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ATLAS related data

MFER

ATLAS verif.

CTblLib

perf., prim,

small, trans.

CTBlocks

AGR TomLib
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Use case: A property concerning character degrees

(from a forthcoming paper . . . )

Consider G ∈

{A8,L3(2),M11,M22,M23,M24,U3(3),McL,Th,L2(8).3,O+
8 (2).3}

χ, ψ ∈ Irr(G ) with χ(1) = ψ(1) and ind(χ) = ind(ψ) =⇒ ψ = χ (∗)
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Character table of M11
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8 (2).3}

χ, ψ ∈ Irr(G ) with χ(1) = ψ(1) and ind(χ) = ind(ψ) =⇒ ψ = χ (∗)

What about extensions

1→ M → Ĝ → G → 1,

where M is a faithful irreducible GFp-module, for some prime p?

Claim: Property (∗) does not hold for these Ĝ = M.G .
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Regular orbits

Sufficient condition:

If G has at least 5 regular orbits on M∗

then property (∗) does not hold for M.G .

M∗ = {v ∈ M∗; |StabG (v)| = 1} ∪
⋃

g FixM∗(g)

|M| ≤ |G | · R(G ,M) +
∑

g |FixM∗(g)|

dim(FixM∗(g)) ≤ dim(M)(1− 1/r(g)), with 2 ≤ r(g) ≤ 5.

R(G ,M) ≥ 5 except in finitely many cases.

Get upper bounds for the dimension and the characteristic of M
such that M.G can satisfy (∗).
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Regular orbits: The group Th

For example, let G be the Thompson group Th.

We have max{r(g); g ∈ G} = 3.

R(G ,M) ≥ 5 if dim(M) ≥ 148.

dim(M) ≥ 248 by [Jansen 2005].

In the other cases, it is not that easy . . .
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Use the table of marks of G

For the remaining candidates M,
take a matrix representation for G affording M.

If available then use the table of marks of G :

Decompose M∗ into G -orbits,
compute the exact number of regular orbits in M∗.
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Table of marks of A5

julia> tom = table_of_marks("A5")

A5

1: 60

2: 30 2

3: 20 . 2

4: 15 3 . 3

5: 12 . . . 2

6: 10 2 1 . . 1

7: 6 2 . . 1 . 1

8: 5 1 2 1 . . . 1

9: 1 1 1 1 1 1 1 1 1

julia> representative(tom, 7)

Permutation group of degree 5 and order 10
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Use the table of marks of G

julia> function fix_dim(matgroup::MatrixGroup)

mats = map(matrix, gens(matgroup))

length(mats) == 0 && return degree(matgroup)

m = vcat([transpose(x)-one(x) for x in mats]...)

return nullspace(m)[1]

end;

julia> info = all_atlas_group_infos("A5", dim => 4,

characteristic => 0);

julia> mats = gens(atlas_group(info[1]))

2-element Vector{MatrixGroupElem{QQFieldElem, QQMatrix}}:

[1 0 0 0; 0 0 1 0; 0 1 0 0; -1 -1 -1 -1]

[0 1 0 0; 0 0 0 1; 0 0 1 0; 1 0 0 0]

julia> s = [representative(tom,i) for i in 1:length(tom)];
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Use the table of marks of G

julia> for p in [2, 3, 5, 7, 11, 13, 17, 19]

f = GF(p)

g = matrix_group([matrix(f, matrix(x)) for x in mats])

iso = hom(group(tom), g, gens(g); check = false)

v = [fix_dim(image(iso, x)[1]) for x in s]

vv = marks_vector(tom, [p^x for x in v])

println( "$p: $(coordinates(vv))")

end

2: ZZRingElem[0, 0, 0, 0, 0, 1, 0, 1, 1]

3: ZZRingElem[0, 1, 1, 0, 0, 2, 0, 2, 1]

5: ZZRingElem[4, 6, 6, 0, 2, 4, 0, 4, 1]

7: ZZRingElem[26, 15, 15, 0, 0, 6, 0, 6, 1]

11: ZZRingElem[204, 45, 45, 0, 0, 10, 0, 10, 1]

13: ZZRingElem[418, 66, 66, 0, 0, 12, 0, 12, 1]

17: ZZRingElem[1288, 120, 120, 0, 0, 16, 0, 16, 1]

19: ZZRingElem[2040, 153, 153, 0, 0, 18, 0, 18, 1]
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Check our candidates

Apply the table of marks idea to the groups on our list,
this excludes the “big” modules.

If M∗ does not have at least 5 regular orbits:

• Take the G -module M (from the AGR or constructed ad hoc),

• compute the cohomology of G and M,

• compute the possible extensions M.G ,

• compute their character tables,

• find characters that violate property (∗).
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Check our candidates

G N(G ) p M R1(R2) C deg.

A8 45 2 4a 1 +1053

4b 1 +1053

6a 0 355

14a 2 2105

20a 37
20b 37

3 7a 1 285

13a 23
5 7a 0 289

7 7a (15)
11 7a 240
13 7a 1122
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What have we seen in this example?

Data used:

• available character tables,

• values r(g) (≤ 5 or better),

• minimal degree information for Th,

• available tables of marks,

• available matrix representations of the groups.

Consistency issues:

• Do the data for a given group fit together at all?
(character table, table of marks, representations from the AGR)

• Are the group generators used in the AGR compatible with the
ones in the table of marks?
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More consistency issues

• “Generality problems” between p-Brauer character tables
for a group G :
Can the tables be used simultaneously?
(orthogonal discriminants)

• Successively add information about maximal subgroups of a group.
Once the list is complete,
users will assume that the entries are compatible.

• Does the group U4(5) have a primitive permutation representation
on 1575 points?
(In GAP? In MAGMA?)
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Data are dynamic

“We want not only an Atlas but a navigation system.”

collect new data

connect them with existing data

correct errors/inconsistencies which we find
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Relevant Web Addresses

AGR:
http://atlas.math.rwth-aachen.de/Atlas

AtlasRep.:
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

ATLAS verif.:
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasverify

CTblLib:
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib

CTBlocks:
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks

MFER:
http://www.math.rwth-aachen.de/~mfer

TomLib:
https://gap-packages.github.io/tomlib

18 / 19



ATLAS related data

MFER

ATLAS verif.

CTblLib

perf., prim,

small, trans.

CTBlocks

AGR TomLib

19 / 19


