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Abstract

Compiler frameworks are used across applications and domains to speed
up and simplify the development of compilers. LLVM has long been the
framework of choice for domains that aim to accelerate their workloads
through the superior run-time performance of native machine code. The
extensible MLIR framework has stepped in to provide more flexibility in
modeling domain-specific semantics right in the IR, and allows users to
leverage the potential of domain-specific transformations on a common
platform. However, MLIR currently lacks the capability to directly lower
operations to machine code, which makes it hard to map domain-specific
semantics straight to machine code for improved compile-time performance.
We present MoNaCo, a fast native code generator that directly converts
MLIR to machine code, capable of letting users specify exact lowerings for
performance critical operations. At the same time, MoNaCo explores the
viability of MLIR for JIT compilation, where compile-times are critical.
MoNaCo outmatches MLIR’s existing code generation path in terms of
extensibility and outperforms it in terms of compile-time: across the MCF
benchmark from SPEC CPU 2017 and the Dhrystone benchmark, MoNaCo’s
compilation times are about 48% lower on average, while the resulting code
is about 4 times slower on average. Our approach shows that MLIR is a
viable option for efficient compilation, but several issues in the design and
implementation of MLIR hold back its potential in JIT compilation.
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1 Introduction

Motivation

Today, just-in-time (JIT) compilation is a pivotal technique to speed up the execution
of programs with dynamic source, or source code that remains unknown until execution.
This includes applications in database query execution [1], machine learning [2], and
programming language implementation [3, 4, 5]. In JIT compilation, low compile-times
are essential, as they contribute to the overall execution latency.

Compiler frameworks can reduce engineering effort in (JIT) compiler development
substantially by providing data structures, a common platform for transformations and
analyses, and machine code generation. But these attempts at generalizing and abstracting
the compilation process can lead to compromises in representing the semantics of the
program. Translating to a common ecosystem defined purely by the compiler framework
means losing domain-specific knowledge that is crucial to transforming programs in order
to optimize their performance characteristics [6].

This has led users of compiler frameworks to develop components dedicated to domain-
specific information. These not only require extra effort to build, but each component still
only represents the program on a single level of abstraction. The novel MLIR compiler
framework [7] provides its users with the ability to combine representations of multiple
levels of abstraction in the same code. It allows them to define custom operations and
types which can be incorporated into the program representation. MLIR also includes a
state-of-the-art framework for applying generic program transformations through user-
defined patterns. In combination, this allows domain-specific transformations to be defined
on domain-specific information, alongside the rest of the program.

However, MLIR’s ability to express domain-specific information does not extend to
machine code generation: the current code generation path requires translation of all
program information to the LLVM [8] instruction set, which operates at a single, fixed level
of abstraction. This makes it hard to influence the final machine code that is generated
to execute the program; thus the vital advantage of JIT compilation, native machine
code execution, cannot utilize the full potential of domain-specific information, as it, once
again, gets lost in translation.

Approach

To this end, we present the MoNaCo code generator, which employs a novel approach
to generating machine code directly from MLIR. MoNaCo defines an MLIR dialect
representing x86-64 instructions, allowing them to be used like any other MLIR operations,
without the constraints of fixed register assignment. We then implement a code generation
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schema for MoNaCo that traverses the x86-64 dialect program a single time. Within
this single traversal it assigns registers to values, converts MLIR constructs such as block
arguments to machine code, and encodes the finalized instructions. This empowers the
user to define exactly how their MLIR operations should be lowered to machine code
and therefore allows taking advantage of domain-specific information for machine code
generation. As MoNaCo solely represents the program as MLIR before emitting machine
code, it avoids multiple different code representations and thus allows for faster compilation
times than the existing code generation path. Performance results show that MoNaCo
can compile the Dhrystone benchmark [9], as well as the MCF benchmark from the SPEC
CPU 2017 suite [10] between 1.34 times and 2.7 times faster than the established LLVM
code generation path, while incurring up to a 4.6x run-time slowdown.

Contributions
The key contributions of this thesis include:

¢ An alternate machine code generation route for MLIR, which does not rely on the
LLVM compiler infrastructure.

o JIT-focused x86-64 code generation for MLIR with fine-grained control over the
generated machine code. This includes both predefined conversions from common
operations to an MLIR dialect representing machine instructions, and the ability to
define custom conversions for any operation.

e Compile-time improvements over MLIR’s current code generation route. In our
tests, MoNaCo required between 25% and 63% less compile-time than the baseline.

Outline

In Chapter 2, we will first describe the compilation process in the abstract, the place
of compiler frameworks within it, and the emergence of MLIR. We will then detail how
we built MoNaCo to address issues with the current code generation process for MLIR
in Chapter 3. Thereafter, in Chapter 4, we test and identify performance characteristics of
the MoNaCo code generator and compare it to the existing code generation path for MLIR.
Then, we cover work related to MoNaCo and MLIR code generation in Chapter 5, and
finish by summarizing our work and findings, and looking out to future work in Chapter 6.

Throughout the thesis, we will be referring to the source code of MoNaCo and the
LLVM project; specifically, we will refer to the MoNaCo commit 8a3c8e01! and the LLVM
commit a403d75be7?, except where otherwise noted.

"https://github.com/J-MR-T/MoNaCo/tree/8a3c8e01274c93304bf4f64902fdf3692c1dd397
*https://github.com/11vm/11lvm-project/tree/a403d75be7add73f3e34032d73c81b8e1dcba3b9



https://github.com/J-MR-T/MoNaCo/tree/8a3c8e01274c93304bf4f64902fdf3692c1dd397
https://github.com/llvm/llvm-project/tree/a403d75be7add73f3e34032d73c81b8e1dcba3b9

2 Background

In this chapter, we will outline key steps and data structures in the compilation process,
and then proceed to examine the need for compiler frameworks in general, as well as their
extensibility. We then briefly describe the MLIR compiler framework.

2.1 Lowering, Compilation, and just-in-time

Lowering describes the process of reducing a program representation to another program
representation, which is more aligned with the hardware that is meant to execute the
program. The term lowering is used because the conversion usually takes place from
a higher-level representation to a lower-level one, although it can be hard to quantify
what makes a representation high- or low-level. This means compilation includes a
sequence of lowering steps, with transformations in between. These transformations are
often colloquially referred to as ‘optimizations’, but this term is misleading: first, the
objective of the optimization (run-time, code size, compile-time) is unclear, second, not
all transformations are guaranteed to actually improve the metric they are targeting. We
thus prefer the term ‘transformations’, although we use some established terms deriving
from ‘optimizations’.

To enhance flexibility, compilers typically employ architectures that can be divided into
front-end, optimizer, and back-end. Each of these components can be seen as taking a
program representation as input, transforming it, and passing it to the next component [11].
As for the beginning and end of this pipeline, the front-end gets its input as a program
string from the user, while the back-end typically emits machine code. This code is
then either linked and executed immediately, or written to a file in object form, for
linking at a later stage. Representations of the program in-between the input string and
output code are called intermediate representations (IRs)!. The front-end is responsible
for transforming the input language, which is often designed to be well understood by
humans, into a language which is more suitable for the compiler. The optimizer performs
transformations to try to improve various aspects of the IR. The back-end lowers the IR
into actual machine code; this process is called code generation.

This architecture simplifies bridging the semantic gap between human understandable
input language and machine understandable output language. Note that in many cases,
each of these components conceptually divides into further parts that also transform an
input representation into an output representation.

When the program source or semantics are unknown until just before the execution,
traditional, so called ahead-of-time (AOT) compilation is not possible. These kinds of
programs, like database queries and programs in highly dynamic languages, can either be

! Also intermediate languages, intermediate codes.
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interpreted or JIT compiled. For JIT compilation, low compile-times are a priority, as JIT
compile-time adds to the end-to-end delay between requesting execution and the result of
execution. JIT compilation usually results in faster execution time than interpretation for
hot code, although compilation is never worth the time on sections of code which are only
ever executed once [12]. For these sections, interpretation should be preferred.

2.2 Static Single Assignment Form

The textual program representation supplied by the user is generally not feasible for use
throughout the compilation process:

¢ the representation is highly language specific;

¢ there is no inherent notion of transformations;

¢ the representation does not expose information about context, or types;

e data flow, meaning information about which values are used where, is not explicit.

The last point is especially important, as data flow information is the basis for many

transformations. This leads us to consider alternate, more suitable program representa-
tions.

2.2.1 Structure

Static single assignment form (SSA form, or simply SSA) [13, 14] is the intermediate
representation used by most modern optimizing compilers and compiler frameworks,
including GCC [15], LLVM (8], HotSpot JVM [4], and the V8 JavaScript engine [3].
Fundamentally, it consists of values, that have exactly one definition. There is no variable
assignment to these values afterwards. Consequently, values form a chain starting at their
definition, leading to their uses. This chain establishes a data flow DAG. Control flow is
typically represented by dividing the program description into so-called basic blocks, these
are the largest possible units of code that do not contain control flow themselves.? Each
basic block is terminated by exactly one control flow instruction.

As there is always only one definition of a value, conditional logic requires special
handling: a value cannot simply be assigned to multiple times, based on the condition.
Take Listing 2.1 as an example: the control flow of the program determines which of the
two definitions of x is used for the call to print.

In SSA form, these values can be represented as arguments to the basic blocks (block
arguments)3. Listing 2.2 shows Listing 2.1 transformed to SSA; basic block d has an
argument x4, with which it can then call the function print. Blocks b and ¢ terminate by
unconditionally branching to block d, and passing their respective definition of x as an
argument to the block.

This means that SSA basic blocks can also be interpreted as a set of functions, (condi-
tionally) calling each other with particular arguments and operating on some common

2For this definition we consider function calls to eventually return to execution to the call site; they
are not viewed as control flow.

3¢-nodes are another possible representation. As MLIR exclusively uses block arguments, we do not
discuss ¢-nodes further.




2.2 Static Single Assignment Form

int x; // end basic block a
if (condition())

x = 1; // end basic block b
else

x = 2; // end basic block c
print(x);// basic block d

block a:
v1 < condition ()
cond_branch wv;, block b, block c¢
block b:
branch block d(1)
block c:
branch block d(2)
block d(xzgq)
print (zq4)

Listing 2.1: Conditional logic in C

Listing 2.2: Listing 2.1 transformed to SSA

state. Each SSA value is seen as occupying one of an infinite set of virtual registers, each
of which stores exactly one SSA value.

SSA values can only be used after they are defined. If a value is defined in a basic block
1y, but used in a different block z, every possible path from the entry block = to block z
must go through y. On a path from z to z that does not visit y, the use of the value in z
would rely on an undefined value. This property is called dominance, here y dominates z.
Compilers employing SSA thus need to perform dominance checks to confirm that the IR
is well-defined.

The main advantage of SSA over other program representations, is that it makes data
flow explicit. This allows transformations to easily eliminate dead code or redundant com-
putations, as SSA provides direct access to all data dependencies of a value definition [13,
14].

2.2.2 Challenges

Although SSA has many advantages for transformations and analyses, it leads to challenges
in generating machine code. Because processors have a limited set of registers, it is
necessary to decide which of the SSA values occupy which hardware register at what time.
If, at one point, there are more values needed than there are machine registers, some
values need to be spilled to stack frame slots to free up hardware registers.

In addition, as machine code has no notion of block arguments, these need to be resolved
to hardware registers or stack slots. By writing the block argument’s possible values to the
same location, its values are merged into one. This is similar to the original representation
as one variable in the source, like z in Listing 2.1.

However, simply inserting instructions to move values to the correct location is not
sufficient for correctly lowering SSA to machine code. Consider the example in Figure 2.3:
the original code returns the value of x in the second to last iteration of the loop.
When transformed to SSA, x becomes a block argument to the main block of the loop
(see Figure 2.3b). If we now naively insert move instructions to copy the value that is
passed to the block argument to the block arguments location, we accidentally change the
semantics of the code; now the value of z in the last iteration is returned (see Figure 2.3c).

This issue is known as the lost-copy problem [16]. It occurs only on edges of the control
flow graph (CFG) that lead from a block with multiple successors, to a block with multiple
predecessors, so-called critical edges. If the target block had only one predecessor, it would
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1+ 1 x1 1
T+ 1 1+ 1
To — T T2 < T1
l T < T1 l
T < I3

Y : j T3 2o+ 1 p
1'<—CC+1 J:;(—t:ff"'l xro <— T3 To < T3 l‘;(—tig—"—l
. i en i en
if p then p if p then p
return y return xo return xp return xo

(a) Original code (b) Code in SSA form  (c) Copies inserted (d) Copies inserted,
with block arguments (incorrect) critical edges split
(correct)

Figure 2.3: Lost-copy problem: naive copies lead to incorrect code (adapted from [16])

not need block arguments to merge values from its predecessors. If, on the other hand,
there were no other successors to the block, i.e. the block had no other incoming CFG
edges, the unconditional moves performed to place the block argument’s value could not
overwrite a value set by another edge. One way to solve the lost-copy problem is to split
the critical edge by inserting another block that is only executed when the edge is actually
taken; this block then houses the unconditional moves for this edge, ensuring that they do
not overwrite a value from another edge (see Figure 2.3d).

The other problem during SSA destruction is the swap problem [16]: consider that
arbitrarily many block arguments can be passed concurrently to a block in the abstract
model of SSA; but setting arbitrarily many values in machine code cannot be done
concurrently on known architectures, and simply setting them sequentially can lead to
cyclic dependencies. Take the example in Listing 2.4: if we naively insert copies into this
code to move the block arguments, we end up with the incorrect Listing 2.5, where v;
and v9 now contain the same value after the first iteration.

block: // vi, vy implicit
print (v1)

block (v, wv2): print (ve)

print (v1) Vo < VU1

print (v2) V1 < V2

branch block (ve, v1) branch block
Listing 2.4: SSA loop printing alternating Listing 2.5: Listing 2.4 in SSA-destructed
values (without copies) form (with naive copies, incorrect)

In the original code, they simply alternate values. To address this, we need to temporarily
save the original value of vy to assign to v; afterwards. Note that this is not a critical
edge, as the block has only one successor: itself. Also note that this instance of the swap
problem conveys the general idea, but does not cover all possibilities. More details on
SSA can be found in [17].




2.3 Lowering an Intermediate Representation to Machine Code

2.3 Lowering an Intermediate Representation to Machine Code

Lowering from an IR to machine code is usually divided into three steps [18]: instruction
selection, instruction scheduling, and register allocation.

In instruction selection, IR operations need to be mapped to actual machine instructions
provided by the target ISA. This is largely done through pattern matching. In its simplest
form, often called macro expansion, every IR operation is expanded into one or more ISA
instructions, meaning each individual operation is simply matched by one pattern. More
complex patterns, which operate on data flow trees, DAGs, or arbitrary graphs, attempt
to combine more complex IR behaviors into more efficient instruction sequences.

Instruction scheduling describes the process of optimizing the ordering of instructions,
to take advantage of instruction-level parallelism. The goal is to improve run-time
performance of the code. Instruction scheduling is therefore an optional part of code
generation and can be omitted where compile-time is critical, such as in JIT compilation.

During register allocation, the set of infinite virtual registers used by the IR needs to
be mapped to ISA registers and stack memory. The target ISA and ABI typically impose
additional constraints on register allocation:

e Some ISAs, such as x86-64, feature instructions that constrain the registers in which
their operands must reside.

e ISAs restrict which instructions can have memory operands. This can necessitate
insertion of additional instructions to spill-load or spill-store values, as well as
temporary registers to hold values that should be moved between memory locations.

o Two-address instructions that destroy one of their operands (two-operand instructions
with destructive source), such as ADD rax, rcx in x86-64, require the register
allocator to allocate the same register to the destroyed operand and the destination.

SSA is destructed at the latest during register allocation, minding the problems described
in the previous section.

Each of these processes can employ additional peephole optimizations. These analyse a
small part of the code at a time (the so-called window), and try to combine or transform
instructions. Aho et al. [19] provide a more detailed explanation.

2.4 Compiler Frameworks

To reduce engineering effort in compiler development, compiler frameworks can provide
data structures for a complex IR, code generation facilities, and handling of peripheral
tasks such as object file writing. The instruction set of a compiler framework can either
be fixed, or extensible. An extensible instruction set allows users of the framework to add
and use custom operations.

2.4.1 LLVM

LLVM [8], one of the most widely known compiler frameworks, chose to provide a
prespecified instruction set for its SSA-based intermediate representation known as LLVM-
IR. It captures ideas from high-level languages as well as the key operations of hardware
ISAs:
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e the LLVM-IR switch instruction models a C-like switch statement;

o there are arithmetic instructions such as add, sub, ...;

o specialized instructions, like cmpxchg to atomically modify memory, map to hardware
equivalents.

LLVM thus models an abstract machine designed for ease of transformations and code
generation.

LLVM has simplified compiler development substantially. Any operation that is needed
in C, can be expected to have a fitting equivalent in LLVM-IR, as the Clang C compiler
compiles to LLVM-IR. After translating their source language into LLVM-IR, the user
mostly does not need to concern themselves with the details of code generation. In
addition, they are not faced with the design challenge of defining their own custom IR
instructions.

A fixed instruction set also simplifies LLVM’s development, as instruction selection only
has to be implemented once per IR instruction per target ISA. Afterwards, any LLVM-IR
program can be instruction selected, and the rest of machine code generation can ensue.

Generally, LLVM has achieved a lot of success and has established itself as the backbone
of numerous processes involving code generation, from databases employing code generation
for queries [1] to programming language implementations for Rust, Swift, or Julia [7].
A downside of a fixed instruction set is that transformations can mostly only happen
on one fixed level of abstraction, namely LLVM-IR.* To work around this, some LLVM
users, such as LLPC [20], have inserted function calls to pseudo-functions representing
their custom operations; but these are opaque to the optimizer, and cumbersome to do
custom transformations on. The alternative is to represent the operation more verbosely
in its individual parts, by utilizing the instructions provided by LLVM-IR; although this
ultimately leads to more complex and less expressive code.

LLVM itself tries to address this issue using intrinsic functions (intrinsics for short),
which use the same mechanism: defining pseudo-functions that represent particular
semantics not found in the instruction set itself. Intrinsics range from high-level operations
like 11vm.memcpy, to some that model abstract functionality that is often represented in
ISAs, like 11vm.prefetch, and others that correspond to a specific ISA instruction, such
as 11lvm.x86_ssse3.pshuf_b which maps to the x86-64 PSHUFB instruction. As intrinsic
functions are defined by LLVM itself, they are better integrated into the compilation
process, but they are ultimately still a workaround.

The need for domain-specific transformations has thus led many LLVM users, like
Rust, Swift, and Julia, to opt to build their own, custom, higher-level intermediate
representations. This allows them to perform transformations that would be difficult to do
on LLVM-IR with its limited expressiveness hiding the original semantics of higher-level
operations. This negates some of the advantage of using a compiler framework, as the
user now does have to implement at least the IR data structures from scratch, as well as
a basic infrastructure for performing transformations.

4Some transformations can be done in the back-end during code generation.
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2.4.2 MLIR

These issues led to the development of MLIR [7], which provides an infrastructure for
building an intermediate representation with user-registerable instructions, as well as
some predefined instructions for common use cases, referred to as in-tree®. Fundamentally,
MLIR is also SSA-based. MLIR code can arbitrarily combine user-defined and predefined
instructions from different so-called dialects, which group instructions and data types.

This allows domain-specific knowledge to be encoded by representing it as native MLIR
types and operations, these make transformations on multiple levels of abstraction easily
possible with MLIR’s built-in generic pattern rewriting infrastructure.

Extensibility also leads to higher complexity, as it requires an all-around modular
design; the compiler developer needs to be able to store various kinds of information
about an instruction. As a result, there are competing ways of accomplishing the same
task. This includes two separate domain-specific languages to define transformation
patterns, in addition to being able to define them in C++ code; two ways of defining
compile-time-known information on an operation; and redundant ops between dialects, for
example, the constant operation in the arith [21] and 11vm [22] dialects, or the funcop
operation in func [23] and 11lvm.

Internals

We will only provide a brief overview of MLIR concepts and terminology. For further
details, refer to the documentation [24], including the language reference manual [25].

Generally, each instruction is represented by a class deriving from the MLIR, Op class;
instructions are thus referred to as ‘ops’ or ‘operations’, we use these terms interchangeably.
An operation has zero or more SSA values as results, zero or more SSA-valued operands,
as well as zero or more attribute operands, which represent operands that are set at
compile-time for each instance of an operation. An integer comparison operation, for
instance, could have

o one result, true or false;

e two SSA-valued operands, the two values to compare;

e one attribute operand — the comparison predicate — for instance ‘less than’.
Attributes like this are independent of any SSA value, but tied to the instance of the
operation; another instance of the compare op might use ‘greater than’ as its predicate.

Parts of an operation that are not specific to the particular instruction, like the sequence
of results and SSA value operands are stored in the Operation class. An Op-derived class
is implemented as a smart pointer wrapper around a pointer to Operation [24]. Note
that therefore, no classes derive from Operation, but each op derives from Op. Attributes
and types, on the other hand, are stored in the MLIRContext and only referenced in the
Operation class. The storage of the MLIRContext deduplicates any values; as a result,
all references to attributes that share the same value point to the exact same storage.
For example, in one MLIRContext, there is only ever one point in storage that stores the
bool attribute with the value false; every op that uses a bool attribute with the value
false actually has a pointer to this original false attribute. This allows attributes to

5This refers to the directory tree of the MLIR source.
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be compared for equality using a simple pointer comparison. The context also stores
miscellaneous options, such as whether multithreading is enabled. We can now more
clearly describe an MLIR dialect as a collection of definitions of operations, attributes,
and types.

Note that around May 2023, MLIR gained the ability to use so-called properties instead
of inherent attributes [26] — these are the only kind of attributes we present here. Like
attributes, properties can store any compile-time-known data. However, properties have
the advantage of being stored together with the rest of the op in the Operation class,
unlike attributes. Accessing attributes thus requires additional indirection through the
MLIRContext, and adding or removing them results in the recomputation of a hash map.
The storage for properties, on the other hand, is known at the time the op is constructed,
and there is no hashing involved when accessing or updating them. The main advantage
of attributes over properties is that comparing their pointers for equality is often cheaper
than comparing properties, which requires a bytewise comparison that is expensive for
aggregate data such as strings.

MLIR’s notion of compilation units, modules, are also represented as ops. We call a
module consisting of arbitrarily many different dialect operations heterogeneous, and a
module consisting of one or a select few dialects homogeneous.

To guarantee the availability of common information or functionality on an operation, i.e.
to enable generic interaction with the extensible instruction set, MLIR provides interfaces.
For example, the mlir: :BranchOpInterface can be used on different types of branching
operations, to gain access to the supplied block arguments for a successor block.

10



3 MLIR-based code generation

In this chapter, we describe how we leverage MLIR’s potential to build a code generator
for the x86-64 (AMDG64) architecture.

3.1 Problem and Approach

The existing path to generate machine code from an MLIR module lowers the module
to LLVM-IR and then reuses the LLVM code generator. This lowering from MLIR to
LLVM-IR is divided into two steps (see the start of the left path in Figure 3.1): first, the
heterogeneous MLIR module consisting of ops from any dialect is converted to an MLIR
module only containing ops from the 11vm dialect, which implements a subset of features
of the LLVM instruction set. As this conversion depends on the semantics of the ops,
conversions for ops of custom dialects need to be specified by the user. Then, an existing
converter translates the 11vm dialect MLIR module to an LLVM module. Differences
between MLIR and LLVM regarding metadata, function signatures, global values, and
more! are handled here, and individual op translations provided by the op definitions
themselves are executed. Finally, the LLVM code generator [27] takes care of generating
actual machine code. The entire process is configurable through the LLVM C++ API.

Using LLVM as the code generation toolchain for an MLIR module has several short-

comings:

1. Speed: this process involves at least 60 passes over the program representation,
translation between MLIR and LLVM data structures, as well as conversion between
several LLVM-internal code representations. All of this leads to subpar compile-time
performance.

2. Loss of semantics: the precise modeling of op semantics via custom operations that

MLIR enables, is lost in the translation to the fixed LLVM instruction set and only
then to machine code.?
In addition, certain transformations lose some of their effectiveness in the translation.
For example, an MLIR module with eliminated common sub-expressions may produce
an LLVM module that could benefit from running another common sub-expression
elimination transformation. This results in unnecessary effort.

3. Loss of analysis information: both MLIR and LLVM track information gained
through their analyses in order to minimize recomputation of the same information.
However, this information is not compatible between MLIR and LLVM pass infras-
tructures, thus any transformations run on the LLVM-IR generated from the MLIR
module have to do their own analyses from scratch.

!See MLIR’s 1ib/Target/LLVMIR/ModuleTranslation. cpp, starting around line 1380.
2Besides the aforementioned domain-specific information, this also extends to certain low-level semantics,
for instance information about arithmetic carries.
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3 MLIR-based code generation

LLVM, however, has the following advantages for the user:

4. Comfort: the user typically does not need to concern themselves with the specifics
of code generation after lowering to the 11vm dialect.

5. Portability: lowerings to the 11vm dialect suffice to be able to execute the code on
any LLVM-supported platform.

Heterogeneous MLIR module
1lvm, arith, func, cf, ...dialects

v

Performed by MLIR dialect
conversion framework, user can

supply custom conversion patterns

Homogeneous Homogeneous
1lvm dialect [----- - -~ AMD64 MoNaCo
module (ertoll dialect module

LLVM-IR
LLVM
Machine IR

LLVM MC

Performed by LLVM |

Machine Code

Figure 3.1: LLVM-based MLIR code generation (left) vs MoNaCo (right)

We propose the MLIR to Native Code generator (MoNaCo), which uses a different
approach to address these shortcomings. MoNaCo leverages MLIR’s existing dialect
conversion infrastructure to first perform instruction selection, by converting the heteroge-
neous MLIR module to a homogeneous module. This module only consists of functions
that are made up of MLIR ops from a target-specific dialect. Each op from this dialect
corresponds to exactly one opcode in the target ISA encoding. We chose to implement
the first MoNaCo back-end for the x86-64 (AMDG64) architecture, so in the AMD64 dialect,
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each op representing an instruction corresponds to exactly one AMDG64 opcode. In a
second pass, MoNaCo destructs SSA form, allocates hardware registers to each value,
emits a data section for global variables, and encodes the instructions (see the right path
in Figure 3.1). It thus addresses the shortcomings of the LLVM-based code generation
process as follows:

1. Speed: MoNaCo was designed with JIT compilation in mind and can emit JIT-
execution-ready machine code in only two passes over the whole IR.

2. Semantics: a MoNaCo user can provide conversions of their custom operations to
the AMD64 dialect, similar to the conversions needed to lower custom operations
to the 11vm dialect. As this lowering directly targets the ISA, the user can decide
precisely how to bridge the semantic gap between their operations, and the target,
without being constrained by the LLVM instruction set in between.

3. Analyses: MLIR’s pass infrastructure can be used to perform transformations such
as instruction scheduling, or peephole optimizations on the instruction selected IR,
although this is currently not implemented.

4. Comfort: a MoNaCo user also does not need to concern themselves with destructing
SSA, or the later stages of code generation. SSA destruction, register allocation,
and encoding are handled seamlessly by the MoNaCo back-end.

5. Portability: MoNaCo’s portability, however, is limited to supported targets (currently
only x86-64). MoNaCo provides partial support for lowering the 11vm dialect, so it
can be used as a drop-in replacement for the LLVM code generator. To leverage
MoNaCo’s full potential, the user can then decide to provide custom lowerings
for performance critical operations. Due to their precision, these lowerings are
platform-specific and need to be performed for every relevant target-specific dialect.

3.2 Target-specific dialect design

We will illustrate the design of a target-specific dialect for MoNaCo using the example
of the AMD64 dialect. As we want the dialect to represent an instruction-selected MLIR
module, the dialect has to model machine code closely in order to be easily translatable,
while still maintaining and profiting from SSA form.

The AMD64 dialect is designed to represent all semantic information necessary to lower
an op from this dialect to an instruction in machine code. The simplest solution to this
problem is to map each MLIR op to exactly one opcode in the target encoding. This way,
the encoding routine can decide which opcode to use based solely on the C++ type of the
instruction it is currently encoding. As an x86-64 opcode also specifies an instruction’s
operand type, as well as its operand and result bit widths, the AMD64 dialect consists of
ops that are fully qualified in regard to these properties, for example:

e The ADD8rr op corresponds to an 8-bit addition of two registers.

e The MOVSXr64m32 op corresponds to a sign-extending move of a 32-bit value in
memory, to a 64-bit register

e The SUB16ri op corresponds to a subtraction of a 16-bit immediate from a 16-bit
register.
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This representation is close to other compiler back-ends like LLVM Machine IR (MIR) [27,
28] or the gc Go compiler’s back-end [29].

The information about the opcode of an instruction is one example of information that
needs to be represented in the ops of the AMD64 dialect. Generally, all information that is
needed can be split across two axes. First, it matters whether the information is static,
i.e., independent of a specific op instance; the second axis is whether the information is
attached to a specific result of an op, or the whole op. MLIR has first-class support for
storing static, as well as non-static information per op, but not per op result. We will
describe each of the four possible cases in turn, along with their implementation using
MLIR facilities; the following table provides an overview of these coming sections:

‘ Static Per Instance
Example: opcode Example: immediate operand
Whole Op Subsection 3.2.1 Subsection 3.2.2
Example: result register constraint Example: register allocated to result
1t
Op Resu Subsection 3.2.3 Subsection 3.2.4

Table 3.2: Overview of necessary op information in AMD64 across two axes

3.2.1 Static information per op

Information that is static per op includes the aforementioned opcode of the instruction, by
design of the dialect; register constraints that constrain the register an instruction operand
needs to be in (operand register constraints); comparison predicates used by conditional
instructions, such as Jcc, CMOVcc, and SETcc.

The only remaining pieces of static information per op are whether the instruction
has an immediate operand, and whether it belongs to a group of generically modeled
special cases. For example, all variants of the DIV instruction (DIV8r, DIV8m, ... ) inform
the encoder to zero-extend the first of their two x bit wide operands to 2x bits. This is
necessary because the DIV instruction always performs 2x bit / = bit = x bit division.
For instance, if we try to represent an unsigned 64-bit/64-bit = 64-bit division in the IR
semantics with DIV, it assumes rdx:rax as the 128-bit dividend. So to ensure that only
the 64 bits in rax are used, rdx needs to be zeroed. The same applies for IDIV, but here,
sign-extension needs to be performed.

Implementation We implement static information per op using static methods on
each of the ops, and an MLIR interface to specify which ops provide what information.
For example, every op representing an instruction in the AMD64 dialect implements the
getFeMnemonic method, which returns a mnemonic that informs the encoder which
opcode to choose for this instruction. The InstructionOpInterface, implemented by
all ops representing an instruction (instruction ops), indicates that an opaque Operation
implements the getFeMnemonic method. Likewise, the InstructionOpInterface also
enables querying the operand register constraints of an instruction; comparison predicates
are only retrievable on ops that implement the dedicated PredicateOpInterface.
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Simple, boolean-like information, like whether the op has an immediate operand, or
whether it belongs to a certain class of special cases, can also be attached to the ops using
MLIR traits. In fact, MLIR internally uses traits to indicate that an op implements a
specific OpInterface. Op interfaces can thus be viewed as traits that also guarantee that
an op implements a set of static and non-static methods specified by the interface.

3.2.2 Information per op instance

The most common kind of information that needs to be saved per op instance, is information
about instruction immediates. For example each instance of ADD32ri can have a different
immediate to add to a 32-bit register.

Implementation As outlined in Section 2.4.2, information varying per op instance can be
stored inline with the op using MLIR properties or attributes; attributes’ main advantage
is the ability to compare them cheaply. As we require little to no comparisons of attribute-
like data, we almost exclusively opt for properties in the AMD64 dialect. Symbol references
are the only kind of information we store as attributes instead. Typically MLIR, symbol
references are stored in an mlir::FlatSymbolRefAttr, so it was more idiomatic for us
to store them as attributes as well. Additionally, symbol references in the AMD64 dialect
never change after construction, so we also avoid the aforementioned recomputation of
the attribute dictionary.

To indicate that an op has a certain kind of property, we also use MLIR interfaces.
The ADD64ri op’s immediate operand is stored in its InstructionInfo property; the
InstructionOpInterface indicates that an op has this property. Note that as instruction
ops implement the InstructionOpInterface, all of them allocate the space for an
immediate in their InstructionInfo. Not every instruction needs an immediate, but
this overapproximation simplifies the compilation process at the cost of a higher memory
footprint, specifically 8 additional bytes per operation.

3.2.3 Static information per op result

Static information per op result includes the bit width of the result, and register constraints
specifying the exact register an instruction result is provided in (result register constraints).
For a 64-bit division, the DIV64r instruction returns the quotient in rax, and the modulus
in rdx.

Implementation The only information that is directly accessible on an MLIR op result,
is the result’s type, which can also provide methods accessible through MLIR inter-
faces. We chose to model the bit width and register bank of a value as a type, with
a hierarchy of MLIR type interfaces that allow access to this information about the
type. The GPRegisterTypeIlnterface is implemented by the gpr8/16/32/64Type types
representing general purpose registers; the FPRegisterTypeInterface is implemented by
the fpr32/64Type types, which represent floating-point registers. Both of these interfaces
inherit from RegisterTypeInterface, which supplies a method to access the bit width
of the register.
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We chose to model only this information as types, as these types are close to a one-to-one
representation of types in the typical source dialects like arith or 11vm. Modeling register
constraints as types would be quite far from the typical use of types in MLIR, and would
thus increase the complexity of the code dealing with these types.

In addition, the integer types directly model an exact class of registers, thus providing
simplicity in translation. We decided to differentiate between 32-bit and 64-bit floating-
point types in the dialect, even though they are both stored in the same XMM class registers,
as this makes it easy to operate separately on single- and double-precision floats, as most
instructions do.

Any per result information that is not represented using types, needs to be stored on the
op itself instead. This is the case for the result register constraints; they are retrievable as
a std: :pair-like structure through a static method on the op, as there are never more
than two result register constraints in the instructions that are currently in use.

3.2.4 Information per op result per op instance

The register allocated to a result is the primary kind of information saved per op result per
op instance. It is important to note that this is non-static information that typically varies
over the course of the compilation process. It always represents where this result is found
at each point of use. Consider this simplified sequence of ops in the AMD64 dialect:

v3 < ADD64rr vy, v
vg <~ CALL @print (w3)

RET ws3

Due to ABI constraints, this example first requires the value v3 in the rdi register, to
pass as argument to the call, and later in the rax register, to use as the return value. So
at the time of encoding the CALL (RET) instruction, the register information on the op
result of the ADD64rr will be in the rdi (rax) register respectively.

Implementation Storing information per op result per op instance is not directly sup-
ported by MLIR. Here, we employ the same strategy as with result register constraints, and
use a custom fixed-size collection to store allocated registers per result in the properties
of the op.

3.2.5 Special cases

There are some exceptions and special cases in the dialect’s design that need to be dealt
with.

Register information on block arguments Unfortunately, register information cannot
just be stored on ops. We also need to save register information on block arguments,
which have no inherent storage attached, as MLIR basic blocks are not extensible. This is
handled through the use of a separate hash dictionary mapping block arguments to their
register in the register allocator. An alternative would be storing this information about
block arguments on the function op that owns the block. This would introduce more
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complexity by requiring a custom AMD64 function op, a custom non-fixed size collection as
a property, and added indirection when updating the information on the block arguments.
Thus, we opted to first implement the simpler solution using the hash map.

Meta ops and memory In addition to instruction ops, the AMD64 dialect defines a small
number of non-instruction ops (meta ops) that represent other information about the
resulting machine code, such as addresses of globals and functions, as well as memory
operands or stack slots allocations. All of these ops require special casing in the register
allocator or encoder, which is why they are employed sparsely, only when there is no
simpler option. These ops do not implement the InstructionOpInterface, this way they
are distinguished generically, in addition to the required special casing. So to confirm that
an op is a normal instruction, it is not necessary to check all non-instruction special cases
to see that none of them apply. Instead, presence of the InstructionOpInterface can
be checked as the first condition.

Memory operands Memory operands are represented as meta ops returning the special
memLoc type representing a memory location. This allows memory ops to be used as
memLoc-type operands of instruction ops. Modeling memory operands as ops allows them
to have their own properties and SSA-valued operands, which, in combination, allows
memory ops to mimic the scale-index-base-displacement (SIBD) memory operands allowed
by x86-64: the scale and displacement values are both fixed at compile-time and can
therefore be represented as properties on the memory op. Both the index and the base are
specified in a register in machine code, so they can be an integer SSA value in the SSA
representation of an SIBD operand. Note that pointers to memory are not represented
using the memLoc type, as they are fundamentally integers that can also be used to perform
arithmetic. But when a pointer is used as a memory operand, it is converted to a memLoc,
by using a memory op that consists only of the base part of an SIBD operand. Conversely,
if the address of a memLoc type is needed, a LEA64rm instruction is used to retrieve it, as
it only performs address computation with its memory operand.

Modeling memory operands as ops enables more than just SIBD addressing, other meta
ops can take advantage of the flexibility of the memLoc type, for example the AllocaOp:

Allocas The amd64::Al1loca0p can be used to allocate an n-byte wide stack slot in
the entry block of a function. It returns a memLoc, so it can be used like any other memory
operand, as can be seen in Listing 3.3. If the alloca replaces an equivalent alloca from a
source dialect, like 11vm.alloca, its original uses are replaced with a LEA64rm instruction
with the alloca as its operand, as outlined above. As this LEA is not always necessary, we
take special care to try to forgo it in favor of using the alloca directly, wherever possible.

Conditional branches Another special case pertains to conditional branching. To keep
the fundamental SSA structure intact, conditional jumps in the AMD64 dialect are not
trivially equivalent to their machine code counterparts. As with all other instruction ops,
there is exactly one conditional jump op per opcode, i.e. there are amd64: : JZ, amd64: : INZ,
etc. In our model, every conditional jump has two successors blocks, and still has all their
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// allocate 8 bytes on the stack, returning a memory location
%0 = amd64.Alloca 8:i32 -> !amd64.memlLoc

// create the 64-bit integer constants 42, 43

%1 = amd64.MOV64ri 42:i64 -> !amd64.gpr64

%2 = amd64.MOV64ri 43:i64 -> !amd64.gpr64

// save 42 to the stack slot

amd64 .M0V64mr %0, %1 -> ()

// add 42 to 43, by loading 42 from the stack slot

%3 = amd64.ADD64rm %2, %0 -> 'amd64.gpr64

Listing 3.3: Simplified MLIR example of the AllocaOp

block argument operands attached, like a typical MLIR branch op does. This has key
advantages, over trying to represent lower-level conditional jumps in the dialect:
e The SSA structure is maintained. Consider the example in Listing 3.4, which shows
an alternate modeling of conditional branches that uses two jumps at the end of a
block, each with one destination block. If we chose this alternate modeling, there
would be control flow in form of a Jcc inside the basic block. This would be difficult
to represent in MLIR, and ultimately not in the spirit of modeling machine code as
SSA. Instead, we maintain clear SSA structure as can be seen in Listing 3.5.

block a: block a:

v3 < CMP64rr vy, vs v3 < CMP64rr vy, v

JLE wv3, block b JLE wv3, block b, block c

JMP block c
Listing 3.4: Alternate modeling of Listing 3.5: Listing 3.4, like modeled
conditional branches using two ops in AMD64,

¢ During instruction selection, we do not need to worry about moving the destination
operands to registers yet, this task can be left to the register allocator. This also
means the user does not need to concern themselves with the exact lowering of
conditional jumps.

¢ In the encoding phase, we can try to optimize the block ordering to encode fewer
jumps by potentially inverting the predicate of a conditional jump and leveraging
fall-through.

Information separate from MLIR The last special cases we want to describe again relate
to information and how it is represented in the dialect. Specifically, we chose not to model
some necessary information using the MLIR, facilities.

First, use of the RFLAGS register is not tracked in the dialect, all flag-setting instructions
do so implicitly, meaning that the IR is not aware of flags, except for some special cases
that will be demonstrated in the following. In the provided conversion patterns, flags are
only used to save the result of a CMP using a subsequent SETcc, or to perform a conditional
jump or move, using Jcc or CMOVcc respectively. Not modeling flags in the IR made the
dialect simpler, but it means that, when flags are used, the instruction order becomes
relevant, and the pattern must pay attention not to overwrite the flags between their
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computation and their use. For example, if the condition of a branch is produced by a
CMP, the CMP will be duplicated right before the Jcc instruction; otherwise an AND8ri is
emitted to logically AND the arbitrary i1 condition with 1, before a JNZ is performed
to mimic the behavior of conditional branches in the IR. Thus the use of flags must be
fully specified by the conversion patterns that produce the flag-setting and flag-using
instructions. Another drawback of not modeling flags explicitly arises in conjunction with
dead code: if flags set by instructions other than CMP or AND are used, MoNaCo should
be configured with -fno-codegen-dce, as it could omit these instructions, if they are
trivially dead except for their impact on flags. For this reason, ~-fno-codegen-dce is the
default. Fully modeling flags in the AMD64 dialect is left as future work.

Global values are also not represented using MLIR. These are implemented through a
custom data structure representing each global, containing its address, data, and alignment.
All globals are inserted into an 11lvm: :StringMap, indexed by their symbol name. This
way, globals can simply be accessed from anywhere using their symbol name, without
requiring the indirection through MLIR’s symbol table functionality. As we emit the
.data section before the .text section, all globals need to be handled in encoding, before
any function is; if we represented globals as ops, we would have to either maintain a strict
ordering to keep all globals before all functions in the AMD64 dialect module, or iterate
twice over the entire module, handling globals on the first iteration, and functions on the
second. Both of these options would add unnecessary complexity to the encoding process.
Instead, we can simply iterate over the aforementioned 11lvm: : StringMap’s values to emit
all globals for the .data section, and then iterate over the module to emit the functions
to the .text section. Furthermore, globals in the AMD64 dialect are only ever referenced
using their address, which is retrieved using the special amd64: : Addr0£fGlobalOp. This
allows us to keep the SSA structure intact at the point of accessing and using a global; it
also better represents that globals are fundamentally just data in the final machine code,
compared to viewing them as global ops, suggesting that they are instructions of some

kind.

3.2.6 Dialect implementation in TableGen

The TableGen language is a metaprogramming language developed for use in the LLVM
code generator [30]. MLIR employs TableGen to generate C++ source code which can
define dialects, including operations and types. The goal is to make it easier to write the
TableGen source, than it would be to write generated C++ code. For example, at one
point in the development process of MoNaCo, the AMD64 dialect specified in TableGen was
about 266 times smaller in terms of ASCII characters than the combined C++ header
and implementation files generated from it.

To demonstrate how to specify an instruction in TableGen, we will use the ADD instruction
in all its forms as an example. We make heavy use of the TableGen class and multiclass
facilities, which generically specify information about so-called records, in this case, these
are the resulting C++ op classes. Note that it is technically not necessary to use (multi-)
classes, they only serve to reduce code duplication and improve readability. A TableGen
class collects common definitions through fields which are read by the MLIR TableGen
back-end, on each of the records that use this class. The C++ code that is generated by
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the back-end determines the exact meaning of each field. To make classes more generic,
they can use template arguments, which can then be used in the definition of fields.
MoNaCo defines the Instruction class which bundles most of the functionality for the
AMD64 dialect instructions, including ADD. Instruction derives from the MLIR-provided
Op class and contains definitions of static methods used to represent static op information,
like the opcode:

class Instruction<string mnemonic>: Op<mnemonic,[InstructionOpInterface]>{
let extraClassDeclaration = "static constexpr FeMnem getFeMnemonic() {
return FE_" # mnemonic # "; }";
/7
}

let overrides one of the fields of a class higher up in the hierarchy, in this case the Op
class. extraClassDeclaration is a field on the Op class which can be used to inject
arbitrary declarations into the generated C++ source for an op. This value is supplied as a
string containing C++ source code, in this case it is constant for all parts except the exact
name of the FE_. .. macro defining the opcode. The instruction that is currently being
defined passes this last part to the Instruction class via its mnemonic template argument.
The mnemonic’s name is then concatenated to the existing string using the TableGen
concatenation operator #. This way, each op in the dialect can pass its mnemonic to the
Instruction class, which then declares an appropriate static method to retrieve the
opcode from the Fadec encoder library. Note that the real Instruction class declares
more methods through the extraClassDeclaration field than shown here, and derives
from a subclass of Op, that bundles more functionality.

Defining all forms of the ADD instruction really means defining multiple ops. This
is because ADD8rr has a different mnemonic from ADD8ri or ADD16rr, and each op
corresponds to exactly one opcode, as explained in Section 3.2. We define multiple ops
at once using TableGen multiclasses. The ADD instruction is defined through a more
complex version of the following multiclass:

multiclass Instr_rmi<string mnemonic, Type t> {

let
def

let
def
//

operands =

"Nyt

operands
n rm n

"

for

mr

"

(ins t:$srci,

(ins t:$srci,

Instruction<mnemonic

"

B ri

n n s n
, "mi

t:$src2) in

Instruction<mnemonic # "rr">;

memory: $src2) in
# Ilrml|>-

}

This way, we can define variants of the ADD instruction with different operands, using
the let in statment to specify the types and names of the operands, and the def
statement to define records for ops with the suffiz rr/rm/etc.

To use this multiclass to define all variants of ADD for all four bit widths, we use the
foreach statement. The following shows a simplified version:

foreach bitwidth = ["8",
defm ADD # bitwidth

”16", ||32n’ ”64”] in

Instr_rmi<ADD # bitwidth, "gpr"#bitwidth#"type">;
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The defm statement here defines an op using a multiclass. We have now defined ADD8rr,
ADD8rm, ADD8mr, ADD8ri, ADD8mi, ADD16rr, ... ops. As most x86-64 arithmetic instruc-
tions are similar, we can reuse the classes outlined here for instructions such as SUB, AND,
OR, XOR, and more, to define these instructions with just one additional line of TableGen
source each.

To specify more complex behavior and special cases, such as the aforementioned
register constraints and information about comparison predicates, we again use the
extraClassDeclaration field.

3.3 Instruction Selection

Instruction selection in the context of MoNaCo and the AMD64 dialect, means translating
the ops of a heterogeneous module, including any dialects, to a homogeneous module in
the AMD64 dialect. More specifically, ops that structure the code, such as module and
function ops, can remain the same or be translated one-to-one to an equivalent in the
AMD64 dialect. On the other hand, ops that define the semantics of the program need to be
lowered to actual instructions of the AMD64 dialect. As dialect conversion is a typical use
case in MLIR, and is also necessary in the LLVM-based code generation process, MLIR
provides a dialect conversion framework.

3.3.1 Use of the MLIR Conversion Framework

We will now detail how the MoNaCo instruction selector uses the MLIR conversion
framework. An mlir::ConversionTarget indicates to the conversion framework which
operations the converted module is allowed to use. Operations that are allowed in the
final module are referred to as legal operations, the others as illegal. Legality can also
be defined on types, as well as entire dialects, to declare all their ops and types legal or
illegal at once.

To perform pattern matching on the IR, the user of the conversion framework pro-
vides patterns defined as C++4 classes, which inherit from one of the subclasses of
mlir::ConversionPattern. These implement either a matchAndRewrite or separate
match and rewrite methods, which are used by an mlir: :ConversionPatternRewriter
to perform pattern matching on the IR. Patterns can have benefits, which indicate how
beneficial it is to match a certain pattern. Prior to the matching itself, the pattern rewriter
sorts patterns in descending order of benefit. Please see Listing 3.6 for an example of such
a pattern.

An mlir::TypeConverter can be used to register and apply type conversions. In
translating to the AMD64 dialect, general purpose register types can be expressed using
the amd64: :gpr8/16/32/64Type types, while the amd64: : fpr32/64Type types can be
used for floating-point register types. We chose to translate the MLIR i1 one-bit-wide
integer type representing boolean values to the amd64: : gpr8Type for consistency with
other operations, e.g., the SETcc instructions, which conceptually produce a boolean value
and also operate on the 8-bit wide variants of the general purpose registers.

To allow custom behavior, MoNaCo’s instruction selector takes a pattern set and
a type converter as arguments, which the user can populate with patterns and type
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using namespace mlir;
// only try to match arith::AddIOp
struct Add64Pattern: public OpConversionPattern<arith::AddIOp> {
// Constructor to specify lowest possible benefit of 0
Add64Pattern(TypeConverter& tc, MLIRContext* ctx)
OpConversionPattern<arith::AddIOp>(tc, ctx, 0){}

LogicalResult matchAndRewrite (arith::AddIOp addOp, OpAdaptor addAdaptor,
ConversionPatternRewriter& rewriter) const override {
// This pattern only matches 64-bit additions
if (add0p.getType () .getIntOrFloatBitwidth () != 64)
return rewriter.notifyMatchFailure(addOp, "bitwidth");

rewriter.replaceOpWithNewOp<amd64::ADD64rr >(
add0p, // replace the original add with an ADD64rr
addAdaptor.getlhs (), // use converted left-hand side
addAdaptor.getRhs());// and right-hand side

return success () ;

Listing 3.6: An MLIR conversion pattern which matches a 64-bit addition

conversions for the dialects that they wish to convert to AMD64. Users can employ
predefined conversions of in-tree dialects and types to AMD64 via populate... methods
such as populateArithToAMD64ConversionPatterns. This way the user can decide
which dialects and types should be included in the conversion; to simplify prototyping we
also provide a method which adds all predefined conversions to a pattern set and type
converter. The instruction selector finally invokes the conversion framework to perform
the actual pattern matching.

Although the MLIR conversion framework supports generic DAG-to-DAG rewriting, we
decided to constrain almost all the patterns we implemented for simplicity: each pattern
tries to match a single type of operation for a single bit width, regardless of its arguments,
and expands it to one or more instructions, similar to macro expansion. MoNaCo first
supported the essential parts of the func, arith and cf dialects; now it includes support
for lowering parts of the 11vm dialect as well. Due to their simplicity, these patterns
do not employ some more efficient instruction encodings: in most cases, immediate
operands are materialized using a MOV__ri instruction, instead of being encoded into the
instruction itself; the same applies for operands operating on memory and MOV__rm or
MOV__mr instructions. Another consequence of the simple patterns is that for 8- and 16-bit
operations, the code generated by MoNaCo includes partial register dependencies which
can stall the pipeline [31].

MoNaCo’s aforementioned support for instruction-selecting a subset of the 11vm dialect
allows users to use their existing lowerings to 11vm, and then make use of MLIR’s transitive
lowering, to seamlessly lower to AMD64 afterwards. This enables MoNaCo to be integrated
easily into existing codebases. The user can incrementally add support for more detailed,
direct lowerings of their custom operations to AMD64 where it makes sense to take advantage
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of an immediate end-to-end translation of user-defined operations to machine code. As
we defined the patterns to lower parts of 11vm after we already added support for other
dialects, we could take advantage of MoNaCo’s ability to perform instruction selection
independent of the later stages of code generation: except for ops that required new
features, like globals, lowerings for 11vm were written without any changes to the register
allocator.

3.3.2 Notable Special Cases

We would like to note a few special cases that we encountered during instruction selection,
and how we handled them.

Globals As explained in Section 3.2, MoNaCo manages globals in a custom data structure.
A reference to this data structure thus needs to be passed to all patterns that need read-
or write-access to globals.

Additionally, external global symbols need to be resolved to their address. As MoNaCo
is focused on JIT code generation, we first implemented this for the JIT mode; in AOT
compilation, references to unknown symbols require ELF relocations, which can be resolved
by the linker. Emitting these is not currently implemented.

In the 11vm dialect, globals can have initializer regions, which can house ordinary 11vm
dialect ops to initialize complex global values. In typical use cases, these often employ
operations that are not found in the rest of the module. Additionally, the initializer regions
need to be executed before the register allocation and encoding stage, to determine their
fixed initial value and write it to the .data section. As a result, we decided to implement
the translation of complex initializer regions using LLVM, by first converting the global to
LLVM-IR, and then extracting the necessary information from it. This could be improved
by executing the MLIR ops in the initializer region with an interpreter at compile-time,
and setting the initial value of the global to the interpretation’s result; the development
of such an interpreter is left as future work.

Switch statements The MLIR cf and 11vm dialects provide a C-style switch statement
as an IR operation. These switch statements operate only on integer values, which
simplifies the lowering process, as only integers have to be compared. In addition, the IR
switches always have a default case.

Generally, there are three main ways to lower a switch statement to machine code; we
will only outline these, a more detailed explanation can be found in [32, 33].

1. Use a linear sequence of if-style comparisons of the base value to each case. This is
referred to as a linear search.

2. Employ binary search to reduce the asymptotic number of comparisons to log(n),
where n is the number of cases. This is also referred to as using a comparison tree.

3. Generate a jump table where the i-th entry contains the address of the target block
for case i, or the default block if case i is not specified; then use the base value
to index into the table, to find the target block.?

3To reduce the size of the jump table, one can subtract the smallest case value from the base value.
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In their most common form, jump tables require max (case value) — min (case value)
entries, and can thus not be used on highly sparse switch-case statements. Furthermore,
implementing jump tables in MoNaCo would also require a new n-way branch instruction
to emulate the indirect branch in SSA, which would then require additional special casing
during encoding, to actually generate the table.

We thus opted to use the binary search technique over jump tables, as it can handle
all switches regardless of their case layout, and it could be implemented without changes
to the rest of the compilation process. In comparison to the linear if-sequence, binary
search has better asymptotic complexity, thus improving worst-case performance.

Note though, that both the jump table and the linear search might yield better
performance in some cases. Especially for highly predictable switches that almost always
branch to the same one or two blocks, a linear search ordered by estimated frequency
would excel in performance.

Address computation We will demonstrate how to perform address computation to
index into aggregate data structures in the AMD64 dialect using the example of lowering
the 11vm dialect’s getelementptr (GEP) op. This op models the LLVM-IR instruction
with the same name. Broadly, getelementptr uses successive indices, to compute the
exact address of a nested sub-element, in some cases with arbitrary depth. For a detailed
explanation, please refer to the LLVM language reference manual [34] as well as the page
dedicated to explaining the getelementptr instruction on the LLVM website [35].

In general, we iterate through the indices and emit instructions to add the computed
offset for the current index to the base address. The final base address obtained in this
way is then returned as the result of the lowered getelementptr op. Each GEP op can
have a mixture of fixed, attribute-like indices, and dynamic, SSA-valued indices. We will
first cover the fixed case, and then extend the solution to the dynamic case.

For fixed indices, MoNaCo currently handles structs, arrays, pointers, and integers
as the type to index into (referred to as the base type). When we encounter an array or
pointer base type, we multiply the supplied index by the size of the element type, and use
this as the immediate to be added to the base address. For a struct base type, we use
the same method as LLVMStructType: :getTypeSizeInBits* to calculate the size and
offset of individual members. The only difference between the two approaches is that
getTypeSizeInBits traverses the entire struct, whereas we stop at the element with
the supplied index. We use the size of the struct up to this point as the offset to add to
the base address. In the case of an integer base type, we generate an instruction to add
the supplied index, multiplied by the size of the integer type, to the base address.

When handling dynamic indices, there are only two differences to the above:

1. We generate an IMUL64rri instruction to perform any necessary multiplications,

instead of performing them at compile-time.

2. Struct base types are not handled, as the 11vm dialect forbids dynamic indices into

structs.

Note that we skip generating the add instruction, if the computed offset is zero. This
avoids unnecessary instructions. We would also like to point out, that we exclusively

“See MLIR’s 1ib/Dialect/LLVMIR/IR/LLVMTypes.cpp lines 560 to 580
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3.4 Register Allocation, SSA Destruction, and Encoding

utilize the ADD64rr, ADD64ri and IMUL64rri instructions to do address computation.
This was done to simplify the lowering process at the possible cost of run-time speed of the
generated code; in particular, we do not employ the scaled-index addressing modes offered
by the x86-64 architecture [36], as using them would not only increase the complexity of
the lowering, but they also only cover a subset of all possible cases.

3.3.3 Custom lowerings to the target-specific dialect

This section details the process of providing custom lowerings from user-defined operations
to a target-specific dialect, again using AMD64 as an example.

1. To add user-defined conversions to the MoNaCo instruction selection process, first
create an mlir: :RewritePatternSet, and an mlir::TypeConverter.

2. Design and specify type conversions to lower types of custom dialects to register
types. For an example of this, see MoNaCo’s various populate. . .TypeConversions
methods.

3. Create patterns lowering the custom dialect operations to AMD64; see the MLIR
documentation [24] for details. The available patterns® can be used as a starting
point.

4. Then call the appropriate populate functions provided by MoNaCo, to add relevant
predefined type conversions and conversion patterns to the TypeConverter and
RewritePatternSet. Also add the custom type conversions and patterns defined
carlier.%

Note that this simple version of the process can only employ predefined AMD64 instruc-
tions. Should the user wish to utilize more instructions, they can exploit the extensibility
of certain MLIR dialects: the AMD64 dialect is an mlir: :ExtensibleDialect, a feature
originally designed to provide users with the ability to modify a dialect at run-time. We
have chosen to make the dialect extensible in order to provide full flexibility to a MoNaCo
user, allowing them to define new instructions at run-time. For details, please refer to the
MLIR documentation [24], as well as the C++ header and implementation files generated
from MoNaCo’s own instruction definitions.

3.4 Register Allocation, SSA Destruction, and Encoding

Register allocation and encoding are performed in a single pass over the instruction-selected
IR; SSA is destructed on the fly.

This pass traverses the IR in reverse post-order (topological order) of the CFG. This
is to ensure that the definitions of values are visited before their use, and that as many
predecessors of a basic block as possible are visited before the block itself [17]. The latter
property is desirable, as it provides us with the most information possible, allowing for
better register allocation and spill decisions, although the current register allocator does
not use this information.

5See the first section of MoNaCo’s src/isel. cpp.
5See MoNaCo's src/isel.cpp around lines 1750 to 1800.
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Note that in the following, we will not distinguish register constraints specified by the
System V ABI [37] and register constraints imposed by the hardware, as they mostly
require the same handling in practical terms.

Many x86-64 instructions constrain their operands or results to specific registers, or
require that their result is in the same register as one of their operands. To simplify the
register allocation process under these constraints, we devised a partition of the available
registers. The three general purpose register families AX, DX, and CX, with 64-bit registers
rax, rdx, and rcx are designated as operand registers, all other registers are storage
registers.

As a heuristic, operand registers are never used to permanently store values; they are
treated as entirely volatile, and in most cases it is assumed that their contents could
change arbitrarily from one instruction to the next. These specific registers were chosen
because almost all register constraints use these registers. For instance, DIV and MUL are
constrained to parts of rdx and rax, and the variable shift instructions can only use the
cl register as their second register operand.

This heuristic also allows operand registers to be used whenever a temporary register is
needed, without needing to spill any value; as there are three of them, one is free in almost
any situation in which the need for a temporary register could arise. Temporary registers
are needed throughout the register allocation process, such as to solve the swap problem
in SSA destruction, or to move a value from an arbitrary memory location to another, as
can also happen in SSA destruction. Another example includes the calling of external
functions in JIT compilation, here MoNaCo emits the following instruction sequence”:

MOVABS rax, // address of function to call
CALL rax

Due to the volatility of rax in our model, this can be done safely whenever required, and
does not require spilling any values.

We treat storage registers and stack slots almost interchangeably: unlike operand
registers, storage registers are never used in a way that could overwrite the value they
hold, if that value is still used after the instruction; this further simplifies the allocation
process. Both storage registers and stack slots combined are hereafter referred to as value
slots or simply slots.

As for SSE registers, XMMO, XMM1, and XMM2 are designated operand registers for the
same reasons as the general purpose registers. The remaining registers are again storage
registers. We still employ operand registers for SSE registers, to unify the approach
between both register banks, even though most SSE instructions do not have operand
register constraints, with the notable exception of BLENDVPS.

3.4.1 Register Allocation Strategy

To simplify register allocation, we decided to first implement an entirely stack-based
allocator. This allocator effectively does not use any storage registers; it assigns a unique
stack slot to every value. Note that this is a significant overapproximation of necessary

"Note that in the case of variable argument functions, the ABI [37] requires al to contain an upper
bound on the number of SSE registers that contain arguments. This is not currently supported.
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stack space, as the allocator does not compute at what point in the program values are
not needed (live) anymore.

Whenever a value is used, it is loaded from the stack into a fixed operand register,
regardless of the current contents of that operand register. This also means it is possible
for the same value to be loaded into the same operand register, even though the register
has not been cleared; in trivial cases, MoNaCo can be compelled to omit such unnecessary
spill loads (-fomit-one-use-value-spills). The fixed operand registers are chosen in a
way that respects operand register constraints of all instructions currently in use by the
AMD64 dialect.

As the current strategy does not use storage registers, we can use rbp to store the
stack frame base pointer without truly sacrificing a register. This simplifies stack accesses,
especially in the case of calls to functions that require stack arguments, as they result in
a variably-sized stack frame for the caller.

It is clear, that this strategy results in code which inadequately uses both the available
registers and the available stack-space. But this kind of stack-based allocator is simple to
implement, and can be used to test the correctness of the rest of the compilation process
and of a more sophisticated allocator that could be implemented in the future.

To allow a future register allocator to be implemented without unnecessary code
duplication, we have divided the functionality of the register allocator. An abstract base
class tries to make as few decisions regarding register allocation strategy as possible
while bundling as much functionality as necessary. A concrete implementation class then
actually makes allocation decisions, utilizing the generic functionality provided by the
base class.

The abstract base class can thus take care of SSA destruction and the insertion of code
to move values between slots, as well as to and from operand registers. It also determines
the iteration order and calls the functionality of the concrete implementation class in the
right order, accounting for necessary special casing.

The concrete implementation class provides methods to load an SSA operand of an
instruction from its slot into an operand register, as well as to allocate and encode an
instruction, once all its operands are loaded. To perform encoding, it calls into a further
Encoder class, which again encapsulates functionality.

3.4.2 SSA Destruction

Whenever the register allocator encounters a CFG edge, it inserts instructions to move
the values for the block arguments of the target block to the appropriate value slots; it
considers both critical edges (lost-copy problem), and data dependencies (swap problem),
as outlined in Chapter 2. The swap problem is handled equivalently to Briggs et al. [16].

Lost-copy problem As previously mentioned in Chapter 2, a critical edge flows from
a block a with multiple successors, to a block ¢ with multiple predecessors. Note that
the AMD64 dialect currently does not use indirect branches for internal control flow, so
a control flow edge can either be caused by a conditional branch, or an unconditional
branch. As a has multiple successors, an unconditional branch is impossible for the (a, c)
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edge. Therefore, as the (a,c) edge is guaranteed to be produced by a conditional branch,
we know the RFLAGS register contains a specific value if the branch is to be taken.

The simplest way to solve the lost-copy problem is often cited as splitting the critical
edge into a separate block. Splitting the edge, and inserting the move instruction in the
new block b, instead of at the end of a, ensures that the move is only executed when this
edge is actually taken. In particular, this means that the move cannot overwrite a value
from any of the other edges targeting ¢, which also insert move instructions.

Instead of splitting the critical edge, we propose to execute the moves on a critical
edge using the CMOVcc instruction, and place them at the end of block a as normal. This
ensures they are only executed when the edge is taken; there are no additional comparisons
needed, as the CMOVcc instructions can simply use the same predicate and flags as the
conditional jump itself. We can therefore avoid dealing with the management overhead of
inserting a new split-block when some blocks have already been encoded and a fixed block
iteration order has been computed beforehand. Another advantage of this approach is
that, if the block argument resides in a register, the direct CMOVcc to a register does not
require an additional temporary register. Although when moving from either a memory
location or a register to a memory location, a temporary register rT is necessary: first,
the destination’s current value is unconditionally moved to rT. Then, the source value is
conditionally moved to rT, potentially overwriting it. Finally, we unconditionally move
the value from rT to the destination.

Another approach to solving the lost-copy problem requires a distinct temporary register
per CFG edge, that stays live until block ¢ [38]; our temporary register on the other hand
can be reused between all CFG edges and only has fixed liveness of a few instructions.
This same alternative approach would also require changing the register of the block
arguments’ uses in the following block, which would again add complexity.

Note that in the case of a memory-to-memory move, any traditional MOV-based approach
would also require a temporary register. However, there are also some disadvantages
to the CMOVcc-based approach: first, the allocator that is currently implemented never
allocates registers to block arguments, for simplicity; so at the moment, only the approach
involving the temporary register can be used. Second, the CMOVcc instructions perform
worse than simple MOV instructions in a number of ways:

1. Due to their conditional nature, move elimination [31] is not possible for CMOVcc
instructions, thus CMOVccs cannot have zero latency.

2. On modern Intel architectures, CMOVcc instructions require the complex decoder
(see [39] for detail), meaning that in most cases four times as many MOVs could have
been decoded in the same time [40, 41].

All in all, the CMOVcc approach thus results in worse run-time performance on the critical
path, but it requires only one temporary register and no additional blocks, simplifying
the compilation process.
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3.4.3 Encoding

Globals and .data As explained in Section 3.2, the first step in encoding is to emit the
.data section, by iterating over all globals, and writing their data to the section, while
leaving space to respect their alignment requirements. During this phase, the addresses
of globals are also saved. Externally defined global symbols are ignored here, as their
address is already known at this point.

Function prologue and epilogue Afterwards, the registers for each function are allocated,
and the function is encoded using the Fadec encoder library. However, before this can
happen, the function prologue needs to be emitted. The prologue includes the allocation of
the function’s stack frame, preservation of callee-saved registers, and saving the function’s
register and stack arguments. The aforementioned stack frame base pointer in rbp also
needs to be set up here. The function epilogue emitted before each RET instruction needs to
clean up the stack frame and restore callee-saved registers. Most of this is straightforward,
but allocating the stack frame presents some challenges: at this point in the compilation
process, we have not yet register-allocated the function, so we do not know the size of
the stack frame in advance. We thus emit a phony stack frame allocation instruction,
and save its location, to be corrected when we know the size of the stack frame at the
end of the function; the same is done for all stack frame deallocations in all epilogues.
But x86-64’s variable-length encoding leads to another problem: encoding SUB rsp, O
as the phony allocation only occupies four bytes in the efficient encoding, because the
smallest immediate encoding possible is used, which allows for an 8-bit immediate. If we
were to rewrite this with a stack frame allocation larger than 255 bytes, a larger encoding
would be used and would overwrite part of the code that follows. Instead, we use the
seven-byte wide SUB rsp, 0x01000000 as the phony allocation, to ensure the encoder
chooses the biggest possible immediate size of four bytes. We can then manually overwrite
the four byte immediate with the actual value of the stack frame allocation; we know this
immediate to start exactly three bytes after the start of the instruction itself. During this
allocation, we also take care of aligning the stack pointer to a 16-byte boundary like the
System V ABI [37] requires.

Note that it would also be possible to fully re-encode this seven byte instruction with
the new immediate, resulting in possibly less than seven bytes to be written, and proceed
to fill the bytes that were not used with one-byte wide NOP instructions (0x90). However,
it is both easier to just overwrite the immediate and better in terms of run-time, as NOPs
still require execution time [42].

Function body To encode the body of the function, the aforementioned allocate and
encode method in the register allocator calls the Encoder class to encode each instruction.
The allocated register is first written to the value’s register information as explained in
Section 3.2, this is then used by the Encoder class to pass on to the Fadec encoding library.
Note that MoNaCo can be configured to omit trivially dead instructions (-fcodegen-dce);
these can either occur in the source module, or be generated by the instruction selection
in some cases.
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Passing registers to Fadec Not all registers used by an instruction need to be passed
to Fadec though. First, there are the two-operand instructions with destructive source,
i.e., that return their result in the register of the first operand; for example ADD rax,
42. Fadec only needs to be passed rax once to encode this instruction, even though
there are actually two SSA values involved, as can be seen in the equivalent MLIR
code: %1 = amd64.ADD64ri <{immediate = 42}> 7%0. This case is recognized using the
amd64: : Operand0IsDest0 MLIR trait, which can be attached to an op in its TableGen
definition; it compels the encoder to omit passing the register of the first operand. In
addition, fixed result register constraints do not need to be passed to Fadec at all. The
MUL instruction combines both of these properties: in the IR it can be used to multiply any
two values and handle their result just as any other SSA value: %2 = amd64.MUL64r %0,
%1. But the actual instruction can only be passed a single register, which is multiplied
with rax; the result resides in rax as well. So the encoder first omits the rax destination
register, because it is implicit, and then recognizes that MUL is conceptually a two-operand
instruction with destructive source (although the destructive source is implicit), and thus
omits the register of the first operand. As a result, the encoder ignores the registers of
the %2 and %0 values from the example, to correctly call Fadec only with the appropriate
MUL mnemonic, and the register of %1.

Note though, that some operand register constraints do need to be passed to Fadec, for
example the cl constraint of the second operand of the variable shift instructions.

Encoding memory operands Memory operands are represented with the memLoc type
in the AMD64 dialect. Any op returning a memLoc implements an encode method, defined
along with the rest of the op in TableGen through inline C++. An Alloca0Op, for instance,
uses Fadec’s memory operand facilities to return an offset into the stack frame from
its encode method. The amd64: :EncodeOpInterface lets the Encoder know, that an
operand supplies its own encoding, which the Encoder can then query to encode the
memory operand.

Unlike the passing of registers to Fadec and the encoding of memory operands, some
other special cases cannot be generalized and need to be handled on a per-instruction
basis. As explained in Section 3.2, these are also indicated to the encoder via MLIR traits;
the prominent example being the variants of the DIV and IDIV instructions.

Function calls Function calls need various special handling. As MoNaCo prioritizes
JIT code generation, we chose to first support the handling of external functions for the
JIT mode. External functions include those from the libc and other libraries. Like with
externally defined global symbols, emitting relocations for non-JIT external calls is not
implemented yet. During JIT compilation, dlsym() is used to retrieve the address of an
externally defined function. If the symbol is not defined, compilation stops and dlerror ()
is used to detail the failure. dlsym() and dlerror() are also used for retrieving the
address of an external function through the amd64: : AddrOfFunction meta op.

When calling external functions, we decided against using a procedure linkage table
(PLT) in favor of simply moving the address of the external function into a register (rax),
and performing an indirect CALL. This is also the default strategy employed by widely
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used JIT compilation frameworks like LLVM. Additionally, emitting and tracking a PLT
would have increased the complexity of the encoder further.

Before a call is performed, function arguments need to be moved to the correct registers
and stack slots. We currently support an arbitrary amount of integer arguments including
those passed on the stack, and up to eight floating-point arguments (passed in XMMO to
XMM7). Care needs to be taken, as stack arguments:

1. are rounded up to 8 bytes [37], we handle this by always performing a PUSH with

8-byte operand size;

2. can break the 16-byte alignment of the stack pointer [37] with their 8-byte size (we

conditionally push 8 phony bytes to the stack to prevent this);

3. are passed in reverse order [37], so we collect the integer stack arguments and iterate

over them in reverse order as soon as all are known.

Calls and branches to parts of the code which are not yet generated need to be noted,
and their offsets need to be fixed up at the end of the encoding process. Fadec supports
this with the FE_JMPL flag which compels Fadec to use the longest possible jump encoding.
If this is supplied both when a phony branch to an unknown target is inserted, and when
resolving this branch later on, the instruction sizes are guaranteed to be the same.

3.5 Limitations

Although MoNaCo does have support for lowering many operations, it is not a fully
mature code generator yet. We would like to note a few of the features still missing due
to the constrained scope of this thesis.

First, support for complex types like structs is limited. Struct types can be indexed into
using the GEP instruction, but passing them as block arguments, function arguments,
or returning them is not supported yet. Float-type block arguments are not supported
either, and support for the lowering of floating-point operations is sparse. Vector types
utilizing modern CPUs’ SIMD capabilities are not supported at all.

Stack unwinding and thus C++ exceptions are unsupported. Debug information and
the writing of ELF relocatable object files are not supported. Globals that get initialized
using an MLIR initializer region can only be initialized to zero. We do not support
functions with more than one return value.

There is only partial suport for the System V ABI [37] and its complex argument-passing
and value-returning rules. In particular, defining functions with variable arguments is
entirely unsupported, calling functions with variable arguments only works as far as it
would be equivalent to calling a normal function.® Passing more than eight float arguments,
meaning some would be passed on the stack, is unsupported, as is returning and passing
of struct types as mentioned before.

All the limitations above are only due to the required implementation effort, and not
because of any structural limitations in MoNaCo. However, MoNaCo currently only
supports x86-64; support for other target architectures would require significant structural
changes to support a new target-specific dialect and extend the register allocation plus
encoding pass to support the new target.

8This turns out to be enough to reliably call printf.
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To benchmark the performance of MoNaCo, and compare it to that of the LLVM-based
code generation process for MLIR, we chose the 505.mcf_r SPECrate benchmark (‘MCE’)
from SPEC CPU 2017 [10], a suite designed to resemble real world applications; the rest
of the benchmarks from SPEC CPU 2017 were omitted due to the limited scope of this
thesis. MCF itself uses a network simplex algorithm to schedule public transport vehicles.
We ran the benchmark in single-threaded mode and used the reference input workload size.
We also used the Dhrystone benchmark [9], specifically version 2.1, modified to be strictly
ANSI C compliant [43], compiled with ~-DTIME and -DDHRY_HZ=100. We set Dhrystone to
1,000,000,000 iterations for run-time tests.

We will first compare MoNaCo’s compile-time performance with LLVM’s, then compare
the run-time performance of the generated code.

4.1 Setup

Each of the two C benchmarks was compiled with clang -00 and clang -02 to gen-
erate four sets of LLVM modules in total. Each set of modules was then linked into
a single LLVM module with 11vm-1ink. Next, every module was converted to MLIR
using mlir-translate -import-1lvm, resulting in a total of four MLIR modules in
the 1lvm dialect. For the -02 compilations, we additionally added -fno-vectorize
and -fno-slp-vectorize, to prevent Clang’s autovectorization engine from emitting
vectorized IR, which MoNaCo cannot handle. mlir-translate -import-11lvm inserted
dead code pertaining to globals into the MLIR module, which we eliminated manu-
ally, because it contained operations that MoNaCo does not support yet. Finally, the
MLIR module was JIT-compiled using MoNaCo, once with its native code generation
process, once in its fallback configuration in which it calls LLVM’s MCJIT through an
1lvm: :EngineBuilder. The engine was instructed to use LLVM’s FastISel instruction
selector which is the fastest one currently available, and to emit position independent
code with a small code model'; LLVM was also configured to use the lowest possible
code generation optimization level of None, to make LLVM as compile-time-performant
as possible. MoNaCo was configured to omit trivial cases of unnecessary stack spill loads
and dead code (-fomit-one-use-value-spills, -fcodegen-dce); this did not impact
compile-time performance beyond the margin of error.

All tools and code of the LLVM project were built with ~fno-omit-frame-pointer
and -fno-omit-leaf-frame-pointer from commit a403d75be7. MoNaCo was built from
commit 80c014e. LLVM, MLIR, and MoNaCo itself were compiled with gcc version 13.1.1

!See the System V ABI [37] for a more detailed explanation
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on -03. MoNaCo was linked statically against MLIR and LLVM, but linked dynamically
against glibc 2.37 and libstdc++ 6.0.31.

The benchmarks were run on an AMD Ryzen 7 5700U system clocked at 1.8 GHz, with
CPU frequency scaling disabled; there were 16 GiB of main memory available, running at
3200 MT/s; the system ran Arch Linux kernel version 6.3.6.archl-1 in 64-bit mode.

To ensure that measurements were reproducible and taken at least one second apart,
compile-times were measured after 1000 repetitions, and run-times after 10 repetitions.
The times for an individual run were obtained using the arithmetic mean. Note that we
tried to only measure parts of the compilation process that occurred both in MoNaCo and
in LLVM JIT compilation. However, due to the nature of MoNaCo’s memory management,
we were not able to include a call to mmap to allocate the memory in which the code is
stored, and a call to mprotect to set the execute bit for pages containing code.

To further analyse individual components of the two compilation processes, we used
the perf profiler [44]. Note that as a sampling profiler, perf does not provide exact mea-
surements. Wherever possible, we thus validated these measurements through repetition
and by using other tools, such as LLVM’s TimeTraceProfiler.

4.2 Compile-time Performance

When measuring the compile-time performance of MoNaCo, we took combined measure-
ments of the entire compilation process, as well as isolated measurements of the two
phases of MoNaCo JIT compilation: instruction selection, and register allocation plus
encoding. In all cases, the sum of the two isolated measurements deviated from the
combined measurements by about 0.1% to 1%. As the individual measurements provide
additional insight, we will only report these and their sums.
We will use the number of lines of MLIR code in the input module as a very rough
estimate of code size. The major caveats of this estimate are:
e Not every line of IR code represents the same amount of information; some lines
contain a constant op, while others contain a complex op like GEP.
¢ Between optimized and unoptimized versions of the module, some lines cannot get
reduced, such as metadata, global declarations, and function declarations.

4.2.1 Results

Benchmark | LLVM MoNaCo  MoNaCo LLVM MLIR
(ms) (ms) FastISel module

failures lines

Dhrystone -00 | 10.35 4.73 0.457 6 1077

Dhrystone -02 | 9.81 3.61 0.368 2 773

MCF -00 | 49.67 37.18 0.749 11 8419

MCF -02 | 50.11 25.04 0.500 33 4990

Table 4.1: Compile-time performance of MoNaCo and LLVM JIT compilation.
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MoNaCo vs. LLVM MoNaCo generally outperforms LLVM in JIT compilation, as can
be seen in Table 4.1. MoNaCo takes approximately 37% to 75% of the time that LLVM
takes to compile the benchmarks. Note that due to the nature of the benchmarking
process, the input module to both MoNaCo and LLVM is already a homogeneous module
in the 11vm dialect. For LLVM, this saves the time of converting a possibly heterogeneous
module to an 11lvm dialect module first, a step which MoNaCo does not require. This
means the results are skewed in LLVM’s favor.

Effect of input optimization We can see that MoNaCo benefits more from smaller
input code, as LLVM takes almost the same time on the unoptimized and optimized
modules in both cases. Notably, in the case of MCF, LLVM’s FastlSel instruction selector
failed and fell back to the slower SelectionDAG selector three times more often in the -02
module; 18 of the 22 additional fallbacks were triggered by calls to intrinsics, the other 4
by uses of the LLVM-IR select statement.

Between the unoptimized and optimized modules, MoNaCo’s performance improves
nearly linearly with the reduction in code size. When compiling the -02 Dhrystone
module, MoNaCo’s compile-time is reduced by about 23.7% of the -00 time, while the
code size is reduced by about 28.2% of the -00 module. In the case of the -02 MCF
module, MoNaCo’s compile-time is reduced by about 32.7% of the -00 time, with code
size reduced by about 40.7% of the -00 module.

These discrepancies between the decreases in MoNaCo’s compile-time and lines of code
are unsurprising, as the number of lines is an imperfect measurement for code size, and
the -02 input is of higher complexity, as mentioned before.

LLVM LLVM
50 1 W LLVM Instruction Selection
LLVM Rest
I MoNaCo Instruction Selection
40 MoNaCo Rest MoNaCo
é 30 1
<]
£
E
20
LLVM
10 LLVM
MoNaCo MoNaCo
0 .
Dhrystone -00 Dhrystone -02 MCF -00 MCF -02
Benchmark

Figure 4.2: Compile-time performance breakdown
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MoNaCo performance breakdown MoNaCo consistently spends 75% to 80% of its
compile-time in instruction selection, while LLVM only takes around 20.5% to 24% for
this (see Figure 4.2). LLVM thus outperforms MoNaCo in instruction selection both in
relative and absolute terms without exception, especially on larger files; MoNaCo’s overall
performance lead stems solely from gains over LLVM in the rest of code generation. This
poor instruction selection performance by MoNaCo is surprising, given that nearly all
of its instruction selection patterns are trivially simple, and the other pass over the IR
handles register allocation, SSA destruction, and encoding in one step.

For all code generation stages after instruction selection, MoNaCo only takes between
10.3% and 19.5% of the compile-time that LLVM needs for these stages.

4.2.2 Analysis and Discussion

In the following, any performance numbers refer to MoNaCo’s compile-time performance
on the MCF -02 module as it is the most complex module and covers the most cases.
The performance measurements reported here were obtained using perf.

4.2.2.1 Optimization level

As seen in Subsection 4.2.1, MoNaCo’s compile-times improve nearly linearly with the
code size reduction in an optimized input module, compared to an unoptimized one.
LLVM’s compile-time performance remains almost unaffected by the optimization level of
the input module. This is explained by a number of factors: first, LLVM’s code generator
is more complex, so for these semantically similar -00 and -02 modules, the kinds of ops
that are employed affect LLVM’s compile-time performance more than MoNaCo’s, which
scales more directly with the raw number of ops. Second, more complex IR structures
present in the -02 modules also require more complex handling in the code generator:
allocas for example are almost entirely eliminated by optimization of the input module,
MCF contains 331 more alloca ops in the —00 module. This results in a more complex
register allocation for the -02 module, as allocas do not already set the stack slots for
variables in the IR anymore and this task now falls to the register allocator. This higher
input complexity is less of an issue for MoNaCo, as it favors simplicity throughout the
entire compilation process, although this comes at the expense of code quality. Third, the
increased number of fallbacks to SelectionDAG negated some of the performance benefit
of a smaller input: the FastISel selector took 2.5 ms less on -02, but the 22 additional
fallbacks resulted in SelectionDAG taking 2 ms more on the -02 module compared to -00.

Note that it is unsurprising that -02 can produce a less FastISel-friendly module, as
the combination of optimized IR compilation, but unoptimized machine code generation
is uncommon.

4.2.2.2 MLIR design drawbacks

MLIR. does not allow storing direct references to a function within another operation,
instead it encourages referring to the function using its symbol name, causing some unnec-
essary duplicate symbol look-ups in MoNaCo. This is done to simplify multithreading [23],
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although we want to note that multithreaded dialect conversion is unsupported at the
time of writing.

Although many parts of the MLIR ecosystem are extensible, it is neither possible to
store custom information on values, nor on blocks. Extensibility instead centers around
ops, but this is not fine-grained enough for MoNaCo’s usage of MLIR. Information that
could be stored on values, individual op results and block arguments in particular, has to
be stored in hash maps outside the framework instead. For example, MoNaCo’s register
allocation stores information about which stack slot or storage register a value resides in,
in an instance of mlir: :DenseMap. 38% of the total time spent in register allocation, SSA
destruction, and encoding is spent solely on accessing this map, which would be avoidable
if the information could be saved directly on values. Another 6% of total register allocation
time is spent on looking up registers of block arguments in a separate mlir: :DenseMap.

4.2.2.3 MLIR implementation issues

MLIR’s interfaces enable generic access to many parts of the IR, but due to their im-
plementation, accessing an ops representation as an amd64: : InstructionOpInterface
costs another 16% of the total register allocation time. The rest of register allocation time
is spent making spill decisions, destructing SSA, and encoding instructions, and makes up
40% of the total register allocation time.

MLIR’s dialect conversion infrastructure tries to fold operations into one another with
the fold mechanism, which cannot be turned off. This feature can be helpful, but MoNaCo
does not define any operation folding rules yet. 12.7% of the time spent in instruction
selection, is spent solely on trying to fold unfoldable operations. Adding a bool-type
parameter to the MLIR functions initiating dialect conversion could remedy this issue.

MLIR also takes care to always be able to revert any changes made during dialect
conversion. This is a vital feature, but a dialect conversion driver which does not take
these precautions could improve performance in the case of MoNaCo, which does not need
error handling that recovers the original module. This driver could prevent additional
passes over the rewritten operations, and save time creating, inserting, and later replacing
mlir::UnrealizedConversionCastOps, which could instead be realized immediately. In
addition, 3% of instruction selection time is spent just requerying values that already had
their rewrite determined, but not applied yet.

Overall, only about 68% of instruction selection time is actually spent matching patterns
and determining their rewrites.

MLIR realizes all its patterns through virtual functions enabling dynamic polymorphism.
This is the most flexible approach, but prevents inlining of pattern matching functions,
meaning that every pattern that fails to match, still requires at least one virtual function
call. MoNaCo employs one pattern per possible bit width of an operation, as this is the
most idiomatic way to use the conversion framework. The four possible bit widths for a
typical integer operation thus require up to four virtual function calls by the conversion
framework to match a pattern. Through experiments with the order in which patterns are
matched, we can quantify part of this overhead. For MCF -02, we achieved a reduction
of 9.1% in instruction selection time when matching in descending order of bit width,
compared to the default ascending order. Note that this improvement still includes the
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virtual function call overhead from the matching pattern. If these calls were inlinable, it
would additionally be possible to eliminate the common sub-expression that computes
the bit width for each result. MLIR could employ the C++ curiously recurring template
pattern (CRTP)? to replace dynamic polymorphism with static polymorphism, allowing
inlining, and eliminating virtual function call overhead.

4.2.2.4 Discussion

Overall, MoNaCo consistently outperforms LLVM in JIT compile-time, but is being held
back by several issues pertaining to MLIR, most notably the performance of the dialect
conversion framework, which MoNaCo’s instruction selection is based on.

After instruction selection, MoNaCo excels at compile-time efficient code generation and
beats LLVM by a large margin in all benchmarks. This is expected, as LLVM performs
more steps like liveness analysis to improve code quality.

4.3 Run-time Performance

4.3.1 Results
‘ LLVM (s) MoNaCo (s) MollaCo
Dhrystone -00 | 105.6 445 4.21
Dhrystone -02 | 62.8 239.6 3.82
MCF -00 | 23.76 108.34 4.57
MCF -02 | 24.44 79.76 3.26

Table 4.3: Run-time performance of MoNaCo and LLVM JIT compilation.

MoNaCo consistently takes about 3.2 to 4.6 times as long as LLVM in the run-time
benchmarks (see Table 4.3), and MoNaCo generally tends to profit more from an optimized
input module. Both of these facts are to be expected: first, MoNaCo is not optimized
towards run-time performance yet. Second, LLVM’s FastISel still performs some code
quality transformations that are beneficial to compile-time, like constant folding, while
MoNaCo performs almost none. FastISel has less opportunities to try these on a more
optimized input module, while MoNaCo directly profits from this, especially as less input
ops also mean fewer stack spills have to be performed.

LLVM unexpectedly performs worse on the -02 MCF module, than on the -00 version.
As mentioned in Section 4.2, almost all allocas were eliminated by the optimizer in MCF
-02, making register allocation more difficult and resulting in less efficient stack usage
and ultimately worse performance. We experimented with a higher code generation
optimization level equivalent to clang -02, which resulted in a run-time of 15s on the
MCF -02 module. This outcome confirms that the optimized input module alone was not
well suited to LLVM’s unoptimized code generation path.

2See https://en.cppreference.com/w/cpp/language/crtp for a detailed explanation.
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4.3 Run-time Performance

4.3.2 Discussion

The factors that make MoNaCo perform worse in terms of run-time are its fully stack-
based register allocation that does not utilize all available registers, as well as the
unrefined instruction selection patterns. Despite that, MoNaCo’s compile-time focused
code generation still attains run-time performance within an order of magnitude of
LLVM'’s most compile-time-oriented code generation configuration, which employs more
sophisticated instruction selection, and register allocation that uses liveness information.

MoNaCo is thus a good fit for JIT compilation applications in which compile-time plays
a larger part in end-to-end execution lag than run-time.

As explained in Chapter 3, both MoNaCo’s instruction selection patterns, and its register
allocation are designed to be extensible, to be able to provide code quality improvements
and thus better run-time performance in the future.
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Machine code instructions as MLIR operations The arm_sve [45], x86vector [46],
arm_sme [47], and amx [48] in-tree dialects are similar to MoNaCo in modeling machine
code as MLIR dialects. They model instructions from ISA extensions for vector or matrix
operations, as MLIR ops. In the existing code generation path, the operations of these
dialects are translated to target-specific LLVM intrinsics. Like MoNaCo, they are also
designed to be lowered to from higher-level dialects, such as the more generic MLIR
vector dialect [49].

There are also in-tree dialects targeting code generation for GPUs at various levels
of abstraction [50, 51, 52, 53, 54]; the NVVM dialect [53] and ROCm device library
dialect [54] in particular model target-specific GPU operations; these get translated to
LLVM intrinsics in the existing code generation path [22]. However, as MoNaCo is entirely
focused on traditional CPU code generation, we will not study these dialects further.

LLVM intrinsics themselves also partly represent ISA instructions. However, the subset
of intrinsics defined in the 11vm dialect does not include these target-specific intrinsics;
the task of representing these falls to other dialects such as those mentioned above. Thus,
the 11vm dialect is of a higher-level than MoNaCo’s target-specific dialects.

To the best of our knowledge, there is only one other MLIR dialect that represents ISA
instructions like MoNaCo — fully qualified with regard to their opcode. This approach
was developed out-of-tree by Madhusudan et al. [55], but few details about it are publicly
available. The approach focuses on porting LLVM’s machine specific MIR representation
to MLIR by introducing both a generic MIR dialect as a wrapper around LLVM’s MC
layer [27], as well as MIR-based target-specific dialects, such as an x86-64 dialect. Thus the
lowering is divided into more steps compared to MoNaCo: first, the input is lowered to the
11vm dialect, then to the generic MIR dialect, followed by a final MLIR dialect lowering to
a target-specific dialect; the module can then be printed as assembly in another pass, to be
assembled and linked by external tools. They plan to run various code generation passes
that are also found in LLVM’s back-end as further intermediate steps, to perform, e.g.,
register allocation; it is not clear whether a working register allocator is implemented yet.
This architecture makes it structurally less efficient than MoNaCo’s two-pass approach.
Moreover, the focus of the project seems to be on porting the LLVM code generator to
MLIR, rather than enabling custom user-defined lowerings from MLIR to machine code;
there is not enough information available to assess whether this is supported by their
approach. The project seems to have stalled since its presentation in 2021.

xDSL xDSL [56] is a Python-based sister framework to MLIR that also allows users to
define custom IRs, and implements a dialect representing the instructions of the RISC-V
ISA. Just like MoNaCo, register allocation is performed on this dialect, but in its own
pass. Instead of directly emitting machine code, the xDSL RISC-V dialect emits textual
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RISC-V assembly in another pass. This not only requires a subsequent pass over the code
by an assembler, but the assembler needs to perform more work than just translating text
to machine code one-to-one, as it needs to resolve jumps, process directives and resolve
instruction aliases employed by the xDSL RISC-V dialect. The register allocator that
is currently implemented for xDSL’s RISC-V dialect is more sophisticated than the one
implemented for MoNaCo, as it utilizes the available registers. xDSL dialects are specified
in IRDL [57], an IR definition language similar to TableGen, but designed specifically for
defining intermediate representations for SSA-based compilers.

Thus the biggest differences between xDSL’s RISC-V dialect and MoNaCo are: xDSL
is implemented in Python, and it emits textual assembly code instead of machine code,
this means fully compiling xDSL RISC-V code after it has been emitted takes at least
three passes: register allocation, assembly writing, and assembling. If JIT-compiling,
another pass is typically required to link the assembly into an executable form. MoNaCo
is implemented in C++, and emits machine code directly after instruction selection, in
a single second pass over the IR. Due to its architecture, xDSL can thus not achieve
the same level of performance. But as it is Python-based, it provides an easier entry to
compilation for extensible intermediate representations than MoNaCo does.

LLVM MIR Finally, LLVM’s own MIR format is also an IR designed for code generation
and initially instruction-selected in SSA form. Fundamentally, MIR tries to be as machine
agnostic as possible, which makes sense given LLVM’s vast array of supported target
architectures. MoNaCo’s only target-specific dialect and register allocator on the other
hand are specialized to operate on the x86-64 architecture only. This difference can be seen
in the representation of register constraints and instruction special cases in MIR compared
to MoNaCo. MoNaCo tries to minimize hassle for the user and its register allocation
can handle register constraints specified on the instructions themselves; notices of special
cases can be attached to a MoNaCo instruction op via MLIR traits. The combination of
these two properties results in MoNaCo’s transparent handling and smooth representation
of a highly constrained instruction such as x86-64 IDIV:

// example constants for X, Y

%0 = amd64.MOV32ri <{immediate = 1337}> : !amd64.gpr32
%1 = amd64.MOV32ri <{immediate = 42}> : !amd64.gpr32
%quotient, Yremainder = amd64.IDIV32r (%0, %1) : !'amd64.gpr32, !amd64.gpr32

In comparison, MIR might instruction-select an IDIV instruction like this (adapted
from [27], implicit register operands of CDQ, IDIV32r omitted for brevity):

;; example constants for X, Y
%regd = MOV32ri 1337

%regl = MOV32ri 42

;; start of ‘idiv X by Y’

$eax = COPY Y%reg0 ;; Copy X (in reg0O) into eax

CcDQ ;; Sign extend X into edx
IDIV32r Y%regl ;; Divide by Y (in regl)

%reg2 = COPY $eax ;; Read the quotient out of eax
%reg3 = COPY $edx ;; Read the remainder out of edx
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This disparity in ease of use is a natural result of the design goals of LLVM and MoNaCo:
with a fixed instruction set, any user who does not want to implement an LLVM back-end
typically never needs to interact with MIR directly, so it makes sense to make usability
sacrifices in order to make the functionality as generic as possible. A MoNaCo user
however is expected to exploit the potential provided by code generation that is aware of
high-level semantics, and thus needs to be able to lower their code without worrying about
register constraints or the special behavior of the IDIV instruction explained in Section 3.2.
This has the obvious downside of requiring more work per target-specific MoNaCo dialect.

Another difference to MoNaCo is that MIR’s SSA is destructed just before the register
allocation stage, in its own pass. As discussed in Chapter 4, LLVM’s code generator is also
more advanced than MoNaCo’s in terms of code quality, as it implements more complex
instruction selection patterns, instruction selectors, and register allocators, an instruction
scheduling phase, and various peephole optimizations.

However, like MoNaCo, LLVM’s back-end infrastructure also allows translation to
machine code without the use of textual assembly.
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JIT compilation is crucial to improving the performance of programs whose exact semantics
are not known until execution time. To simplify the development of JIT compilers,
especially in domain-specific applications, compiler frameworks are often used, and can
benefit from being able to precisely model the semantics of the target domain with custom
operations and types.

In this thesis, we described problems with the current LLVM-based code generation
path for the extensible compiler framework MLIR. In particular, we detailled how the
limited expressiveness of the LLVM instruction set constrains the potential of modeling
domain-specific information in an IR. To remedy these issues, we proposed MoNaCo, a
JIT-focused native code generator for MLIR, that allows its users to directly bridge the
semantic gap between their custom MLIR operations, and machine code. It does this while
maintaining the convenience in automatic handling of register allocation, SSA destruction,
and encoding, that the existing code generation path provides. We evaluated MoNaCo’s
compile-time and run-time performance in comparison to the LLVM code generation for
MLIR, and showed that it is possible to efficiently (JIT) compile an extensible IR to
machine code. MoNaCo consistently outperformed LLVM’s code generation process for
MLIR, reducing compile-time by between 25% and 63%. LLVM’s more complex code
generator outperformed MoNaCo in terms of run-time of the generated code, by a factor
between 3.2 and 4.6.

We thus conclude that MoNaCo has the potential to be a viable alternative to LLVM’s
code generation process for MLIR, especially in those JIT applications that prioritize low
compile-times over run-time performance. But our performance analysis also suggests,
that despite its advantages, relying on MLIR and its dialect conversion infrastructure for
instruction selection is not in the interest of compile-time performance. Implementing
MoNaCo from the ground up with a custom extensible IR could have been a better choice
in this regard.

6.1 Future Work

MoNaCo is now a working prototype, but there are still many ways in which it could be
improved. We will discuss some of these in the following.

6.1.1 Features

To be able to translate more code, support for more features is desirable. We described
some missing features in Section 3.5, and will now detail the most pressing ones.
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Support for more platforms First of all, MoNaCo currently only supports the x86-64
platform. To be able to translate code for other platforms, more target-specific dialects
would have to be defined, new encoding special cases handled, and the register allocator
would require generalization to arbitrary general purpose and floating-point register banks.

Support for more types Struct-type arguments and returns, as well as vector types and
instructions are not supported yet. Because of the complex handling of these types in the
ABI, as well as their diverse usage patterns in the IR, supporting these is not trivial.

Translation of additional in-tree dialects Currently, only arith, cf, func, and 11vm
are supported, and only to a limited extent. Support for the memref [58] dialect would be
beneficial, to avoid conversion of memref to 11lvm first. Support for the vector dialect, as
well as the various platform-specific vector and matrix dialects mentioned in Chapter 5
would go hand in hand with the support for vector types and more platforms.

Debug information and ELF file handling Finally, more peripheral features like debug
information, and ELF file handling could be the subject of future work. Writing ELF
relocatable object files would not require much work, as all the necessary information is
already present. However emitting debug information is a complex task that is highly
platform-specific, and would require support from the MLIR source dialects, which is
currently only implemented in the 11vm dialect. The implementation could at least already
make use of the source location information attached to each MLIR op.

6.1.2 Compile-time Performance

To improve compile-time performance, especially in instruction selection, which is the most
time-consuming part of MoNaCo’s compilation process, we aim to explore parallelizing
the instruction selection process in the future. MLIR is designed with multithreaded
compilation in mind, but its dialect conversion infrastructure does not support parallel
conversion directly. In addition, MoNaCo’s custom data structure used to store globals
would need synchronization. Solving these challenges would allow compiling different
functions in parallel and could improve compile-time performance on large modules,
although the overhead of the additional synchronization necessary on the globals and the
IR module itself might outweigh the gains.

6.1.3 Run-time Performance

A more sophisticated register allocator would achieve the highest improvement in code
quality. Through combining MLIR’s built-in support for liveness analysis and MoNaCo’s
extensible architecture for register allocation, this could be fairly straightforward to
implement. However, in preliminary testing, the built-in liveness analysis has proven
adverse to the goal of good compile-times, as it took more time than the entire second
phase of code generation currently does.

In addition, more sophisticated instruction selection patterns would need to be imple-
mented to improve run-time performance. This can be done entirely within the existing
framework, and does not require additional design work.
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