. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is /3 .

19.  The position vectors of the points A, B, Cand D are 41 +3) — k, 51 +2] +2k.2i -2 -3k

and4i —4] + 3Kk respectively. Show that 53 and &3 are parallel.

20. In each of the following problems, show by vector method that the given points are collinear.
M  AQ@,6,3),B(1,2,7)and C3, 10,-1)
() P2, -1,3),Q@,-5, 1)and R(-1, 11, 9).

21.  Prove that the vectors 21 — | + k.

i-3j+5k,3i —43 -4 k arethesiﬁcsofarightangledn'iangle.
21.  Prove by vector method that :
(a) the medians of a triangle are concurrent;
(b) the diagonals of a parallelogram bisect each other;
(c) the line segment joining the mid points of two sides of a triangle is parallel to the third and half
ofit; _
(d) the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram:;
(e) inany triangle ABC, the point P being on the side BC;
if PQ is the resultant of the vectors AP, PB and pc, then ABQC is a parallelogram;
(f) in a parallelogram, the line joining a vertex to the midpoint of an opposite side trisects the
other diagonal. . :
12.9 Product of Vectors :
We have already defined the addition of two vectors and multiplication of a vector by a scalar.
There are two types of physical situations in which two vectors occur in multiplicative combination.
(even though ordinary product of two vectors is not possible). In one, the combination is a scalar,
while it is a vector in the other case. The former is called scalar product (or dot product) and the
latter is called vector product (or cross product).
12.10 Scalar Product (Dot Product) :

Let.3=a?and_g=a!)bctwovectms
andec_theinclinationbetweenthm

the that the indination between the vectors .(TA’

and OB is the same as the inclination between

theraysaﬂ:andag.

Define

a.b=|d||B|cos® L4’
Then the right hand side being a scalar, the
product is the scalar product (or dot product) of

b o [Fig 12.11]
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From definition,

2.2 =1Zl1alcos®=1allB] cos©= P
This shows that the dot product is commutative.
Further, from definition, we get

a.b
a.
cos 0 = =

|al|B)

and hence,

6 = cos™ ﬁ— )
|al|B] o

If zand-g are perpendicular, then

0=90°c a.b =0
Hence, two vectors are perpendicular iff their dot product is zero.

Thisgi\mi -3=j-ﬁ=fz.i=0
Further, 3.2 =lal |alcos0= o F = a (The magnitude of a vector 2 . |a | is also written
as a.) :

=1.i= 33 =k k=1(s ?. 3 k arcunitveétors.}

12.11 Geometrical Meaning of dot product :

. Similarly, if we drop perpendicular from A

In, fig. 16.11 we see that

OM = OB cos 8 = | b | cos ©

= projection of b on a.

Hence,

2.8 =1al(5|cos ©)

- PO st Sy
= modulus of a x projectionof b on a.

which gives,
57 5B
a

A2 P 2
projectionof b on a = -
|al

on OB, and if N be the foot of the
perpendicular (fig. 16.12) then, '

ON=projectionofg on b and 5 R ;’ A

)
0N=0Acos0=|aioo39. [Fig12.12]
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Now,

a.b =[3|_(lglcose)=magnitudcof_g xprojectionofz on 5

= Y -
which gives, projection of 2 on f,} =

ab
|3 -

Hence, we have the following :
The dot product of two vectors is equal to magnitude of one vector multiplied by the projection

M

2

ofthcotbervectmoqit.

The (scalar) projection of one vector on another
their dot product

magnitude of the vector on which projection is taken

Also, from fig. 16.11 vector projection of Bonais

A ab| a |bal
OM = (OM ) a = [T]-:z[‘:;]"
_ al ) jal  \lal

and from fig. 16.12 vector projection of a on b is

g VERR 3 P gk
0N=(|0N])b=[_J_ [——]b

5 )16 LiBP

12.12 Distributive Law for scalar Product :

Theorem : Let g,b, -c| be three non-collinear vectors.

Then

_)

= e S e xS D A
a.(btc)=a.bta.c

(This is the distributive law for scalar product.)

Proof :
_)
a

&

oi ol
I

8l OZE
=

-(
-

Bl 8l &l

o>

7

P

+
ol

)

=|a | (projectionof 5 + ¢ = AC on a )

=lal.

=|al.

-

MN = |4 | (MD + DN) (Fig. 16.13).
MD +|a|.DN

|3|(projection _b) on 3)+[zi(projoct:ionof 2- on 2)

-

o
a,b* a.c.

ol

b+

o4

2.8

D
[Fig12.13]

N



| 358

Corollary 1

Corollary 2 If 2 = aji+ajra,k
and
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It can be proved similarly that 2. (b—-c)=a.b—-a. c.

B = bivh: et
then applying distributive law,
2.5 =(aji+a,j+ak). (bi+b,j+bk)
= a,b,(i i )+ab,(] j)+a.b,(k k)
(since i.J = 1.k = k.i=0)

=ab +ab,+apb, . (as ili= jj =k.k= 1)
Corollary 3 Let © be measure of the angle between @ and b, then
o= Ab____ahtahrap

Bl ya®+a’ +a;} B} +b2 +5

: apb, +a,b, +ab,
o it Jalz *"“::2 -"“932 Jblz ““5'22 +b32

Corollary 4 It can also be proved that dot product is associative with respect to scalar multiplication i.e.
if a is a scalar and 3, _I; aretwovectors,thena(j.g)=(a 2.3)— 3..(0.2)
Example 8
Find the angle between the vectors

a=3i+2) ~kesd B =225 35+ t.
Solution :

Let 6 measure the angle between 3 and f;
Then

2 (3 +2j - k) (-2i - 3] + k)
0 = cos™! T =cos | |3i +2j— k| |-2i -3j+k]|
4

3(=2)+2(-3)+ (=11 ]
= cos™!

(VPP 4+ PP 3+ 1
(

(=3 1{"—”}
= Cos me = COS 14 4

Example 9

Find the value of x, so that the vectors

,3=x‘i‘ —3] +5k and _{; =—xi +xj +2k are perpendicular.
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Solution :
Vectors ; and 5 will be perpendicular if
- 3
a.b =0

e if (xi —3] +5Kk). (xi +xJ +2k)=0
Le if (x) (x) + (-3) (x) +(5) (2)=0

Le. ifx2-3x+10=0

Le. ifx*+3x—-10=0

e if(x-2)(x+5)=0

Le.ifx=2orx=-5.

Example 10

Find the scalar and vector projections of the vector 2i — 33 - 6k on the line Joining the points (3, 4, -2)
and (5, 6, -3).
Solution :

Let u =2{ ~3] — 6k and the vector joining (3, 4, ~2) to (5, 6, -3)
be v.Then v = 2§ +2] -k

Now, scalar projectioﬁ of U on v

u.v.| (2i-3i-6k).(2i+2j-k)

I:i 12i +2j - k|

_2.2+(3).2+(-6).(-)) _4
JE+22 41 3

-+ =

and vector projection of u on V .
o} 1. ¥ ;:(_“;](zhzj_ﬁ):?.n?.j_ia. |
IvP " § 2929

Example 11
Prove by vector method, that in a traingle ABC,

b +c*-a®
Cos A 2he
or a&@=F+c-2bcCosA
Solution : ‘
Let ABC be a triangle in which

_,)
b

BC=4,CA=%

—

a
5
L4

=0 : : [Fig 12.14]
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5> 3 .9

or -a=b+tce¢

o Dy Eay B+ 2) (B

or a=b+c+2 b. ¢ (using distributive law)

—w+c+2] B || ¢ |cos(m—A)... Fig 16. 14)

=b?+ c2 - 2bc cos A.
EXERCISE 12 (b) ]

1. Each question given below has four possible answers, out of which only one is correct. Choose thee
correct one. i :

® @i-4)).d+i+k)=—
(@) -3 (b) +2
© -1 @ -2

G) Ifa=i+23-k, b=1+]j+2k, c=2i-1J, then

@a Lb ® b Lc
(c) P : (d) no pair of vectors are perpendicular
Gi) 3,4, 1)L1(1,0,-3)=>A=—
@0 ®1
(¢) impossible to find (d) any real number

(iv) If;.rl; = c.; forallvoctors;,tha:

@ 8 1 (b ~<) B % w0
(c)_l;at: (d)3+:=a
2. Find the scalar product of the following pairs of vectors and the angle between them.
@ 3i-4jand-2i+) Gi) 2 -3 +6k and2i -3] - 5k
(Gil) 'i‘—]an_d] £ (iv) 3 =(2,-2, 1)and b =(0,2,4)

3. IfA, B, C are the points (1, 0, 2), (0, 3, 1) and (5, 2, 0) arespectively, find mZABC.
4. Findthcvalucoflsothatthcvectors: andi; are perpendicular to each other.

@ a =3i+4), 0 =57 +1]

@ a=i+i+ak, v=4i-3k

(i) s et lip § andd ek )
@) . 8 =623, b =(1, -4,
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5.

10.

Find the scalar and vector projections of a on b

@ &= =)
G- b1k
G a-=i-1-k b=37+]+3k

In each of the problems given below, find the work done by a force F acnngonapa:ncle such
that the particle is displaced from a point A to a point B.

[Hints : work done = F .s where s is the displacement. ]

@ F=4i+2]+3k AQ1,2,0),B(2,-1,3)
@ F=2i+i-k A©,1,2),B(-2,3,0)

- I(ih) F =4i -3k A(1,2,0),B(0,2,3)
) P =3i-)-2kA(3,4,1), BE1,-1,-2).

If(a +b).(a - b)=0showthat|a |=|b|.
@) Ifa and b are perpendicular vectors show that

(3 + B =(a—bP(a+b ) mens(a+b).(a+b), sodoes(a—b)]
(i) Prove that two vectors are perpendicular iff

- =

la+bP=|ap+[bF.

C =

If;, 3 ¢ arermmaﬂyperpmdicuiarveclorsofequa]mgnimde,showthat a+ b+c is equally

inclined to a } b v ;

Prove the following by vector method

(i) Altitudes of a triangle are concurrent;

(i) Median to the base of an isosceles triangle is perpendicular to the base;
(iii) The parallelogram whose diagonals are equal is a rectangle;

(iv) The diagonals of a rhombus are at right angles;

(v) Anangle inscribed in a semi-circle is right angle;

(vi) Inany triangle ABC, a=bcos C + ¢ cos B;

(vii) In a traingle AOB,mZAOB= 90°. If P and Q are the points of trisection of AB, prove that

5
OP + OQ = 5 AB;

; 1
(vii) Measure of the angle between two diagonals of a cube is oos“;.
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12.13 Vector Product (Cross Porduct)

Let 0 be the inclination between the vectors @ an b .
Define

- - - =
axbzﬁd]qﬁnﬁ]ﬁ

- - S 5
where fi is a unit vector perpendicular to the plane of @and b and the vectors @, b, i form a

right handed system. (Fig. 16.15). Thus a x b is a vector perpendicular to the plane of aand b .

So, 4 unit vector perpendicular to both 8 and b is axb

|8Xﬂ
il ¥ - - e > - ! - - -
Now, b x @ =|a| |b|sin®(-n)(a, b, n form a right handed system => b, @, -n forma
right handed system.)
~» -+
=_—a8x b

Thus a x b and b x aare vectors of same magnitude but opposite in direction.
If @ and b are perpendicular to each other, 8 = 90° and hence,

;x3=(|; |E]ﬁ

'
=5

If a and b are unit vectors perpendicular to each other, then, x b =f,
i o B
b
0
0) e "
- -2 -
[Fig 12.15]

From the above discussion we conclude that cross product of two vectors is not commutative and
.-, - cross product of two vectors is a vector perpendicular to both the vectors.

k xi= .I =—1 x k.
Properues of Vector Product :
(1) It is non-commutative. (already proved) 2
(i) It is associative with respect to scalar, k

e a[3x3)=[u3]x3 =3x(a3)_ [Fig 12.16]
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If o> 0, then

— - -+ - vl =l =5 —¥
a.(axb].—.um{ |b| sin®n=|aal|b| sin®#=|al|a b|sinBn; so
- = = = -+ e -
a(axb]=[aaxb =laa|xb=ax|ab
Similarly it can be proved for a < 0 by taking o = —B,B >0.
(iii) Vector product is distributive.

i€ ax 3+§=_3x3+;x2
(Proof omitt:

Let 3 =a,i +a,) +a,k

and B = b i+ b,i+b,k

Then using the distributive law for vector product,

axb= (a1+a.l+ak)x(bl+b]+bk)
=ab(i x 1) +ap, (ixk)+a, b, () x i)+ap, (J x k)+apb, (k x 1)+ab, (k

i
—(apb) k —(ap) ) —(@p) k +(@p) i+@b) I ~(@pb) i
= (ap, - ab) i + (b, —ab)] +(apb,~ba)k
! J k : B a ¢
=la & &
by b, bs
Geometrical meaning of Cross product : b
Let OA = & and OB = 3
Then 3x3=[|3] |3|sin9']ﬁ : s
—_—|a'|(|3|sine]ﬁ 9

=|a|BM  (Fig. 16.17)

BM L OA

=y

A

oY

[Fig. 12.17]

= |@ x b|= |a|BM = area of the parallelogram with sides aand b.
Hence, & x B is a vector whose magnitude is equal to area of the parallegogram with sides @ and

1
b . From this it follows that area of a A ABC = 5 | AB x AC |
Example 12 :
Findaunitvectorpetpendiculanoeachofthevectorst - 3 +k and3i +43'— k.
Find the $ine of angle between the two vectors. ? '

Solution : i _ 0.5
Let a=2i-itk, y
b =3i+4)-k
'3x3' ) _ >
Then —— is the unit vector perpendicular to each of these vectors.

|a x b|
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[N, 2
o

i :
Now, dxb={2 -1 1|=(1-4i+@3+2)]+@+3Ik

=37 +5) +11k
s la x Bl= J9+25+121 =4/155

So unit vector perpendicular to agand B, is

a -

axb -3+5j+1k -3 - A 1
|a x B} 55 V155 155 -
From definition of vector product,
axbh= |a||3|sm9n
s A2 B
aixi5) Y6938

Example 13
Obtain the area of the parallclogram whose sides are vectors § +2J +3k and-3{ —2] + k.

Solution :
leta=1 +21 +3k
b=-31-2]) +k

la x b|=area o{thcparallelogramwhoscmdsareaand3
i j k
- = l 2 3 y 4 e 5 i
Now, @ x b = g =(2+6)i +(-9-1)] +(2+6)k =81 -10] +4k
= |axB|= V64+100+16 =180 sq. units.
Example 14
Prove by vector method that in any triangle ABC,
RER ST LW :
sinA sinB sinC
Solution :

Let ABC be a triangle whose sides are represented by vectors (Fig 16.18).

A

- TR
So,amofAABC=EIABxﬁ|='2‘ICx0
L 1 N

=-|ax3|=5|3xc| _

= |a x3]=|3x3|=|3x3| B i '
i.e. ab sin C = bc sin A = ca sin B a
ﬁs’nC"S'nA__sinB____,> NP Biie '

L sy A snA snB snC- (Fig12.18]




365 |

I Vectors 3
Example 15
Find the area of the A ABC whose vertices are A (1, 2, 3), B (<1, -1, 0) and C (1, -1, 0).
Solution :
We have ¥
AB =1-D) i +E1D I+ 0= &
=2y 33 =3k
and AC =(1 - 1)i+(=1-2) j +(0-3) k
=0i -3) -3k

1
.. Area of A= 3 |';\_B) x EI

-

-
L I e =—2—[—6j+6i:|
0. '=3.'=%

=%Jﬁ=3ﬁsq.units.

Example 16
Show that the vector area of the triangle whose vertices have position vectors a, b, ¢ is

S (GabiBxtitan
Solution :
Let A B C be the triangle, whose vertices A, B, C have position vectors @, 5, ¢ respectively.

Then AB =(3-3)and AC=(2-8)

. 1
and vector area of A ABC = E[E X R]

(+5)(c3]

I
P = = B

I

EXERCISE 12 (¢)
Each question given below has four possible answers out of which only one is correct. Choose
correct one.

the

@ (+k)x(i+]+k)=—vm
Wit mk-iI ‘wEk-2i- @2

(ii) A vector perpendicular to the vectors § + J and § + k is —
Wiclek Wikt @t @ Id ey

(iii) The area of the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) is —
@; ® ©F @2
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iv) If & and b are unit vectors such that &x b is a unit vector, then the angle between & and b is —

"W (a) of any measure (b)% (c)-;i dn

") If @, b and ¢ are non-zero vectors, then

- - — .
axbh=0ax co>—

@B=¢ ® al(B-¢) @blc @BLec.

2 Leta=2i+], B=-i+3)+kandé=]+2j +5k be three vectors. Find

ol

()exa (i)a x(=b) (i)(a-25)x
(v)(a@a —¢)x ¢ (V(a—-B)x(c-a).
3.  Find the unit vector perpendicular to the vectors
ok G)f+3,i-k
@i+t i-2] @p2i-3isk,~1+21-k.
4.  Determine the area of the parallelogram whose adjacent sides are the vectors
@21, 3 P PR
Gi)25 +) +3k, T -1 Gv) (1,-3,1), (L, 1, 1).
5. = Calculate the area of the triangle ABC (by vector method) where
(DA(ls 2s 4): B(3: l,—Z), C (4$ 39 1)

(i)A(1,1,2),B(2,2,3),CG,-1,-1)
6.  Determine the sine of the angle between the vectors

51 -33.30-2k - i3]+ 1+ ek
7. Showthat(a x ) = @b —(a.b )y
8. Ifa x b =5 x ¢#0, prove that

¢ =mb, where m is scalar.

+

=
a

-~

9. Ka=2i+)-k,B=-1+2]-ak;
¢ =i+j+£,ﬁnd(3 x b)-(a x ¢)
10. 1£d=3i+]+2k, B=2i —3] + 4k, then verify that @ x b is perpendicular to both 3
¥ andg.
11. Phlthcarenofthepmilclogramwhosediagomisareveﬁtors:if + 3 ~2k and i —3] +4k.

12. Showthat(a — B)x(a + b)=2(a x b).
Interpret this result geometrically.
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12.14 Scalar and Vector Triple Products.
The product of three vectors with the help of ‘.” and ‘x’ is called triple product of vectors If
the product is a scalar it a called a scalar triple product and if it is a vector, it is called a vector
triple product.

The products a.(bx E)and(ax_b’)._c' are scalar t[iplepyoducts whereas (a x 3).3(:;'
and a x (b x ¢ ) are vector triple products.
The products (@.5) . ¢ and @ x (5 .¢) are not defined. (Why ?)

The scalar triple product @ . (5 x ¢ ) is denoted by [a B ¢ .
Scalar Triple Product :

Let @ =a,i +a,] +a,k, b =b,i +bJ+bkand ¢ =ci +e,) +ek.
k| -

Rami 43

i
-+ b b s - e
. Bxe =_['"? =(be,—c,b) 1 +(be, —ch) ) +(be,—cb) k

B

Now &. (Bx8)=(ai +a,) +ak).[(be,—ch) i +(be,—ch) I +(be,—cb) k]

h &
=& b b
& G
Again,(ﬁ xh).¢ =¢. (@ x b ) (by commutativity of dot product)
6 6. G o T B @ &
L a4 al=-lg ¢ o= b b =a.(bxc)
bbbl b b bl | o oa

Hence [a B ¢]=[¢ a b].
Similarly it can be shown that [a@ b ¢ | =[5 ¢ a].

~[abél=[(bcal=[¢ab]
[ Note : In a scalar triple product the position of *.” and ‘x’ can be interchanged. ]
Geometrical Meaning of Scalar Triple product :

Let a, b, ¢ be three no-coplanar vectors.
Construct a parallelopiped with sides a, band ¢ (Fig £ CAEAY
16.19) such that OA = @, OB = b and OC = €.

Then the vector 5 x ¢ , which is perpendicular to the

planeof_b’and?,isalonga)’.LetBbemsureof == "‘_,:’ B

the angle between @ and (b x ¢ ). Now, by definition :
of scalar product, [Fig. 12.19]
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a.(bx¢)=|a|(|Bxc|cos )
=18x¢|(a|cos 6)

=|Bx¢|AM

= area of the parallelogram OCGB x AM

= area of the base x hight of the parallelopiped
= volume of the parallelopiped.

Hence, a . (b x ¢ ) = volume of the parallelopiped with sides @, 4 and ¢ .
Note : 1. (i) [a B ¢] = 0, iff the vectors are coplanar.

(i) [a b ¢ ] = 0, if any two vectors are eiter parallel or equal.
Vector Triple Product :

If a,b,¢ be three vectors, their vector triple products are given by
3x(3x3)= (3.3)3—(3.3)3

and (ax b)x¢ = (a.¢)b—(b.¢)a
Example 17
Obtain the volume of the parallelopiped whose sides are vectors & =21 -3 + 4k,

B=i+2) -k, ¢ =3]-J+2k.Also find the vector (dx 3) x¢.
Solution : '
The volume of thee parallelopiped with sides @, 5, ¢ is a. (b x¢).

i %
Now, 3-x3=; i -2' =@-1)i +(3-2)] +(1-6)k =31 -5] -7k

So, a.(Bx¢)=@i 3] +4k). (31 -5) -7k)
=6+15-28=-7
" "Hence, volume of the parallelopiped is 7 cubic units.
Again, (ax b)x¢ =(a.¢)b-(.¢)a
={@]-3) +4k). @i =j+2k) ( +2i - k)
— (i +2) - k). B1 - ) +2k) @i -3] +4k)
=(6+3+8)(i +2] - k)-(3-2-2) (2] -3] +4k)
| = (17§ +34] —17k)- (1) @1 -3] +4k)=19] +31] - 13k
Enmple 18 3
Find the value of X so that the vectors i — j +k, 21+ 3 -k and A1 - 3 +1k are coplanar.

Solution :
We know that the the above three vectors will be coplanar iff their scalar triple product is zero
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e S,
ieif2 1 -11=0
K =1 -k :
e A-DM+EEDE-20)+ (D) 2-0)=0
ieA-1+3A-2-A=0
e 3i=3ori=1.
Example 19
Provethatthefourpointswithpositionvectorsﬁ+5j+12,~3—ﬁ,3f+9j+4£md

4i + 43 +4k are coplanar.
Solution :

Let the given points be A, B, C, D respectively. The four points will be coplanar, if vectors AB, AC

and AD are coplanarie. 0 .(.AC x AD)=0
Now, AB = (- j — k)~ (@i +5] + k)=—4] 6] -2k
AC=(3] +9) +4k)—(4] +5] + k)= -} 4] +3¢

AD =(4i +4] +4k)- (@4 +5] + k)=-87 - ] +3k

T
Now, AB. (AC x AD)= |-1 4 3| =-4(12+3)+(=6) (<24 +3) + (-2) (1 + 32)
' -8 -1 3

=60 +126-66=0
.. Points A, B, C are coplanar.

IEXERCISE 12 !d!l

I. Each question given below has four possible answers out of which only one is correct. Choose the
' correct one. :

@ a.bxa=—a

@0 ®0 ©1 (@%b
(i (-a).Bx(-¢)=—o

(@) axb.¢  (b)-a.(bx?) (c) axc.B  (d) a.(¢xB)
(iii) Forthehoa-zcrovectors3,3and3,3.(3x3)=0if

@blé¢ (@®ald ()a|¢c (d) alc.

2. Find the scalar triple product 4. (¢ x a ) where a,5 and ¢ are respectively

@isd. i-i8i42] +3k
@)Si-J+4k,2] +3) +5k,5i —2] +6k
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10.

11.

Find the volume of the parallelopiped whose sides given by the vectors

Gi ¥k d.ai civak
(1) (1,0, 0), (0, 1,0), (0, 0, 1).

Show that the following vectors ar co-planar.

() i-2) #2k 31 +4) +5k, 21 +4] 4k

@) 5 +2] +3%,-27 43 +5k,3i +6i +k

Find, the value of A so that the three vectors are co-planar.

G) i +2) +3k, 45 +) +0k andnj 4] + k
() (2,-1,1),(1,2,-3)and (3, 2, 5)

Ifd, b and ¢ are mutualiy perpendicular, show that [3 (B 3)} = a’b’c’

]

-

b

gl

Show that [a+B B+¢ ¢+al=2|

Provethat [axb Bx¢ c¢xal= [ab ¢l

-

For3=f+j.$=wi+2ﬂ,3= +k,

s s 3

obtain ¢ x (5 x ¢ ) and also verify the formula ax (5x¢)=(a.¢)b—(a.b)c.

Prove that @x (Bx2) + Bx (¢xd)+ éx (4xB) = 0 and hence prove that @ x (5 x2),
hx(¢xa), ¢x (axb)are coplanar.

- - - - I % A o <
be unit vectors and @x (bx C) = 5b, find the angles that & makes with b and €,

—
W
[« 8]
o
o

where b, € are not parallel.

Additional Exercises

Prove that the sum of the vectors directed from the vertices to the mid points of opposite sides of a ‘
triangle is zero.

Prove by vector method that the diagonals of a quadrilateral bisect each other iff it is a parallelogram.

If G is the centroid of a triangle ABC, prove that (?A +G§ F GE‘ =0 -

If M is the midpoint of the side BC of a triangle ABC, prove that AB + AC=2 AM

If  and b are the vectors represented by the adjacent sides of a regular hexagon, taken in order,
what are the vectors represented by the other sides taken in order ?

———ei — ==
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6. If the points with position vectors 10?1-33, 12?—5] anda;ﬂlj are collinear, find the value of a.

7. Prove that the foﬁ: points with position vectors 2 a+3b-c ey B+3c -3 a+4b-2¢ and
a-6b+6e are coplanar.

8. For any vector ;=x?+}!3+zﬁ , prove that ;=(?-)i\)’i\+(;-})}}+ (?12)12

9. Iftwo vectors a and b are such that|a |=3,|b|=2and a.b=6, fmd|§+3|;nd13—3|..

10. If @ makes equal angles with ;3 and k and has magnitude 3, prove that the angle between a and
each of ;A| andﬁ is-cos"('\;—g) :

11. If;,?;,; are such that ;.3=3.? then show that a= Oor b=c or Eisperpendicularto b-c.

12 Ifa+b+ce=0,|a|=3,|8|=5and|c|=7, find the angle between a and 4 .

i3 lfé;.g,? are unit vectors such that ;+3+;= a,ﬁndthevalueof ;3*'3_0)-%2;

14,  Find the angles which the vector o= i }+ 2 k makes with the coordinate axes.

I5.  Find the angle between a and b if |a x4 |=a.b



Three Dimensional Geometry

Analytic geometry, far more than any of his metaphysical speculations, .
immortalized the name of Descartes and constitutes the greatest single step ever made
in the progress of exact sciences.

- John Stuart Mill
Preliminary Ideas -
13.0  Inclination between two rays with a common vertex

e
Let OA and -(ﬁ be two rays with common vertex O. We define :

L If OA and OB are coincident rays then the inclination between them in zero.
2 If OA and OB are oppositerays i.c. (A_B’ is a line then inclination between them is wi.e. 180°.
— —
3. If OA and OB are noncollinear rays (i.e. neither coincident nor opposite) then the inclination between them
is0=mZAOB. :

Direction cosines and Direction ratios of a line in space.
Let L be a line in space. Consider a ray R paralled to L with vortex at
orign. (R can be taken as either OP_or OP’ ) Let o, [} and y be the
inclinations between theray Rand OX , -(W and OZ respectively.
Then we define the direction cosines of L as cos «, cos  and cos y. .

Notes : .

1.  Usually direction cosines (written as d.cs) of a line are denoted as < I, m, n >. For the above line I = cos a, m = cos
B.n=cosy.

2. Inthedefinition of the d.cs of L the ray R can be either ’(‘ﬁ:? or ‘O_FT? . Therefore if cos a, cos P, cos y are the d.cs
of L. then cos(m — ), cos ( — B), cos(r —y) can also be considered as d.cs. of L. The two sets of d.cs correspond
to the two opposite di_r)ections ofaline L.

3. Thed.csoftheray OP are cos a, cos B, cos y and of the ray @? are cos (m— @), cos (m— P), cos (m—7).
The d.c’s of a segment are same as those of the line containing it.

4 If Oisan angle measure, then 0 <0 <m
But for an inclination 6,0 <6 <.

A property of Direction cosines.

—
Let O be the origin and direction cosinés of OP bel, m, n. IfOP= rand P has coordinates (x, y, ), then
x=Iny=mr,z=nr.
Prof: LetL bethe foot of the perpendicular from P on x-axis. (see figure 13.1)
(e s R L 8 r
TS OB O
(By definition of space coordinates of P, x =—OL in this case, as L falls on OX? )
Lx=k

‘Similarly it can be shown that y=mr, z=nr.
Corollary : Ifl, m, n are direction cosines of a line then

I*+m’+n’=l

—)
Proof : Let 63 be paralled to L where O is origin (Fig. 15.10). If Phas coordinates (x, y, z) and thed.cs. of OP arel, m,

n then they are also d.c.s of L.
We have x=Ir, y=mr, z=nr, where r =OP.
By the distance formula.
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r’= OI-"_’:)x’ +yV+2Z2=(P+m*+n)r......(>10)

Since OP isaray, Pis different from O so that OP=r # 0. Therefore it follows from (i) that P +m? +n?=1.
Direction Ratios :

Let I, m, n be the direction cosines of a line L such that none of the d.cs is zero.

7 e A
Ifa, b, ¢ are non zero real numbers such that 7 = ; = ; then a, b, ¢ are called the direction ratios of the line L.
Usually direction ratios are abbreviated as d.rs.
Exceptional cases :

b %
l. Ifoneofthed.csofalineL,sayl=0andm =0, n :OtheudrsofLarcgwen by (0, b, ¢) where ;=;:bandc
are nonzero real numbers.

Qg
Similarly d.rs corresponding tod.cs (1, 0, n) (1 # 0, n # 0) are given by (a, o, ¢) such that T = ; (a#0,c#0)and

) a
d.rs corresponding to d.cs (1, m, 0) (1 # 0, m # 0) are given by (a, b, 0) such that T = ;"" :wherea, b are nonzero real

numbers.
2. Iftwoofthe d.csarezeroe.g. 1 =m= oand n # o then obviously n ==1 and the d.rs are givenby(0,0,c);ceR, ¢
=0,
Direction ratios in the other cases can be similarly decided.
NB.: - ()  Thecaseof all the d.c.s or d.rs being zero does not arise (Why ?)
(i)  Asin case ofd.cs, d.rsa, b, c of aline are also wntten as
<a,b, c>,
(iii) ~ Asetof direction cosines of a line can be regarded as its direction ratios, but not the converse, A triple
of real numbers a, b, ¢ can be direction cosines of a line if and only if a*+ b* + ¢*=1.,
(iv)  Direction ratios of parallel lines are proportional.
Finding direction cosiness from direction ratios :
Ifa, b, c are direction ratios of a line then its direction cosines are given by
a 1 gl b Bo c
+va® +b% +¢* +/a+b +c¢?’ tVal+bi+ct
Proof : Ifany of the direction ratios is zero, then the corresponding direction cosine is also zero. Therefore we consider

the case when none of a, b, ¢ is zero.
Let I, m, n be the d.c.s of the line. Obviouslyeach of I, m, n is nonzero.

a b g val+b®+¢? J_’_
Wehave T=—=—=t—————=====34va"+b +c¢
1 m 0 “JPFumiin

=2l= - m= > n= .
tal+b +c?  tal+bi+c’ #ai+bi4c
The signs of the d.cs are determined according to the position of the line with respect to the coordinate axes.
N.B: The formula for d.cs from d.rs holds good in the exceptional cases considered in the definition of direction

=

ratios. :
For example d.cs corresponding to <a,b,0 >, a=# 0 Or b # 0 are given by

b
<, ——,0>-
tva’+b® t4/a’+b? > -
13.1 Direction ratios of the line joining two points : :
By passing planes through P and Q parallel to the
coordinate planes a cuboid can be formed as s.hown in figure
13.2, If o B, y be the inclinations of PQ with PS P_R’ and
, then the mclmanous ofaray OA parallel to PQ (as

shown in figure) with OX _‘7 and OZ arealsoa,ﬂand
¥ (Ref. Fact-8, Art.13.3 on properties of paralles lines in space [Fig 13.2]
discussed in elements of mathematics (EOM) for previous X

class)

(4.y,.2;)
=

(x1 .Y, lzq }
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3. Since parallel lines have same direction cosines, if follows from definition of direction ratios that lines with
direction ratios :

<a,b,c>and<a,b, c,>areparallel ifand onlyif _

a; by ey .

a‘:—:c_ .......... (A}

Heére, c-f2 course we assume that none of the d.rs is zero. However, in case of zero direction ratio (A) holds
between the corresponding non zero direction ratios. For example, lines with d.rs <a, 0, b>and <a,, 0, b>are parallel if

a b

a; by , .
13.3 Inclination between two lines : _ ;

Definition : Let L, and L, be two lines in space. - -

1. IfL, and L, are parallel or coincident then the inclination
between them is zero.

2.IfL, and L, are intersecting or skew then their inclination is € > L
the measure of angle between them.

Length of projection of a segment on a line "
Let AB beasegment and L, a line such that 6 is the inclination

between L and ﬁ .When L and lg are neither parallel. nor
perpendicular we take 0 to be the measure of the dcute anglebetween = ¢ L

them. The length of the projection of AB on Lis ABcosf. [Fig. 13.4]

Proof : If Xﬁ and L are intersecting the length of the projection of AB on L can be easi ly seen to be

~ ABcost. So suppose that ﬁ and L are skew and the inclination between them is 6 such that 0 <6< %’ Let

-

L’ be a line passing through A such that L’ || L. Suppose C, Eand D arerespectively the feet of the perpendiculars
fromAonL,BonL'andEonL.

Since L' is parallelto L, L ana L' are coplanar, ( E and L being skew, AB does not lie in the planeofLand L").

It now follows from plane-geomeiry that E 1 é_I)) i
ﬁ p ! ﬁ (Construction).

" ﬁ is perpendicular to the plane of §ﬁ and l‘::ﬁ (Faci-1)

But 63 (i.e. L)isparallel to XE (i.e. L"). Therefore & is perpendicular to the plane of ﬁ and ﬁ.}) (Fact-6,
Art-13.3, EOM-prev. class)

Hence éﬁ . é% (Definition of perpendicular to a plane)
Thus D is the foot of the perpendicular from Bon L.

So, by definition of projection of a segment on a line, CD is the projection of AB on L.
Now consider the triangle ABE. Since ZAEB is a right angle (- BE LL'),AE=AB cos.
But in the rectangle ACDE, CD=AE.

. CD=length of projection of AB on L= AE ABcost. O
Notes :

L1f AB || L, then 6 = 0 and hence it can be easily seen that projection of AB on L has length AB = ABcos6.
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2.1f AB L L, it can be shown that length of the projection of AB on Lis zeroi.c. ABcosf (-.- 6= % in this case).
Corollary : The length of the projection of PQ joining P(x,, y,,,) and Q (x,, ,, 2,) on a line L with direction cosines

<1, m, n>is given by | /(x,—x )+ m(y =y )+ n(z~z )|
<>
Proof : PQ has d.rs <x-x, V,-¥,, Z,7%,>

e (ISP { at ANl

fH ix

.. Measure 0 of the angle between % and L is given by

(x, —x, N+ (y, -y, )m+(z,—z)n
PQ
.. Projection of T’H(j on L has length
[PQcos 0] = |(x,~x,)/ + (y,~y)m + (z,-z)n|.
SOLVED EXAMPLES :
Example 1

Find the direction cosines of the line which is perpendicular to the lines whose direction ratios are
<],-2,3>and <2,2, 1>.

cosb= £

Solution :
" Let /, m, n, be the direction cosines of the line perpendicular to the given lines. Then we have,
I14m (-2)+n3=0and/2+m2+nl=0
By cross-multiplication, we get,

§ wot hae L
-2=6 - 6-1 2+4

Hil= 3 m= 2 n= g
555 5 55
Example 2 .
Prove that the two lines whose direction cosines are connected by the equations / + 2m + 3n = 0, 3im
— 4In + mn = 0, are perpendicular to each other.

Solution :
The two given equations are
l+2m+3n=20 aldd
3lm—4in + mn =0 .(2)

From equation (1), we get / = — (2m + 3n) and hence from (2)
we get, by eliminating /,
-3 (2m+ 3n) m+4 (2m +3n) n+nm =0

or, —=6m? + 12n* = 0 or, m = ++/2 n and hence,

I=—2m+3n) =- (312\5}"
so, the direction ratios of the two lines are

<—(312\5).:5:\E, 1>

i.e. the two given lines have the direction ratios,
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< (34242) 2. band{-3+242 )2, 1.

If these be takenas a, b, ¢, and a,, b, ¢, respectively, then we have a,a, +b, b, + ¢, ¢,

= —(3+242) (242 -3)+ (-2 V2 + 1=-1(8-9)-2+1=0

Hence the two lines are perpendicular to each other.

Example 3
Find the co-ordinates of the foot of the perpendicular drawn from the point A (1, 3, 4) to the line joining

the points B (3, 0, 1) and C (0, 1, -2).

Solution :
Let the foot of the perpendicular D, drawn from the point A on the line segment, BC divide B¢ ina
ratiok : 1. ;

: [3 k ~2k—‘lJ
Then the co-ordinates of D are e Jrmre (he vy

2-k -2k-3 6k+5 ) >
Hence the d.rs of ﬁsare <k+l’ el TRt > Now the d.rs of g& are <3, =1, 1>. Since BCis -

perpendicular to f::)]) we have,

(oo 22 (T2 1= ork= 4

: [31115.
Hence, co-ordinates of D are | 77" 77" 17

Example 4
A line makes angles a, ﬁ v, & with the four main diagonals of a cube.

Prove that cos? o + cos® B + cos?y + cos?d = 4/3.

Solution :
Let the cube be of side ‘a’. Then the coordinates of the vertices of the cube are as shown in Fig.

(15.14) Now the main d;agonals of the cube are OE, AD, BG and CF. The d.rs of OE are <a, a, 2>

R S _ s,
and hence dc’s of QF are <73'73'7§> . Similarly, the dcs of AD are

el S (o SR

<—%:}-§ %) The des of BG are (-ﬁ,—*@ﬁ> gid the desof CF ave <F——£,—‘E> If the

line L makes angles o, B, v, 8 with OE, AD, BG, gl @am (0.8.3)
and CF respectively and </, m, n> be the des of L, then, (:08) £ e
l+m+n —l+m+n @oaf
coso.= —T— —T_ 0 (0.0,0) (0.5,0)
cosy = %F— and cosd= —Tmt'l : A (2,0,0) B {:a.ﬂ}y
. Hence, * X s S

X
cos’a. + cos’P + cos’y + cos’§

e R 2 e 2
i (I+m+n) +( l+m+n) %( [-m+n) 'L(I m‘+n) =i(22+m’+n:)=i
3 3 3 3 3
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Example § |
If I, m,n; L, m,n,;l,m,n be the direction cosines of the three mutually perpendicular lines,

l,+l,+1; m +m,+m,; n,+n,+n;
then prove that the straight line L with d.cs Pk 7 gE makes equal angles

with each of them.
Solution :
Since the three lines are mutually perpendicular,
LL+mm,+nn,=0
ll‘3+m'|.m3+n'l n"=0
L1, + mm, +n,n, =0
Alsol12+nl13+nll=lzl+n]22+nll=132+m32+n11=l :
If o, be the angle between the line L and the straight line having dcs <l,, m, n> we have

o e L+l +ll+m mrm+m R +n,
1 5 | J's- 1 Jg
R i e
B B _
Similarly, if B and y are the :inglm which L malkcs with lines having d.c’s </,, m,, n,> and </, m,, n,>
respectively then cos B = 7; and cos Y = 7; Hence, a=p =.
Example 6 :
The direction cosines of a straight line in two neighbouring positions are </, m, n>and </ + &l,m
8m. n + &n>. If 30 is a small angle between them, then prove that (86)* = (81)* + (dm)* + (8n)*.
Solution :
Since 80 is the angle between them, we have,
cos 50 = /(I + 81) + m(m + 8m) + n (n + 8n)
= (P + n? + n?) + (/8/ + mdm + ndn)
= | + (/8] + mdm + ndn),
which gives, /8/ + mdm + ndn = cos 3 6 - |
Again, 1 = (/ + 8/ + (m+ dm)* + (n + dn)
. = (P + m? + ) + (8P + 8n?® + &n®) + 2 (/5] + mdm + ndn)
=1+ (8Iy + (dm)* + (5n)* + 2(cos &6 — 1)
50
=1+ (8y + (dm)* + (dn)’ — 4 sin® | =~
30
- 4 sin? (7J = (8[ + (dm)? + (Sn)
: : . .. OB 56
Since, 80 is very small, replacing sin > by = e have,
(80): = (3I)* + (Bm)* + (0"
[EXERCISE - 13(a))

1. Fill in the blanks in each of the following questions by choosing the appropriate answer from the given

ones.

(a) The number of lines making equal angles with coordinate axes is :
[1,2,4,8]

(b) The length of the projection of the line segment joining (1, 3,-1)and (3, 2, 4) on z axis is —.
[1,3,4,5] |

(¢) Ifa line is perpendicular to z-axis and makes an angle measuring 60° with x-axis, then the angle
: it makes with y-axis measures g
[30°, 60°, 90°, 120°]
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(d) If the distance between the points (-1, -1, z) and (1, -1, 1) is 2 thenz = ——.
[ V2:2,6) " .

Which of the following statements are true (T) or false (F) :

(a) The line through (1 — 1, 2) and (-2, 1, 2) is always perpendicular to z - axis.

(b)  The line passing through (0, 0, 0) and (1, 2, 3) has direction cosines (-1, -2, =3).

(¢) Ifl, m. n be three real mumbers proportional to the direction cosines of a line L, then F+m+
n =1.

(d) Ifa, B, y be any three arbitrary angles then cos a, cos B, cos y can always be considered as the
direction cosines of a line.

(e) If two lines are perpendicular to a third line, then the direction ratios of the two lines are
proportional.

(a) Show that the points (3, -2.4), (1, 1, 1) and (-1, 4, 1) are collinear.

(b)  Show that points (0, 1, 2), (2, 5, 8), (5, 6, 6) and (3, 2, 0) form a parallelogram.

(a) Find the co-ordinates of the foot of the perpendicular from the point (1, 1, 1) on the line joining
(1,4,6)and (5, 4, 4). 2

(b)  Find the ¢o-ordinates of the point where the perpendicular from the origin meets the line | jommg
the points (-9, 4, 5) and (11, 0, -1).

(¢) Prove that the points P (3, 2, —4), Q(5. 4, —6) and R(9, 8, —10) are collinear.

(d) IfP(l,y, z) lies on the line through (3, 2, -1) and (-4, 6, 3), find y & z.

(a) IfA, B, C, D are the points (6, 3, 2), (3, 5, 7), (2, 3, -1) and (3, 5, -3) respectively, then find the

projection of AB on (C_D)
(b)  The projections of a line segment oP , through origin O, on the co—ordmate axes are 6, 2, 3. Find

the length of the line segment OP and its direction cosines.
(c)  The projections of a line segment on x, y-and z-axis respectively are 12, 4, 3. Find the length and
: the direction cosines of the line segment.
(a) IfA, BC arethe points (1, 4, 2), (-2, 1, 2) and (2, -3, 4) respectively then find the angles of the
triangle ABC.
(b) Find the acute ‘angle between the lines passmg through (-3, -1, 0), (2, -3, 1) and (1, 2, 3),
(=1, 4, -2) respectively.

izl

|
(¢) Prove that measure of the angle between two main diagonals of a cube is cos™ 3
(d) Prove that measure of the angle betwen the diagonal of a face and the diagonal of a cube,

) 2
drawn from a vertex is cos™ \‘(_.‘;J .

(e) Find the angle which a diagonal of a cube makes with one of its edges.

(f)  Find the angle between the lines whose d.cs /, m, n are connected by the relation, 3/ + m+ 5n =
0 and 6mn — 2n/ + 5/m= 0.

Show that the measures of the angles between the four diagonals of a rectangular parallelopiped

whose edges are a, b, ¢ are

qfa* b +c?
R e vy
a“+b +c¢”

If/,m, n.and/, m,n, are the direction cosines of two mutually perpendicular lines show that the
dcs ufthe 1mepe:pcnd1culartobothofthmarem m—n m,, n/, -/ n, {m, -ml,
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PLANE

13.4 Vector Equation of a Plane :
Let O be the origin (fixed point) and p be the length of perpendicular drawn from O to the plane. If
n be the unit vector along ON ;

Note

then ON = pn. If P be any point on the plane with position vector T,

theua_}—’)=m+N_P*

Or,?=pﬁ+m’) P

Or, NP = T —pi i
Sincem’,lm.wehavc % ?

NB.ON =0 a2

Or, (T —pn).ph =0

Or, T .phA =pi .pi =p? (Fig. 13.6)

Or, r.0=p 0O

which is the equation of the plane whose distance from the fixed point is p and fi is the unit vector
along its normal.

ks

If the plane passes through a given point Q with position vector a and is perpendicular to a
given vector p , then for any point P on the plane with position vector T

PQLun=(f-a).n=00rTt.n=d.n

In particular, if it passes through the origin, a = 0 and so the equation
of the plane becomes T .1 =0.

If the plane passes through a given point with position vector ¢ and is parallel to vectors b and
¢ then for any point P (T )onit, (T — a ) is perpendicular to bxc and hence,

(l' _a)-(b"‘c)=0

Or, t-(p%c)=a-(BXc)

-5

which is an equation of the form }'.n =q=[a b :],where n = Ex

-+

)

r.n_[abc]

— e
|n| |bxc|

Hence, length of perpendicular from the origin is p = e

Transformation to Cartesian form from vector form
We can transform the vector Aform of the equation to a plane to cartesian form by taking

r=xi +y_l+zkand n-h+m]+nk
whae! m, n are direction cosines of the normal n in the vector equation r n p as follows :
r n= p
::»(x? +y}+zﬁ).(l?+mj+nl;)=p
= Ix + my + nz = p which becomes the Cartesian form of the equation to the plane.
We shall discuss the Cartesian equation of planes in details in the subsequent articles.
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13.5

13.6

Cartesian Equation of a Plane :

Let the plane pass through a given point P
(Xy Yo Z,) and the normal to the plane have
direction cosines /, m, n. If Q (x, y, ) be any ‘
variable point on the plane (Fig. 13.7) then the ¢N(l, m, n)

line segment PQ lies on the plane (Fig 13.7) and

hence is perpendicular to the normal to the plane. ’ Q

[Since normal to a plane is perpendicular to every x,¥%2)
line in that plane.] Now the direction ratios of PQ

are <x—X, Y — Z, 2 — z,> and the direction p Xe¥eZ)
ratios of the normal are [, m, n, (as direction
cosines of any line can be considered as direction [Fig 13.7]

ratios of itself). Hence by condition of

perpendicularity,

|Z(x—xo)+m(3"-y‘,)+n(z—zu)=0]

is the equation of the plane passing through the point (x,, y,, z,) and whose normal has direction
cosines /, m, n.

Note : If instead of the direction cosines, a, b, ¢ are the direction ratios of the normal to the plane,
then the equation of plane is

I a(x—x,) +b(y -y, ) +e(z - z,) = OJ

Since it is possible to determine the direction cosines when the direction ratios are given, we usually
consider the cases where the direction ratios of the normal are given.

General Equation of a plane

We have already seen that the equation of the plane passing through a given point (x, y,, z,) and
whose normal has direction cosines /, m, n, is

Ix=x,)+mly—y,)+n(z-2z)=0
Or Ix + my + nz ~{Ix, + my, + nz)) =
which is a first degree equation in x, y and z.

We now proceed to show that the general equation of first degree in x, y, and z always represents a
plane.

Consider the most general equation of first degree in x, y, z.
Ax+By+Cz+D=0 L)
Let P, (x,,y,, z) and P,(x,. y,. z,) be two points on the locus of (1) and R be any point on the

line sement fl;; Then R divides i’,_P; in a ratio A : | for some real value of A Hence the co -

*

AX,+X, AY,+ AZ,+2z
ordjnatesofRare( — Y22 9 = IJ

A+l T A4+l A+1
Since P, and P, are on the locus of (1), we have
Ax, +By, +Cz, +D=0 wai(2)-

Ax,+ By, +Cz,+D=0 sniiB)
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Now AR Math . Math)p .
_ Alrx, 4-:|:,)+]3()Ly2 +y,)+C(Az, +2,)+ D()u- 1)
A+l
_ (Ax,+By,+CZ, + D), +Ax, + By, +Cz +D
A+l
(By (2) and 3]

0}~+0

A+
=0

This shows that any point R of the line segment ﬁ lies on the locus of (1) and hence the line
segment PP, lies on the locus of (1). Hence the equation Ax + By + Cz + D = 0 represents a plane.

Note 1 : From the above discussion, it follows that we can represent a plane by an equation of first degree

13.7

inx,y, andz.
Again, if the planc is Ax + By + Cz+ D =0
and D # 0, then this can further be written as

éJi('+2y +£z+ 1=0

DD D

Or Ax+By+Cz+1=0

This shows that it really contains three independent constants which can be determined by three given
conditions.

If the plane passes through the origin, the equation becomes

Ax+By+Cz=0 :

Let a plane be given by

Ax+By+Cz+D=0

IfP (x,.y,.z)and Q (x,, y,, z,) are two points on the plane, then

Ax, + By, +Cz, +D =0 (D)
Ax,+By,+Cz,+D=0 o (2)
Subtracting (2) from (1) we get

Alx, -x)*B(y, - y,) * C(z,-2)=0 5:43)

Now equation (3) shows that a line with d.rs <A, B, C> is perpendicular to a line with d.rs <x, - x, v,

~Y,s 2, — %>, LE. to ‘[ﬁ But P and Q being any two points one the plane, we sce that, the line with

d.rs <A, B, C> is perpendicular to every line lying in the plane and hence, is normal to the plane.
Thus the direction ratios of the normal to the plane, Ax + By + Cz+D =0 can be taken

as <A, B, C>. (i.e. coefTicients of x, y, z respectively).

Exquation of plane through three given points.

Let (x,, ¥,, Z,). (X,. ¥,, 2,) and (x,, ¥,, 2,) be three given points and the required plane be

Ax+By+Cz+D=0 ey
Since it passes through (x,, y,, z,) we have ;
Ax,+By, +Cz +D=0 : : . o)
Subtracting (2) from (1), we get

Ax-x,)+Bly—-y,) +Cz-2)=0 : NE3)

Since this plane also passes through ("r ¥, Z,) and (x,, y,. z,) we have,
Ax,-x,)+B(y,-y)+C(z,-2) = e (4)
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and

A =x)+By,-y)+Cz,-2)=0 o kD)

Eliminating A, B, C from equations (3), (4) and (5) we get.
X=X Y=Y zZ—z :
R =% Jg N B =D .. (6)
L% Ya—Y Z;—Z

which is the equation of the plane.

Corollary 1 : If the plane makes intercepts, a, b, ¢ on the co-ordinate axes 5, §Y and §7 repectively,
then the plane passes through the points, (a, 0, 0), (0, b, 0) and (0, 0, ¢). Hence the equation (6) gives.

x—a y-0 z-0
0-a b-0 0-0{=0

0-a 0-0 ¢-0

y

X Z |
This on simplification gives, = + b +—=1 s D

c
which is the equation of the plane in intercept from.

13.8 Angle between two planes.

Let two planes m, and =, mlcrsect along the line AB (Fig
13.8). Let C beanypmnton AB and ((T)) and ((ﬁ) be lines
lying respectively on n, and =, such that they are both
perpendicular to AB . If 9 = mZDCE, then the angle between
planes m, and =, is defined to have measure 6. The angle
between the planes is independent of the choic&of C on ﬁ
(Follows from fact-8, Art-13.3, EOM for prev. class).

It is obvious that 8 also measures an angle between the
normals to the planes. The two angles between the intersecting
planes are of measures 6 and m - 6.

Let planes m, and =, have equations respectively

Ax+By+Cz+D =0 i
andAx+B,y+CZ+D,=0 Sl ey 2)

- Then the direction ratios of their normals are A, B,, C,, and A,, B,, C, respectively. Since B also
measures an angle between their normals, we have
A, +BB,+CC,

[Fig 13.8]

€08 0 = £ ———0n = =
JA; +B; +C} JA; +B; +C;
Notes :
1. Iftheplanes A x + B y+C Z+D =0and A x + B,y + C,z+ D, =0 are parallel, then thelrnonnalsarc
A, B C
also parallel. So A—l Bl > -E‘[- is the condition that the planes be parallel.
2 2 "2

The planes are perpendicular if cos® = 0
ie. [AA, +BB,+C,C, =0 |
2. The equation of any plane parallel to the planeAx + By + Cz + D =0 1is of the foom Ax + By + Cz +
D,=0.
3. Two planes (1) and (2) will be identical if
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13.9 Equation of plane in Normal form z

Let p be the length of the perpendicular QN from the origin on

the plane and let </, 'm, n> be its direction cosines. Then the co-
ordinates of the foot of the perpendicular N, are (Ip, mp, np).

If P (x, y. z) be any point on the plane (fig. 13.9) then the

. direction ratios of Np are (x-Ip, y-mp, z-np). Since QN Is

perpendicular to the plane, it is also perpendicular to Np
Hence, >
I (x-Ip) + m (y-mp) + n (z-np) = 0
or, Ix + my + nz= (P +m’ +n)p

[Fig 13.9]

X
or, It’x+my+nz=p| e E)
is the equation of the plane in normal form.

13.10 Transformation of general form to normal form
Let the plane _ ' :
Ax+By+Cz+D=0 o) e (1)
be represented in its normal form by
Ix+my+nz—p=0 wik2)
Since equations (1) and (2) represent the same plane,
we have
A B E JAT+B +C? JATBIC
—=—=—=—=1 - = + YyA"+B'+C
ol . m n. JEsmiirw
et -D
THs g s +JA2 +B? +C? 1
A
I= —
VA +B +C
B
M= tA? 4B 4 C
C
"7 1A 4B+ C
* . The normal form of equation of plane (1) becomes,
£ X+ . y+ . Z+ R =
+JAT+ B +C AT+ B +CT #/A'+B+C AT+ B +C

-D

Since p is pdsi{ive, from the relation p s JA*+B + Q" the sign of the denominator is positive or

negative according as D is negative or positive.
13.11 System of Planes

Consider the equation of a plane represented by

Ax+By+Cz+D=0
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If A, B, C are given, then for different values of D, we get different parallel planes, and hence a
system of parallel planes.
Thus, 2x + 3y + z + k = 0 represents a system of parallel planes for different real values of k.
Let a pair of planes be given by,
Ax+By+Cz+D =0..(1)
Ax+By+Cz+D,=0..(2
Consider the equation,
(Ax+By+Cz+D)+k(Ax+By+CztD,)=0 ..(3)
for any real value of k. This being an equation of first degree in x, y, and z, represents a plane. If
(e, B, 7) is a point lying in the intersection of planes (1) and (2), then
Ao+B B+Cy+D =0
and,
Ao+Bp+Cy+D,=0.
Hence,
(Aja+BB+Cy+D)+k(Aa+B,p+Cy+D,) =0 forall real values of k. This proves that
the point with co-ordinates (o, B, y) satisfies the equation (3). Hence (3) represents a plane passing
through the line of intersection of (1) and (2) for all real values of k.

Position of two given points with respect to a plane.

Let,
Ax+By+Cz+D=0 saill)

be a given plane and P (x,, y,. z,). Q (x,, y,, z,) be two given points. Let ﬁ meet the plane (1) at a
point R. Then the co-ordinates of the point R are,

AX, +X, Ay;+Y, kz,+zz) _
W T TOE for some real number A # —1.

Since, this point R lies on the plane (1) we have

kxl+xz)+8(ky,+y2)+c(lzl+zz)+D=0

1+ 1+ A 1+

or, A (Ax, + By, + Cz, + D) + (Ax, + By, + Cz, + D) = 0
Ax, +By, +Cz,+D

of, A== Ax, +By, +Cz,+D

This proves that, A is positive or negative according as the quantities (Ax, + By, + Cz + D) and
(Ax, + By, + Cz, + D) are of opposite signs or same sign.

If A is positive, then R divides line segment PQ internally and hence P and Q lic on different

sides of the plane. If A is negative, then R divides line segment ﬁ externally, and hence P and Q lie
on the same side of the plane.

Thus, two points P (x,, y,, z,) and Q (x,, y,, z,) will lic on the same side or opposite sides of the
plane, Ax + By + Cz+ D =0, accordmgasthequanunes(Ax +BY| + Cz, + D) and (Ax, + By, +
Cz, + D) have same sign or opposite signs.

Note :

Consider two planes ax + by + ¢,z +d =0 and ax + byy + ¢,z + d, = 0, where both d, and d, are
positive (i.e origin lies on same side of both planes). Then the direction cosines of their normals are

2 b 6 & b o
(_;\-v =y, _7"1> o5 <_J"2» ~Ay, “’“:)

where %, =2 + b7 +.; and A, =23+ b3 +c]
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13.12

Ife nméur&s the angle between the two planes, then,

e b,b, +¢,c,
A,

which is positive or negative according as (a,a, + b b, + ¢,¢,) is positive or negative. (i.c angle is acute
the planes
ax+by+cz+d =0andax+by+cz+d, =0, whereboth d, d, are positive, according as

or obtuse.) Hence the or origin lies in the interior of the acute or obtuse angle between

a, a,+b, b, + ¢, c, is negative or positive.
Distance of a point from a plane.

Let P (x,, ¥,, 2,) be a given point and Ax + By + Cz + D=0be
the equation of a given plane. Consider a point Q (a, B, y) on the

i P
given plane. Draw QN normal to the plane at Q and PM

perpendicular to Q? . Join -f"a If R be the foot of the perpendicular (X0, Yo, Z0)a N
drawn from the point P to the given plane, then TR R P
—_ = = '
d=PR = QM = projection of PQ on QN . QN being normal
to the given plane Ax + By.+ Cz + D = 0, the direction ratios of QN o
are <A, B, C> and hence the direction cosines are ' \ S
Q
A B C ) - i
+JAB+C £ AZ+B+C? 1A 4B +C '
Ax+By+Cz+D=0
- . - ; D ﬁ 5
. d = projection of line segment PQ on QN [Fig 13.10]
A o ) B 7 ok C (
s 2 2 2 xn_a * 2 't\y —B ; 2 2 a Z _Y
EJATBIACT . | | 2JAS+BCE . tdAM+EC )
_ Alx, —a)+Bly, -P) + C(z,~7)
+JA?+B* +C’

Ax, +By, +Cz, — (Aa+BB +Cy)

+JA? +B +C’

Now, Q (a, B, 7) lies on the given plane. Hence
Aa+Bp+Cy+D=0
or,Aa.+BB+Cy=-D

Thus,

= Ax, +By, +Cz, +D
+JA? +B? + C?

d

the sign of the denominator chosen accordingly so as to make the whole quantity positive.

In particular the distance of the plane from the origin is given by,

7 D
+JA2+B?+C2

d

lass-XII |
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13.13 Equations of planes bisecting the angle between two given planes.
Consider two planes given by the equations
Ax+By+Cz+D =0
and,

Ax+By+Cz+D,=0
If P (x, y, z) is any point on the bisector plane, then it is equidistant
from both the given planes (which can be proved from the

similarity of As PMQ and PRM), i.e d, = d,. Hence the equation
of the bisecting planes are,

Ax+By+Cz+D L Ax+B,y+C,z+D
JA} + B +C ;;A§+B§+C§ . {Fig13.11]

: One of the planes given by these equations is the internal bisector and the other is the external
bisector of the angle between the given planes. To distinguish between these two planes, we find out
the angle between one of the bisector planes and a given plane. If measure of this angle is greater than
45°, then the concerned angle is obtuse and the bisector plane is the external bisector. Otherwise, it is
the internal bisector. We illustrate this in example 14.

SOLVED EXAMPLES :
Example 7
Find the equation of the plane through the points (1, 3, 4), (2, 1, 1) and (1, 4. 3).
Solution :
Any plane passing through (1, 3, 4) is given by
A(x-)+B(y-3)+C(z4)=0 - (1)
where A, B, C, are drs. of the normal to the plane. )
Since the plane passes through points (2, 1, 1) and (1, -4, 3), we have
A2-1)+B(1-3)+C(-14)=0,
iec. Al+B(-2)+C(=5=0
andA(1-1)+B(4-3)+C(34)=0,ie. A0O+B(-7)+C(-1)=0
By cross multiplication,; we get,

A C

— B =
D=7 (5)0-0)-D)  L-7)-0.(-2)

Hence the drs. of the normal to the plane are 33,.Hl, 7 and putting these values in (1), the
equation of the required plane is

33 (x=1) -1 (y=3) + 7 (z—4) =0
or,33x-y+7z-58=0..
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Example 8
A plane meets the co-ordinate axes at A, B, C respectively. If the centroid of the triangle ABC
is (1, 2, 5), find the equation of the plane.
Solution :
Let the points A, B, C be A (a, 0, 0), B (o, b, 0) and C (0, 0, ¢). Then the co-ordinates of the
centroid of the A ABC are .
(a+0+0 0+b+00+0+c ga bc

3 > 3 3 3%
Since the centroid is at (~1, 2, 5), we havea=—-3,b =6, ¢ =15, and so the equation of plane by
intercept form, 1S
X Yy
—E-l- +
or, 10x—5y-2z+30=0
Example 9

Obtain the normal form of equation of the plane 3x + 2y + 6z + 1 = 0 and find the d.cs and length
of the perpendicular from the origin to this plane. '

Solution : :
The drs. of the normal to the plane are <3, 2, 6> and hence the direction cosines are,

3 2 6
(i«/9+4+36, +4/9+4+36, iJ9+4+36>
Length of the perpendicular from origin is

-D -1
= D is positive, we choose — sign before the rdical sign to
45 iJi-+B-+c- T EJ9+4+36 7[ e & e
make p > 0]
The equation of plane in normal form is
A B e c z; - D #
-JA2+32+CZ \FhB’"m2 JAZ+B2+C? -YyAZ+B?+C?
—-x+-—g— +—z+—=0
s TR e i
g2 -6 1
& T 7
Example 10

Find the equation of the plane through the points (2, 2,1)-and (9,3,6) and perpendicular to the
plane 2x + 6y +6z + 9 = 0. ;
Solution : Any plane through (2, 2, 1) is given by
A(x-2)+B(y-2)+C(z1)=0 (D
where A, B, C are drs. of the normal to the plane Thls plane passes through (9, 3, 6) and hen.ce putting
the values in (1) we get,
A9-2)+B(3-2)+C(6-1)=0
ie.7A+1B+5C=0 8 =42
Again, the plane (1) is perpendicular to 2x + 6y + 6z +9 =0. So by condmon of perpendicularity of the
normals of both the planes, we get,
2A+6B+6C=0 ~3)
From (2) and (3), by cross-multiplication, we have
A DA SHE
-56 52-76 76-12 . : ;
— — _C_or ::A_ E = C
e T T
Hence, from (1) the equanon of plane is
3(x-2)+4(y-2)-5(@=z1)=
o, 3x+4y-5z-9=0

16
A B
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Example 11
Find the equation of the plane passing through the line of intersection of the planes 2x +y +3z-4=0
and x+y = 0, which is perpendicular to 3x -y +z=3.
Solution :
Any plane passing through the line of intersection of 2x +y +3z-4 =0 and x+y =0 1s
2x+y+3z4)+ A (xty)=0
e (2+A).x+H1+A)y+3z2-4=0 =
This plane is perpendicular to the plane
3 x-y+z-3=0
Hence, by condition of perpendicularity,
(2+0). 3+ (1+A) (-1) +3.1=0
o, 2A=-8.ie.ArA=-4
So, the equation of the required plane from (1) is -2x -3y +3z-4=0
o, 2x+3y-3z+4=0.
Example 12
Find the equation of the plane t.hrough the line of intersection of the planes x + 3y + 6 =0, 3x —y— 4z
= 0 which is at a unit distance from the origin.
Solution :
Any plane through the intersection of 3x—y—4z = 0, x+3y + 6 = 0 is given by
(3x—y—4z) + A (x+3y+6)=0
ie. 3+A) x—(1-3A)y-4z+ 6L =0
The perpendicular distance of this plane from the origin is

6 o ok
£J(3+A) +(1-30) +4 V10K +26

Since it is given that the plane is at a unit distance from the origin, we have p = 1. So,

6A
1= ie. 10A* + 26 = 36)°
iw_J]O?f +26

or A=]
or A==%l.
Hence, the required planes are,
(3x - y—4z) £ (x+3y+6) =0
o, 4x+2y-4z+6=0ie 2x+y-2z+3=0,
and
2x -4y -4z-6=0,ie x2y-2z-3=0
Example 13
A variable plane meets the co-ordinate axes at A, B, C and is at a constant distance d from origin.
Prove that the locus of the centroid of the triangles ABC is

p=

Sy e Bt -
AT AT
Pl
Solution :
Let the plane meet the x-axis, y-axis and z-axis at A (a, 0,0). B (o, B, 0} and C (0, 0, y).
Then the equation of the plane is : : .

14_2.4.3..1:0
a Py

whose distance d from the origin is given by
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J=t e or —+—+—=-—7% 2l
A R ST c ()
1 2+E+;’—
If (x,, y,, z,) are the co-ordinates of the centroid of the A ABC, then
_ a+0+0 a " 0+p+0 _B . _O40y. ¥
g i L e Ll R W
iea=3x, p=3y,y=32,.
So, equation (1) gives

§ it
o 9y 9 &
A
-8 g
Replacing (x,, y,, z,) by (x, y, 2) the locus of the centroid is
e T et )
Xy Z FE

Example 14
Find the bisector of the acute angle between the planes 4x — 3y + 5z + 1 =0 and
12x -5y +13z+2=0.
Solution :

The equations of planes bisecting the angle between the given planes are,

4x -3y +5z+1 12x—5y+13z+2

=%
Va2iates? 1224541

4x-3y+5z+1 _ & 12x—Sy+13z+2
= sV2 1372
or, 13(4x -3y + 5z + 1) == 5(12x - Sy + 13z + 2)
Taking +sign, the equation of one bisector is,

8x+ 14y-3=0 i
and taking —sign, the equation of the other bisector is,

112x - 64y + 130z +23=0 vx 12)
Now consider one of the given planes, say

4x-3y+5z+1=0
and one of the bisectors, say

8x+ 14y-3=0
If © measures the angle between these two planes, then,

os itz 1
+4/50 260

-10 -1
lLe. 6= = —
o ’.l:JSO ;260 +4/130

V129 :
Hence, sin 6 = im which gives tan 6 =% /129 .

This being numerically greater than 1,8 > 45° and hence 26 > 90°. Thus the plane 8x + 14y— 4= 0, bisects the
obtuse angle. So the equation of the plane bisecting the acute angle is 112x — 64y + 130z +23=0.
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1.

2.

3.

4.

[EXERCISE - 13 (b)}

State, which of the following statements are true (T) or false (F) :
(a) Through any four points one and only one planc can pass.
(b) The equation of xy — plane is x +y = 0.
(c) The plane ax + by + ¢ = 0 is perpendicular to z - axis.
(d) The equation of the plane parallel to xz-plane and passing through (2, -4,0) is y +4=0
(e) Theplanes 2x—y+z-1=0
and 6x — 3y + 3z = | are coincident.
(f) Theplanes2x+4y—-z+1=0 .
and x — 2y — 6z + 3 = 0 are perpendicular to each other.
(g) The distance of a point from a plane is same as the dlstancc of the point from any line lying in that
plane. °
Fill in the blanks by choosing the appropnatc answer from the given ones :
(a) The equation of a plane passing through (1, 1, 2) and parallel tox +y+z—-1=0is —
[x+y+2z=0, x+y+2z-1=0
X+y+z=2 xty+z=4]
(b) The equation of plane perpendicular to z - axis and passing through (l -2,4)is —
[x=1,y+2=0, z—-4=0, x+y+z-3=0]
(¢) The distance between the parallel planes
2x-3y+6z+1=0and
4x -6y +12z-5=01s —

(d) Theplaney—z+1=0is ——
[paralles to x -axis, perpendicular to x -axis, parallel to Xy -plane, perpendicular to yz -plane. |

(e) A plane whose normal has direction ratios <3, -2, k> is parallel to the line joining (-1,1,-4)and (5,6
—2). Then the value of k =. \ [6,-4,-1,0]
Find the equation of planes passing through the points :
(a) (6,=1,1),(5,1,2)and(l,-5,-4);
(b) (2.1,3).(3.2, Dand(1,0,-1);
(c) (<1,0,1),(-1,4,2)and (2,4, 1);
(d) (-1,5,4),(2,3,4)and (2,3,-1);
() (1,2,3),(1,-4,3)and (-1,3,2);
Find the equation of plane in each of the following cases :
(a) Passing through the point (2, 3, 1) and parallel to the plane 3x — 4y + 7z = 0.
(b) Passing through the points (2, -3, 1) and (-1, 1,-7) and perpendicular to the plane x -2y + 5z + 1 =0.
(c) Passing through the foot of the perpendiculars drawn from P (a, b, ¢) on the coordinate planes.
(d) Passing through the point (~1,3,2) perpendicular tothe plants x + 2y+2z = Sand 3x +3y+ 2z =8.
(e) Bisecting the line segment joining (—1, 4, 3) and (5, -2, —1) at right angles.
() Parallel to the plane 2x —y + 3z + 1 = 0 and at a distance 3 units away from it.

5.(a) Write the equation of the plane 3x — 4y + 6z— 12 =0 in intercept form and hence obtain the co-ordinates
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of the points where it meets the co-ordinate axes.
(b) Write the equation of the plane 2x — 3y + 5z + 1 = 0 in normal form and find its distance from the origin.
Find also the distacne from the point (3, 1, 2). '
(c) Find the distance between the parallel planes 2x -2y +z+ 1 =0and4x -4y + 2z +3=0.
6.  In each the following cases, verify whether the four given points are coplana: or not.
(a) (1,2,3),(-1,1,0),(2,1,3),(1,1,2)
(b) (1,1,1),(3,1,2),(1,4,0),(-1,1,0)
(C) (0‘ —l,—l), (4'; 59 1)9 (3;9' 4)9 (_'4- 4s 4)
(d) (-6,3,2),(3,-2,4),(5,7,3),(-13,17,-1)
7. Find the equation of plane in each of the following cases :
(a) Passing through the intersection of planes 2x + 3y —4z + 1 = 0 and 3x —y + z + 2 = 0 and passing
through the point (3, 2, 1).
(b) Which contains the line of intersection of the planes x + 2y + 3z =4 =0,2x + y—z +5 =0 and
perpendicular to the plane 5x + 3y + 6z + 8 =0,
(c) Passing through the intersection of ax + by + cz+d=0and ax + b,y + ¢,z+ d, = 0 and perpendicular
to xy - plane.
(d) Passing through the intersection of the planes x + 3y ~z+ 1 =0and3x -y +5z+3=0andisata
distance % units from origin.
8.  Find the angle between the following pairs of planes.
(a) x+3y-5z+1=0and2x+y-2z+3=0
(b) x+2y+2z-3=0and3x+4y+5z+1=0
(¢) x+2y+2z2-7=0and2x-y+z=6
9.(a) Find the equation of the bisector of the angles between the following pairs of planes and specify the
ones which bisects the acute angles ;
(1) 3x-6y+2z+5=0and4x - 12y +3z-3=0
(i) 2x+y—-2z-1=0and4x~ 12y +3z+3=0
(b) Show that the origin lies in the interior of the acute angle between planes x + 2y + 2z =9 and 4x - 3y
+ 12z + 13 = 0. Find the eqation of bisector of the acute angle.
10.(a) Prove that the line joining (1, 2, 3), (2, 1, —1) intersects the line joining (-1, 3, 1) and (3, 1, 5).

1
(b) Show that the point (‘“2'»2'0) is the circumecentre of the triangle formed by the points (1, 1, 0), (1,

2,1)and(-2,2,~1)
11.  Show that the plane ax + by + ¢z + d = 0 divides the linc segment joining (x,, y,, z,) and (X,, ¥,, Z,) in
ax, + by, +cz, +d
ax, + by, +cz, +d

12, Avariable plane is at a constant distance p from the origin and meets the axes at A, B; C. Through A,

B, C planes are drawn parallel to the co-ordinate planes. Show that the locus of their points of intersection
1 1 1 1 .
A
13. A variable plane passes through a fixed point (a, b, ¢) and meets the co-ordinate axes at A, B, C. Show
that the locus of the point common to the planes drawn through A, B and C parallel to the co-ordinate

planes is E+£’-+£= ;

X z
14.  The plane 4x ! 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the
plane 5x + 3y + 10z~ 25 =0. Find thcequauonoftheplmc in new position.
15. The plane /x + my = 0 is rotated about its line of intersection with the plane z = 0 through angle

a ratio —

measure o. Prove that the equation of the plane in new position is /x + my + z//? + m? tana = 0.
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13.14 Vector equation of a line :

Let L be a given line passing through a given point A

| . (r
with position vector & and parallal to a vector 3. If O be Ala) L
refered to as the origin of vectors (a fixed pt). and a be the A o,
position vector of the pomt A on L, then for anypoint P on L a "
(Fig. 16.20)
: (0]
F-OP=0A+AP=a+ AP - (Fig 13.12)
But ﬁ 3 where t is a scalar (- AP | E)

S>T=a+1t is the vector equation of the line L.
Note 1 : - In particular, if the line passes through the origin, i.e. fixed point O and is parallel to B, then
its equation is T'= tB

2, Ifthe hnc passes through two points A and B w:th position vectors a , b respectively, then
—_
AB = b -a.

If P is any point on L having position vector T, then Kf’) is parallel to AB and hence, for

some scalait’,

AP =t(AB) _

Or, (? -a)=tb-a)

Or, T=a +t(b —a)=(-t)a +tblstheequanonofthelmc
3. Cartesian equation from vector equation

A i i

Puttmgr—x:+y1+zk a —a1+a l+akandb b1+b J+bk
[Where (a,, a,, a,) and (5,, b,,b)aretheCartamn co-ordmat&s of thc points with positive

vectors a and b respectively],
we get

xi+yi+zk = {(I-)a+th} i + {0-vaz+ ) | i+ 1(10a,+ by} k
Equating components
x=a +t(b-a)
y= az + t(bz- az)
z=a,+t(b,-a,)
x—a, _y-a, z-—da

" bl_al_bz_az_bl_a3
which become the Catesian form of the equations of the line passing through the points
(a,, a,, a,) and (b, b,, b,).

~ We shall know more about Cartesmn form of equations to a line in the subsequent articles.
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13.15 Cartesian Equation of a Line

Since a straight line is the intersection of two planes, 2 pair of equations of first degree in, X, y and z,
such as

ax+by+cz+d =0

ax+by+cz+d=0

is sufficient to determine a line. If a set a values of x, vy, z satisfies the two equations then the

point with co-ordinates (x, y, 2), lies on these planes and hence give the co-ordinates of a point on the line of
intersection of the two planes. Conversely, if we take a point on the line of intersection of these two planes,
then it will satisfy the equation of both the planes. Hence the combined equation of a pair of planes (not
parallel) can always be considered as the general equation of a straight line. This form of equation of straight
line is otherwise known as unsymmetric form of equation of line.

13.16 Symmetric form of Equations of a line
Consider a line L passing through a point Q (x,, y,, Z,) and having direction ratios <a, b, ¢>.

| e 4
Then for any variable point P (x, y, z) on the line L, the direction ratios of PQ are <x-x, y-y,,z — z,>. Hence
we get '

X=X Y=o 2%
a b c

which are the equations of the line in symmetric form.

Now, equating cach of the above fraction to a parameter r, we get
X=Xg Y-Yo 2—2%9
e | b c ; :

Hence the co-ordinates of any variable point, on the line L are given by (x, + ar, y, + br, z, + cr) for

~ some real value of the parameter r.

13.17 Two-point Form.
If a line passes through two given points P, (x, y,. z)) and P, (x,, y,, ,) then its direction ratios are
<X, - X,, ¥, = ¥;» Z, = z,>. Hence its equation is given by

=r_

X=X L y=yp . z-2
L= %) = Yool &

(comparc this with the equation that we have derived from the vector form)

which are known as the equations of line in two - point form.
13.18 Transformation of unsymmetrical form to symmetrical form.
Consider the unsymmetrical form of equation of line, represented by the pair of equations,
ax+by+cz+d =0 Y
ax+by+cz+ d=0 =02
To reduce it to symmetric form, we require the direction ratios of the line and the co-ordinates of a
point on it. Now if <a, b, ¢> are the direction ratios of the line, then the line being common to both the plancs,
the normals to both the planes are perpendicular to the line. Hence by condition of perpendicularity,
aa, +bb, + cc, =0 and aa, + bb, +cc, = 0.
By cross-multiplication, we get
a b C
bc,—Cib, Cag-a,c; ab,-bya, :

Thus the direction ratios of the line are <bc, - ¢,b,, ca,— ac,, a,b,~ ba,>. To obtain the
co-ordinates of a point on the line, for the sake of convenience, we con51der one of the co-ordinates to
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be zero, say z = 0.
Then putting z = 0, in equations (1) and (2) we have
ax+by+d =0
ax+by+d,=0
By cross multiplication, we get

X by y . 1
a.ndl "xz bld;‘—bldl
ab,-bja,
_ da,-ad,
: ab,-bja, : ‘
and z = 0, are co-ordinates of a point on the line. So the symmetric form of equations of the line are,
x_bldﬁ_dlbl *dlag“aldz
13.19 Condition for a line to lie on a plane.
Consider the line
X—Xg Y¥Y—Y¥o Z-%
a b [
and the plane

Ax+By+Cz+D=0 ;
It the line lies on the plane then the normal to the plane is normal to the line and hence by
condition of perpendicularity,
Aa+Bb+ Cc=0.
But this condition also implies that the line may be parallel to the plane (as in that case also the normal
to the plane is perpendicular to the line.)
So, if along with this we take the condition that at least one point of the line lies on the plane, then
the line will lie on the plane. The point (x,, ,, Z,) being a given point on the line, lies on the plane, if
Ax, + By, +Cz, + D=0
Hence the required conditions are
(i)Aa+Bb+Cc=0
(i) Ax, + By, + Cz,+ D=0
13.20 Condition for two lines to be Coplanar.
Consider the lines
X=X _]r'—}'l_Z—ZI

a, b G

and
X=X, Y=V _2-2

a b €

Let the lines lic on the plane
Ax+By+Cz+D=0

By the conditions of sec 13.19, we have, _ j[
Aa +Bb, +Ce =0, s K1)
Ax +By, +Cz, +D=0 - (2)

and '

Aa, +Bb, +Cc, =0, . (3)
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Ax2+By2+Cz_z+D=0 . (4)
From (2) and (4), we get
Ax,~-x)+B(y,-y)+C(z-2)=0 .. (5)

Eliminating A, B, C from (5), (1) and (3) we get,

X2=X Y2=Y1 2%,
31 bl Cl =0
a, b, c,

which is the required condition.
13.21 Angle between a line and a plane.

If the line L intersects plane = at P and Q is the foot of
the perpendicular fromapomtAon L onto the plane x, the
anglebetween L and = is ZAPQ. [Fig 13.13]

A

y P L Q

Let the angle between the line
X-Xo _Y¥Y-Y¥o _2-%

a b c
and the plane, : L] n
Ax+Hy 3 C2+ D=0 [Fig. 13.13]

have measure 0.

n
Then the angle between the line and the normal to the plane is (3’9). Hence,

cos (n/2 - 0) = Aa+Bb+Cc
’ + VA2 +B*+C? Jal+b2+¢?
o s Aa+Bb+Cc

+JAZ+B2+C2 YaZ +b% +¢2

& : Aa+Bb+Cc
- s li'dA"i‘Bz'l'C- 'Ja +b2+c P (prpzl)
13.22 Distance of a point from a line.
Let the line L d
be given by,
X=Xo Y-Yo_Z%~2% Q (x By ) N L
a b c i ;
and the given point be P (x,, y,. ,). Join PQ, (Fig. 13.14]

where Q (x,,Y,,Z,) is the point on the line and drop perpendicular PN from P on L (Fig. 13.14).
Then, d = PN = PQ sin 6

where 6 measures the angle between 6{’ and L.

: « ¢
Now, the dr 5 of the line are < a, b, ¢> and those of PQ are <x, - X, y, = ¥,, 2, — 2>
- Hence,

a(xr_x )"'b(YJ"Yo) 0(21 )
P 0B e S (1)
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Again, ,
PQ = J(xl ~Xo) + (¥, ‘Yo)z"'(zl ~2,)" - (2)
Thus, d =PQ sin 6 =PQ /| cos?0

can be determined from (1) and (2).
Alternative method :

Let the line be,

X-Xo _¥=Yo _2-2%
R c
and the point P be (x, y,, z,). If N be the foot of the
perpendicular drawn from P on L then N being a point
on L, its co-ordinates are (x, + ar, y, + br, z, + cr), for
some value of the parameter r. Now, the direction ratios

of PN are, <x,+ar—x,y,+br-y, z +cr-z >and
those of L are < a, b, ¢ >. So by condition of
perpendicularity,
a(x,+ar-x)+b(y,+br—y)+c(z,+cr—z) =0, which gives the value of r and hence the
co-ordinates of N.
Thus,

d= | X (xo +ar-x,)

is found out.
13.23 Shortest distance between two lines.

The shortst distance between two lines is defined to be the length of the line segment wich is perpendicular
to both of them.

If the two lines are coplanar, then they will be either intersecting or parallel. If they are intersecting,
then the shortest distance between them is zero. If they are parallel, then the shortest distance between
them is the distance of any point on one of the lines from the other.

Let us consider two skew lines (i.e. non-coplanar lines) L, and L., given by,

x—x, __Ir'—_l’l _Z_Z|

a b, € L,
P/
- RS L Y S /

a, b, )
If PQ is the shortest distance between L, and ‘Lz
(Fig. 13.15), then the line segment PQ is perpendicular to
both L, and L,. Since P and Q are points on the lines L, and

and,

L, respectively, their co-ordinates are (x, + ar,y+br,z = L
+er)and (x, +ayr, y, +byr, z +c,r,), for some values * Q Fie. 13.15 :
of the parameters r, and r,. Hence the direction ratios of [Fig. 13.15]

PQ are '

<x,-Xtan-arn,y -y, tbr-br, z -z +cr, —cr,>
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Now, by condition of perpendicularity of PQ with L, and L, we get,
a, (xl =% +ar, "azr:)+b1 (yl _y2+ blrl_b2r1)+cl(zl -z, ter —c3r1)=0
and a,(x,-x,+ar -an)+b, (y, -y, *br,-br)+c, (2, -z +cr, ~-¢cx,)=0

Solving these two equations, we get the values of r, and r, and the co-ordinates of P and Q
~ Then by distance formula, the shortest distance PQ is found out
SOLVED EXAMPLES :
Example 15
Find the equation of the line passing through the point (4, -6, 1) and parallel to the line
x=1_ 'y+2 2z~
R e

Solution :
Since the line is parallel to the line
=1 YEE e )
1 g5 A
its dr’s are < 1, 3, =1 >. It also passes through the point (4, -6, 1). Hence the equation of the required
line s,

x—-4 y+6 z-1
| 3 -1

Example 16
Find the point of intersection of the line passing thmugh the points (1, 3,-2)and (3, 4, 1) with the
plane x —2y + 4z = 11.
Since the line passes through (1, 3, -2) and (3, 4, 1), its equatmrn by two-point form is

Bl Yyl - Z¥d
3-1 4-3 1-(=2)

L ¥ '% z+2
2 1 3
Then any point on the line is of the form (2r + 1, r + 3, 3r — 2), for some value of r.

If this point be the point of intersection of this line with the given plane, then these co-ordinates
must satisfy the equation of the given plane. Hence,

2r+1)-2(@+3)+4(@r-2)=11,

or, 12r=24,

or,r=2

Hence the co-ordinates of the point of intersection of the given line and the given plane are (2r +
1,r+3,3r-2)=0.5,4).

Example 17

Find the symmetric form of equation of the line x + 2y +z— 3 = 0= 6x + By + 3z - 10.
Solution :

The given line is the intersection of the planes,

Or,

=1 (say).

x+2y+2-3=0 - e T
and 6x+8y+3z-10=0 «.(2)
Mutltiplying equation (1) by 3 and subtracting from (2), we get,

3x+2y-1=0
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1

2
= Lo |
o LTS . 3)
2 -3
Again, multiplying equation (1) by 4 and subtlactmg from (2), we get,
2x-z+2=0

o, 2x=z-2

Example 18

";’5=y;4=z'7 and, 3x + 2y + z—2=0=x + 5y + 2z + 3 are coplanar. Find

their point of intersection and the equation of the plane in which they lie.

Prove that the lines

Solution :

The ‘equation of the second line in unsymmetric form is
3x+2y+2z-2=0 (1)

and x+S5y+2z+3=0" o)

Multiplying equation (1) by — 2 and adding to (2) we obtain,
~S5x+y+7=0
X y+7

or -l-— 3

Multiplying equation (1) by - 5 and equation (2) by 2 and adding, we obtain,
~13x-z+16+0
x_ z-16

o T

So the symmetric equation of the second line is

X y¥i z-16
I R ¢ ~43)

and the first line is

X+5 y+4 z-7

o ol 8 )
To verify co-planarity of (3) and (4), we have (by condition of sec. 13.20),
50 —4-(-7) 7-1
3 I =3 . 5
1 5 =13
-5 3-9
213 7% &8

Lo ]l
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=-5(=13+10)-3(=39+2)-9(15-1)
=15+111-126=0
Hence the two lines are coplanar. To find their point of intersection, we sec that any point on the line
(3) is of the form,
(r,, 5r~7, 16 - 13r))
and any point on the line (4) is of the form,
G, =30 -4,7-2r) :
for some values of the parameters r, and r,. At the point of intersection,

3, ~ 5=y
AR ST
7-2r,=16- 13r,

Solving the first two we obtain r, = | and r, = 2 which also satisfy the third equation.
Hence the point of intersection is (1, - 2, 3).
The plane containing both of them contains the point (1, - 2, 3). So its equation is,
A(x-DN+B(y+2)+C(z-3)=0 kD)
where A, B, C are d.rs of its normal.
Since both the lines (3) and (4) lic on the plane, the normal to the plane is perpendicular to both
of them. ]
Hence,
A . 1+B. 5+C.(-13)=0 ... (6)
and A 3+B.1+C(-2)=0 ’ e X7
Eliminating A, B, C from (5), (6), (7) we get the equation of the plane as
x-1 y+2 2z-3
1 5 -1
3 1 -2
or, 3x—37y—14z-35=0
Example 19
Find the image of the point (3, 5, 7) with respect to the plane 2x +y +z=6.
Solution : :
Let P be the point (3, 5, 7) and A, the foot of the perpendicur drawn form P to the plane. Extend
PA to B Such that PA= AB. Then Bis called the image of the point P, with respect to the given plane.
Since PA is perpendicular to the plane 2x + y +z=6, its drs. are < 2, 1, 1 >, Here the equation

of the line PA is,

x-3. y=5 z2-1

CRTT R

Any point on this line is given by (2r + 3, r + 5, r + 7) for some value of . This will be the foot of
the perpendicular on the plane from P, if the point lies on the plane, i.c.

22 +3)+(r+5)+(r+7)=-6=0
O, 6r+12=0 ' .
Or, r==2
Hence, co-ordinates of A are (-1, 3, 5).
If the co-ordinates of the image B are (o, B. v), then
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o+3

=—-l=a=-5,
2
B9 i pal
2

. The image of the point (3,5,7) with respect to the planc 2x+ y + z— 6= 0 is the point (-5, 1, 3).

Example 20
=15 y-29 2-3

Find the foot of the perpendicular drawn from the point (5, 7, 3) to the line 3 3 e
Find the length of the perpendicular and its equation. '

Solution :
Let the foot of the perpendicular from the given point P (5, 7, 3) on the given line be N. Then co-

o
ordinates of N are (3r + 15, 8r + 29, 5 — 5r) for some value of r. Hence the d.rs of the line PN are
< 3r+ 10, 8r + 22, 2 - 5r >. Since py is perpendicular to the given line, we have,

(GBr+10).3+(8r+22).8+(2-5r(-5)=0
Or. 98r+196=0
O, r=-2
. N is the point (9, 13, 15) so that the length of the perpendicular is
PN = J(9-5) +(13-7)° +(15-3)

=4/16+36=144 = 14.

Also, by two point form, the equation of PN is,
x-—S L y-? - 2—3 1

=

2 3 6
Example 21
Find the distance of the point (3, -4, 5) from the plane 2x + 5y — 6z — 19 = 0 measured parallel to the
line . !
x=1 y_ z+3
Y U ey
Solution :
A line through (3, -4, 5) parallel to the line,
x=1 y 2z+3
N i
is given by,
x=3 y#4 z2-S
P 22 )
Any point on this line has co-ordinates (2r + 3, r — 4, 5 — 2r), for some value of r. This point lies on the
plane
2x+5y-6z-19=0
if2Q2r+3)+5(r-4)-6(5-2r)-19=0 .
i.c. if, (4r + 6) + (5r - 20) + (12r - 30) - 19=0
e 2lr=63
Or,r=3.

Hence, the point of intersection of the line (2) with the plane 2x + 5y - 6z~ 19=01is (9, -1, ~1). So the
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distance of the point (3, —4, 5) from the line (1) measured parallel to the plane 2x + 5y -6z 19= 0 is,

JO-37 +(-1+4) +(-1-5) =36+9+36=9.

Example 22
Find the shortest distance between the lines and the equation of the line measuring shortest distance:

x=3' y#15 29

. (1)

2 -7 5
q x+1 i y~1 -9 .
oI DT Eo i
Solution :

The shortest distance between two lines is the line segment which is perpendicular to both the lines,

having both its ends on the given lines. Let ;’_()) be the line of shortest distance between the lines (1)
and (2) where P is on the line (1) and Q is on the line (2). The co-ordinates of P are
2r, + 3,=Tr, = 15, 51, +9),
for some value of r, and co-ordinates of Q are
@, -1, +1,9-30)
for some value of r,. Then the drs of the linc segment PQ are.
<2t,-2r,-4,r,+ T, + 16,3, - 5r, >
Since PQ is perpendicular to lines (1) and (2) we have,
(2r, - 2r, —4) 2+ (r, + Tr, + 16) (=T) + (-3r, - 5r,) . 5 = 0.
and (2r, - 2r, - 4).2 + (r,+ 7r, + 16) .1 + (-3r,~51) (-3)=0

On simplification we get,
3r, + 13r, +20 =0,
Tr,+9r, +4=0,
which gives, r, =-2,r,= 2.
Hence the co-ordinates of P are (-1, -1, 1) and co-ordinates of Q are (3, 3, 3). So the shortest

distance between the lines is,
PQ = (4" +4° +42) =43
The equation of the line of S.D., by two-point form, is

x+1  y+l1 _z+]
4 4 4

OLX=y=2Z

| EXERCISES - 13(C) |
1. State which of the following statements are true (T) or false (F) :

=1 %=1 .2~1
2 2 2
x+2_y—3“z+4andx—4_y—3_z+l
= TR A WD

(a) The line z passes through the origin.

(b)  The lines are perpendicular for every value of k.
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-

Ry P ;
(c) 'I'he_line:x_+25=yl'—*—Z3 lies on the planex —~y+z+ 1 =0.
o A P
(d)  Theline = =-4”z lz.lsparalleltotheplaner—y—22=(}.
TR
(e) Theline *= =”_;2="’4‘ is perpendicular 16 the plane 3x — 3y + 3z 1 =0.

2. Fill in the blanks by choosing the correct alternative from the given ones :
b S 2 I oo

(a) The lines 2 5 3
I=% y=1"Z=2
and, e aah

are — (parallel, perpmdlcular coincident) :
(b)  The line passing through (-1, 0, 1) and perpendicular to the plane x + 2y + 1 =0 is —
xHr y=l_ z=1 x+l z=1 "x=1 Y=gl
R o TSl i e

x+l y-6 z-4.

(¢)  Theline — : T s '
(parallel to x-axis, perpendicular to y-axis, perpendicular to z - axis)
-3
(@) IE e oo 22 = 1 E L 2] gt plane 2x —y +2 = 7=0, then k =2, =1, -2)
2 -1 -5

(e) - If 7, m, n, be dcs of a line, then the line is perpendicular totheplanéx—3y4' 2z +1=0if -

s ! R e s s
[(DI=]l.m=-3,n=2 (II)T=—_3=3 (i) /- 3m+ 2n=0].

3. Find the equation of lines joining the points
(i) (4,6, 1)and(0,3,-1),
() (a,a,a)and(a,0,a),
(i) (2,1,3)and (4,-2,5).
4. Write the symmetric form of equation of the following lines :
(1) x-—axis:
(i) y=b,z=c;
(i) ax+by+d=0,5z=0;
(iv) x-2y=3,2x+y-5z=0;
(v) 4x+4y-5z-12=0=8x+ 12y- 13z--32;
(vi) 3x-2y+z=1,5x+4y—-6z=2.
5. (a) Obtain the equation of the line through the point (1, 2, 3) and parallel to the line
X-y+2z-5=0=3x+y+z-6.
(b)  Find the equation of the line through the point (3, ~1, 2) and parallel to the planes
x+y+2z-4=0and2x-3y+z+3=0.
6.  Obtain the equation of the line through the point (0, 2, -3) and perpendicular to each of the lines
x+4y-3z=0=2x-Sy+7andy+3z-2=0=x+2z+3.
7. (a) Show that the line passing through the points (a , b,, ¢, ) and (a,, b,, ¢,) passes through the origin,
ifaa, + bb, +cc, = pp,, where p, and p, are distances df the points from origin.
(b) Prove that the linesx =az+b,y=cz+dandx =az+b,, y=cz+d, are perpendicular if
aa, + cc;+1=0

2} oyd =)
| 3 -1

8. Find the point of intersection of the line — and the plane 2x + y +z=9.
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9. Find the co-ordinates of the point where the line | |0|mng, (3,4, -5)and (2 -3, 1) meets the plane
2x+y+z-7=0.
10. (a) Find the distance of the pomt (-1, =5, =10) from the point of intersection of the line
X~2. vyl =4
P Rl
(b) Find the image of the point (2, ~1, 3) in the plane 3x - 2y +z -9 =10,
11. (a) Prove that the lines.
x+3 . y+5 . 2=7 X+l _y+1 z+1
R e TN el Tk R
containing them.
12.  Prove that the lines

and the planex -y +z=S5.

are co-planar. Find the equation of the plane

and 3x — 2y +z+ 5 =0=2x + 3y + 4z — 4 are co-planar.
13. Show thatthe lines 7x —4y+7z+ 16 =0=4x+3y-2z+3andx-3y+4z+6=0=x—-y+z+ |
intersect. Find the co-ordinates of their point of intersection and equation of the plane containing them.
14.  Show that the line joining the points (0, 2, —4) and (-1, 1, -2) and the lines joining the points (-2, 3, 3)
and (-3, =2, 1) are co-planar. Find their point of intersection.
15. Show thatthelinesx ~-mz-a=0=y-nz-bandx —m'z—a' =0=y—-n'z- b intersect,
if(@¢ -a')y(n-n")=(b-b") (m-m).
x-1_y+2 z-3
2 =3 1

16.  Prove that the line lies on the plane 7x + Sy + z = 0.

x+3 _y-1_z+4
27 T el
x+3 y-1 z+4
s Al
18. (a) Find the equation of the line passing through the point (1, 0, —1) and intersecting the lines
x=2y=2z;3x+4y-1=0=4x + 5z - 2.
(b) A line with direction ratios <2, |, 2 > meets eachof the linex=y+a=zandx +a=2y=2z
Find the co-ordinates of the points of intersection.
19.  Obtain the co-ordinates of the foot of the perpendicular drawn from the point (3, —1, 11) to the line

17. (a) Find the angle between the plane x + y + 4 = 0 and the line

(b)  Find the angle between the plane 4x + 3y + 5z — 1 = 0 and the line

—_——

x=13 y+8 z-3l

20.  Find the perpendicular distance of the point (1. 3, 9) from the line

N S
21.  Find the distance of the point (1, -2, 3) from the plane x — y + z = 5, measured parallel to the line
35 e '
ARG
- 3 >
22 Find the distance of the point (1, ~1, ~10) from the line *— =% = “= meaured parallel to the
K42 YOI 220 3 .
line 5 3 e
23. Fmdtheequatlonofplaneﬂuoughthepomt(Z 0, —3)and containing the line 3x +y+z-5=0=x -
2y +4z+4.

24.  Find the equation of the plane containing the line x + 2 =2y — 1 = 3z and parallel to the line x = 1 - Sy

L 2 S —
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26.

28.
29.

10.

1.
1Z.

= 2z — 7. Also find the shortest distance between the two lines.
x=1 g3 z4l
% Tl e

Find the equation of the two planes through the origin, parallel to the line and ata

5 5 -

distance = from it.

X=2 Yl =
3 E 75

: A 6 e g
Find the equation of the straight line perpendicular to the line > and lying in the plane

x—-2y+4z-51=0.

x—=3 ~§ - Z=3 x+3 +7 z-6

T e s

Find also the equation of the line of shortest distance. ; :
Show that the shortest distance between the lines x + a = 2y= —12z andx = y + 2a = 6z — 6a, is 2a.
Find the length and equation of the line of shortest distance between the lines
Ix-9y+5z=0=x+y-zand6x+8y+3z-13=0=x+2y+z-3.

Find the shortest distance between the lines

| ADDITIONAL EXERCISES |

Find the equation in vector and Cartesian form of the plane passing through the point (3,-3,1) and
normal to the line joining the points (3,4,-1) and (2,-1,5)

Find the vector equation of the plane whose Cartesian form of equation is 3x -4y +2z=35

Show that the normals to the planes r:-(?— 3+ ﬁ) =3 and r'-(3i+ 23— fa) =( are perpendicular to each
other.

Find the angle between the planes 7-(2i— j+2k)=6 and 7-(3i+6j-2k) =9

Find the angle between the line 7 = (i+2 ) k) + A(i— j+ k) and the plane 7.(2i- j+ k)= 4.
Prove that the acute angle between the lines whose direction cosines are given by the relations

T
/+m+n=0and P+ m*-n*=01s 3‘

Prove that the three lines drawn from origin with direction cosines |, m n ; 1, m,. n,; L, m, n, are
L mn
coplanar if (b M, m|=0.

L my ny

Prove that three lines drawn from origin with direction cosines proportional to(1, -1, 1),(2.-3,0), (1,0,3)

lic on one plane.

Determine k so that the lines joining the points P (k,1,-1) and P,(2k,0,2) shall be perpendicular to the

- line from P, to P,(2+2k k,1).

Find the angle between the lines whose direction ratios are proportional to a,b.c and b-¢, ¢-a. a-b.

O is the origin and A is the point (a,b,c). Find the equation of the plane through A at right angies to OA .
Find the equation of the plane through (6,3,1) and (8,-5,3) parallel to x-axis.
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Functions and Derivatives

Objective Type Questions:

1. s the function |x| differentiable at x =27

2. Is the function |x] differentiable at x =257

3. Is the function | x | differentiable at x =0 ?

4. Is the function | x | differentiable at x =27

5. If f(x)= x|, what is the value of f'(0-)?

6. If the first derivative of a function vanishes at all points and if f(0)=1, then what is f(x)?

7. Give example of a function which is continuous but not differentiable at x =1 .

8. Give example of a function whose first derivative is not differentiable at x =2 :

9. If f(x+y)=f(x)f(y) forall x,y andif f(5)=2 and /'(0)=3, then what is the valuc of /'(5)?
10.

A differentiable function f defined for all x > 0 and satisfies f(x”)=x"for all x> (. What is the value of
f'16)? '

1. If f(x)=[tan® x]. whatis f'(0)?

12. If f(x)=(3x+2)'"and f'(x)=n(3x+2)", then what is the value of n?

2z
dx
14. What is the derivative of f(/nx) with respect to x where f(x)=fnx?

3n
13. If 1‘6{—4-.1'!] what is for y =/ cosx|+|sinx|?

. iy |
15. If f'(x)=+/2x’ 1 and y = f(x?) then what is Z at y=1?

; : 2x
with respect to sin ' ?

16. What is the derivative of tan~' —= :

1-x l+x

ek
17. What is the differential co-efficient of tan ' Myl with respect t0 tan ' x?
X

y 4
' 2 . . d’y 1
I8. If y=ar*, x=2ar where a is a constant what is the value of Tt a2 ?
X

. e 20
19. Is the function /f(x)=sin"" T differentiable at y =+17?

_ dhipia st e
20. Write the value of I(Sm X +cos «\) for xe(-1,1).

d

‘ .-] l ) - [ l ]
4, —seC | ——— xe|0,—
21. Write the value of s {2x'~l , for L)

22. Write the interval in which the function f(x)=sin'(1-x) is differentiable.

i
23. Write the values of x for which Esm(sm ; x) =



26.
27,
28.
29.
30.

31

33.

34.

35.
36.
37.

38.

39.

41.
42,
43,

45.

47,

48.

; : : 1
. Write the derivative of goc ' x with respect to x at XY=——.
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5o b
Write the values of x for which -‘-Esm '(sinx)=1.

3
Find the derivative of /n.a .
Write a logarithmic function which is differentiable at every point in R.
Give example of two functions which are not derivable at x =0, but their sum is derivable at x=0.
2x ] Sy
3 SR T o

Write the values of x for which ——tan : (
dx l-x

: d
If y=5" and ; = ¢*. Write the value ofzy at x=0. \

Write the derivative of gjn ' x with respect to ¢os ' x -

= dy .
: ertet.heva_lucof;;; if _v=sinx+Js;1x+\)sinx+\lsinx+.......co-

Write the value of % if y=x*

dy :
Write the valuc of == at (1, 0) where x*y +)* +x=0.

Write the minimum value of y, where y =sin” xcos” x .
If x=logt, y=1* -1, then what is y, at y=]?
What is the scope of the tangent to the curve y=3x* +2x—1 at x=27

1 L]

If y:_—x.(x+ 1) » then what is 3,7

If f(x)=¢*sinax and f""(0)=2, then what is a?

A balloon is pumped at the rate of 10 cubic cm/min. What is the rate of increase of its radius when its radius

is 15 cm.
For what values of a the function o is increasing?

What is the interval in which log ; x is decreasing?

What is the interval in which £(x)=x* —3x” +3x~10 is strictly increasing?

Give example of a function which is increasing in (—,2) and (3,%) and decrcasc_s in (2, 3).
Write the least value of a for which the function f defined by f(x)=x" +ax+1 increases.
For what value of K, Kf is increasing if f is increasing.

At what point of x? =2y the point (0, 3) is nearest to the curve?

n : I :
If0+¢= 3 then for what value of a sin6.sin¢ is maximum?
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g o
49. Write the absolute maximum and absolute minimum of the function /(X) ==— in[-2, 2].

50. Which condition of Rolle’s theorem is violated

' 3n
(i) by the function f(x)=sinx in [O-“"

(ii) by the function f(x)=|x| in[-1, 1]

1
51. Is there any tangent to the curve y=|2x-1| at (E’UJ?

| x|

e . T
52. Write the subinterval of (0,7) in which Sl“[x +;] Is increasing.

Short Answer type Questions:

10.

14,

16.

17.

18.

19.

CIfy=x+

f@R+2h+h*)-f(2)

Given f(2)=6, f'(1)=4 find lIm

0 f(l+h—h*)-fQ) -

f'(nx)

If (f(x)" = f (). find 75
If f(x)=sin|x|—|x|, find /'(0+)

=
'=CO0S —
If [ find ok

a+bcosx
b+acosx

3x—x dv
I=x* ]' find ‘d_x

1fy=tan"(
dy
If x=acos'8, y=hsin’0, find I

X+ ——
X+....0

X i Xty ﬂ
[fe +e"‘=e ,ﬁnddt

1-xt

X

Find the derivative of tan '

o)

Find a!xiz if x=acosB, y=>~sin.

If y=e¢™sinbx show that y, —2ay, +(a2+b2)y=0

d’y
If X"y =(x+ )", then find };‘%‘

d sinx -¥ .
Evaluate z(ﬂ te ) by chain rule.

l-cosx
| +cosx

Find the derivative of {n

.
If y=tan"'(cotx)+cot '(tanx). find %

_(1=2) . _ 2at ay ]
If x=a 7 |- 2,ﬁnd—"at"=7:’i"

1+1 S 57

g dy

I y=e”  find 2
d.
13,16 22 4" =1, find =

15. If x*y* =1, find 2

with respect fo COS'I xAs

dx
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x* +y o &u
20. If ¥ =f[ L ] prove that ""&*-"’5‘;:0

Xv

21 If f(x+3)=f(x)f(») Yx.5, f(5)=2 and f'(0)=3, then show that f'(5)=6.
22. If (fog)'(1)=3, g(1)=2,g'(1) =1, then show that /'(2)=3.

g(x)f(a)—gla) f(x)

X—a

23. 1f f(a)=2, f"(a)=1,g(a)=—] and g'(a)=2, then find lim

24. Find the rate of change of the area of circle w.r.t. r when r = 8 cm.
25. The side of a square is increasing at the rate of 0.1 cm/sec and at the same time the area is increasing at the
rate of 30 sq. cm/sec. Find the length of side of the square.

26. A particle moves along a straight line according to the law ¢ — /% _ 3,2 4 5¢. Find its velocity and acceleration
at the end of 1 sec.

|
27. Show that the function f(x)= o is decrcasing in (0, ).

28. Find the intervals where the function f(x)=x"-12x+10 is increasing.

29. Find the slope of the normal to the curve y=xe™ at x=2.

30. Find the angle between the tangents to the curve y =x* —~5x+6 at the points (2,0) and (3, 0).

31. Find the points on the curve y — x” + 2x —1 = 0, where the tangent is parallel to the x-axis.

32. Find the points on the curve 9y* = x* , where normal to the curve makes equal intercepts with axes.
33. If y=x*~12 and if x changes from 2 to 1.99, find the approximate error in y.

34. Using differential find the value of /162 . '

35. Show that f(x)=x' —6x* + 24x+ 4 has neither a maximum nor a minimum value.

36. Find the points where f(x)=8x" —x* —4 has local maximum or minimum.

37. Find the absolute maximum and absolute minimum value of the function f(x)=2x" in[-2, 2].

38. Find the absolute maximum and absolute minimum value of f(x)=x—-x’ in [0, 1].

39. Using mean value theorem, prove that sinx<x, xe (0,n/2).

Integralion

Objective typé of Question:

=1
1. Write antiderivative of (gn? x . 2. Wirite the primitive of . sz__] :
3. Write the value of | xa* ''dx 4. Write the value of | /I - cos 2xdx
5. If f[(D)=e"+ oo whatis f(x)? 6. Write the value of [ ¢“*** *dx
. e‘ <= I - % - 20 3
7. Write the value of [ —dx 8. Write the value of [ x"sec”dx—| x™tan” dx
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11.

13.

17.

19.

23

5 < A

25,

27.

28.

29.

30.

32
34.
36.

38.

2
sec” x
dx

Write the value of [ -
cosec x

Write the primitive of gjp? .

d(xl + l)

Write the value of | ——
x°+5

Write the value of | xsec? xdx

1+ x°

| sin"“—-dxx =
a+x

fiom e e

: A l=x*
Write the value of | €0s l[ = ]ﬂfx

[ € sin 2xdx =

Write the value of | dx

xfnx

J. dx
Write the value of L (l s )“'3

10. Write the value of | 7=

12

16

18

20.

22

24, |

26

! dx

. Write the value of | e’ e i

a‘(.vc2 +I)

4

. Write the value of [
1+x

. Write the value of | ¢ (1 tanx)secx dx

. Write the value of | ¢*((nsinx + cot x)dx

f tan”! " Lot P
1+5x

. | cotxlogsinxdx =

dx
e +e”

S8 2
x°(5x" +4x7 +3

. Write the value of [ (5 e i)dx
X +x +x +1

()9'(x) + £ (0)(x)} {log d(x) + log £ (x)} e

I/
Write the value of I L

4 h - dr
Write the value of A if | (x+1)(x+2)

1 COSX —sinx
Write the value of | —————dx
sinx + cosx

ni2 '
| (sin|x|-cos|x|)dx=

-m/2

"2 sinX —CoSX

o l+sinx.cosx

[2x=1|dx=

[ 1

If f(0)=1, f(2)=3, ['(2)=5,

1
then the value of [x/"(2x)dx =———
o

3L

R
35.

37.

39

= Alog(x+1)-log(x+2)+C

|
Write the value of | ————dx
l+sin” x

n/3 d..l' 2
?

nml+\/tanx

1
el o i
-1

1 i
jlog4 = dx =
3 d+x

n/2
. [ logtanx dx =
]
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40, 1If F(x)= [¢ cosStdt what is F'(x)?
0

o d X 2
i lim{ —| [V1+1dr
42. Write the value of x";“o{ dx[{ ]]

i Tr Jsinx
44. Write the value of f -
o sinx ++cosx

[sec? rdr
85, TR S
©30 xsinx
32
48, | [2x)dx=

0

dx

- dx .
41. Write the value of — [ sinsdt
dx g
1 . | "
43, Write the vale of J (sin® x+x)dx
]

45.1f f(3-x)=f(x), then fxf(x)dx=——-
]

4'?: jx(l ~x)dx=

n
49. [cos’ x dx = ——
0

50. Arca under the curve x+ y =1 in the first quadrant 1S

2 ies
51. The value of Jl[f (g} {8} g'dx for g(1)=g(2) is

1
52. If f(x) is a quadratic polynomial such that f(0)=2, f'(0)=-3 and /"(0) =4, then [ f(x)dx =——.
1

ni2

53. The value of | [cosx}!x.-__.__

0

Short Answer Type Questions:

1. Evaluate | (2x + I)(x? +x+1)%x

l=tan’x) ..
3. Evaluate I cos | ———|+sin I[ 7
: l+tan” x I+tan” x

I
SRR AL £
5. Evalnatcf e 79X,
sin” x.cos” x

T Evaiuate[ 2%°% gin 2x di .

|
9. Evaluate I mx

11. Evaluate _f tan xsec” xdx

54. 1f § f(X)dx =X and if(Za—.t)dx:p
0 0

then j J(x)dx =
0

eZbg‘r +e.ﬂng.r
2. Evaluate | Tl dx
X+X

’ . ¢ k=co82
i . v f 125225

TN Sl e
6.1f f'(x)=¢ i and £(0) =1, then find f(x).

+x°.

sinx

8. Evaluate.[ co:v.(x-a]dx

cos4x +cos2x
10. Evaluate I Wl‘

q
X
12. Evaluate | -;g,:;dx
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28.

30.

34.

36.

38.

40.

42.

Jx+4
Evaluate | "—'—4d

Int t J—-—-——-txs ix
niegrailc
2r 24

Integrate [ tan 'xdx

|
Evaluate I —dx
X+x

i | o e 2
x—1X2x—D)
|

. Evaluate _[ —dx

2sinx +3cosx

cos2x
Bt | G oost
of 1+sinx
Evaluate I e ( l+cosx)tk
= 1
sin X
)
Evaluate j (I-xl )-‘-"3 )

Evaluate I

sinx.cos x

.\'2
_f sin \/;dr
Evaluate ... o
l}tpu 3
: X

Evaluate | {lx]+[x]} dx
I

10

I sin(x — | x|) mdx
]

Lars
it S0 == [[F+ S OW find 12).

Evaluate I [ ]d\

Evaluate Lf 25— xdx

cos3x.cosx
14. Evaluate f ——-——d
+cos2x

2x+5
16. Integrate f rr2)” o

I8. Integrate [ secBtan6v'tan’6—3d

20. Evaluate I (6x+ 1)v/3x + ddx

= |t B_lar godid and B
x=1 2x-1 :

23. Evaluate I cos” x dx

de
25. Evaluate _[ 052642520
x4+ }b.

)tllll
27. Evaluate I € [ e

e ’ x
29. Evaluate _[ sin”’ dx
a+Xx

-

1
x
: i L e FE
31. Evaluate {_\-2 b

2

33. Evaluate | xsinxdx

0

3

35. Evaluate [|x+1]dx
3

3. 0f f(x)= L’z tan ' idr, 1> 0, find f7(1).

39. If f(x)=cosx—[ (x~1)f()d,

then find /"(x)+ f(x).

cos xdx
(2 —sinx)3+sinx)

T N

. J; .
43. Evaluate If mdf :
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44. Evaluate j: ? tncotxdx .

45. Find the area bc-mnded by the curve x =)* and the straight lines x=0,y=1.

46. Find the area bounded by the curve y=sinx between y=0 and x=2x.

47. Find the area of the parabola y* =36x bounded by its latus rectum.

48. Find the area of the region bounded by y =6x— x”, x—axis and between ordinates x =0 and x=6
49. Find the area of the trapezium bounded by the sides y =x,x=0,y=3, y=4.

Differential Equation

Objective Type Questions:

1. Write the order and degree of the differential equations given by

d:}' aj) 4 dy )
(1) F+3(Z] +y=0 (if) _v+(-d-;) =l+x
g 4
f:l_ CANK d’y } dyY
(1) = —[1+(dx] } . (w)[ ] =1+ {d—AJ

.

2. The degree of the differential equation satisfying v1-x* + 41+ )* =a(x~y) is ———

a
3. Write the diffcrential equation corresponding to V=— =¥ b is

4. The differential equation of y =acos2x+bsin2x is

5. The differential equation of the family of straight lines pamllel to x-axis is §
6. The differential equation of the family of straight lines passing through origin is —————
7. The differential equation of the family of parabolas with axis along x-axis is

Write the differential equation whose general solution is y =ce’*.
9. Write the differential equation of parabolas y* =8x+c. :

10. Write the differential equation whose general solution is y =acos3x+bsin3x.
11. Write the general solution of the differential equations:

1 atv—cosx-x i ___y =—2 —d:v—cot: )
W T R P it
3 dy 3 2 dy l+}’2
—=4x +2x+ J —_=
BRE L e e
d:)' . dl
1 -—.,=0 . i) —5 =X
) dx® i ax®

2 : *, .
12. Write the solution of -‘ﬁ—‘; =0, ¥(0) and y'(0)=1 13. Write the solution of Ex'h =2x,y=2 when y=1.
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14. Write the general solution of Ydx —xdy _ 0.

y
d_’}:
. . — _|,x=0,v=l.‘
16. Wnt¢ solution of e Taa i
dy 2
18. o 3 55 g

Write solution of i y

15.

17.

19.

20. Write integrating factor of (I + y* )d'x +xdy=tan" ydy .

Short Answer Type Questions:

J

: RS - dy
Write solution of J[4+—=2_
dx

d
Write solution'of i—’ =2y, 0(0)=2.

Write the solution of ydx — xdy = x° ydix .

<

dv
Find the solution of e
dx

WA : dy ,
Find integrating factor of (¥~ "J’)Z =—ylny .

__t]= o
Solve ! x+y

dy 2
Find the equation of the curve whose slope is given by -d—"; = —-g- and which passes through (1, 1).

I.  Find the solution of o ¢“sinx. 2
el
3. Find integrating factor of (x + tan y)dy = tan ydx . 4.
5. Solve €' o X 6.
dx _

dy x+y+l

7. Solve dx X+y+2-

8.
‘{‘/}

9. Ify +fd;*= 0 and y(0)=2, find y.

10. Find differential equation of the curve y =ae™ +he* .

3-D Geometry

Objective Type Questions:

20, SR W e TR e

— =
POR=S

15.

Write the projection of the point (1, 2, 3) on xy-plane.
Write the projection of the pomt (2, 3, 1) on y- axis.

Write the image of the point (2, 1, 3) with respect to yz-plane.

Write the distance of the point (3, 1, §) from y-axis.

A ling is perpendicular to xy-plane. Write the angle made by the line with z-axis.
If the distance between the points (1, 2, z) and (=1, 2, 1) is 3, then find z.
If the direction angles of a line are a =30° and B=60° find the other direction angle v .

Write the direction cosine of the line whose direction ratios are (1, 2,3).

Write the direction cosines of the line joining (1, 2, 3) and (1, 1, 2).

. Write the distance of the point (1, 1, 2) from x- axis.
. Write the distance of the point (2, 3, 6) from zx-plane.

Write the locus of a point p which moves in space such that its distance from origin is 4 units.
Write the centroid of the triangle with vertices (1, 2, 3), (2. 1,2). (3.0, 1).

Write the ratio in which the line joining the points (2, 3, 4) and (-3, 5, —4) is divided by yz-plane.
Write the value of y so that the points (1, y, 2), (3. 2, —1) and (-4, 6, 3) are collinear.
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16.
17.

18.

19.

20.
21.

22,

3.
24.
25.

26.
27.
28.
29.

30.
31
32.
35

" 35.

36.
37.

38.
39.

40,

41.

42.
43.

45.

Write the projection of the line segment joining the points (2, 1, 3) and (3, 2, 4) on z-axis.
Write the projection of the line segment joining (2, 4, 3) and (3, 2, 4) on yz-plane.

If d.c.s of a line be {%%‘;) what is the value of k?

If o, B,y be direction angles of a line, what is the value of sin® & +sin’ B +sin’ y.

Write the direction cosines of the normal to the plane x—y+1=0.

Write the equation of the plane passing through the point (1, 2, 3), the direction ratios of the normal to the plane

being (3,5,7).

Write the value of x-intercept of the plane x+ y+2z=1.

The equation ax+by+c =0 represents a plane parallel to axis.

Write the equation of the plane parallel to x-axis having intercepts 5 and 6 on y and z- axis respectively.

The plane having equation 2y + 5z +1=0 is parallel to ____ plane.

What is the distance from ongm of the plane 3x+4y=1.

Write the equation of the plane passing through (1, 2, 3) and parallel to the plane x+2y+5z=0.

Write the distance between the planes x—2y+2z=6 and 2x-4y+22=8.

Write the equation of the plane through origin and passing through the intersection of the planes 3x -2y +z-1=0

and x-2y+3z-1=0.

Write the position of the points A (2, 4, -3) and B(2, -6, 2) with respect to the plane 4x+ 7y +6=0.

Write the equation of the plane 3x—4y +z+5=0 in normal form.

Write the equation of the planex + 3y —7z+2=0 in the intercept form.

Write the equation of the plane passing through x-axis and y-axis.

Write the equation of the plane perpendicular to z axis and passing through (1, -2, 4).

If the planes 2x +4y+z+2=0 and x—2y +kz+5=0 are perpendicular to each other what is the value of
¥y

’\‘h;ritc down the equation of x-axis.

Write the vector equation of a line through the point (1, 2, 3) and parallel to the vector 37 + 2 - 2k .

-

Write parametric equation of a line through (1, -1, 2) parallel to the vector 3/ + j bl
Write the equation of the line passing through the points (3, -2, -5) and (3, -2, 6).
x-5 y+4 z-6 |
3 ot o
Write the equation of the line in symmetric form through the point (1, -2, 3) having direction ratios (3,-4,5).

Write the equation of the line in vector form.

Write the equation of the line x=ay +b, z=cy +d in symmetric form.
Write the equation of the plane passing through the point (2, 3, 1) and perpendicular to the line
x=1_yp=-2_z4l

e R |
What is the number of independent constants that occur in the general equation of a plane.
The angle between the planes x+y+z+1=0 and 2x+y+2z+2=0 is
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46.

47.

49.

x—-1 y-2 z-3
The angle between the plane 3x +3z—-5=0 and the line I ='_l = o is
e las el )  iintis el oo s what s the 33
e T e 3 ="% % reperpendicular to cach other, then what is the value
of K? .

Find the vector equation of the line passing through the point with position vector 273 - 5k and perpendicular
to the plane ;. (673 j-5k)+2=0-
Find the equation of the plane passing through the intersection of the planes .(i j+k)=1and

7-(21+3]-k)+4 =0 and parallel to x-axis.

Short Type Questions:

b,

16.

18.
19.

20.
21.

22,
23.

Find the co-ordinates of the foot of the perpendicular drawn from the point (1, 3, 4) to the line joining the points
(3,0,-1)and (0, 1,-2).

Prove that the points (3, -2, 4), (1, 1, 1) and (-1, 4, -2) are collinear.

Find a, b such that the points (-1, 1, 3),(2, a, 4) and (1, 2, b) are collinear.

Two vertices of a triangle are (1, 2, 3) and (3, -2, 7), and its centroid is (2, 1, -2). Find the remaining vertex of
the triangle. '

Show that the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) form an equilateral triangle.

Find the direction cosines of the line segment joining (1, -1, 2) and (2, 1, 1).

Find the projection of the line segment joining (1, 2, 3) and (2, 3, 4) on a straight line having d.r’s (2,1, 3) ;
IfP,Q,R, Sarepoints (1, 2, 5), (-2, 1, 3), (4,4, 2) and (2, 1, —4) respectively, find the projection of PQ on RS.
IfA, B, C are points (0, 4, 1), (2, 3, -1), (4, 5, 0), find the angle that AB makes with BC.

Find the acute angle between the lines whose d.rs are (1, 1, 2) and (/3 —1,—/3 —1,4) respectively.

Find the equation of the plane passing through the points (2, 1, 3), (3, 2, 1) and (1, 0, —1).
Find the equation of the plane parallel to z-axis and with intercepts 3 and 4 on x and y axes respectively.

. Find the equation of the plane through the point (-1, 3, 0), which is perpendicular to both the planes

x+2y+2z-5=0 and 3x+3y+2z-8=0,

Find the equation of the plane if the point (5, -3, 4) is the foot of the perpendicular drawn from origin to the
plane.

Find the equation of a plane which is at a distance 3 units from the origin and which is normal to the vector
2 +3j-6k.

Find the components of the unit vector perpendicular to the plane 7.(2i +3; —6k)-6=0.
Writing the equation of the plane 3x—2y + z+2=0 in normal form find its distance from origin.

Find the angle between the planes x+2y+3z+1=0 and 3x+2y+z+2=0.

Find the equation of the plane through the point (2, 1, 0) and passing through the intersection of the planes
3x-2y+z-1=0 and x-2y+3z-1=0

Find the position of the points (1, 2, =1) and (2, —1, 3) with respect to the plane x+3y+z+1=0."

Find the intercepts of a plane 3x+4y—7z=284 on co-ordinate axes.

Find the equation of the plane through the points (1, 1, 0), (=2, 2, 1)and (1, 2, 1).
Find the equation of the plane passing through the points (1,-1, 1) and (1, 1, ~1) and perpendicular to xy- plane.
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24,
25.
26.

2L
28.

29.
30.

£ 5

32.

33.

34.

35.
36.

37

38.
39.

40.
4]1.
42.
43.
44.

A plane meets the co-ordinate axes at A, B, C such that the centroid of A4BC is (2, -2, 3). Find the equation
of the plane.
Find the equation of the plane through the feet of the perpendicular drawn from P(2, 3, 5) on co-ordinate
planes.
Find equation of a plane through (2, -3, 1) and perpendicular to the line joining the points (3, 4, 1) and (2, -1,
5).
Find the equation of a plane bisecting the line segment joining (-1, 4, 3) and (5, -2, —1) at right angle.
Find the equations of planes parallel to the plane 6x -3y —~2z+5=0 and at a distance 2 units from origin.
2 : o x=2 -y 2=l
Find the point where the line e O i T meets the plane 2x+ y+z=2.
If the points (-1, 3, 2), (-4, 2;-2) and (5, 5, 2 ) are collinear , find ). .

X33yl 242
2 1 i

Find the angle between the plane x+ y+z—2=0 and the line

x-1_y-2 z+l
TIPS NIEE

Find the equation of the plane passing through the point (2, 3, 1) and perpendicular to the line

Find the image of the point (3, -2, 1) in the plane x—y +3z=2.

=84 w419 » z=10
R

Find the length of the perpendicular from (2, 0, 1) on the line x=y=z.

Find the equation of the line through (-1, 0, 1) and perpendicular to the plane x+2y +1=0

Find the equation of the plane passing through the line and the point (1, 2,-4).

x+3_y+5_z-7 x+1 y+1 z+l
e g R e
Show that the plane 2x— y—2z-4=0 touches the sphere x* + y* + z* + 2x -6y +1=0.

Show that the lines are co-planer. |

Find the equation of the sphere concentric with the sphere x* + y* +z° —4x-6y+8z-5=0 and passing
through origin.

Find equation of the sphere whose centre is (2, -3, 4) and which passes through the point (1, 2, —1).

Find equation of the sphere with centre (3, 6, —4) and touching the plane 2x -2y -2z-10=0 .

Find equation of the sphere passing through the points (0, 0, 0), (2, 0, 0), (0, 3, 0) and (0, 0, 4).

If one end of a diameter of a sphere x* + y* +z* —4x—2y+2z-30=0 is (4, 5, -5) find the other end.
Find the equation of the sphere on the join of (2, 3, 5) and (4, 9, -3) as ends of diameter.

VECTORS

Objective Type Questions:

1.
2.
3

If the vectors G =i +2j—3k and b =2i + aj + 6k are parallel, write the value of .

If |ad |= 2, what is the value of o ?

If the position vectors of two points A and B are 3i +2j+k and 2i 5] +4k respectively, what is the
magnitude of AB? - .

Given position vectors of P and Q. as (1,0,-2) and (3,-2,0) rcspectively. what is the unit vector parallel to PQ?
Given co-ordinates of the points A and B as (-1, -2) and (-5, —6) respectively, what is the magnitude of 4B ?
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Write the unit vectors parallel to the vector 3i + j — 2k .

Find the direction cosines of the vector. 7 — 7, where 7 =i+ j+k and % =2i + j+2k.
Are the points A(2, 6, 3), B(1, 2, 7) and (3, 10, ~1) collinear?

What is the angle between the vectors G =7+ j—kand b=2i - j+k -

R B

10. What is the scalar product of the vectors & =27+ j+2k and b=i—2j+k?

11. What is the scalar projection of the vector G =7+ j—k on b=2i +2j—k?

12. What is the vector projection (component) of the vector =2 + j—k on 3=f+2}‘+§ ?

13. What is the unit vector perpendicular to each of the vectors i+], j+k?

14. What is the area of the parailelogram whose sides are vectors 2 + j, and 2j+k?

15. The area of the triangle with vectors (2. 0, 0), (0, 1, 0) and (0, 0,3)is

16. If the vectors / +2j+k and 27 +3j +ak are perpendicular, then what is o ?

17. If the vectors ai +3]—k and 2i + j +k are parallel, what is &?

I8. If G=i—2]j, b= j+k, whatis the component of g perpendicular to  ?

19. If | ]=10,|5|=1 and Gh =0, then |Gxb|=——

20. If 55 =0 and Gx(bxé)=0, then GG =—

21. If two vectors g and 5 are such that \@+b|=|a—b|, then what is the angle between & and j ?
22. If (@ b ¢]=10, what is the value of [G+b b+ ¢ +d]? | |

23. If @=4i +nj—3k and |G|=13, what is the value of n? -

24. If [d b &]=5, then what is [Gxb bx¢ ¢xa)?

25. If & and j are non-collinear and p = xd + (y +1)b, G = yd+xb , then what is the value of x andyif p =247
26. What is the value of x if the vectors 3j —7j 4, 3 —2j+& and i + j +xk are coplanar?

27. If (G+b)a—-b)=12 and |G|=2|b| then whatis |a|?

28. If G, b, ¢ are unit vectors such that 7+ 5 + ¢ = 0, then what is the value of G +5¢+¢a?-

29. If @ is angle between G and j and |dxA |=db |. then what is the value of §?

30. If 5-2p and g = -3 what is angle between G and ¢?

Short Answer Type Questions:

1. Show that the points A, B, C with position vectors G+2b+3¢,2da+3b—4¢, —7h +10¢ are collinear.
2. Find a vector in the direction of the vector G =5i — j + 2k which has magnitude 8 units.

3. Write the values of m and n for which the vectors (m—1)i +(n +2)j+4k and (m+1)i +(n—2)j+8k are
parallel. : ' ;

4. Find the magnitude of G4 p—2¢ where G=(2,3,4), b=(1,-1,2) and ¢=(1,0,3).
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5. Show that the vectors i + j—2k,i —2j+k and 2i — j—F are the sides of an equilateral triangle.
6. Ifa=(2,3,6),b=(2-2,1).¢=(-1,0,2) find the direction cosines of p G +2¢ -
7. If the sum of two unit vectors is a unit vector, find the magnitude of their difference.
8. Show that the vectors 47 +4 +4k, 7i + 6 —k and 3 +2j—5k form a right angled triangle.
9. Find the value of k for which A(1, 0, 3), B(-1, 2, 4), C(1, 2, 1) and D (k, 2, 5) are coplaner.
10. Find the scalar components of the unit vector which is perpendicular to the vectors 7 + 2 —& and 37 - j +2k .
11. Find a unit vector perpendicular to each of the vectors (a +b) and (@—-b) where G=i+j +k and
b=i+2j+3k. :
12. Find the vector of magnitude 5 units and parallel to the resultant of the vectors a = 2% +3j-kandb=i-2j+k.
13. If G=7+2j—3k and b =3i - j+2k then find the angle between G+ and G 5.
LINEAR PROGRAMMING
Objective Type Questions:
Write True or False
1. The region given by 2x+5y =1 is a bounded region.

2
3.
4.
5

The region x+2y <8 2x+y<8 and x20, y >0 is unbounded.
The feasible region x+ y=0,2x+ y <0 is a bounded set.

(1, 5) is a point in the region 2x—y =4, 2x+5y<2.

The minimum value of 2x+ 5 subject to 3x—1>1 is

Short Type Questions:

2.
3.

Shade the feasible region given by the inequation 2x+3y <6, x20,y20.
Find the feasible region satisfying the inequation 2x+y <4, x20,y20.
For the LPP:

Maximize z = 5x, +7x,

subject to x, +x, <4

3x, +8x, <24

10x, +7x, <35

x20,y20,

Examine whether

10 11

(??J is a feasible solution or not.

Find the feasible solution for the system x+ y2>1,2x+y<4,x20,y20.
Find the solution of the LPP:

Maximize z =3x+4y

subject to x+ y <1 ' 4

x,y20
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11.

Answers

| EXERCISE 1(a)
(i) Symmetric, transitive (ii) Reflexive, Symmetric, transitive
(i) Symmetric (iv) transitive (v) reflexive (R) symmetric (S) transitive (T)
(i) and (v) are equivalince relations. '
M {(1,2),(24), (3,6), 48), (5,10), (6,12)}, KT
(@ {(1,1),(1,2), (1,3), (1,4), (1,5),(1,6), (2.2), (2.4), (2,6), (3.3), (3,6), (4.4), (5.5). (6,6)},

KX
@) {(L1), (12), (1,3), (14), (15), 2.2), 2:4), (3.2), (3.5), (4.2), (5.2}, K X
@) (L), 2.1), 22), G.1), 3.2), 3,3), (4,1), (422), (4.3), (4.4)}, KX

@ KX @R ST RST,WR,S,T, (v) KST (WR,S,T

@ R={(1,1),(22),3.3), 34, 43), (44} [11={1}, [2={2}, BI={3.4}=(4]

() R={(11),(1,2),(13), 2,1),(2.2),(23),(3.1),(3.2),(3.3), 4.4}
[1H21=31={1,2,3}, [4]={4}

) R={{123.4}x{1,2,34}}, [1F[2[F3]-[4]={1,2.3.4}

xRx may not be true for all x. Hence R may not be reflexive.; 8.4 9.5

[11=Z, [%] ={n+%: neZ}, 11.(i)3, (i) 10, (i) 1 12. (i) 7 (ii) 4 (iii) 2 (iv) 0 ; 14. 3, 10,7

[EXERCISE 1(b)

{(xu), (yw)}, {xu),(nv)}) (V) {(xv).(wv)}

2 one-one, 2 onto, 2 one-one onto

(i) ° (il) n(n-1)(n-2)...(o-m+1), 0, ! ; 3. (a) iv, (b) i, (¢) i, (d) i, i, i (&) (), (i), (i) () () (g)
(iv) (h) (iv) () (D), G, i

gof = {(1.%),(2,%), (3.4), (4x), fog not defined.

gof ~ {(12), (23), G.1)}, fog = {(2.4), (4,7),(73)}

(1) domf=Ro{xeR:x > 0}, domg=R, (ii) (fog)(x) = J:
(gof)(x) = 1-x. dom fog = {xeR:|x| < 1}, dom gof = R,
(1) dom h=R.

(i) (fog)(x) = (x*-2)*+1, (gof)(x) = (x’+1)*-2, gof # fog .
(ii) (fog)(x) = sin x°, (gof)(x) = sin’x, fog # gof

(iif) (fog)(x) = cos(sinx?), (gof)(x) = sin(cosx), fog # gof
(i¥) (fog)(x) = x = (80/)(¥), fog = gof
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12.

13.

13.

PR LS B
(i) (1+x)x (i) 2240 (i) E(e' +e )+5(e- +e™)

(iv) {%fex +€” )}Jr {Elz-(e’ —e ™" )+ sin x}

(1) /= {(1,4),(3.2), (2.3), (1.9)} (if) No inverse
(ii)) /= {(1,4), (2,), (3,2), 43)} . (W) [f'=f (V) no inverse
| EXERCISE 1(c)

(i) yes (ii) yes (ii) yes (iv) yes (v) yes (vi) yes (vii) No (viii) No (ix) yes (x) yes (xi) yes

(i) Not associative, Not commutative, (ii) Not associative Not commutative (iii) associative,
commutative, 0 is identity element, inverse elements ex is to. €'= 4 etc. (iv) associative, commutative
(v) associative, commutative (vi) associatative, commutative, identity = 1, inverse elements do not
exist except for 1 (ix) associative, commutative, identity = 1, inverse elements exist. (x) Not

associative, commutative (xi) associative, commutative, identity = 0, inverse ofa = ﬁ.

ran S R P N
0 0 0 0 0 0
-l ol 1’ 2] 39 4
2 0 2 4 ] 3
3 0 3 1 4 2

4 0 413 2 1
21=3 4'=4

[ EXERCISE -2 |

" 3n o B X Tee it TN
(1)1_ ; \n)—(m)—(rv) (V) (w);(vn)-"(vm)f(nc) T'5*5(x)m'r(ncl)(t3,5](>tlll) 15

mFMTmnmewTMﬁwmmmWHMFwmeumr

N
>

(i) 0.96 (ii) 7 (i) 1-2x* (iv)

X+
W) 7 () 1 (v 7 (i) 0 (09 Vi— () 75

._+}’
+

(xi)

(xii) ——(.o! =

a-b a+b V3
1+ ab

(i) i— (i) 0 or 1 (iii) 0 (iv) 1 (v) +J— (vi) 3 (vii) J‘(Vﬂl) ('
(x:ii)lﬁ : 10. since [EJEJ{IZT 1 mmoftheﬁlsttwo lines is wron |
27 ° : 5) 13 €

M Secg (el
(1)'3‘(11)5(1100(“!)2
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[ _[EXERCISE- 3(a) |
Max Z = 15000x + 2000 y s.t. x+y £ 20, x+2y £24 ,x,y20;
Max Z= 15x + 10y s.t. zx+3y < 600, 2x+y< 12, 4x < 16, x, y2 0 ;
Max Z = 20x + 30y s.t. 2x+4y < 20, 2x+2y < 12, 4x < 16, xy20;
Max Z = 15x + 17y s.t. x+y < 30, 15x+17y 2 300, 80x+140y = 3000 ;
Max Z = 2x + 4y s.t. 3x+2y < 10, 10x+25y < 75, 10x+12y <42 ;x,y20;
Max Z = 1000x+800y s.t. x+y < 5, 4x+2y < 18, 200x+500y < 2000, x, y 20 ;
Min Z= 210 xl+l60x:_ +250x,+170(8-x,) +180(8-x,)+140(6-x,) s.t. X +X,+x,=12, X +x,< 12,
X tx,26, x <8 x<8x<8, x,x,20;
8. MinZ= 16x +20y, s.t. x+2y>10, 2x+2y>12, 3x+y>8 x,y>0 ;

L Ov, Mhe I e

X,
9. MinZ=500x+800x,+50x, s.t. X +x;#x,=10, X, £ 7, X, 3, X;= 7", XX,X, 20

10. Max Z = 30 x1+50x2+40x3 s.t. 2x1+3x2<80, 2x2+5x3<100 3x1+2x2+4x3<150, x1, x2, x3>0;
11.  Min Z = 45x +40x+85x, s.t. 3x +4x+8x,>1000, 2x +2x,+7x, 2 200, 6x +3x,+7x,> 800, x,,
' X, X, 2 0. :

|_ EXERCISE- 3(b) |

1. (3,0),max=15; 2. (0,2) min=14; 3.(0,1) max = 40

e '————555- 5.(2,1),max=8; 6.(0.5)max=300; 7 g =
; Ty 13)mm 13 .(2,1), max 2 .(0.5) max = ; .( )max 3
19 4 22 29 '
B8 (— ) (5,5), ( 0 max=50; 9 (0, 15,5), max = 220; 10. (6,12), min=240;
57 .-~ -100 ;
11. (50,0), max = 200; IZ.(E.E)m=T,mm.value; 13. (0,2), min = 4, no max. value;

14. ( )mm 30, (0,5) max = 10

15. (1) sohmon = (16,4) max = 32000; (2) (210,60) max = 3750; (3) (2,4) max = 160; (4) (20,10)
15 33

max = 470; (5) (Ti I} ) max = 1632 ; (6) (4,1) max = 4800; (7) (4,8) min = 3640 ; (8) (2,4)

: 3.7
min=112; (9)(?.3.-5-)lmn=5270.

| Exercises 4 (a)

1. () 1x3 (i)2x1(ii)3x2 (iv)3x4; 2.()9 (i) 12 (iii) pg (iv) p*

L ay bl .
S a a ay by
3: i) (i) [ ] (i) fa3 by | (i) [abc]
o b b T2
4 %4
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[143]
259

| 361
4. (i) 3x5 (i) 3,2,6 (iil) 41|53

(126

2. -1 . oo i
6. (1) X= -1 2] (i) x=-9,y=4,z=1 (i) ,=5,x,=8,y=1,p,=3 (iv)[.! _5:|

e

-

8] : _[53 -3 -4 -5

(1) 18] (i1) not possible S ) 73 (iv) PRl
s 9 14 812 8 12 (48

- WAB=| 3 50| @BA= ;3 15| () |5 14| |6 14] O |1018
812 ~T12]  [12]  [31] '[10%4]  [oe] [ed

D110 1a] %D |34 @ [34] G |7 55| )| 13 15| |g o (D44

k dk b b Sy
Ci a a
(Vﬁ)[abJ(Vﬁj) [d c} (&) [ck dk} ) g g g

10. (i) false (i) false (iii) false (iv) true (v)true (vi) false (vii) false (viii) true

co

P9 i S L :
s 13——(1] 12.()x=1,y=4 (i) x=-2,y="5(iil) x=-2,y =7 (i) x=-1, y=-5

(Vx=1,y=3 -

[2345]

3456 _ =
. 4567 58 11 [234] Jo-1-21 23] |'3 3
B lserg| ¥ |71013] 15 @ 345 | @) o _ | @) [5,6] @) 21 2

6789

JEE IR

e osstystiny 32;18.x=l,y=1,z=—l; 19. 3x5; 20. A=[-121]

[41] [14 o 41 32
22.B= 140" 41 22.x=y=1; 23.())AB= 23 ,BA= 14

W 54 82 10 10
(ii)AB=[64]=BA; (ﬁi)AB=[5 _2},BA= [_5 _5} (iv)AB=[0 1] BA=[0 1]
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123 6.=2" =1
24. (i) [186] (ii) [2‘:,] 26. A= 30221 , D= ‘: ? (l) 27. [g 3]
3l.a+ by + ¢z +2 fyz + 2gzx + 2hxy
> 353 R
21 22 15] [-21 ~14 -3 I G R T T PR P SR
36,[7 1 23],[1 210 ﬁ.},] 37. (i) 4 (“){1 2 (iif) siag

1 fRkRA SR
39. x=y = - 41.A=[1 —l]’B= I apC=13 "y 42.0,1,2,3
I i 2
Cal Prot.
43. A= e -l 44.322.000, ¥28,000.
: B| 15,800 332
| EXERCISE- 4(b) l
1. (i) Symmetric, (ii) Not either, (iif) Symmetric, (iv) Skew symmetric, (v) Both, (vi) Not either,
(vil) Skew symmetric
2. (i) True, (i) True, (i) False, (iv) True, (v) False, (vi) True, (vii) False

3. (i) Skew Symmetric, 6. No |
SN T I 2 2:2:-19" =3 .1
9. @l3 @ 341 0 2 @l2 7 13 o -3
1 3 2[[-2 2 o0 2 1.6/ |-1:"3 0
x a b] [0 0 0]
0 0] [0 «x
(m)ay +0 0 O [}[ :|
b.c z| [0 0 0 ™o o] [-x o
16+’0-1 (4 -1] [0 -2 o 17 o o
Mie 3|71 o/™|-1 2]7|2 o “il} o]"o o
(1 0 0
1 0 |
=10 1 0
10.(1[ :](u)
"o 1 0 0 1
| 1l : i
~5 2 3 -5 10 5 3 -5 1 0
L @3 @ @3 2{@|_; , |2 L,
10 5 S
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12

10.

15.

2 4

3,

o o 1 44 et
: S 2 T
2 0 T A o [g3T
@ : B @ | s
@ L
ok 8 |
W W 1T R gt s
= Il - )
@) |17 17 T ) |73 3 3 w |0 1 -2
15 ey e 2 il | et i
17 17 17 3 3 3
[ _EXERCISE- 5) |
(i) 1, (i) =S, (i) 1, (iv) -2x, (v) -1, (vi) 14, (vii) cos 26, (viii) 0, (ix) 1, (x) 0

(xi) sin (x—y) (xii) 0, (xiii) 0, (xiv) 0 (xv) 0 (xvi) 666 (xvii)4 (xviii) 183

(i) True (i) False (iii) False (iv) False (v) False (vi) True (vii) True (viii) True.

(i) 200 (i) 0, (iii) O (iv)a (v) 4 (vi) 0, (vii)

Pl IR

222 3(viii)6

2 3

(1) 8,(1) x=a,b (iii) 2,7, -9 (iv) 0, (v)- (@a+b+c) or0(vi)0, -3
(vii)—1, 2 (viii) 0, (ix)— 1, 2 (x)2.3

()0 ’ (i) 4x + 2y -5z (m)xyz+x+3p-2z +5
(iv) abe + 2fgh — af* — bg* — ch* (v)— 148 '
(vi)0 (vii)—6 (viil)— 109
(X)-204 . (x)I
MN(x+ta+b+o)(P-a-bV-c+ab+ be + ca)
(i) (@+b+c)(b-c)(ab)(a-c) (i) (x +5) (x = 1) (x-3)

| a h g
bc+ca+ab+1=0 17. abikz b b

g f ¢

| Exercises 5 (b) |
(1) infinite (1)) no soltion (iii) no solution (iv) one (v) one
(vi)nosolution  (vii) one (viii) one _ (ix)infinite.

() a, (1) -12, (iii) a, (iv) ¢, (V) b, (vi) @

10 ]3 1 . 1 1.2 y 3. =8
(1) 01 (il)-f':_lz (li-i)ﬁ_34 (iv) d 2]
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i1=3.60 _ =} 0 caafenlc 3 1 X2 x
V)3l e | D=l Vi) ~71 - ¢ et} 4xt|-x x
SRR TR TR Rt R e e 2387 <3718
P23 3 -10-10 , AR 9: 189
7. (i) invertible (ii) not invertible (iii) invertible (iv) invertible
8. (1D2-1,1 (i) 2,7, 4 (iii) Infinite number of solutions
(iv) Incosistent (v)-1,3,2 V)65, Sn
wi) 12, -4, 3 (i) 1,2,3 (x)3,1,2

1

3 L 0x=[2

9. x+2p+3z=13x-2y+z=2,4x+2y+z=3; Solutionis '110 20° 20
3

1. () 125 ()6 (i)x=5,y=3 (iv) 0 (v)O (vi)O(vii)-2 (vii)[2,4]  (ix) O

12. ()0 Gi) 0 (i) 0 @)1 (v)0 (vi)-8

(vii) 20000 (viii) 0 (ix) @* + b° (x) 0 (x))0 (xii)0
13. x= 0 or y=0 14.-3 15.x=~a, -b, -c_16. x=0,x= %
17.x=0 orx=—(at+b+¢) 18. x=2,x=-3 19.0 20:0 .21.-3

200 _
2. |9 2 9 300 9%, <2 32.0 33.4

00 2

| EXERCISE- 6 (a) |

L 080 24208 B 0B 00 B BB ok b

6. 71 70 3 () 35 ) 35 8.0 7 6 3 @) 75.9.0 3 () 3 i) 5 )3
10.6) 3 (i) § (i) % (v) 5+ 12.0) 5 G) § Gi) 3 (%) 5 13.0) 3 Gi) % (i) 15 (V) 7§

V)14 8 1528 B, :

100 "7 10 £ ~ 5t

At i frd- 6 o 8
27 POWWW)= 15X 17% 16 ~ 24

16. (i)P(BBB);-i%x %x % 8Bl

—
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17

19.

hence P (BBB or WWW) = 25
(i) When each colour is represented we must have at least one white and one black.
Thus we have two cases :
Case 1 : 2 white, 1 black and three subcases, that is, WWB, WBW, BWW
Case 2 : 1 white, 2 black and three sub-cases, namely, BBW, BWB, WBB
Use the multiplication rule to find the probability of each of these six mutually exclusive cases. A
smarter way of looking at this problem : Let A be the event that each colour is represented; then A*
represents the event that all balls are ofthe same colour

AES

) 5 (i) 2= 18.

For (i) consider the five mutually exclusive cases :
SSSS, SSSF, SSFS, SFSS, FSSS

answer:p*+ 3 p (1-p) (i) 3 P (1-p)21.G) 7 () 2 22.) 3 ()
[ _EXERCISE- 6 (b) |

115 % 59

O 376 (11) 126

. 12 16 '
P(Awms)—333§,P(B 5)= %—%g,p(c“rms)=3%
1 s Y.
7 6. 42 : 7'1"(6)

Let A be the event that your alarm goes off and let B be the event that you make your 8 a.m. class.
Since S=A UAS,
B= (BnA)u(BnAY),
a union of two disjoint sets. Therefore
P(B)=P(AnB)+P(A‘~B)=P(A). P(B/A) + P(A). P (B/A")
=9x 8+ 1%x.5=77

6 °c,
26 10. T

| EXERCISE- 6 (c) |
773

8 5
Bp 2 A% A S (1) (u) (m)-—(W)

| EXERCISE- 7 (a)l

(1) discontinuous (ii) continuous (iii) — (v) continuous (vi) — (viii) discontinuous (ix) continuous (x)
discontinuous (xi) for x = 0, discontinuous, for x = 1, continuous (xii) continuous (xiii) —
(xiv) discontinuous.

.
3
[ _EXERCISE 7 ) |

(i) 3¢ (i) 2% * x/n2 (iii) 3/(3x+1) (iv) ~/n5/x (x) (v) cot x (vi) 2xa* + 2x*a* Ina

(1) fla) (i) 0 3.x]1 4.a -i',b=
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[ EXERCISE 7 (0) |

|

1. 16x (x2+5) 2. -2(x* + sin x)* (3x* + cos x) " 2(x+~/;) 4. 5cos 5x—7sin7x

(2ax+b) 3(x + 3)2 (x+3)(x-1)
' 8. sec(mne)tgn(tane)secze

¥ 7.
5. emeost 6 fatebxic (x+1)

3 l—xz)

TR 3 sec’ 3z T & ' ;

9. (1+x3)2 10. m ll_.3tanxsec-x 12. 4sin xcosx. 13. sin 2x cos 2X
145 cos 5x cos Tx — 7 sin 7x cos 5x 15. —tan x sec’ 16 cos Vx
P —7sin : sec’x : -

X COs /X S X CcOos XX : X m
1
17.  +Jsec (2x+1)tan(2x+1) 18. _2a(ax + b) cosec (ax + b) cot (ax + by 19. -;a"“‘,fna

20. xa®b* (2nat3xinb)  21. cotx+tanx 2. 2x cos X35 In5 23. secx

1 _
Inaf avx |? n-(e™ ca i Aae™ :
24, T[—;—-] 25 (enx +e—m=) 26. 2Jx 27. 2x:;log X

: i (6x/nsinx—cotx)
28 escos X + @ sinx /ma . 29. RS
. (Insinx)
I EXERCISE - 7 !dzl

1 o 5

' i | .
2 I%,?' & |2J;(I+X)I & [125‘+‘1J(X3+“)] T 6. ¢ +))

22 o 1
S Gl 2 xcosec (E)H

. B
A = R S o R

' |
10, 150k sim! x)* [sin'x + ¥/ 1 ] I Jax(1-x) (1+x)
lEXERCISE =7 SE!I

2 2‘ 3 2(1+t°) l
S R T G
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l |

2 a | 2 _ 2 =2
6. (sz) s (az-t-x:) 8. m 9. (l+t:) 10. (l~t’)

[ EXERCISE -7 (D]

i 1 | s
.- xnex2. (“‘;] [b{l“';]‘m] 3. x™* [cos x In x + sin x/x]
4. (logx)™*[sec’x Inlnx + tan x/x In x]; 5.2%" 2*(In2); 6. (1+Vx)* [2x In(1+Vx) + xVx/2(1+Vx)]

ol ¢ (sin"x) e l[\ﬁ-—x_z—xsin"xlnsin"‘x]/J(]_T‘)

8. 3 (tanx)°s [In tan x + (tan x + cotx) x In x}/x
l -5
9. x* In(e/x)+(sinx)*(x cotx + Insinx) : %

10.  (cosx)* (in cosx — x tan x) + x***! (cos x — x sin x In x)

4

Co4x L 3 +_L
3(x2+l) 4(3x+1) 2x

S (x2+l)§(3x+l)£\/;{

% _{x‘z R oAl V(x+1)(x+2)'(x+3)°

o1 X -4 x*-9)(x-1)x-2(x-3)’

3. +x:)sinx}“% In(l+x> Hlmimé;—i";—{x%)com

r l
conx pAG B B n2
14.  (sec x + tan x) “* cosec x [l—cosecx. In (sec x + tan x)] it ( TE x]'
[ EXERCISE - 7 ()]

1. —(y42xy)(x* +2xy); 2.%; 3.-x/3y: 4. (2xcot y+ y* cosec’x) / (2y cot x +x* cosec’ y )
5. ysec’xy/(1-x sec’xy) 6. (x-y) /x In(exy) 7. -y (cos x + &%) /(sinx + x e¥)
8.  (x+y)/(x-y) 9.y (siny—xiny )/ x(x-y cos y /n x)

[ EXERCISE - 7 ()|

1 —cot® 2.2 3.-1 4.1 S.cott
| EXERCISE - 7 {i)l

Jo iy
% 'Zx 72 2 —sixcosx 3.-tan x (1+sinx)? / (1+cos x)*. 4. (2+x%) /x (1+x?) 5.1

| EXERCISE -7 ) |

Not differentiable, continuous ; 2. Differentiable, continuous : 3. Not differentiable, not continuous
Differentiable, continuous ; 5. Not differentiable, continuous ; 6. Differentiable, continuous
Not differentiable, continuous ; 8. Differentiable, continuous

[EXERCISE - 7 (] *
I () F (ii) F (i) F (iv) T (v) F (vi) T (vii) T (viii) F

gt
df dx

ol

2. (1) u"Inu (i) t x*' (iii) cos € (iv) — 8 (v) (vi) O (vii) does not exist (viii) 0
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&

(i) 2 e (ii) sin 2x (iii) —2x sin x* (iv) 2x & (v) sec? x/ 2 Jtanx (Vi) x? cos x +.2 X sin x

(vii) cot x (viii) cos 4/x / 24/x (ix)—sinInx/x
(i) Differentiable (ii) Not differentiable (iii) Not differentiable

(i) - (3x+2)/ 2x (x+1) [In(xe +1 )]2 (i) [sin x - I x (sinx + cosx)] / e'sin’

tan
(iii) e* [sec’x + cosec’x + tan x — cotx] (iv) F: (3x+1) + J;(x+l) sec’ x

(v) sec 2x tan 2x (vi) x €* cosec x (2 + x — x cot x)

(vii) [(x+3)lnx+2(x +§+ 3)]f (x+2)"

X X

by 1 10
(viil) (x*— 1)® sec? x [27 x* + 2 (x* - 1) tan x] (ix) —2x (x) (’”‘;‘] a [(x+—}‘na—-?+10:|

2 6
(xi) 2/x JJx +4 (xi) =Fo——= 3 7, 5 (xiil) 5 ®**cot x In 5 (xiv) cos J_;4J;,fs

(xv}x‘“'"[cosxlnx+smxfx]+(tanx)"[lntanx+x(tanx+coix)] (xvi) & &

(vii) x™ In{evx) /4% (evii) (V) y(e* +x)" =1 (xix) e tan &

|
(xx) asin”' x*2x/na /V1-x* (xxl) —4x / (14+xY) (xxii) (x*)e* e**! (lnx+ }+(e+l) x® (&)

(x+l]‘ﬁ[ 2 + : : —lnS]

(xxiii) x(*‘}[x" InexInx + x“‘] (xxiv) (x’ +3)-‘3s [x+1 2(x-1) T x+3

2 L x*(15-4x-4x*) : 10&101
(xxv) 3{5 In(::3 4 l) <! x‘} 3 TR (xxvi) cot x log, e — s{ogx)
(i) =2/(x* + 1) (i) 2xe™ % / (1 +x*) A
(iii) (sin'x + x 1452 )/ (14x2)" (iv) 262X / (1+e¥%)

=1 4a z 3a / o 1
(v) (v:) i(vu) e 160 e (vii)) =x / f]—x* (ix) 7x (x) ) f=']_xz
. s
(xi) sin a/(1-2x cos o + x2) (€ e 5 (1) = (ay / bx) v (iii) =y / x Inx

(iv) — y/ny / x (v) (y cosec x cotx — cot y) / (cosec X — x cosec’y) (vi) y (1-2x%) / x (2y* 1) (vil) y
tan x/ (In cosx — coty) (viii) ovx Ina /4y Jx (ix) n x™'/(m+2n)y™2!

(x+y)sinxIn(x +y) &y
COSX —X—Y

(x) f (xi) 2y cos 2x In sin y/ (1-y-cot y sin 2x) (xii) x>/(2 — y Inx) (xii)

(x1v)—(ysec1x+mny)!(x sec’y + tanx) (xv) (ky+xdx ¥ )f(kx-—y x'z_‘_yz)




Answers 433
L |

8 (1) 1Q1)2/x (i)~ %sinx 9. (1) tan t (ii) 1. (iii) 2 (iv) — (tan 2u)** (v)—tan 3 t.

10. (i) cos x / (2y-1) (i) — y/ (x+2y) (iii) 1 / (x+y-1) 12. No. The function is undefined for x € R
18. (Mx=0 ()x=+2 (m)x=1,x=2 (iv)x=0

| EXERCISE- 8(a) |

1 |
; : . i " . = : :
1. (i) 1lunits /sec, 4 units / sec (ii) _—2\5 units /sec —_8\/5 unit /sec
e S S R (iv) 3 units / sec, 0
(ii1) 75 units / sec, 125 units /sec iv) 3 units / sec,

1
2.  6sq.cm/sec 3.15.08 cu m./min. 4. — cm /sec

4
[ EXERCISE- 8(b) |

Tangent Normal
I (1) 4x +y-1=0; x—4y+21 =

(i) 1lIx -y =16 =0; x+1ly-68 =0

(i) 9x 44y +28 = 0; 4x +9y-160=0

(ivy=2; X=mn/3

g 1
(V)2ex+y=3; x—2¢y+2e—;=0
: : |

(vi) x+2 (log 2)%y - 2(log 2+1) =0 2(log 2)* x-y = 4(0g 2)*~ o5

(vily=x; xty=0

(vui)x—y- -'-"-2«'ix-i~y-E

: e S S | =a2cos"9—hzsin49

(ix) acos® bsinB bsin® acosB ab sin O

9a 3aJ 9a 27a \/' J'
2. ALO) 3. |70°10) ™| 70" 10
10. y-(2£43)=2V3(x-2) 13.2x4y-x =0 15.y=x
| [EXERCISE - 8 (9) ]
311: g

L. ®H@I[0o, —] 27| (b) (i) (a) (0, o) (b) nowhere

1 n n_Tm
(i) (@) (-0, 00) if 2> 1 (B) (o0, o) ifa <l (i¥) (@) [0,) AS7-2] (b) [;‘5;)
.(v) (a) (—o0,-3)u(2,) (b)(-3,2) ' (vi) (a). nowhere (b) R - {1}

8 g 8 [8 1 I
(vil) (a) (-l-\EJU[ §,°°J <b)("°°»"3)U[-J;J;} (viii) () [5@] (b)[-w-g}
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(ix) @ (=o-l)u(® OGbX-L) x)@)(©0,¢) b, o)

_ . P T T T T
w oFFME) eled)

oo [0 (2] 3 e[ 12)
(Xl])(a) ’8 8'8 8 (b) 8) 8 8; 3

l EXERCISE- 8 !d!l

" (i)  Minimumat x =1 , minimum value =2
(i) min. atx =0, min value=0

max. at x = 1, max value =3

(i) min. at x=-1, min . value = -3/2
max. at x= |1, max value = 3/2

(iv) min at x=0, min value =0

2 23
max .atx==* E,rmxvalue= -9—

(v) min. at x = 6, min. value =-306
max. at x = —1, max, value= 37
(vi) min. atx =0, min value=12/5
max. atx==2, max, value = 20/3
(vii) No extreme point, x = 1 is a point of inflexion

1
(viil) - minat x = =3 min value = - 655.703 .

max. at x =-3, max value=0
(ix) min. atx =1, min value =2
max . at x =-1, max value =-2

|
X e 1] — : o
(x) mnatx ik tan [4Jmm.valuc 5

1 3
= e ~1 o =
max. at X > tan [4] max . value= 5

(xi) max.atx= % max. value=5

No min. value in the domain.

Sn 3\5

(xii) min. atx= -? min. value = ——4—

33

: n 3n 2
max. at X = -, max. value = T y(—z—) is a point of inflexion

»

1 SN
2 i 7’1 J3
(xiii) max. for tan x = [B] max value = (_p__] [-L]
=5 q p+q P+q/ .

A
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I |

: 1
(xiv) max. at x =1, max, value= —

o

5 =2,b= '!'
. a=3b=-5
7.  Absolute min. at x = +1 f(1)=f(-1)=0

Absolute max. at x = 0, f(0) = 1 although f is not differentiable at x =0

S 17303 23
8.  Nomax. point. Min. atx = :E’ _\E = e
9. Sand 10 '
1. Asquare of side 5 units. _ 12. 2”@

10
15. Radius of base = Height of the tank = J; units

16. Radius = Height = 592)5 17. (0,0 18 [+ : 3]
: us = Height = 5 . (0,0) s —7?,2
[ EXERCISE- 8(e) |

£ 57
1. (i) 3x? dx (ii) 2 sin x cos x dx (iii) x x ? (I-x"?)? dx
(iv) =2 (sin 2 t — cosesc® t)dt (v) —4cos 6 d 8/(1+sin 6)*

y +2xy

x> + 2xy

2. (i) §/=.0808 df=.08 (i) §/=.0373 df = .0375
(i) §/=9.7632 df=9.72 (iv) §f=.0198 df=.02

(i) 3.0370, (i) 1.9947 (iii) 6. 9971 (iv) 123.52 (v) 8.1109 (v1) 85?29
4, 2/7 5 1.08 cu.cm. 6. 0.049

| EXERCISE- 8(f) I

I 1 I I 1 :

3.2 4.0 5. 6. 5 72 8.0 9'1—2 10. 3 11. 16(/n 2y 12.1.13.0 14.0

1500 161-17.2.18.0 ]9. 1:220; 71 2l.¢! 122, 1 23.-1/2 24.0 25.-126.1/3 27. > 28. \J(h‘la—
Inb)

29 ¢ 30.e31.132.132.133.0 34 e’: 35.¢2 36.-e/2 37.e. 38.0 39.21In2 40.2/n 41.-1/3

420

(vi) —4x3 dx (vii) - dx

=

a2

o |a

[ EXERCISE- 9(a) |

1 1
L@ x+el¥+elipxi+e (v gx+e (v)§x3’+c(w)—xa/;+6&+c (W)T*c
7 11 3 \ 3_ . ‘xs % xz
(viii) ﬁx +Ex +¢ (ix)4lnx +¢ (x) = llx“ € (x1) ?4-?!( +—2—+C

4

2 3 —‘

i X X
(xil) ©6x- > 3+c (xm)—zx 3

4
_Ex +c (xw)2x+ln|x|+4\f- ﬁ +C
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2 (1) sin x + ¢ (ii) tan x + ¢ (iii) — cot x + ¢ (iv) sec x + ¢ (v) —2 cosec x + ¢
(vi) —cotx+cosx +c(vil) X —sinx +c (viil) sin x + cos X + ¢ (ix) sinx —cos x + ¢

G |
(x) -—cotx-—tanx +c(xi) I(a’tanx—b’cotx)+c(xii)tanx—cob:+c(xiii)tanx—x+c

(xiv) tan x —cot X + ¢ (xv) a sec x —b cosec x+¢c (xvi) sin X — cos X + ¢ (xvii) - /2 cosx +¢

(xviii) /2 sin x + ¢ (xix) — cosec x + ¢ (xx) b’ tan x —a* cot x + ¢

X42 3x
e ) a
. A FERRe + o
3. (i) e+ 2x + ¢ (i1) _ln3+c (1) s € (iv) ) C(v)ec—e*+c
5 3 3 2
4. (i) 5sin x+7 tan" x +c (ii) 3 (x—tan~'x) + ¢ (i) 1‘5—-"? + x~tan! x+c (iv) 13—+"? +2 tan! x+c
| 2
(v) sin! x + ¢ (vi) sec—‘x-zx—:"'c 5. §X3+X—2

| EXERCISE - 9 (b)

I 1 I !
L@ -jcos3x+c(i) = sinax+ e i)~ sin(2-7x) +c (iv) -2 cos %+ ¢ (v) Flandx+e

(vi) —3cot €-+c (vii) sec (x+2) + ¢ (viii) — cosec (’”%] (ix) -;—sinx" +¢C (x)seces+¢
(xi) 2tan Jx 4+¢

1 1 1 |
2. (1) 3 sin? x + ¢ (ii) -Ztan‘ X+¢ (iii) — In |1 + cot x| + ¢ (iv) 3 sec® x+c (v) ~% cosec? x+c
i

(vi) —cot (Inx)+ c (vii) - -i—(l.—- sinx)E +c

1 7 1
3 (1) 3 (x2+ 3)? +c (i) - 3 In [2-3x| + ¢ (iii) ,}xz —a? ¢ (V)= ” xX*+3x+T7)24c
v) %(x* -3 + l)5 +c

2x x?

la
2Ina 600 Ina s

2x+7

- l ix . 1 2 1 %!
4 e de G se T he ) 3¢ +c(iv) 7€ +¢ (V)

3

1 )
(vii) %ezm +¢ (vii) g +€ (ix)-e>x+c

S (1) -%(sin" x)2 +¢ (ii) sin”' (;—l) + ¢ (1i) % (sec'x)* + c (iv) tan”! (In x) + ¢ (v) tan”' (x+1) + ¢

l |
& 2D -5 In |sec3x| + ¢ (ii) 3 /n [sin x/3| + ¢ (iii) E Inlsec(2x + 1) + tan 2x+1) [+ ¢

1
(iv) 3 In |cosec 7x —cot 7x | + ¢ (v) In [sin (x* + 3) |+ ¢ (vi) In |sec e* | + ¢
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v ol
(vii) 5tan2x-3!n}sec2x+tan2xi+9x+c
7. () Inlet—e+c (i) 2 +¢ (iil) l[’"("2 +2"+2)]: e
2+1In3 4
8. (i) X cos o — sin a /n sin (x+at) | + ¢ (ii) cos @ /n | sec (x—a) [ —xsina + ¢
(i) x cos 2o + sin 2a /n | sin (x—a) |+ ¢
| EXERCISE - 9 (c)
1 i ; -l—cos7x-lcosx+c i) —l-sin7x+lsin3x+c -l—c053x~—l—cosSx+c
O = 2 @) 14 6 ) 10
iv) lsin31n(—-l—-siu9x-i-c ( -l-—cos7x-—~Lcosl lx—Lcosiix—l +
L 18 v) 28 44 12 Bty
i Ecossx—l!cc.‘s--x-ﬂz ii -]—siné’i+lsin3—x+ ¢
S B RS 3
= 3.5 3.8 e %
(vi)) - =Sil—X——sin—X + 38In~—~—sin—+¢C
RS & UM i IS ) 1257 82
2 - X s + ¢ (i = 3 2 +c¢ (iii g-x +lsin2x+Lsin4x+c
(1) > (x+ sin x cos x) + ¢ (ii) 2 cos 3x — 2 cosx+c (ii1) 3 2 2
. 2 3 I 5 i - 3 5 T ;)
(iv) —cosx+ ;cos x—-gcos X+¢ (v)sin x — sin’ x+ ;sm x—?sm X+c
: 1 . . . e | 8 1 6
(vi) w—2(60x-—455m2x+9sm4x—sm6x)+ ¢ (vii) Zcos X008 XtC
|
(viii) LIPS TR B S (ix) dsec?s dods?x vic (x) L cosec’x ——cosec™x +¢
21 23 5 3 16 18
(xi) L (xii) et —gecttrac
30 13 11
3.4 L[3x—sin4x+lsir;8xJ+c (ii) - lCOS3K—LCOSSK—lCOSX+C
128 8 Bt <
= 1 S . : :
(i) -4—0- (cosSx + 20 cos x—5 cos 3x) + ¢ (1v) 'IE (12x — 3 sin 2x — 3 sin 4x + sin 6x) + ¢
4. 6 > tan®0 +-1—tan38+c{ii) BT IR P (iii) el Bie (iv) e ke k2
j 6 8 5 7 11 7
 Eaci 3y
(v) Etau*e+lnic068|+c(w)—§ co! O +cotB+0+c¢
i 1 : SC QUL S R, ST
(vii) 2 tan* 6 — 3 tan? 6 + In |sec 8] + ¢ (viii) — gcot 9+§cot 6—cot6-0+c¢
: 2. i 222 iy ——Ioksin 225l ¢ i ;
5. (i) =Tk > +c (i) e > (i11) 4 cos x — 3 cos3x +c¢
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1
(iv) EM|am3x+bsin3x+c|+k

| EXERCISE - 9 (d)l

3x " 3
L8 ~sin 1'2Jl'—f+°(")351“ (ez ]*C(iii)sm-l[h‘?x)+c(iv)sin"[%)+c(v)§sin"[%}+c
(vi) . 35in"(xz’3)—\/9—x’+c(vii)sin"'x3£+c(viii)sin“%-—2--\/5—xz—4x +e

. 1 il AP T 1 [mx] 1 _,(secﬂ]
5 (i) J— J—+c(l) tan~ [2 ]+c(m)5tan 3 +c(1) 3 +c

P X " 4 X+3
v) 2—0tan ‘[ > ]+c(v1) In(x +4)+2tan ‘[2]+c(vu)—-tan 'T+c

(vii) -;-ln(xz +6x + 13)+ tan"xT”+c

1' 2x

3. '5960_12—;+C(ii)al§=sec_'[%;]+c(iii)%;ec {l'; ]+c iv)sec™(v3 tan8) + ¢
v) sec [ }“c (W)m+—m ( ]+c(vu)-—sec Sl

'?b 2

(viii) m+%sec"";'+c
. | 2. A X 2x
4 () 7;]11(\@”\/3:( +4 |+c()1)7;-ln(ﬁe +3e +4)+c
“ (i) 1n[lnx+1’(lnx)2+8]+c(iv)_m (cot9+Jcot29+2J+ c(v)-;-ln(x3 +Jx‘+a‘)+c
(ﬁ)%Jsz +8 +74;lﬁ(\/§x +95x% + 8)+ c(vii)ln(sine‘ +ysin e* +9)+ c(viii)2yx* +10x +29
+In (x+5+\!x3+10x+29)+c
¥ ..].. e == l Sx 10x-4 0
. i 2]n|2x+\/4x 6|+c(u)5]n(c +Ve )+c(m)1n!nx+\}(lnx] 4l+c
(iv) -In |cosec9+\}cosec29—4|+c(v) 2]11[J§+dx—a’]+c
vi) EWene -8—-2—1n|J§x+J3x2 -8|+c (vil)—=1n IJEx'+J2x2 -5|+ I
? v 2l % dugli ¥
(vii) x4 +2In|x + Vx* - 4}+sec (x/2) + ¢
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(ix)

e

In ‘x+4+\/x2 +8x|+ ¢(xVx® + 8x + 3ln|x + 4 +Vx* +8xl+c

| EXERCISE - 9 (e)]

2x

xe* + ¢ (ii) e* (x* — 3x% + 6x — 6) + ¢ (iii) ;—3(:&:2 ~2ax+2)+c (iv)sz-(l 8x* +6x+5)+¢

|
2. . (i) sin x — x cos x+c (i) x? sin x + 2x cos x — 2 sin x+c¢ (iii) 'a—; [(2-a*x?) cos ax + 2ax sin ax] + ¢

(i)
(vi)
(vii)

(viii)

(ix)
3G

- (iii)

V)

(vi)

(vii)

(i)

)

(vii)

(iii)

(v)

A ] k-
-?;—(Zx' +2xsin2x+cos2x)+ c (v) I[Bsmx* 3xcosx+%c053x —651n3x]+c

1 1
sinx + 5 sin3x~x(cosx+§ cos 3x) + ¢

s l cosSx+{sinx+lsin5x]+c
OOp X398 By

x? sin x* + cosx® + ¢
In | sin x| — x cot x+¢ (x) x tan x+In |cos x| - x* /2 + ¢

x?-1

; 3
Injl + xl—%(x2 —2x)+¢ (i) -:—4-(8111)& ~1)+c¢
X[(hIX)s—3(lnx)2+6lnx_6]+c (iV)Xln(x3+ l)—2x+2tan-* +x+c

(1+4Inx)+c

16x*

= 2x+1

1
X+—|In{x+x+2 *2x+ﬁtan +¢
( 2] ( ) 37

xIn (x+\,x3+a: )-—Jx:-i-a: +¢  (viii) xIn lx-t-\/x: —a2|—\/x2 st 3¢

Y : x2 ] l -
xsin!x + ,[l',,xz e : (1) [?‘Z sin! x + IK\H—X‘ +c

2
5 DTG, 00 L e l
X COS'X~ /] — x> + ¢ (iv) 5 tan K=3 K0

%[Zx"tan"’x—xz}ln(x‘+l)]+c (vi)x sec’ x—In fx + x> —1|+¢ '

xcosec 'x+In|x+ 1/,[2_1;4,(;

- 2x x
S Goos2x+2sin20 e (i) T (@sinx-cosx)+e
e* e* 5 :
15 +cos 2x +2sin2x)+c  (iv) —4—(sin x’ —cosx’)+¢

ax

a;:—lf[asin(bx+c)-bcos(bx+c)]+1< (vi) xe* +¢
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8.

9.

L.

(i)

(v)

(@)

(i)

(iv)

(v)

i) %Jx3—8-4ln|x+\fx2-—8|+c

(i) ~

% 9—x* +%sin"%-|rc 220N :i—[zxm +Ssin"%]+c
%iJl——ﬁTH+sin"%+c (iv) %e'ﬁ+2sm"%+c
%smem+%sm"(%“;9)+

% x’+4+21n(x+ﬁ)+c (i) %m+7l?-ln(ﬁX+M)+c
2":3 4x2+12x+l3+ln(2x+3+m)+c

Yl som(e +e76) ]
—m9m+2ln(tan9+\{_)+3
(n)—-\/h——-TlnlJ§+J§—_2_l+c
[a JF_ 4In|a” +J__|+c

Jx —4x+2~In|x~- 2+4Vx* —4x+2|+¢ (1v)

(v) —secB\J 3-2In|secO+Vtan’0-3 + ¢

(i) e In(sec x)+c (ii) e In (sinx) + ¢ (i) & In (x) + ¢ (iv) ; 4

: e o
ke : (u);[sm(lnx)-cos(lnx)]+c
(i) /n|sin x| —cos x /n |cosec X —cot X |+ ¢
[EXERCISE -9 0]
() m|(x-2)(x-3)"|+c (i) |(x+2) (x=4)|+c
-
(iii) /n (x - 6} J2x -3 (iv)!n|2x+l|+-3-fn|3x—2|+c
22,1 1
V)Injx—1-8Mn|x-2/+9n|x-3|+c (vi) > +5'ln|2x+ll-—§!n|3x—2|+c
T e e i) 2loix—2|+ 3 jx + 2+ —— +
(i) bt =222 ke (i) 2/njx—-2|+3Mnx+2[+ == +c
1 x* d x-1 |
. e o === - ___+2x ln LAl
(@) 3ln|x-1/-2n|x+1f x+l+c (iv) 5 + e x+1+c
1
(1) Eln(x’+l)+3fn|x—l[+c
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N 1
(1) 3tan-l(X—l)+5 In(x*-2x+2)-Mhx+1|+c
- ! ) lli E BT ; 2x -1 %
-1l-= + A X
@) - o px=dl= 2 o x ) ! 7 +e
3 2 :
(IV) x?+%+x+-;—fn(x2—x+l)_[nlx+ll_‘_ﬁm-l[2X;l]+c
l = - —
4. () — J§+C (i].)L‘,n 2x +242 I
- 25 x+45 22 [V2x + 242 +1
: ] A A2 = 1,
—!n 2x° +8x+7
= | I_T x+2J_+1
M 4 J—2;+2J_-l
@ 2x+!n12x-+8x+7|+2ﬁ Jﬂ+2\5+l
]‘ & i) 7/ +c
& T 2¢* +3+ V) 5 ne+1

; J_+ +c + l;’1:1 Eh +¢
R J_ Ji—x (ii) 8 |7-x _

J_-I-sme

(iv) ZJ_ Jg sin O

(vii) _% In(1+cosx) +11—01n (1-cosx)+ %ln(3+ 2cos x)

I EXERCISE - 9 (2]

V2x+3 - o G {——-x = J_l:an ,/

L @2/2x+3+43 /0 2x+3+ 3 T—
Gi) 2Vx -2 tan” J% #0 () 75 Ox+ D" @x-D+e
(v) -—-3—{4x+23)(2x— ) e (vi) i(5x+ 14)(x + )™ +
40 15

(vii) %(x -13)(x + 24 +¢

1 1 1 1

- N 2 3/
2 (i) (x+7),f2x_3 +c (ii) —1—3—5(63x+§2)(3x+2)‘ 24c

11 5

(ii1) %(33x+25)(x—2)? +c (iv) —%(10x+23)(x+2) 24¢

+C (v)ﬁm_l%—ﬁmil% (vi) In(x* + 2) - %ln(x3+ 1)

(Vi) 2¢2 4 3x3 +6x6 +6In| X° —1| +¢

(i) “% In|(7-x)(x+1)|+c
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I
(v) %(xz -2x+21)(x +4)? +¢ (vi) %;{x1 +2x+15)x+ D) +¢

3D %In(?.x ~1+ Jax?—4x+5)+¢ (ii) %(Zx—I)'J4x1>—4x+5+In(2x—l+\/4x1 —4x+5)+c
(iii)ln‘v‘;3+‘d"z”6x+5l+‘?i (iv) l(X—?»h‘x:—t’m+5-—2h:| _x—3+\Jx2—6x+5l+c
. -1 Xx~1 ' J—__
sin +c ——(x DV1+2x—x" +sin” —--+c
(v) I () 3 ) + 03
1-x l+\JS—4x+le

LR B e (ii) /n Fox e
xz—l+1h("+ll
5. () 2uan'V2x+4+c (ii) = +C.

(i) 575 (VD@D -31n (V2% 2+J2x+1)]+c s

[EXERCISE - 9 (]

1 ltani : lstanin
i (ii) —=tan~' —=2+¢ (i) —tan ' ——&=—+c
2 2 V2 22
‘J_ 3m;+2|
x| .
: 1+tan—+c¢
O TR et OO [
3
2. ()3x+2n I5sinx+6cosx|+c (ii) 5x—7!n|sinx+cosx|+ﬁ
X
. |3tan—-c¢ Atan>~1
= X L 14 ;
(i) 3J§tanl -+- ——tC (iv) _tan“_l_uzfn(4-smx)+c
5 2 J15 J15

tanx |~J 4+tan2|
3 (n)~fn|secx+wnx| —f e o7 ]J_5+4-mni|
2

-In|cosecx—cot>4+c

_ysinx -1 1+sinx

(m) In( sin’x — 2 sinx +3) + T“’n —T (iv) —-[!n

—2cosecx J+¢
—sinx



| Answers 443]
J-tanﬁ i IJ_tanB—ll
4. (I)T o 2,/_ IJ_tan9+I[
l_m_,[smne]ﬂ | |J§+J_tan9|
() g 2 () 2J_ ']f v2 tanel
5. () —_l}-ln|sec?x|—i-ln|sec axl+c (ii) %!n|sin 7x]+%ln|sec 5x|+¢
6. (1) -—lntan(% ;—]—%wn"l(%taq%) (ij)-i—ln(l+2sin)—-%-ln(l+Isinx)—-;—ln(l-—s'mx)
| EXERCISE - 9 ()|
130 1 160
l.T 2. 9—; 3. 18 4.—5—
|EXERCISE -90)]
15 2 SS(ii)%(iii)z(iv?%(v) '3+34‘/_+ 223 Wi )-2 i
. e | ) 8.4 87>
(i) 242 (i) 3= ()3 ;) (084 (x) 872
5 e 1[2_1).2_,”6 e PR |
) (1) > (iii) 1-n/4 (iv) 3 ;3 (vi) B (vii) =2 (viil) —
: l/ o 1 : 431 1/ g
> (1) Z(e =g ) (u) e— (m) 4{ c;] (iv) lnezz v) E(e —1)
SRORSE IR .
4, (1) 2 (i1) P (ii1) /3 (iv) /3
< N3 T 9
5. () —ln(SfZ) (i3 (Gi)in | 3777 ] (%) 10+ In3
6. () 1 ()9 @i)32 (v)5-3-42
1
7. () 2¢-ef(i) 3(14;4) (iji)2ln2-+% (iv)-:——fﬂ
1 L
) I (2fJ§) (vi) In (4/3) (vii) '2'[62 -1}
| EXERCISE - 9 (k)l
L) %(ii) /4 (iii) %ln?. W 2.0 %a“ (ii) f;-a“ (i) %(rwz) (iv) 0
3. () 0Gi)w2 (i) 0 (iv) 2/3
4 1
5. 6 an2 @ 22 i 1 () Z ©) 15055 O 25 (i) S0(e-
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ADDITIONAL EXERCISE

l. sinx+cosx+¢ 2. tanx-secx+tc 3.x-tanx+secx+c

4. tanx-secx+c 5. 2tanx-x+2secx+c 6. %+:l4-x2+c
- ' x 2 3 g m

7. 2sinx+2xcosa +¢ 8. T+c 9. §(x+2) _E(IH) +c
13 1 1 -

10. -—-log|3- 2x|+ (G-2xre 11, 2log|1++/x|+c 12. 5+ log| cosx +sinx| +c

13. (x+ D+2Vx+] —2log | x+2|2tan' x+1+c 14 xtan' %—Jf?_x+afﬂﬂ_11#%+f

X —x+1 A
gx’+x+l

x—1 1
15. ¢ tanx +¢ TR e g 17. 3%

-l-Io |Jc3—.7r+l|+ 1 X +1
18.3 glxz-f-x+l| ZJ— \/—x

1 [ cotx—1 lco!x-dxcotx+ | 4| tanx -1
-t - 21
19. ﬁtm [JZcorx} 2J_ Icott+J2cost+l| < 20. J-an NJ2tanx Gy
: 1 e’
21.  log|x|-7logl' +D+c 22 log ¢
|
23.  x+3log|x—4|-24log|x—5|+30log|x—6|+c 24. x—lagle"—ll-e_r‘lw
sec x ——lo, it +c 57
25; 3 gcosx—l ; 26. = 5 27. an
28 20 % _Liogo RPN e
- 2n . e “(n+1)n+2)
31. 0 30, —=log(2+1) 33, —=
4. — fogl — A6 X gy ey 40. -min2
W 1 I - 20 ; -3 ; . =T
| EXERCISE - 10 |
: o Dyl o 27
1. (i) e* — e (i1) 3 (iii) @* InP/a (iv) 1 2.()In (u) — (iii) a* InP/a (iv) 3/5

1632
5

[EXERCISE — 11 (a)]

3. (i) mab (i) nat i) 8 3 Gv) 4. (i) %rc —ﬁ;gnﬁrﬁ (ii) 2 —1 (i) '—:f—a2 (iv) 4/3 + g

@ L1 @31 @G22 (L1 W21 (vi)l,2 (vi)2,3 (vii)l, 1



Answers

445 |

2.

12,

A(iv)

() y,=ytanx (i) (I+x) tan”! xy, =y (iii) y, - 3y, + 2y =0

(iv)

x*y, - 2xy, +2y=0(v) y, + y=0 (vi) ¥, (1-x%) =xy,

(vii) y, (1-t) + ty, — y = 0 (viii) y, (cot t — 1) + 2y, — y (cot t + 1) = 0 (ix) XY, =¥,

6

() y=e—e*+c(i)y=xsinx +cosx+c (i) y = -;E(6lnt—l)+c

: x—4 , :
(1v)y=t_’+2t1+tant+0(v)y=lnH"'c V) 3y = \3u2 4+ 6u+5+c

¥ x+1 o ol
(vii) y =In [ +C (viii) y=e™ ' (sin”! t—1) +¢

() y+2=ce(i)sin'y=t+c(iil)siny=z+c¢

(iv)
(vii)
3

e¥=c-x (V) y = c(y+2) e* (vi) y = tan (c—x)
x = (y+1) ¥ + ¢ (viii) cos x = c¢!

(1) tan'y= 3 +X+c¢ (i) 2¢™ + 3e* =c (iii) sin' y = sin ! z+¢

(iv)

x'.’
Yy +2y2 = T(2lnx—l)+c (v)2 Jx’+l+3Jy3+3=c (vi) siny = ¢ cos x

(vi1) (y=5) (x+3)' = ¢ (y-1) (x+4)* (viii) e" (y-1) = x cosx +sinx=c

B

2t

i y=x'+ %+Ax+B (i)y= i}-+c‘l +At+B

() y=sinv—cosv+ In|secv |+ Av+ B (iv) y = — x sin x-2 cos x +Ax + B

(v) y=2Injx|+Ax+B(vi)y=Ax+B- %(sin4x+4sin2x)

(vii)

(1) y=sinx+2 (i)tany=t+l, (ii))tan”’ y=tan" x+n/12

y=x3+2_x+ 1
(1) y—tan-—lz-[x+ y)=c

x+y

(1if) tan =x+c

y =(x+c) e*
y log x = ¢ + (log x)*

X 1fc:.:oty =Cc+ Jlany

(l+ )tan’-i—c-t-Ztani—x
N 2k 2

v
Xy los;‘—'I

(ii) ln[l - lan(x—;‘z-):l =x+c

(iv) (x+c)e™ +1=0
|[EXERCISE - 11 (by

2. y(I=x)=-x+c.
5. y(I+x*)=sinx +c¢

8. x=y(cHy)

10. x=ce*—y-2

13, y (1 +cx + logx) = 1

A
y=Insecx |+ E(Zx‘ —cos2x)+Ax +B (viii) y = ¢ (x-2) + Ax + B

y=c(lx)+ J1-x2

6.(y-1)(secx+tanx)+x=¢

11. xe tan"'y= ¢ + tan'y

14. V1+x? =y(c+sinh"x).
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o =211 | 1
15. Y"‘=°("‘l)“+'z("‘l) —(x-l) 16. 4xy =x*+3 ; l?.y=cosx—2cos’x+§
| EXERCISE-11(c) |

1. —Iog(x +y)+tzu'l'y 0;2.y=x+c,/§;3.x3+y’=cx; '4.c—y=1f;|;3+y2 .

4

y
5. (y)= cxe”x 6. 1-——c+logy 1. logx—cos[ )-l-c 8. y+ ’x2+y2 e

. y_+3 2 3 Ayl /= l
9. tan’ x+2+logc\[(x+2) +(y+3) =0 10. tan! S +l_l°sc X AT AXAYFS
1 y+l J_y x+~/5+l
1. log(x-1)+c=—75l08
{ 2 x-1 2\/_ Vy+x+42-1
12, (c=y=x~-1) (y+x-1)' = 1 13. log(2x+y-1)+x+2y=c¢
14. %(x’+y’)+2xy-5(x¥y)=c 15. é(2x+y3)+%log(16x+24y+23)=x+c

[EXERCISE-2G) |
L ()d@e,(i)e (ivid (Ve

2. (i) 0, (ii) indefinite direction, (iii) equal in magnitude, (iv) a =b=>|a|=|b| (v) true_
3. (D@4,3),3G)-270; 49
5. () AB=-i-2j-2k, BC = -2i-j+2k, Ca = 3i+3],

| ABI=3. IBE 3. IcaF 342
(i) AB = -61-6), BC =-61-6k, CaA =12i+6)+6k
|AB 62,1 BC F6v2 . ICA F6v6
6. 61-); 7. -1-2); 8. 2i-7), 21+ 2j+2k
11. . (a) (i) When 3 and p are collinear vectors or when both are zero vectors.

(b) The parallelogram formed by the vectors 3 and p as adjacent sides is a rectangel (i.c the two
vectors are at right angles).

12. () 52,121 -] (i) 4/2;-4, 4;-4i -4] (i) V41:1,-6,2; | 6] +2k
ot =5 =

5 an e -3 -2 3 N 1 -2 -8
13. (i) -31—2]+3k:ﬁ:75.72—2,72—2 (ii) i—-J—Sk:J6_9;7§;.7§9=.T : 14, TETT
Sl ISl 5w i &g
15. (i) —l-—J (u)T"'TJ (iii) 7‘”7”1 7==k (iv) mHmj-mk;iﬁ.ml +mj+mk

3 62 2. 36 -2
- B ARTEN Sy | 24

| EXERCISE-12(b) I

-2
1. () d, (i)c, (i)c(iv)b: 2. (1)-10, cos™ ‘JS' (1) 17, cos™ '—‘J=‘ (i) -1, (w) 0 e
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3 : 1L-4 2 2 3@ -23:5 S0 Fs —l—l("+ﬁ)(-" 1 l(3ﬁ+j+3€)
. (cos— W3 (1) 4‘(u 3 )3@v)-2/3;5.0 .o(n)_ﬁ,zj :u)jl"; 19
6. (1) 7 units, (ii) 0 unit, (iii) —13 units, (iv) 9 units.
| EXERCISE 12 ©]
L. ()b, (i)a,(iDc, (V) e, (V)b ‘
2. (i) =51 +10j -3k, (i) -1 + 2j -7k, (iii) -21i - 22] +13k, (iv) 51 - 10} +3k , (v) 9§ ~14j +k
l = 2 5 L oas ol s A

) 43 () B4k (e 6i+3j-4k) (; k
3. (i) 43, (i) T' J1+K) _(iii) *75( 1+3)-4k) (iv) i7;(1+1+ )
4. (i)2sq. units (ii) 3sq.units (iii) 3V3 sq. units (iv) 4V2 sq. units
5. G %JE sq.units, (ii) %JE sq.units ; 6. (i) 1}% (i) E : 9.-26 11. 5V3 sq.units

LEXERCISE-12 (d)]
. (b (ia Gi)c 2.()-6 (i) 51 ; 3. (i) 4 cubic units (ii) 1 cubic unit

. w2 T S AT
il (1)50r—2—(n)—4: 9. —i+)+3k ;1L 5‘?
[ADDITIONAL EXERCISES |

v - - 9 3
B—a:6.a=8; 9 |a+bl=5 |a-bl=1: 12, %;13. o :4.-;-.

| EXERCISE-13(a) |

' 2 1
L @8®)5(c)30°: 2@T®FEF@AF(@F; 4.()(34,5) (b) (1,;3,2)(c1)y=72 z2=5
;. T SR o )
. (@) (b) g (@ 13, TRERE

1 2 19 | 1
6. (a) cos™ 7;,900’(:05 1J2/3 (b) cos ! m (e) cos ! [17;] (f) cos™! (EJ

| EXERCISE-13(b) |
@F bFEFM@T(EFM®OT(QF

P

9

1
(a) x+y+z=4(b)z-4=0. (c) 5 (d) parallel to x-axis (e) k =—4.

o

(@)3x+5y-7z2=6 (b)x-y-1=0(c)4x -3y + 12z=8(d)2x+3y=13(e)x-2z+5=0
4. (a)3x—4y+7z+13=0(b) dx+Ty+2z+11 =0 (c) §+%+§=2 () 2x -4y +32+8=0

(©)3x-3y-2z2-1=0(f)2x-y+3z=-1%3 iz

5. @2+L+Z21,4,0,0),(0,-3,0),(0,0,2). (b) o=t~ y+—-=0,-2 (o)

| 4_2,,.,..,.‘.\(5@&2'@6
6.  (a) Coplanar, (b) Non-coplanar, (c) co-planar, (d) coplanar

7. (@) 7x-39y+49z+8=0 (b)51x+lSy-SOz+173=0(c)(acl-a,c)x+(bc,—b,c)y

(d (dec,—cd)=0(e)2x+y+2z+2=0; 82x+7ly+58z+82=0

. e — e e —
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14.

13.

18.

24,

27.

11

| 7 2
w o (g5 o (5

(@) () llx+6y+5z+86=0;67x—162y+47z+44=0;
(i) 38x-23y-17z-4=0, 14x +49y-352-22=0.

(b) 25x+ 17y +62z-78=0. '

x — 4y + 6z = 106

IEXERCISE 13 () I

@T®TEFM@F(@EF

x+1 vy

(a) perpendicular, (b) ‘"=—'— (c)petpmdlculanoz-axns (d) 2, (e) ————31:-
x—4=y+6=z;l X-a. y-a z-a

=2 y~1 z-3
»(b) i Al

-
3 E-—-_-E * !-_b_ﬁ-—x— i_y+d!b=z—c . x-3f5_y+615=5
() 2=2=Z i) TR0 o2 i -T2 I8 Gy I e e

a

(a) , (©)

z b xR - 4]
y Tl M=% "=

(S el Sy TR o R S W S, s e M T
G.4.-1): 9. [;]%—] 10. (a) 13, (b)[% _—;.l?Ju.&—sy—Fo

1 11 -1 -3 3 47

3 4 At
. W z+l

(@) E‘_%l' 1 ,(b) (a, a, a), (3a, 2a, 3a), (€)42.8,-3),(0,1,2), J78

@5, 7),"—}3 =-’%‘ =28 20.21 521.1; 22. 308 ; 23.8x+ 5y -2~ 19=0
x-5_y-3_z-13
-6 1 2

19x - 10y —42z+43=0 ; 25. x~2y+22=0,2x+2y+2z=0 ; 26,

L - e 11
3J3_0."23=" 8=Zl3 129. Tomz 10x-29y+ 162=0=13x + 82y + 552 109.

5
L&pmomm, EXERCISES |

r(-i-5j+6k)=18, x +5y-6z+18 =0 ; 2. ¥ (3i-4j+2k)=5

- 22
contl A ¥l sin"[“"{] 9.3: " 10, = -
21 J 2

3

ax+by+cz=a’+b’+c?; 12. y+4z-7=0



