Data related to the \mathbb{ATLAS} of Finite Groups

Thomas Breuer

Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, Germany

ICMS Durham. July 24, 2024

\mathbb{ATLAS} related data

(from a forthcoming paper ...)

(from a forthcoming paper ...)

Consider $G \in$

{A₈, L₃(2), M₁₁, M₂₂, M₂₃, M₂₄, U₃(3), McL, Th, L₂(8).3, O₈⁺(2).3} $\chi, \psi \in Irr(G) \text{ with } \chi(1) = \psi(1) \text{ and } ind(\chi) = ind(\psi) \implies \psi = \overline{\chi} (*)$

Character table of M_{11}

M11

1a 2a 3a 4a 5a 6a 8a 8b 11a 11b 2 + 1 1 1 1 1 1 1 1 1 1χ1 χ_2 + 10 2 1 2 . -1 . . -1 -1 χ_5 + 11 3 2 - 1 1 . - 1 - 1 . B B B B χ₆ 016.-2.1... χ₇ 0 16 . -2 . 1 . . . $\chi_9 + 45 - 3 . 1 . . - 1 - 1 1 1$ + 55 -1 1 -1 . -1 1 1 **χ**10 $A = \zeta_8^3 + \zeta_8$ $\overline{A} = -\zeta_8^3 - \zeta_8$ $B = \zeta_{11}^{9} + \zeta_{11}^{5} + \zeta_{11}^{4} + \zeta_{11}^{3} + \zeta_{11}$ $B = -\zeta_{11}^9 - \zeta_{11}^5 - \zeta_{11}^4 - \zeta_{11}^3 - \zeta_{11} - 1$

Consider $G \in$

 $\{A_8, L_3(2), M_{11}, M_{22}, M_{23}, M_{24}, U_3(3), McL, Th, L_2(8).3, O_8^+(2).3\}$

 $\chi, \psi \in \operatorname{Irr}(G) \text{ with } \chi(1) = \psi(1) \text{ and } \operatorname{ind}(\chi) = \operatorname{ind}(\psi) \implies \psi = \overline{\chi} (*)$

Consider $G \in$

 $\{A_8, L_3(2), M_{11}, M_{22}, M_{23}, M_{24}, U_3(3), McL, Th, L_2(8).3, O_8^+(2).3\}$

 $\chi, \psi \in \operatorname{Irr}(G) \text{ with } \chi(1) = \psi(1) \text{ and } \operatorname{ind}(\chi) = \operatorname{ind}(\psi) \implies \psi = \overline{\chi} (*)$

What about **extensions**

$$1 \rightarrow M \rightarrow \hat{G} \rightarrow G \rightarrow 1,$$

where M is a faithful irreducible $G\mathbb{F}_p$ -module, for some prime p?

Consider $G \in$

 $\{A_8, L_3(2), M_{11}, M_{22}, M_{23}, M_{24}, U_3(3), McL, Th, L_2(8).3, O_8^+(2).3\}$

 $\chi, \psi \in \operatorname{Irr}(G) \text{ with } \chi(1) = \psi(1) \text{ and } \operatorname{ind}(\chi) = \operatorname{ind}(\psi) \implies \psi = \overline{\chi} (*)$

What about **extensions**

$$1 \rightarrow M \rightarrow \hat{G} \rightarrow G \rightarrow 1,$$

where M is a faithful irreducible $G\mathbb{F}_p$ -module, for some prime p?

Claim: Property (*) does *not* hold for these $\hat{G} = M.G$.

Sufficient condition:

If G has at least 5 regular orbits on M^* then property (*) does not hold for M.G.

Sufficient condition:

If G has at least 5 regular orbits on M^* then property (*) does not hold for M.G.

$$\begin{array}{rcl} M^* &=& \{v \in M^*; |\mathrm{Stab}_G(v)| = 1\} & \cup & \bigcup_g \mathrm{Fix}_{M^*}(g) \\ |M| &\leq& |G| \cdot R(G, M) & + & \sum_g |\mathrm{Fix}_{M^*}(g)| \end{array}$$

Sufficient condition:

If G has at least 5 regular orbits on M^* then property (*) does not hold for M.G.

$$\begin{array}{rcl} M^* &=& \{v \in M^*; |\mathrm{Stab}_G(v)| = 1\} & \cup & \bigcup_g \mathrm{Fix}_{M^*}(g) \\ |M| &\leq& |G| \cdot R(G, M) & + & \sum_g |\mathrm{Fix}_{M^*}(g)| \end{array}$$

 $\dim(\operatorname{Fix}_{M^*}(g)) \leq \dim(M)(1-1/r(g))$, with $2 \leq r(g) \leq 5$.

Sufficient condition:

If G has at least 5 regular orbits on M^* then property (*) does not hold for M.G.

$$\begin{array}{rcl} M^* &=& \{v \in M^*; |\mathrm{Stab}_G(v)| = 1\} & \cup & \bigcup_g \mathrm{Fix}_{M^*}(g) \\ |M| &\leq& |G| \cdot R(G, M) & + & \sum_g |\mathrm{Fix}_{M^*}(g)| \end{array}$$

 $\dim(\operatorname{Fix}_{M^*}(g)) \leq \dim(M)(1-1/r(g))$, with $2 \leq r(g) \leq 5$.

 $R(G, M) \ge 5$ except in finitely many cases.

Sufficient condition:

If G has at least 5 regular orbits on M^* then property (*) does not hold for M.G.

$$\begin{array}{rcl} M^* &=& \{v \in M^*; |\mathrm{Stab}_G(v)| = 1\} & \cup & \bigcup_g \mathrm{Fix}_{M^*}(g) \\ |M| &\leq& |G| \cdot R(G, M) & + & \sum_g |\mathrm{Fix}_{M^*}(g)| \end{array}$$

 $\dim(\operatorname{Fix}_{M^*}(g)) \leq \dim(M)(1-1/r(g))$, with $2 \leq r(g) \leq 5$.

 $R(G, M) \ge 5$ except in finitely many cases.

Get upper bounds for the dimension and the characteristic of M such that M.G can satisfy (*).

For example, let G be the Thompson group Th.

We have $\max\{r(g); g \in G\} = 3$.

For example, let G be the Thompson group Th.

We have $\max\{r(g); g \in G\} = 3$.

 $R(G, M) \ge 5$ if dim $(M) \ge 148$.

For example, let G be the Thompson group Th.

We have $\max\{r(g); g \in G\} = 3$.

 $R(G, M) \ge 5$ if dim $(M) \ge 148$.

 $\dim(M) \ge 248$ by [Jansen 2005].

For example, let G be the Thompson group Th.

We have $\max\{r(g); g \in G\} = 3$.

 $R(G, M) \ge 5$ if dim $(M) \ge 148$.

 $\dim(M) \ge 248$ by [Jansen 2005].

In the other cases, it is not that easy ...

Use the table of marks of G

For the remaining candidates M, take a matrix representation for G affording M.

For the remaining candidates M, take a matrix representation for G affording M.

If available then use the **table of marks** of *G*:

Decompose M^* into *G*-orbits, compute the exact number of regular orbits in M^* .

Table of marks of A_5

```
julia> tom = table_of_marks("A5")
A5
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
5: 12 . . . 2
6: 10 2 1 . . 1
7: 62..1.1
8: 5121...1
9: 1 1 1 1 1 1 1 1 1
```

julia> representative(tom, 7)
Permutation group of degree 5 and order 10

Use the table of marks of G

julia> function fix_dim(matgroup::MatrixGroup)
mats = map(matrix, gens(matgroup))
length(mats) == 0 && return degree(matgroup)
m = vcat([transpose(x)-one(x) for x in mats]...)
return nullspace(m)[1]
end;

julia> mats = gens(atlas_group(info[1]))
2-element Vector{MatrixGroupElem{QQFieldElem, QQMatrix}}:
 [1 0 0 0; 0 0 1 0; 0 1 0 0; -1 -1 -1 -1]
 [0 1 0 0; 0 0 0 1; 0 0 1 0; 1 0 0 0]

julia> s = [representative(tom,i) for i in 1:length(tom)];

Use the table of marks of G

Check our candidates

Apply the table of marks idea to the groups on our list, this excludes the "big" modules.

Check our candidates

Apply the table of marks idea to the groups on our list, this excludes the "big" modules.

If M^* does *not* have at least 5 regular orbits:

- Take the G-module M (from the AGR or constructed ad hoc),
- compute the cohomology of G and M,
- compute the possible extensions M.G,
- compute their character tables,
- find characters that violate property (*).

Check our candidates

G	N(G)	p	M	$R_1(R_2)$	С	deg.
A ₈	45	2	4a		1	$+105^{3}$
			4b		1	$+105^{3}$
			6a		0	35 ⁵
			14a		2	210 ⁵
			20a	37		
			20b	37		
		3	7a		1	28 ⁵
			13a	23		
		5	7a		0	28 ⁹
		7	7a	(15)		
		11	7a	240		
		13	7a	1122		

What have we seen in this example?

Data used:

- available character tables,
- values r(g) (≤ 5 or better),
- minimal degree information for Th,
- available tables of marks,
- available matrix representations of the groups.

What have we seen in this example?

Data used:

- available character tables,
- values r(g) (≤ 5 or better),
- minimal degree information for Th,
- available tables of marks,
- available matrix representations of the groups.

Consistency issues:

- Do the data for a given group fit together at all? (character table, table of marks, representations from the AGR)
- Are the group generators used in the AGR compatible with the ones in the table of marks?

More consistency issues

 "Generality problems" between *p*-Brauer character tables for a group *G*: Can the tables be used simultaneously? (orthogonal discriminants)

More consistency issues

 "Generality problems" between *p*-Brauer character tables for a group *G*: Can the tables be used simultaneously? (orthogonal discriminants)

 Successively add information about maximal subgroups of a group. Once the list is complete, users will assume that the entries are compatible.

More consistency issues

 "Generality problems" between *p*-Brauer character tables for a group *G*: Can the tables be used simultaneously? (orthogonal discriminants)

- Successively add information about maximal subgroups of a group. Once the list is complete, users will assume that the entries are compatible.
- Does the group U₄(5) have a primitive permutation representation on 1575 points? (In GAP? In MAGMA?)

"We want not only an Atlas but a navigation system."

"We want not only an Atlas but a navigation system."

collect new data

"We want not only an Atlas but a navigation system."

collect new data

connect them with existing data

"We want not only an Atlas but a navigation system."

collect new data

connect them with existing data

correct errors/inconsistencies which we find

Relevant Web Addresses

AGR:

http://atlas.math.rwth-aachen.de/Atlas

AtlasRep.:

http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep ATLAS verif.:

http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasverify CTblLib:

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib CTBlocks:

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks
MFER:

http://www.math.rwth-aachen.de/~mfer

TomLib:

https://gap-packages.github.io/tomlib

\mathbb{ATLAS} related data

