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Chapter 1

Introduction

Before getting into the more interesting material, it is important that we are all on the same
page in terms of base knowledge. While I hope that there are parts of the course coming up
that you can blast through with great understanding and intuition, the reality is that there
are a few things that you will need to be able to do in your sleep very early on in the course.
I may cover these in class, but please make sure you can do them as soon as possible.

1.1 Summation

[See Appendix A of Bailey (2016)]
In Econometrics, we can’t avoid adding things up. For example, when we compute a

sample mean, we add up all the values in the sample, and divide by the sample size. In
practice, we will get our computer to do the heavy lifting for us, but we need to understand
what it’s doing, and have some notation to make this more compact. For one thing, id we
are computing a sample mean, our hope is that we have lots of observations, and so we will
need to add a lot of things up. It is cumbersome, for example, to write the sum of integers
between 1 and 10 (inclusive), as:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 (1.1)

Alternatively, we can write:

10∑
k=1

k = 55 (1.2)

We can read (1.2) as follows:

• The summation symbol “
∑

” (Greek capital sigma) tells us that we are adding things.

• The “k” to the right of the summation symbol is the thing we are adding.

• The “k = 1” underneath the summation symbol tells us that we are using k as an
index, and we start with k = 1.
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• The “10” above the summation symbol tells us that we stop summing when we get to
10 (inclusive).

We can, and will, get more sophisticated than this. For example:

4∑
k=1

2k2 = 2× 12 + 2× 22 + 2× 32 + 4× 22 (1.3)

12∑
k=1

k − 1

k
=

0

1
+

1

2
+

2

3
+ . . .+

11

12
(1.4)

3∑
l=1

l∑
k=1

lk = 1× 1 + 2× 1 + 2× 2 + 3× 1 + 3× 2 + 3× 3 (1.5)

Note that in the last equation, this is a double summation. The index of the leftmost
summation (l) appears in the rightmost summation as the stopping point for index k.

The above examples are instructive, but not particularly useful. We are usually interested
in adding up a whole lot of things, so we need some notation for “a whole lot of numbers.”
To do this, let’s start with some notation for an arbitrary, indexed number, xk. You can
interpret this as the kth number in a set of numbers. We can denote “a whole lot of numbers”,
formally a “set of numbers”, as:

{xk}Kk=1 = {x1, x2, . . . , xK} (1.6)

That is, we have a set of K (a positive integer) numbers, which we index by k = 1, 2, . . . , K.
Here’s an example. My drive to work involves driving the following distances, in miles

(each distance is the drive distance between turns on Google Maps):

x1 = 0.3, x2 = 1.4, x3 = 0.1, x4 = 0.5, x5 = 0.0,

x6 = 1.8, x7 = 4.2, x8 = 0.3, x9 = 3.4, x10 = 1.8,

x11 = 0.2, x12 = 0.8, x13 = 0.2, x14 = 0.1, x15 = 0.1

We could denote this dataset as {xt}15t=1, and then calculate:

15∑
t=1

xt = 15.2 miles total distance

3∑
t=1

xt = 1.8 miles distance to 3rd turn

15∑
t=10

xt = 3.2 miles distance left after making 9 turns

15∑
t=1

x2t = 38.8 miles2 total squared distance (because why not?)
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Note the change in units in the las summation.
There are some useful properties of sums. To begin with, multiplying every component

of a sum by a constant is the same as multiplying the final value by the constant. That is
(see Bailey, Appendix A):

N∑
i=1

βXi = β

N∑
i=1

Xi (1.7)

Suppose, for example, that we wanted to report the total distance above, but in a more
widely-accepted unit of measurement. Knowing that 1 mile = 1.6 km (accurate to 1 decimal
place), we could do this by computing:

15∑
t=1

xt miles× 1.6
km

mile
= 0.3× 1.6 + 1.4× 1.6 + . . .

alternatively, we would be smarter and use this result:

15∑
t=1

xt miles× 1.6
km

mile
= 1.6

km

mile

15∑
t=1

xt miles = 1.6
km

mile
× 15.4miles = 24.3 km

i.e. β = 1.6 km
mile

. Note here that I made sure the unit conversion was correct by writing down
the units as well as the numbers. If it’s all done correctly, the units you are trying to get rid
of should cancel.

Of course, I would never want you to waste your time doing such a menial task by hand.
If you really wanted to compute these, let your computer do it!

clear all // Clear everything from memory

set more off // tell Stata to not stop everytime there is more than one screen of output

use DrBlandsCommute.dta // Load the dataset

list // display tha dataset

quietly summarize x

display r(sum)

quietly summarize x if t<=3

display r(sum)

quietly summarize x if t>=10

display r(sum)

generate x2 = x^2

quietly summarize x2

display r(sum)

generate xkm = x*1.6

quietly summarize xkm

display r(sum)

See Chapter 5 to better understand this code.
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1.2 Types of random variables

There are many ways to categorize random variables, and we’ll get in to a lot of them
during this course. For the moment, we will begin by introducing two important types of
random variables: discrete and continuous. These do not constitute an exhaustive set (i.e. I
could show you some pathological examples that are neither discrete nor continuous), but
cover pretty much everything we will be interested in. The distinction between discrete and
continuous is important because it tells us how we will (or at least should) analyze our data
(see for example Bailey, 2016, chapter 12).

We can tell these types apart by the random variable’s support. This, loosely, is the set
of values that the random variable could possibly take on. That is, let S be the support of
a random variable X. If, say, 3 ∈ S, then it is possible that X could take on the value 3. If
3 /∈ S, then X could never be equal to 3.

1.2.1 Discrete random variables

Discrete random variables have countable supports. Formally, this means that we can assign
an integer to every value that the random variable could take on. In fact, discrete random
numbers are often stored as integers, even if assigning them a number does not add any
value to the problem. Here are some examples of discrete random variables:1

• The outcome of a coin toss. We could record this as Heads = 1 and Tails = 0. Hence
the support is {0, 1}

• The number of days with rain in Toledo, OH in 2018. As 2018 is not a leap year, the
support is {0, 1, 2, . . . , 365}.

• The number of days between Dec 31st, 2017 and when cockroaches become extinct.
Note here that, in principal at least, cockroaches could remain extant forever, and so
there is no upper bound on the support, hence: {0, 1, 2, . . . ,∞}

• The number of coin tosses made until four heads have been observed. It would be
impossible to toss the coin fewer than 4 before this event occurs, and a particularly
unlucky individual could potentially end up doing this for ever, so the support is
{4, 5, 6, . . . ,∞}.

• The name of the first player in the Collingwood Football Club to kick a goal in the
last round of the Australian Football League 2017 season. Since at the time of writing,
the 2017 AFL season was well underway, the support for this would be the list of
players on the roster: {Travis Cloke,Dane Swan, Scott Pendlebury, . . .}. However one
may find it practical to handle data by assigning integers to these names (basically,

1I apologize that in some of these examples, the events in question are in the past (and hence they are not
really random anymore, their value has been realized). Please put yourselves in my ex-ante shoes of August
2017, when I was writing these examples.
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computers like numbers more than strings): {1 = Travis Cloke, 2 = Dane Swan, 3 =
Scott Pendlebury, . . .}. Additionally, since it is possible that Collingwood will have a
particularly terrible game, one should also assign “nobody” to this support.

1.2.2 Continuous random variables

Continuous random variables have interval supports (or collections of intervals). Note that
all of the above examples of discrete random variables fail this test. Examples of continuous
random numbers include:

• The total precipitation in Toledo, OH between Jan 1st 2018 and Dec 31st 2018, in
millimeters.

• The time between now and when the next asteroid hits earth.

• Your bank balance (note that strictly speaking, this is discrete random variable, be-
cause it is an integer multiple of $0.01. however at some point it is reasonable to claim
that a variable is approximately continuous and hence can be treated as continuous).

1.3 Describing one random variable

If all we had in our toolbox was “discrete” and “continuous”, we would not be able to describe
random variables very well. Fortunately, we can do much better than this. To begin with,
there is the cumulative density function, which completely captures anything you may want
to know about a single random variable. If we know that the variable is either continuous
or discrete, we can use either a probability mass function or probability density function,
which also characterize the variable completely (once we know that it is either continuous
or discrete). Finally, we can summarize particular aspects of the random variable with
quantities such as mean, variance, median, etc.. These quantities don’t fully characterize
the distribution, but are sometimes the most important quantities for our analysis.

1.3.1 Cumulative density function

Suppose that a random variable X has support S, which is a subset of the real number line
(formally: S ⊆ R). For any particular value of x ∈ R (i.e. pick any x on the real number
line), it must be that either X ≤ x, or X > x. Hence, no matter whether X is discrete
or continuous, we can report the probability that X is less than or equal to any particular
value of x on the real number line. Hence, we define the cumulative density function (cdf)
of X as follows:

FX(x) = Pr(X ≤ x) (1.8)
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(a) 6-sided fair die (b) Binomial(5, 0.6)
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Figure 1.2: Cumulative density functions for some discrete random variables.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.2

0.4

0.6

0.8

1

F
U
(x

)

Figure 1.1: Cumulative density function of
standard uniform random variable

Note that the cdf is a function of x, a par-
ticular value, and not the random variable
itself. Since Pr(x ≤ X) is something that
we can compute for any x ∈ R, we must
make sure to specify it for the whole real
number line, and not just the support of X.
For example, if U is a standard uniform ran-
dom variable (i.e. U is equally likely to be
drawn anywhere on the unit interval), then
the support of X is the unit interval (0, 1).
However we can still assign a probability to
U being (say) less than zero, or less than
three (which would be equal to 0 and 1 re-
spectively). This cdf would therefore be:

FU(x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x ≥ 1

(1.9)

This is shown graphically in Figure 1.1.
For discrete random variables, the cdf is defined exactly the same, but we need to take

special care of the inequality. For example, consider a 6-sided fair die roll. The support
of this random variable is {1, 2, 3, 4, 5, 6}, the probability of rolling any of these is 1

6
, but

the probability of getting anything other than these is zero. Therefore, for example, the
probabilities of rolling a number less than or equal to 3.01, π, 3.6, and 3.99 are all the
same (i.e. they are all equal to 1

2
). Then, as the function gets to x = 4, it jumps up to 2

3
.

Therefore, at every x in the support of a discrete random variable, the cdf jumps up, and
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(a) 6-sided fair die (b) Binomial(5, 0.6)
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Figure 1.3: probability mass functions for some discrete random variables.

it is flat everywhere else. For example, Figure 1.2a shows the cdf of a fair, 6-sided die roll.
Figure 1.2b shows the cdf of the Binomial(5, 0.6) distribution, which can be constructed by
flipping five coins coins, each with a probability of 0.6 of coming up heads, and then counting
the number of heads.

1.3.2 Probability mass function

We can describe discrete random variables using a probability mass function (pmf). These
take a number on the real number line, and return the probability that the random variable
is equal to it. Going back to our fair die and Binomial examples in Figure 1.2, the pmf of
these are:

Fair die roll : p(x) =

{
1
6

if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

(1.10)

Binomial(5, 0.6) : p(x) =

{
5!

x!(5−x)!0.6
x0.45−x if x ∈ {0, 1, 2, 3, 4, 5}

0 otherwise
(1.11)

These are shown graphically in Figure 1.3. Note that we can find the height of the cdf at
the values in the support by adding up all of the values of the pmf between −∞ and x.

Any pmf p(x) must only return non-negative numbers (because negative probability does
not make sense), and must sum to 1 (because this is the probability of drawing an x inside
the support).

1.3.3 Probability density function

We cannot use a pmf to describe continuous random variables. To see this, note that for a
continuous random variable X, the probability that X is equal to a particular value is zero.
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For example, the probability that we will get exactly half an inch of rain tomorrow is zero.
Not because half an inch of rain is not in the support of rainfall that we could get tomorrow,
but because rain does not fall in discrete chunks. Instead, we use a probability density
function (pdf) to describe how likely drawing particular values are. If we integrate this thing
over a region, we get the probability that the random variable is drawn within this region.
For example, while the probability of exactly half an inch of rain is zero, the probability of
getting between 1/4 and 3/4 inches of rain is not, and also quite a meaningful number (and
useful, depending on how much you care about rainfall). The pdf fX(x) therefore has the
following properties:

Pr[X ∈ (a, b)] =

∫ b

a

fX(x)dx (1.12)

Pr[X ≤ x] =

∫ x

−∞
fX(x̃)dx̃ = Fx(x) (1.13)

d

dx
Fx(x) = fx(x) (1.14)

While the 2nd and 3rd lines of equations here are implied by the first, I feel that they are
worth pointing out: know how to go between pdf and cdf, and know how they relate to the
pmf of a discrete variable. Like pmfs, and pdf must never return negative numbers, and
must integrate to 1.

1.3.4 Mean, variance

While a cdf, pmf, or pdf will completely characterize a distribution, they sometimes require
a bit of work to find the economically relevant values associated with this distribution. For
example, a risk-neutral person cares only about the expected value of a distribution over
money, and hence what we would really want to know is:

Definition 1. The mean (alternatively expected value or expectation) of random vari-
able X with support SX and cdf FX(x) is equal to:

E[X] ≡
∫
SX

xdFX(x) (1.15)

If X is a continuous random variable with pdf fx(x) = F ′X(x), then (1.15) can be expressed
as:2

E[X] =

∫
SX

xfx(x)dx (1.16)

If X is a discrete random variable with pmf px(x), then (1.15) can be expressed as:

E[X] =
∑
x∈SX

xpx(x) (1.17)

2If you are struggling to see this step, note the following for a continuous random variable: dFX(x)
dx =

fX(x). Then, multiplying both sides by a fancy 1 = dx
dx yields dFX(x) = fX(x)dx.
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(a) Probability density function (b) Cumulative density function
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Figure 1.4: Normal distributions with different variances

Hence, for the standard uniform random variable (see (1.9)):

E[U ] =

∫ 1

0

x× 1dx =
1

2
x

∣∣∣∣1
0

=
1

2
− 0 =

1

2
(1.18)

and for a fair die roll (see (1.10)):

E[X] =
6∑

k=1

k
1

6
=

7× 3

6
= 3.5 (1.19)

A useful property of means is that one can add them up. For example, if we wanted to
determine the expected value of the sum of two fair die rolls, say X1 and X2, then we could
use our answer in (1.19) as follows:

E[X1] = E[X2] = 3.5 =⇒ E[X1 +X2] = 3.5 + 3.5 = 7 (1.20)

This also means that if Y = cX for some constant c ∈ R, then E[Y ] = E[cX] = cE[X].
However we need to be careful about non-linear functions of random variables. If h(x) is a
non-linear function, then in general E[h(X)] 6= h(E[X]).

The mean gives us an idea of what we might, quite literally, “expect” X to be. However
it gives us no idea about how likely we are to be “close” to this value. For example, Figure
1.4 shows the pdf and cdf of three distributions, all have the same mean, but some are more
spread out than others. One measure of this is:

Definition 2. The variance of random variable X is equal to:

V [X] ≡ E
[
(X − E[X])2

]
(1.21)
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In words, V [X] is X’s “expected squared distance” from its mean. For example, for the
uniform distribution in (1.9), the variance of X is:

V [X] =

∫
SX

(x− E[X])2dFX(x) (1.22)

=

∫ 1

0

(
x− 1

2

)2

× 1dx (1.23)

=

∫ 1

0

(
x2 − x+

1

4

)
dx (1.24)

=
1

3
x3 − 1

2
x2 +

1

4
x

∣∣∣∣1
0

(1.25)

=
1

3
− 1

2
+

1

4
=

4− 6 + 3

12
=

1

12
(1.26)

One can use our knowledge of expectations to further simplify (1.21) as follows:

V [X] = E
[
(X − E[X])2

]
(1.27)

= E
[
X2 − 2XE[X] + E[X]2

]
(1.28)

= E[X2]− E [2XE[X]] + E
[
E[X]2

]
(1.29)

= E[X2]− 2E[X]2 + E[X]2 (1.30)

= E[X2]− E[X]2 (1.31)

where the 2nd row expands the squared term, the third recognizes that this is the expectation
of the sum of some random variables, and the fourth recognizes that 2 and E[X] are constants.
Since we have to compute E[X] to get to V [X] anyway, it is sometimes easier to compute
E[X2] first, rather than E[(X − E[X])2] directly. For example, with the fair die roll:

E[X2] =
6∑

k=1

k2
1

6
=

1 + 4 + 9 + 16 + 25 + 36

6
=

91

6
(1.32)

V [X] =
91

6
−
(

21

6

)2

=
546− 441

36
=

105

36
≈ 2.92 (1.33)

Note that variance and expectation are indifferent units. For example, if X is the height of
a human in meters, then E[x] has units of meters, and V [X] is in square meters, an area!
To express spread in the same units and the mean, we therefore sometimes take the square
root of this, which we call standard deviation.

Like means, we can add the variances of two random variables, but only if they are not
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correlated. To see this, we go back to our definition of variance:

V [X + Y ] = E
[
(X + Y − E[X + Y ])2

]
(1.34)

= E
[
(X + Y − E[X]− E[Y ])2

]
(1.35)

= E
[
((X − E[X]) + (Y − E[Y ]))2

]
(1.36)

= E
[
(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])

]
(1.37)

= E
[
(X − E[X])2

]
+ E

[
(Y − E[Y ])2

]
+ 2E [(X − E[X])(Y − E[Y ])] (1.38)

= V [X] + V [Y ] + 2E [(X − E[X])(Y − E[Y ])]︸ ︷︷ ︸
cov(X,Y )

(1.39)

Where the last term E [(X − E[X])(Y − E[Y ])] = cov(X, Y ) is the covariance of X and
Y . This is a measure of how much X and Y move together in a linear way. Loosely, if
cov(X, Y ) > 0, then a particularly large X means that Y is also likely to be large; conversely,
cov(X, Y ) < 0 tells us that a particularly large X means that Y is likely to be small. There
are many cases in econometrics where we assume (perhaps to our own peril) that a covariance
is zero. In fact, a lot of this course will be devoted to what goes wrong when cov(X, Y ) 6= 0.
When working through a derivation, therefore, please think carefully about why this thing
migh or might not be equal to zero. Ideally, have a good story to back up your decision!

This leads us perfectly in to . . .

1.4 Describing the relationship between two or more

random variables

If our toolbox could only analyze one random variable at a time, econometrics would not
be very interesting.Most of the empirical questions in economics boil down to “what is the
causal effect of X on Y ”. So we had better have a way of describing the relationship between
(at least) two random variables. While we are mostly interested in linear correlations, this
by no means is the be all and end all of the way X and Y could be related to each other.
This section shall proceed with describing the relationship between two random variables, X
and Y ; however all of this generalizes reasonably easily to more than two random variables.

Up to this point, we have been describing marginal probability density/mass functions,
marginal expectations, and marginal variances. For example, E[Y ] tells us our expected
value of Y , if we were to have absolutely no information about Y . For example, Y might
be the height of a newborn baby. E[Y ] would give us a point prediction of this. Could we
do better if we observed something else? Almost certainly yes!3 Suppose that we observed
X, the height of the baby’s mother. Then we could incorporate this information into our
expectation, which we will notate as: E[Y | X]. This is called a conditional expectation, or
more precisely: the expectation of Y conditional on X. If X tells us nothing about Y , then
the conditional and unconditional expectations are equal: E[Y | X] = E[Y ]. On the other
hand, if X helps us improve this point prediction, then E[Y | X] 6= E[Y ].

3In fact, we can’t do any worse: we can always use E[Y ].
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1.4.1 Joint distribution functions

But to fully understand the relationship between two random variables, we need to look at
things that fully characterize their joint distribution. For any two random variables, we can
always use a joint cdf, which tells us the probability that both X and Y are below particular
values:

FX,Y (x, y) = Pr[(X ≤ x) ∩ (Y ≤ y)] (1.40)

where “∩” is the set notation for “intersection”, meaning that we are asking when both
X ≤ x and Y ≤ y. FX,Y (x, y) is referred to as the multivariate (or joint) cumulative density
(or distribution) function. This thing has some analogous properties to single-variable cdfs
introduced earlier:

• Fx,y(x, y)→ 0 as x and y both → −∞. That is, the probability of X and Y being less
than arbitrarily large negative numbers is zero.

• By the same reasoning: Fx,y(x, y)→ 1 as x and y both →∞

• For any x, y, x′, y′ such that x′ ≥ x and y′ ≥ y, FX,Y (x′, y′) ≥ FX,Y (x, y). That is, if
you increase any of the functions arguments, then you are relaxing the requirements
for X and Y to be less than their specified values.

In addition to these:

lim
y→∞

FX,Y (x, y) = FX(x), lim
x→∞

FX,Y (x, y) = FY (y) (1.41)

That is, if you make one of these cutoffs arbitrarily large, then the random variable corre-
sponding to that cutoff will almost certainly be below it, hence all that is left to check is
whether the other random variable is less than its cutoff, which is the same criterion for the
univariate cdf introduced earlier.

From here, we can define joint pdfs and pmfs analogously. For continuous variables, the
joint pdf is:

fX,Y (x, y) =
d2

dxdy
FX,Y (x, y) (1.42)

and for discrete random variables, the joint pmf is:

pX,Y (x, y) = Pr[(X = x) ∩ (Y = y)] (1.43)

To get the marginal (univariate) pdf (cdf) of X, we integrate (sum) out Y :

fX(x) =

∫
SY

fX,Y (x, y)dy (1.44)

The relationship between these quantities is shown in Figure 1.5.
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(a) Joint pdf (b) Joint cdf

(c) X | Y (d) Marginal X
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Figure 1.5: Properties of the multivariate normal distribution with E[X] = E[Y ] = 0,
V [X] = 1, V [Y ] = 0.7, corr(X, Y ) = 0.7
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1.4.2 Conditional probability

So things like pX,Y (x, y) can tell us the likelihood of paired events (x and y) occurring. What
if we already knew that one of them was. Could we refine our idea about the distribution
of the other? Yes! This is where we introduce Bayes’ Theorem. It tells us how we should
incorporate some information Y about our beliefs (i.e. distribution) about some other vari-
able X. Given a joint pdf fX,Y (x, y), suppose that we know that X takes on a particular
value x′, then we can use the two following observations:

1. X can now be treated as a constant, because we know that X = x′, and

2. Unless Y is a deterministic function of Y , then there is still some uncertainty about
X.

These observations mean that the density of Y conditional on X = x′ must be proportional
to fX,Y (x′, y). Alternatively put, this density must have the same shape as the cross-section
of joint pdf that we would slice out if we took a machete to the y = y′ plane of the joint
pdf plot. But once we know the pdf of something is proportional to something, then we can
work out the actual pdf becauese it must integrate to one. Hence:

fY |X(y;x) ∝ fX,Y (x, y) (1.45)

=⇒ fY |x(y;x) =
fX,Y (x, y)∫

SX
fX,Y (x, y)dy

(1.46)

The above ramblings were formalized much more eloquently by Thomas Bayes in the 1700s:

Theorem 1 (Bayes’ Theorem). Let X and Y be random variables, and p(X) and p(Y ) denote
the marginal probability (density) of events X and Y occurring respectively, and denote the
probability of X (Y ) occurring conditional on a particular realization of Y (X) as p(X | Y )
(p(Y | X), then:

p(Y | X) =
p(X | Y )p(Y )

p(X)
(1.47)

In terms of a joint pdf, this equation becomes:

fX|Y (x; y) =
fY |X(y;x)fY (y)

fX(x)
(1.48)

Example: At this point, you would probably like to see an example, so here one is.
Suppose that in a population, 1/3 of people have a particular disease. There is a test for the
disease, but it is not perfect. If the person has the disease, then it returns a “positive” result
with probability 5/6. If the person does not have the disease, then it returns a positive result
with probability 2/3. Hence, the test is more likely to return a positive result if the person
has the disease, but there will be some people without the disease who get a positive result
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(i.e. false positive), and some people with the disease who do not get a positive result (i.e. false
negative). What is the probability that a person has the disease if they received a positive test
for the disease? In the notation of (1.47), let P = 1 if the person received a positive test
result, P = 0 otherwise, and D = 1 if the person has the disease, D = 0 otherwise. We need
to compute the conditional probability p(D = 1 | P = 1). The probability that a person has
the disease, conditional on receiving a positive test result. The above description gives us
the following:

• p(P = 1 | D = 1) = 5/6 i.e. if a person has the disease, they test positive with
probability 5/6

• p(P = 1 | D = 0) = 1/3 i.e. if a person does not have the disease, they test positive
with probability 1/3

• p(D = 1) = 1/3, the fraction of people who have the disease.

• p(D = 0) = 2/3, the fraction of people who do not have the disease.

We can use Bayes’ Theorem to calculate p(D = 1 | P = 1):

p(D = 1 | P = 1) =
p(P = 1 | D = 1)p(D = 1)

p(P = 1)
(1.49)

We know everything on the right-hand side of this except for the denominator, which is equal
to the probability someone tests positive for the disease, without knowing whether or not
they have it. There are (at least) two solutions to this. The first is to explicitly compute it:

p(P = 1) = p(P = 1 | D = 1)p(D = 1) + p(P = 1 | D = 0)p(D = 0) (1.50)

=
5

6
× 1

3
+

1

3
× 2

3
=

5 + 4

18
=

9

18
=

1

2
(1.51)

OK, so if we test the entire population, 50% of people will be testing positive. If that seems
worrysome to you, then good! We can now substitute the other things we know into our
equation:

p(D = 1 | P = 1) =
5/6× 1/3

0.5
=

5

18
× 2 =

5

9
≈ 0.56 (1.52)

So a little over half the people who test positive will have the disease. The worrying part is
that a little under half of the people who test positive will not have the disease. Depending on
if there is any stigma associated with the disease, it may not be a good idea to test everyone.
A more palatable solution for this would be to only test people who are suspected (either
by themselves or their doctor) of having the disease. Note that this would be represented in
our problem as an increase in p(D = 1), and hence a decrease in p(D = 0).
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The other method of solving this (alluded to above) is to recognize that p(D = 1 | P =
1) = 1 − p(D = 0 | P = 1). If we take the ratio of these two conditional probabilities, the
expression simplifies to something without p(P = 1):

p(D = 1 | P = 1)

p(D = 0 | P = 1)
=
p(P = 1 | D = 1)p(D = 1)

p(P = 1)
× p(P = 1)

p(P = 1 | D = 0)p(D = 1)
(1.53)

=
p(P = 1 | D = 1)

p(P = 1 | D = 0)p(D = 1)
(1.54)

=
5/6× 1/3

1/3× 2/3
= 5/4 = 1.25 (1.55)

This is (almost) the answer expressed in odds ratio form: people in the group who tested
positive are 1.25 times as likely to have the disease than not. But these fractions need to
add to 1, so letting q = p(D = 1 | P = 1):

q

1− q
= 5/4, q = 5/9 (1.56)

Exercises

Exercise 1.1.
Let X be the sum of two fair, four-sided die rolls. That is, each die has four faces, with
numbers 1, 2, 3, 4.

1. What is the support of X?

2. Is X a discrete or continuous random variable? Explain

3. Based on your answer to question 2, construct the pdf or pmf of X.

4. Construct the cdf of X

5. Compute E[X] and V [X].

Exercise 1.2.
The exponential distribution has probability density function:

fX(x) =

{
c exp(−λx) if x > 0

0 otherwise
(1.57)

where c is a positive constant, and λ is a scale parameter.

1. What is the support of X?

2. What must the positive constant c be equal to?
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3. What is the cdf of X?

4. Determine E[X] and V [X]. To do this, you will need to use integration by parts:∫ b

a

u′(x)v(x)dx = [u(x)v(x)]ba −
∫ b

a

u(x)v′(x)dx (1.58)

where u(x) an v(x) are both differentiable functions. You won’t need to remember
this, because you can always work it out from the product rule:

[u(x)v(x)]′ = u′(x)v(x) + v′(x)u(x) (1.59)

u′(x)v(x) = [u(x)v(x)]′ − v′(x)u(x) (1.60)

then just integrate both sides.

Exercise 1.3.
The cumulative density function for random variable X is:

F (x) =


0 if x ≤ 0

xα if 0 < x < 1

1 if x ≥ 1

where α > 0 is a parameter of the distribution.

1. What is the support of X, and is X a discrete or continuous random variable?

2. Calculate the pdf, f(x)

3. Calculate E[X] and V [X].

Exercise 1.4.
An unfair coin has a probability of 1

3
coming up heads, tails otherwise. You keep flipping it

until the first time it comes up heads. Let X be the number of times you have to flip the
coin.

1. What is the support of X?

2. What is the probability that X = 10? Hint: Since each coin flip is an independent
event you can multiply the probability of each coin flip that needs to occur together. For
example, the probability that X = 4 is equal to:

Pr[1st flip is tails]× Pr[3nd flip is tails]× Pr[3rd flip is tails]× Pr[4th flip is heads]

=
2

3
× 2

3
× 2

3
× 1

3
=

23

34

3. What is the probability that X ≤ 4?
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4. What is the probability mass function for X?

5. Verify that your pmf sums to 1. You can use the results that for −1 < p < 1:

∞∑
n=0

pn =
1

1− p
, and

∞∑
n=1

pn = 1 +
∞∑
n=0

pn

Exercise 1.5.
Let X be the sum of two fair, four-sided die rolls. That is, each die has four faces, with
numbers 1, 2, 3, and 4. For the purposes of this exercise, let Z1 and Z2 be the die rolls
themselves, hence X = Z1 + Z2.

1. What is the pmf/pdf of the distribution of X, given that X is an even number?

2. Given that the first die roll was a 2, what is the expected value of X?

3. What is the variance of X, given that Z2 = 3?

4. What is the expected value of X, given that Z2 ≤ 3?
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Part I

Estimating one parameter
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Chapter 2

Estimators

An estimator is a mathematical function that takes data and gives you an estimate of some-
thing. While this course will mainly focus on numerical examples, I would like you to
remember that we take in information, and use this information to make educated guesses
about things all the time. For example, before I go grocery shopping, I have a peek into the
fridge and decide how much food I will need to buy this week: an estimate. When I drive
to work, I pay attention to the traffic conditions (i.e. data), in part so I have an estimate
of how fast I should be driving. In what will follow, our analysis will look somewhat more
formal than this, but be mindful that there are similarities: (i) we gather information and
use it to make a prediction or guess about something, (ii) there are some ways of using
the information that are more useful than others, (iii) some types of information are better
than other types, (iv) if we know more about how we are gathering our information, we
can sometimes use this to make a better guess, and (v) more information usually makes our
guess more accurate.

2.1 Populations and samples

The Frequentist approach in econometrics1 starts with the premise that there is a population
parameter (or collection of parameters, the distinction is not important at all), say θ, that
determines how we observe data. We observe a sample of data, say {xi}Ni=1, and use this
sample to produce an estimate of θ, the property of the population that we would like to
know about. Our prime objective in econometrics is to estimate properties of the population,
using a sample and an estimator.

As an example, suppose that you wish to estimate the probability that tossing a particular
coin results in it landing heads up.2 You decide to model the data-generating process as

1Statistics and econometrics can be divided into two philosophies: Frequentist and Bayesian. This is a
course in Frequentist econometrics. For a good reference on Bayesian econometrics, see Koop et al. (2007).
Whenever econometrics is mentioned without clarifying whether it is Frequentist or Bayesian, it is usually
safe to assume Frequentist.

2It is at this point that I feel some need to apologize for a seemingly endless string of examples involving
coin flipping. There are many reasons for my choice of this type of example. Most importantly, coin-flip
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follows:

Hi =

{
1 if coin flip i lands heads up

0 otherwise
(2.1)

Pr[Hi = 1] = θ, θ ∈ [0, 1] (2.2)

Hi ∼ iidBernoulli(θ) (2.3)

Here (2.1) defines a random variable that can take on two values, 0 and 1 (we implicitly
assume that the coin has exactly two sides, and so Hi 6= 1 ⇐⇒ Hi = 0 ⇐⇒ tails).
(2.2) tells us that the probability of the coin flip coming up heads is equal to θ: this is the
population parameter that we want to estimate. (2.3) formalizes this further, by (i) using the
formal name for a coin-flip variable (Bernoulli), and (ii) formally stating the assumption that
each coin flip is an independent draw from the same distribution.3 These are all statements
about the population.

Now we collect a sample from this population. In this example, this could involve flipping
the coin (say) 100 times, and recording the result of each coin flip. Let’s denote this sample
as {hi}100i=1. This last bit of notation denotes the collection of coin flip outcomes for 100 coin
flips. We could write this out long-hand as:

{hi}100i=1 = {h1, h2, h3, . . . , h99, h100} (2.4)

but we have better things to do (or at least I do).
At this point (and forever into the future) it is very important to be clear about when we

are talking about properties of the sample and properties of the population. We will be using
the former to tell us something about the latter, but they are two different things. {hi}Ni=1,
the sample, is the thing we will be importing into our statistical package, then calculating
means, variances, etc. of. We know the sample mean because we can calculate it. We can
never know the population mean: that’s why the sample is useful!

2.2 Estimators and the sampling distribution

We now take our sample, and stick it into our estimator. Out comes an estimate. Here’s
the thing: our sample is random. If we put something random into a function, in general
we should expect to get something random out. In the context of our coin-flipping example
starting in Section 2.1, we have a sample of 100 coin flips, and wish to use this to estimate

random variables (formally: Bernoulli random variables), are very simple to understand. Because of this,
they allow for introduction of simple concepts, without the need for you to get your head around anything
else that could be complicated. Additionally, coin-flip variables show up everywhere: get used to it.

3The “independent” part of this means (among other things) that if I toss two coins, knowing the outcome
of one tells me nothing about whether the other outcome is heads or tails. While for practical reasons we
might not give a hoot about whether the His are independent, we usually need to make an assumption about
this when we estimate things. It is best to state it (and any other assumption we make) formally. That way,
it is more obvious when we are doing something stupid.
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θ, the probability that our coin comes up heads. For a lot of reasons that we will get to later
on, a good estimator to use in this situation is:

θ̂ =
1

N

N∑
i=1

hi (2.5)

which happens to be the sample mean.4 Although it is not stated explicitly on the left-
hand side of (2.5), θ̂ is a function of the sample: θ̂ = f

(
{hi}Ni=1

)
= 1

N

∑N
i=1 hi, but that

is overly cumbersome, so we will stick with the notation in (2.5). We have also gone a bit
more general, and written this for an arbitrary sample size N , rather than our N = 100
observations in the above example.

h1 h2 h3 θ̂ Probability
0 0 0 0 (1− θ)3
0 0 1 1/3 θ(1− θ)2
0 1 0 1/3 θ(1− θ)2
0 1 1 2/3 θ2(1− θ)
1 0 0 1/3 θ(1− θ)2
1 0 1 2/3 θ2(1− θ)
1 1 0 2/3 θ2(1− θ)
1 1 1 1 θ3

Table 2.1: Sampling distribution of θ̂
when N = 3

Before exploring the properties of θ̂ when N =
100, it is instructive to understand how θ̂ behaves
with stupidly small samples. Each row of Table 2.1
shows a possible sample that we could have observed,
if we only tossed the coin N = 3 times. The right-
most column shows the probability of observing that
sample, as a function of the population parameter θ.
Note that we pay attention to the order of coin flips,
and hence we don’t think of the sample {1, 0, 1} as be-
ing the same as {1, 1, 0}, even though they both have
2 heads and 1 tail. This is an important distinction
for later on, but at the moment just be aware that
there are 23 = 8 possible samples that we could have
observed, with varying probability of being observed.
That said, the sample mean doesn’t give a hoot about
which order in which the heads and tails came, so we can add up the cells in the “Proba-
bility” column of this Table to get the probability mass function of the sample mean, as a
function of θ:

Pr[θ̂ = x] =



(1− θ)3 if x = 0

3θ(1− θ)2 if x = 1/3

3θ2(1− θ) if x = 2/3

θ3 if x = 1

0 otherwise

(2.6)

(2.6) characterizes the distribution of our estimator θ̂, as a function of the population pa-
rameter θ. We call this the sampling distribution of θ̂.

If one can see the matrix when it comes to probability mass functions, one may realize

4 . . . and here is one of the first good reasons to use this: we know a lot about sample means, so we can
use them to derive properties of this estimator. More on this later.
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Figure 2.1: Sampling distribution of Bernoulli random variable, N = 100.

this that we can write (2.6) more compactly as:

Pr[θ̂ = x] =

{(
3
3x

)
θ3x(1− θ)3(1−x) if x ∈ {0, 1/3, 2/3, 1}

0 otherwise
(2.7)

which if you squint hard enough, looks almost like the Binomial distribution. In fact, if you
substitute in k = 3x, this is exactly what you get: the number of heads for this sampling pro-
cess is distributed Binomial(3, θ). For a sample size of N , this generalizes to Binomial(N, θ).
To illustrate this, Figure 2.1 shows the sampling distribution for the same estimator for a
much more reasonable sample of N = 100 coin flips. As the sample size gets larger, there
are more values that θ̂ can take on. For example, when N = 4 we will get one of θ̂ =0,
1/4, 2/4, 3/4, 4/4, and as N gets really large, we struggle to see that the distribution is still
discrete. However note that since we are always taking a ratio of two integers, the number
of heads divided by the sample size, there are some values of θ̂ that we could never get: π

4
,

for example.
Unfortunately, in general, the sampling distribution of an estimator is not easy to work

out. Most of the time, however, we can determine a few properties of this distribution. In
particular, we may be interested in knowing the expected value of θ̂ (i.e.: “on average, do
I get right number?”), the variance (i.e.: “how precise is my estimator?”), and how these
things change with sample size (i.e.: “if my sample size gets bigger, how much better is my
estimator?”). We explore some of these properties in the next section.
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2.3 Small-sample properties of estimators

While it is usually infeasible to determine the exact sampling distribution of our estimator,
we can usually derive, or at least approximate (more on this later), some properties of its
distribution. That is, we might not be able to write down the cdf of θ̂, but we may be able to
work out a few things, like its mean and variance. This is especially easy when our estimator
is a sample mean, because we know a lot about sample means, and is particularly useful
when there is more than one estimator that could do the job for you. If there is more than
one option, it usually pays to think at least a bit about which one will work best for you.

To illustrate this, suppose for example that a friend of yours was rolling a fair5 die, and
calling out the numbers. Your problem is that you don’t know how many sides the die has,
and you would like to estimate it. Let η be the number of sides on the die. Your data {ki}Ni=1

consists of the outcomes of the N die rolls that your friend has called out.6 Here are two
estimators that you may want to consider:

1. Noting that for an η-sided die, the expected value of a roll is E[ki] = η+1
2

, you replace
E[ki] with its sample analog, k̄ = 1

N

∑
i ki and solve for η:

η̂ = 2k̄ − 1, i.e.: k̄ =
η̂ + 1

2
(2.8)

2. Noting that the highest possible value of ki that you could observe is ki = η, you use
the maximum:

η̃ = max
i
{ki} (2.9)

Both of these take a property of the population (the mean and maximum respectively), and
then use the sample analog of this. Unsurprisingly, this is often referred to as an analogy
estimation strategy.7 We will be introduced to some important properties of estimators
below, in the context of η̂ and η̃. Neither will come out as unambiguously better. Get used
to it! If we (economists) assume people can make trade-offs, we’d better be able to make
them ourselves. But before getting into this, suppose that you observed the following sample:

{1, 1, 1, 1, 1, 6} =⇒ θ̂ = 2
11

6
− 1 ≈ 2.7, η̃ = 6

One alarming property of θ̂ (that is not discussed below) is that our estimate of 2.7, even if
we round it up to the nearest integer, could not possibly be believable, because we observe a
6 in our sample! We would never run into this problem for θ̃.

5That is: each number is equally likely to be the outcome.
6At this point, you may be telling me “But James, almost all dice are 6-sided, and there are a few 20-sided

dice out there, but it’s really hard to get your hands on a 42-sided die. Isn’t this some information that we
shouldn’t be ignoring?” To which my response would be: “Yes, go and learn Bayesian econometrics.”

7Analogy estimators are reasonably easy to come up with, but there is no guarantee that they have any nice
properties. Later on you will learn about maximum likelihood (ML) estimation, which is a systematic way
to come up with an estimator that has some very nice properties. Another example of this is a Generalized
Method of Moments (GMM) estimator.
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2.3.1 Bias

While we have no guarantee that our estimator gives us the right number (i.e. θ̂ = θ) for
sure, we can assess whether we get the right number on average. Specifically, we can compare
E[θ̂] to θ. If they are equal, i.e. E[θ̂] = θ, then we say that our estimator is unbiased. On
the other hand, if E[θ̂] 6= θ, then our estimator is biased, and we might want to worry.

Now let’s evaluate the properties of our estimators η̂ and η̃ described earlier. For the
estimator based on the population mean:

E[η̂] = E
[
2k̄ − 1

]
(2.10)

= 2E[k̄]− 1 (2.11)

= 2E

[
1

N

∑
i

ki

]
− 1 (2.12)

=
2

N

∑
i

E[ki]− 1 (2.13)

=
2

N
NE[ki]− 1 (2.14)

= 2E[ki]− 1 (2.15)

= 2
η + 1

2
− 1 (2.16)

= η (2.17)

In short, E[η̂] = η ⇐⇒ η̂ is unbiased. Good! In expectation (loosely: “on average”) we get
the right number.

Now let’s look at the estimator based on the maximum:

E[η̃] = E[max
i
ki] (2.18)

This opens up a bit more of a can of worms, because now we need to take an expectation over
the maximum of the kis in our sample. Welcome to the wonderful world of order statistics!
Specifically, the first order statistic (i.e. the maximum of a sample). We first need to derive
the distribution of maxi ki. Let M be this maximum, to make notation easier. What is the
probability that M is equal to a particular value m? That is, what is the pmf of M?

p(m) = Pr[N − 1 observations are less than or equal to m

and at least one is equal to m] (2.19)

=

(
N

1

)(
m

η

)N−1
1

η
=
NmN−1

ηN
(2.20)
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if m = 1, 2, 3, . . . , η, and zero otherwise. We can now take the expectation of M :

E[η̃] = E[M ] =

η∑
m=1

[
m
NmN−1

ηN

]
(2.21)

=
Nη

N + 1

η∑
m=1

[
(N + 1)mN+1−1

ηN+1

]
(2.22)

= η
N

N + 1
(2.23)

Where the last line follows by noting that the thingy that we are summing is the pmf of
M , if we have one extra observation in our sample, and so it must sum to 1. Remember
this monkey trick, it will come in handy! Inspection of (2.23) yields some sad news: η̃ is
biased. On average we will under-estimate η by the fraction N

N+1
. This should not be too

surprising: For any sample size, there is a non-zero probability that the maximum is not
equal to η, and so some of the terms in the above expectation calculation put positive weight
on outcomes that are less than η. Further inspection of (2.23) and a bit of thinking (!),
however, shows that all is not lost. Firstly, as our sample size gets large, N

N+1
→ 1, and

so the bias disappears. This is a common property of many (but by no means all) biased
estimators, and may be why we might prefer one to an unbiased estimator if we think our
sample size is large enough. Secondly, since the bias is only a function of N , we can easily
correct for this by multiplying the maximum by N+1

N
, that is:

η̌ =
N + 1

N
max
i
ki =

N + 1

N
η̃ (2.24)

E[η̌] = E

[
N + 1

N
η̃

]
=
N + 1

N
E[η̃] =

N + 1

N

N

N + 1
η = η (2.25)

By deriving the bias of this estimator we were not only able to say something about the
direction of the bias (i.e. η̃ under-estimates the population parameter on average), but we
also came up with another one that was unbiased! You should probably remember that.

2.3.2 Variance

If our estimator is unbiased, or at least if the bias is something that we can cope with, the
next question we might ask is: how precise is our estimator? That is, through the sampling
process, do our estimates all fall nice and close to their mean, or are they all over the place?
We typically use variance to evaluate this. After checking bias, we found that while η̂ was
the only unbiased estimator in consideration, we could easily correct the bias in η̃. Therefore
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this should be the next thing to check in our die-rolling example. Firstly, for η̂ :

V [η̂] = V
[
2k̄ − 1

]
(2.26)

=
4

N
V [ki], (assumed independence here) (2.27)

=
4

N

η2 − 1

12
(2.28)

=
η2 − 1

3N
(2.29)

Inspection of (2.29) tells us a few things. Firstly, if η = 1, then V [η̂] = 0. This should not
be surprising, but it is comforting: if we have a one-sided “die”, then we will always get the
same number, and hence have zero variance. Perhaps of more use is that the variance is (i)
increasing in η, and (ii) decreasing in N . (ii) is typical of almost anything you will end up
using, and loosely can be interpreted as “bigger samples are better”.

Now let’s move to our second estimator, η̃. For reasons that should become obvious after
you do this over and over again, we are going to use the relationship V [X] = E[X2]−E[X]2.
In case they are not obvious now, these reasons are (i) we already know E[X], and (ii) it is
easier to evaluate E[X2] on its own than try to do V [X] in one fell swoop.

E[η̃2] = E
[
M2
]

(2.30)

=

η∑
m=1

[
m2Nm

N−1

ηN

]
(2.31)

=

η∑
m=1

[
NmN+1

ηN

]
(2.32)

=
NηN+2

ηN(N + 2)

N∑
m=1

[
(N + 2)mN+1

ηN+2

]
(2.33)

= η2
N

N + 2
(2.34)

V [η̃] = η2

[
N

N + 2
−
(

N

N + 1

)2
]

(2.35)

= η2
N3 + 2N2 +N −N3 − 2N2

(N + 2)(N + 1)2
(2.36)

=
Nη2

(N + 2)(N + 1)2
(2.37)

as with η̂, the variance of η̃ decreases as sample size increases. To see this, note that we
have N in the numerator, and a cubic in the denominator, so the denominator grows much
faster.

But which of η̂ and η̃ is better based on variance? It turns out that for almost all
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reasonable values of η and N , V [η̃] < V [η̂], which can be shown as follows:

V [η̃]

V [η̂]
=

Nη2

(N + 2)(N + 1)2
× 3N

η2 − 1
(2.38)

=
Nη2

(N + 2)(N2 + 2N + 1)
× 3N

η2 − 1
(2.39)

=
Nη2

N3 + 2N2 +N + 2N2 + 4N + 2
× 3N

η2 − 1
(2.40)

=
Nη2

N3 + 4N2 + 5N + 2
× 3N

η2 − 1
(2.41)

=
η2

N + 4 + 5/N + 2/N2
× 3

η2 − 1
(2.42)

which → 0 as N →∞.8 Furthermore, the denominator in the first fraction is at least 5,9 so
we can say that:

V [η̃]

V [η̂]
<

3η2

5(η2 − 1)
(2.44)

and when is this fraction less than one?

3η2

5(η2 − 1)
≤ 1 (2.45)

3η2 ≤ 5η2 − 5 (2.46)

5 ≤ 2η2 (2.47)

η ≥ 2 (2.48)

Note that the mathematical solution to (2.47) is η ∈ (−∞,−
√

2.5] ∪ [
√

2.5,∞), however we
can discard the negative part of this because our die can only take on positive numbers, and
we can round up the lower bound of

√
2.5 to 2 because our die has an integer number of

sides. Hence η ≥ 2 is the econometric solution to the problem. In short, η̃ has a smaller
variance than η̂, as long as we don’t have a one-sided die.

2.3.3 Mean squared error

A small variance is a good thing, but only if the estimator’s distribution is centered (at least
roughly) around the true value. That is, if the estimator is substantially biased, why should

8 Alternatively, note that:

V [η̃] =
Nη2

(N + 2)(N + 1)2
<

Nη2

(N + 0)(N + 0)2
=
Nη2

N3
=

η2

N2
(2.43)

Which is only a little bit more than 3/N × V [η̂] = η2−1
N2 , so for even very small sample sizes (say N > 4),

using the maximum is better.
9I.e.: ignore the 5/N and 2/N2 terms, and set N = 1.
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be care that the variance is small? We shouldn’t! To see this, let’s construct a silly but
illustrative example. Suppose that you can use estimators for population parameter θ with
the following sampling distributions:10

Pr[θ̂ = x] =

{
1 if x = 2

0 otherwise
(2.49)

Pr[θ̃ = x] =

{
1
5

if x ∈ {θ − 2, θ − 1, θ, θ + 1, θ + 2}
0 otherwise

(2.50)

The first estimator θ̂ returns an estimate of 2 no matter what data we get. This should look
like a silly choice, but θ̂ does have the following desirable property: V [θ̂] = 0. If we were to
judge estimators based only on their variance, we could do no better than θ̂! The problem
with this estimator is that it is biased: E[θ̂] = 2 6= θ (unless the true value θ is also equal to
2, but we can’t know that). θ̃, on the other hand, is unbiased, because:

E[θ̃] =
2∑

k=−2

θ + k

5
= θ (2.51)

but has a non-zero (hence realistic) variance of:

V [θ̃] =
2∑

k=−2

1

5
(θ + k − θ)2 =

1

5
(22 + 12 + 02 + 12 + 22) =

10

2
= 5 (2.52)

One useful measure to use in these cases is mean squared error (MSE). Unlike variance,
which asks how far away (in terms of squared distance) on average is an estimator from its
expected value, MSE asks how far away our estimator is from its true value. Let’s put these
side-by-side to see the difference:

V [θ̂] = E

[(
θ̂ − E[θ̂]

)2]
(2.53)

MSE[θ̂] = E

[(
θ̂ − θ

)2]
(2.54)

Comparing (2.53) and (2.54), note the only difference is that for the MSE equation, we
replace the expected value of the estimator, E[θ̂], with population parameter that we are
trying to estimate, θ. Hence, these two things will be equal if and only if E[θ̂] = θ. To see

10Note here that I have abstracted away from the sampling process and just written down a probability
distribution for each estimator. In the background, there may be a function taking data and returning
an estimate, but this is unnecessary for the example. If you prefer, you can think about these as signals
containing information about θ (which is pretty much what an estimator is, anyway).
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the “only if” part of this, we can decompose (2.54) as follows:

MSE[θ̂] = E

[(
θ̂ − θ + E[θ̂]− E[θ̂]

)2]
(2.55)

= E

[((
θ̂ − E[θ̂]

)
+
(
E[θ̂]− θ

))2]
(2.56)

= E

[(
θ̂ − E[θ̂]

)2]
+ E

[(
E[θ̂]− θ

)2]
+ 2E

[(
θ̂ − E[θ̂]

)(
E[θ̂]− θ

)]
(2.57)

= V [θ̂] + Bias2[θ̂] + 0 (2.58)

The third term in (2.57) is equal to zero because E[θ̂] and θ are constants, and E
[
θ̂ − E[θ̂]

]
=

0. Hence the MSE of an estimator is equal to the estimator’s bias squared plus its variance.
How well do our estimators η̂ and η̃ from the previous section stack up based on MSE? Using
this formula, we already have the hard part done:

MSE[η̂] =
η2 − 1

3N
+ 0 (2.59)

MSE[η̃] =
Nη2

(N + 2)(N + 1)2
+ η2

(
1

N + 1

)2

(2.60)

= η2
2N + 2

(N + 2)(N + 1)2
(2.61)

= η2
2

(N + 2)(N + 1)
(2.62)

MSE[η̃]

MSE[η̂]
= η2

2

(N + 2)(N + 1)
× 3N

η2 − 1
(2.63)

=
η2

η2 − 1
× 6

(N + 2)(1 + 1/N)
(2.64)

This leads to some ambiguity, but none that can’t be dealt with with a bit of thinking. To
begin with, the fraction 6

(N+2)(1+1/N)
→ 0 as N → ∞, so as long as our sample is large

enough we should probably use η̃. Additionally, the first term η2

η2−1 is reasonably close to 1

for any integer greater than about η = 3,11 so we need not fret too much about it.

Activities

Activity 2.1.
[A low-tech Monte Carlo simulation] Take a 20-sided die and roll it 10 times, recording the
numbers in a spreadsheet. This is your sample, which we shall denote {xi}10i=1.

1. Calculate the sample mean of the following derivatives of your sample:

11“Close” is a judgment call on my part, but plug in some numbers an see for yourself.
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(a) xi (i.e. the untransformed variable itself)

(b) yi = x2i

(c) zi = 1 if xi ≥ 17, zi = 0 otherwise

2. What are the population means of the variables X, Y and Z?

3. Are any of your sample means surprising (when you compare them to your population
means)?

4. Report your three sample means to the class, so we have a dataset of N sample means,
where N is the class size.

5. Produce histograms of these sample means

Exercises

Exercise 2.1.
Consider the distribution studied in Exercise 1.3. We derived the following properties:

f(x) =

{
αxα−1 if 0 < x < 1

0 otherwise

E[X] =
α

α + 1

This motivates the following estimator:

α̂ =
1
N

∑N
i=1Xi

1− 1
N

∑N
i=1Xi

which is the sample analog of:

α =
E[X]

1− E[X]

An alternative estimator for α̃ is:12

α̃ = − N∑N
i=1 log(Xi)

Note that α̂ is a function of the sample mean of X, and α̃ is a function of the sample mean
of log(X)

12This the maximum likelihood estimator of α, which is not important here, but we may cover this later
in the year.
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1. Download the dataset ExBetaSim 1.csv from Blackboard, which contains a simulated
sample from this distribution. Use both estimators to estimate α.

2. (Simulation exercise) Fix α = 0.7. Simulate some properties of these estimators for a
sample size of N = 30. Are the estimators biased? Does one stand out as better than
the other?

Hint: You can simulate the distribution of X by transforming uniform random num-
bers. Specifically, if U ∼ U[0, 1], then:

X = U
1
α

will have the correct distribution.

Exercise 2.2 (Solutions provided).
Consider the uniform distribution with unknown upper support. That This random variable
can be characterized by the pdf:

fX(x) =
1

γ
I(0 < x < γ) (2.65)

We wish to estimate γ using an iid sample {Xi}Ni=1 from this distribution, and the estimator:

γ̂ = max
i
{Xi} (2.66)

That is, we use the sample maximum as an estimator for γ, the maximum value X could
take on.

Find the following:

1. The cdf of γ̂

2. The pdf of γ̂

3. E[γ̂]. is it biased? If so, can you correct it?

4. V [γ̂]

5. Compare your last two answers to an alternative estimator:

γ̃ =
2

N

N∑
i=1

Xi (2.67)

I.e.: twice the sample mean.

Exercise 2.3 (Solutions provided).
The exponential distribution can be characterized by the pdf:

fX(x) =

{
µ−1 exp(−x/µ) if x > 0

0 otherwise
(2.68)
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where µ > 0 is a scale parameter. This distribution has the following properties:

E[Xk] = k!µk (2.69)

Xi ∼ iidExponential(µ) =⇒ min{X1, X2, X3, . . . , XN} ∼ Exponential(µ/N) (2.70)

We could plug in k = 1 to the first property, and use:

µ̂ =
1

N

N∑
i=1

Xi, analogy of: µ = E[X] (2.71)

Alternatively, we could use the second property to construct the estimator:

µ̃ = N min
i
{Xi}, analogy of:

µ

N
= E

[
min
i
{Xi}

]
(2.72)

1. Derive the bias, variance, and MSE of these two estimators. Which one would you
prefer to use? Hint: use the first property extensively!

2. (Simulation exercise) Simulate the properties of both estimators when µ = 1 and
N = 30. Your answer should include your approximation of the bias, variance, and
MSE of the estimators, as well as a plot showing the pdfs of both estimators.

Hint: If U ∼ U [0, 1], then X = −µ logU ∼ Exponential(µ)

3. (Simulation exercise) In principle, you could have plugged any k into 2.69 to get an
analogy estimator. plug in k = 1 and derive the analogy estimator. Don’t try to work
out the bias, variance, and MSE of this analytically, just modify your code to also
simulate the properties of this third estimator, say µ̌.

Exercise 2.4.
We know the following about two random variables X and Y :

• X and Y are independent

• E[X] = E[Y ] = µ

• V [X] = σ2
1 > 0, V [Y ] = σ2

2 > 0.

• For some reason, we know the exact values of σ2
1 and σ2

2.

Suppose that we obtain a sample of one of each of these variables, i.e., x and y, and use it
to construct an estimator for µ:

µ̂ = ax+ by (2.73)

where a and b are constants chosen by the econometrician (you).
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1. What is the expectation of µ̂?

2. For what values of a and b is µ̂ unbiased? Hint: We are looking for an expression of
the form b = f(a), find out what function f is.

3. For the moment, ignore your answer to part (2). That is, consider the original expres-
sion as a function of both a and b: µ̂ = ax+ by. What is the variance of µ̂?

4. Substitute the condition for unbiasedness (your answer in part (2)) to your expression
for V [µ̂] (your answer for part (3)). The right-hand side of this equation should contain
only a, σ2

1, and σ2
2.

5. What value of a minimizes the variance of µ̂? Make sure that your answer is a global
minimum. (Start with your answer to part (4))

6. Write out your expressions for a and b. In what case is a = b? What about a > b?
When and why would we not want to just take the simple average µ̂ = 1

2
(x+y)? Would

we ever want to set either a = 0 or b = 0?

Exercise 2.5.
Write a script to simulate the sampling process you did in Activity 2.1, but instead of having
your actual class size, suppose that you were in a class of S = 10, 000. Write a script that
simulates the sampling distribution of the sample mean of X, Y , and Z when each student
has a sample of N = 10, N = 100 die rolls.
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Chapter 3

Inference

In Chapter 2, we introduced the concept of an estimator, and some important properties
of it. In econometrics, you will be estimating stuff all the time, but equally importantly,
you will be making statements about your confidence in your estimates. Formally, such a
statement will take the form of a hypothesis test, a p-value, or a confidence interval.

In many textbooks, the material that follows is presented alongside asymptotic theory,
which tells us how estimators behave when the sample size approaches infinity. This is where

your text will have a lot of
p−→,

d−→, and normal, F , and χ2 distributions. These are very useful
ideas, but I have found that they can be confusing when presented at the same time as the
material I wish to teach you in this chapter. Therefore, what follows is a run-through of
statistical inference in the absence of asymptotic theory, which we will get to in the next
chapter. For the rest of this chapter, please note the absence of normal distribution tables,
dividing mans by standard deviations, and the magic number 1.96.

To illustrate these concepts, let us go back to the coin-flipping example in Chapter 2.
We have a data-generating process:

Hi ∼ iidBernoulli(θ) (3.1)

and wish to estimate θ, the probability that a coin flip will come up heads. Our research
question is as follows: Is the coin a fair one? I hope that you never have to research a
question as mundane as this, but once you’re done with this chapter, go and do Exercise 3.1.
Hopefully by then you can see the point of it. This research question can be formalized as
θ = 0.5. We collect a sample {Hi}Ni=1 of N flips of the same coin, which we assume to be
independent draws from 3.1. We then use the sample mean h̄ as an estimator for θ:

θ̂ =
1

N

N∑
i=1

Hi (3.2)

On its own, this gives us a point estimate of θ, which is somewhat useful, but at this point
we have no idea how close our sample is to one that would come from fair coin flip. The next
sections of this chapter approach the research question (is θ equal to 0.5?) three different
ways.
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3.1 Hypothesis tests

Loosely, this first approach asks whether our sample looks close enough to one that would
come from a coin-flipping process with θ = 0.5. To do this, we need a formal definition
of “looks close enough to one that would come from a coin-flipping process with θ = 0.5”.
Specifically, we ask whether our estimate of θ is close enough to the hypothesized value of 1

2
.

Therefore we state the null hypothesis:

H0 : θ = 0.5 (3.3)

and an alternative hypothesis:

HA : θ 6= 0.5 (3.4)

This is a two-sided alternative hypothesis, because HA permits θ to be either greater than
or less than the value in the null. We will get to one-sided tests later.
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Figure 3.1: Cumulative distribution function
of the test statistic for sample size N = 20.
Dashed lines show the bounds for a two-sided,
α = 5% test.

Next we need a test statistic. This is a
function of our sample, and should tell us
something about θ. For the purposes of this
application, we can just use our estimator
for θ itself: θ̂ = 1

N

∑N
i=1Hi. Using this, we

can start to build up our definition of “looks
close enough to one that would come from
a coin-flipping process with θ = 0.5”. A
natural measure of how close our sample is
to one that would come from a θ = 0.5 coin-
flipping process is t = θ̂ − 0.5: if t is close
to zero, then this seems like good support
for the coin being a fair one. On the other
hand, it is unlikely that t is close to zero
if the sample was generated by some other
θ 6= 0.5. This is illustrated in Figure 3.1. If
H0 is true, then our test statistic will have
the distribution shown with the black lines.
Notice here that there is a lot of probability
for events where t is close to zero. On the other hand, if θ 6= 0.5, then the distribution will
look something like the red (θ = 0.2) or blue (θ = 0.9) lines. Note however, that we only get
one realization of t, we next need to map this in a decision rule.

Reject H0? H0 true H0 not true
N Good Type II error
Y Type I error Good

Table 3.1: The four possible outcomes of a
hypothesis test

t tells us “how close” the sample is, but
how close is close enough for us to conclude
that θ = 0.5? To answer this, we need to
make a trade-off about how often we want
to be wrong, and what type of wrong that
will be. Since there are two possible truths
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(either H0 is true or H0 is not true), and two
possible decisions (either we reject H0 or do
not reject H0), then there are 2× 2 = 4 possible outcomes of the test, half of which have us
making the wrong conclusion. Table 3.1 summarizes the two types of wrong that we could
be: we should be worried about either failing to reject H0 when H0 is true, a type II error,
or rejecting H0 when H0 is true, a type I error. Since we are basing our decisions on the test
statistic, which is random, there will always be a trade-off between these two errors. For
practical reasons, we focus on targeting an acceptable probability of making a type I error:
incorrectly rejecting the null hypothesis. One good reason for this is that this probability is
a function of the null distribution (i.e. Binomial(N, 0.5)). In our case, we know this exactly,
and in most cases, we can approximate it if N is large enough (see the next chapter to learn
about this). Compare this to evaluating the probability of a type II error: if HA is true,
then all we know is that θ 6= 0.5. How do we assess the distribution of t if we don’t know the
actual value of θ? That’s a hard one, and one that we avoid entirely if we focus on targeting
the probability of making a type I error.

To do this, we need to work out when we need to define a decision rule about rejecting
H0 based on t. As large |t| is evidence against H0, we will therefore use:

Reject H0 if and only if |t| > tc (3.5)

where tc > 0 is a critical value. Note that as tc gets larger, the more evidence we require
against H0 to reject it. When H0 is true, the probability of rejecting H0 based on this
decision rule is the probability of making a type II error, and equal to:

Pr[reject H0 | θ = 0.5] = Pr[|t| ≥ tc | θ = 0.5] (3.6)

= Pr

[∣∣∣∣∣ 1

N

N∑
i=1

Hi − 0.5

∣∣∣∣∣ > tc

]
(3.7)

= Pr

[∣∣∣∣∣
N∑
i=1

Hi − 0.5N

∣∣∣∣∣ > Ntc

]
(3.8)

= Pr

[(
N∑
i=1

Hi > N(tc + 0.5)

)
∪

(
N∑
i=1

Hi < N(tc − 0.5)

)]
(3.9)

= Pr

(
N∑
i=1

Hi > N(tc + 0.5)

)
+

(
N∑
i=1

Hi < N(tc − 0.5)

)
(3.10)

where the last line follows because
∑N

i=1Hi > N(tc + 0.5) and
∑N

i=1Hi < N(tc − 0.5)
are mutually exclusive events. But we can simplify this further, because we know that∑N

i=1Hi ∼ Binomial(0.5, N): we just need to add up all of the bits of its pmf that satisfy
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∑N
i=1Hi > N(tc + 0.5) or

∑N
i=1Hi < N(tc − 0.5):

Pr[reject H0 | θ = 0.5] =
∑

k:k>N(tc+0.5)

p(k) +
∑

k:k<N(tc−0.5)

p(k) (3.11)

=
∑

k:k>N(tc+0.5)

N !

k!(N − k!)
0.5N +

∑
k:k<N(tc−0.5)

N !

k!(N − k!)
0.5N (3.12)

where the “k : k > N(tc+0.5)” bit means “sum over all ks satisfying k > N(tc+0.5)”. We are
looking to set this probability equal to α = 5%. α, the probability of rejecting H0 when it is
true, is referred to the test size. Actually, we can’t in general set this probability to exactly 5%
for the binomial distribution, because we have no guarantee that there is a place in the pmf
where we can stop adding and get 5%. Let’s pick smallest tc such that this thing is less than
5%.

X pX(x) FX(x) θ̂ t
0 0.0000 0.0000 0.00 -0.50
1 0.0000 0.0000 0.05 -0.45
2 0.0002 0.0002 0.10 -0.40
3 0.0011 0.0013 0.15 -0.35
4 0.0046 0.0059 0.20 -0.30
5 0.0148 0.0207 0.25 -0.25
6 0.0370 0.0577 0.30 -0.20
7 0.0739 0.1316 0.35 -0.15
8 0.1201 0.2517 0.40 -0.10
9 0.1602 0.4119 0.45 -0.05
10 0.1762 0.5881 0.50 0.00
11 0.1602 0.7483 0.55 0.05
12 0.1201 0.8684 0.60 0.10
13 0.0739 0.9423 0.65 0.15
14 0.0370 0.9793 0.70 0.20
15 0.0148 0.9941 0.75 0.25
16 0.0046 0.9987 0.80 0.30
17 0.0011 0.9998 0.85 0.35
18 0.0002 1.0000 0.90 0.40
19 0.0000 1.0000 0.95 0.45
20 0.0000 1.0000 1.00 0.50

Table 3.2: Pmf and cdf for X =∑
iHi ∼ Binomial(0.5, 20).

Table 3.2 shows the relevant pdf and cdf. Since
the Binomial(N, 0.5) distribution is symmetric (i.e.
p(X) = p(N − X)), we can look for one cutoff kc at
the left tail such that Pr[X < kc] is just less than
2.5%, and then the other cutoff will be at the corre-
sponding point of the right tail: i.e. N − kc. Looking
at Table 3.2, we see that 2.1% of the samples will
have 5 or fewer heads, and 5.8% of samples will have
6 or fewer heads. Therefore we can choose kc = 5 and
have a probability of rejecting H0 when H0 is true of
2 × 2.1% = 4.2%, which is reasonably close to the
standard number of 5%. Hence, we will reject H0 if
and only if we observe a sample with 5 or fewer heads,
or 16 or more heads. Note that we found these cutoffs
from Table 3.2 by finding the (approximate) solutions
to FX(x) = 0.025 and FX(x) = 0.975.

We’re almost there. In fact, we could do the hy-
pothesis test without going any further, but since we
specified things in terms of our test statistic t instead
of the sum of heads, for completeness we should work
out tc. Graphically this is exactly the same problem
as solving for the rejection rule in terms of the sum
of heads. To see this, have a look at Figure 3.1. The
dashed lines have horizontal coordinates of 0.025 and
0.975. What we need to do is look at the cdf of t when
H0 is true (the black line), and read off these points.
These points are when t = −0.2 and t = 0.2. So our
rejection rule becomes:

Reject H0 if and only if: |t| > 0.2
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Hence, we would reject H0 if we observed, say, 3 or 19 heads in our sample, but would not
reject H0 if we observed 8 or 11 heads in our sample.

At this point it should be pretty obvious to you that you will need to compute a lot of
probabilities associated with the Binomial distribution. To learn about how to do this in
Stata, a good place to start would be by typing the following into the command line:

help binomial

This gives you a pretty minimal description, but the blue text is a link to some more statistical
functions that you may want to use later.

3.1.1 One-sided hypothesis tests

The previous section presented a two-sided hypothesis test: it was done under the assumption
that the coin could possibly be unfair because either θ was more or less than 0.5. Sometimes,
we have reason to rule out a portion of the alternative hypothesis space, and usually this
means that if H0 is not true, then we know which side of the hypothesized value (in our case
0.5) the true value of θ is. Suppose, for example, that instead of “are we are flipping a fair
coin?”, our research question was “is the coin biased towards heads?”. Formally, we could
state a null and alternative as:

H0 : θ = 0.5, HA : θ > 0.5 (3.13)

that is, our research question motivates a (dogmatic) belief that θ could never be less than
0.5. The procedure for such a test is exactly the same, but we just need to think a bit more
about what realizations of θ̂ (or t) would provide us with support for HA in favor of H0.
For example, observing 2 heads, and so calculating θ̂ = 0.1 and t = 0.4 would not be very
convincing that θ > 0.5, however we would have rejected H0 for the two-sided test outlined
in the previous section. Hence, we need a rejection rule that only rejects H0 when we observe
a sufficiently large θ̂, or sufficiently positive t. Other than that, we approach the problem in
exactly the same way.

We need to choose a critical value tc such that the rejection rule:

Reject H0 if and only if t > tc (3.14)

so that the probability of this event, if H0 was true, is equal to α = 0.05, or at least close to
0.05, since t is a discrete random variable. We need to solve for:

α = Pr [t > tc] (3.15)

= Pr

[
1

N

N∑
i=1

Hi − 0.5 > tc

]
(3.16)

= Pr

[
N∑
i=1

Hi > N(tc + 0.5)

]
(3.17)

= Pr [Binomial(N, θ) > N(tc + 0.5)] (3.18)

= 1− FX (N(tc + 0.5)) (3.19)
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where FX(·) is the binomial cdf shown in Table 3.2. Therefore we are looking for a cell in
the FX(x) column of this table corresponding to (roughly) FX(x) = 1 − α = 0.95. The
probability of drawing 13 or fewer heads is 0.942, and the probability of drawing 14 or fewer
heads is 0.979, so we can’t get exactly α = 0.05, but the following decision rule:

Reject H0 if and only if t > 0.15 (3.20)

gets reasonably close: α = 1− 0.9423 = 0.0577.

3.2 p-values
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Figure 3.2: p-values associated with the 21
possible samples.

Another popular way of reporting statistical
significance is with a p-value. The p-value
associated with a hypothesis test is defined
as the probability of observing a test statis-
tic at least as extreme as the one we actually
observed, assuming that H0 is true. If this
almost seems like α, the test size, then you
have made an important connection! p is
equal to the test size α that would put you
on the margin between rejecting and not re-
jecting H0 for your observed sample.

The benefit of reporting a p-value is that
it allows your reader to test your hypothesis
at their choice of α, rather than the one that
you selected. For example, if you calculated
p = 0.03, then you would reject H0 if you
wanted to do an α = 0.05 test, but fail to
reject H0 for an α = 0.01 test. A smaller
p-value means that the data would pass a more stringent hypothesis test.

For example, suppose that you observed 3 heads in your sample. Since we’ve worked
through Section 3.1, you know that you would reject the two-sided test that θ = 0.5. However
what if a pesky audience member at a seminar is in the mood for a more conservative test.
By reporting the p-value, this may avoid an annoying question. So let’s calculate it. Since
we are doing a two sided test, there are eight samples that are at least as unlikely to occur
when H0 is true. These the samples that include either 0, 1, 2, 3, 17, 18, 19, or 20 heads.
Hence the p-value is the sum of the probabilities of these events occurring, assuming that
H0 is true, i.e. θ = 0.5:

p =
3∑

k=0

20!

k!(20− k)!

1

220
+

20∑
k=17

20!

k!(20− k)!

1

220
≈ 0.0015 (3.21)
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so we would reject H0 at most reasonable levels of significance (including α = 0.05). The
black circles in Figure 3.2 show the p-values associated with the 2-sided test for all 21 possible
realizations of

∑
iHi.

For the one-sided test in Section 3.1.1, note that observing 3 heads is terrible support for
HA, so before we actually calculate this thing, note that it should be close to 1. We need to
add up the probabilities of all the samples we could have observed, that would have supplied
at least as much support for HA : θ > 0 as did our observed sample of 3 heads. These the
samples that include either 3, 4, 5, . . . , or 20 heads:

p =
20∑
k=3

20!

k!(20− k)!

1

220
≈ 0.9987 (3.22)

The blue circles in Figure 3.2 show the p-values associated with this 1-sided test for all 21
possible realizations of

∑
iHi.

For the other 1-sided test, with HA : θ < 0.5, we up all of the probabilities associated
with getting at most 3 heads in our sample. In this case, observing 3 out of 20 heads is
somewhat strong support for HA in favor of H0, because we shouldn’t expect this to happen
too often assuming H0 is true. In this case:

p =
3∑

k=0

20!

k!(20− k)!

1

220
≈ 0.0013 (3.23)

so we would reject H0 at for any test with α > 0.0013.
It is important to interpret p-values correctly. It is tempting to claim that p is the

probability that H0 is not true. However this is false.1 Remember that we derived the p-
value assuming that H0 was true. Hence, you are permitted to interpret it in the following
ways:

• p is the probability of calculating a test statistic at least as extreme as the one you
actually calculated, assuming H0 is true.

• AssumingH0 is true (and all other distributional assumptions about the data-generating
process are correct), p will be uniformly distributed (think about this when/if you learn
about the method of inversion for generating random numbers).

• When H0 is true, rejecting H0 when p < α implements the same decision rule as testing
H0 at the α level of significance.

It tells you something, just be aware of what it doesn’t tell you.

3.3 Confidence intervals

1Do Bayesian econometrics if you want to make claims like this.
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Figure 3.3: Confidence intervals (α = 0.1) as-
sociated with the 21 possible samples. Black
lines show the intervals for the 2-sided alterna-
tive. Red and blue crosses show the minimum
and maximum values in the confidence inter-
vals for the one-sided tests respectively.

The third way we might want to report the
statistical significance of our results is a con-
fidence interval. This reports all of the val-
ues of θ0 for which we would fail to reject H0

in the test:

H0 : θ = θ0, HA : θ 6= θ0

(this also applies to one-sided hypothesis
tests).

This is useful because it reports, hold-
ing α constant, all of the null hypotheses
that would not be rejected. Figure 3.3 shows
the confidence intervals we would assign af-
ter observing each of the 21 possible samples
we could observe from flipping 20 coins. The
black lines show the 2-sided confidence inter-
vals. The red crosses show the lower bound
of the one-sided confidence intervals with al-
ternative HA : θ < θ0; the upper bound of
all of these is θ = 0. and the blue crosses
show the upper bound of the one-sided confidence intervals with alternative HA : θ > θ0;
the lower bound of all of these is θ = 1.

3.4 Test power

Up to this point, all of our calculations were done assuming that H0 was true (remember
this, it’s important). But what about HA? Often we will be testing something with the
expectation that H0 is not true. For example, maybe some economic theory tells us that we
are not flipping a fair coin (maybe more on this later). α tells us the probability that we are
wrong when H0 is true, but what about being wrong when HA is true? That is, what is the
probability of a Type I error? The reason it is (relatively) easy to work out things when H0

is true is that H0 completely pins down the distribution of our test statistic. In our case in
this Chapter, we know that

∑
iHi ∼ Binomial(N, 0.5). But for the alternative, all we know

is that θ falls in a range: the distribution of the test statistic when HA is true is not known!
That being said, we can answer a simple question: what is the probability of rejecting the
null when θ is equal to a particular value? If this seems similar to α, good! α is the answer
to this question if we plug in θ equal to the value set in H0 (in this example, θ = 0.5). If
we instead plugged in a value consistent with HA, we would be calculating the test’s power.
That is, if H0 is not true, how good is our test at telling us this?

To get this, let’s go back to (3.6), but substitute in another value of θ, say 0.6 (i.e. the
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coin comes up heads with probability 60%):

Pr[reject H0 | θ] = Pr

(
N∑
i=1

Hi > N(tc + 0.5) | θ

)
+

(
N∑
i=1

Hi < N(tc − 0.5) | θ

)
(3.24)

So we know that
∑

iHi ∼ Binomial(N, θ), so this thing is equal to:

Pr[reject H0 | θ] = 1− F (N(tc + 0.5);N, θ) + F (N(tc − 0.5)− 1;N, θ) (3.25)

where F (·;N, θ) is the cdf of the Binomial(N, θ) distribution. For our 5% test calculated
earlier, we had tc = 0.2, so this reduces to calculating the probability of getting 6 or fewer
heads, or 16 or more heads. We have already worked out that this is equal to α = 4.2%
when H0 is true, but now we evaluate the same probability for a different θ. The probability
of rejecting H0 when θ = 0.6 is:

Pr [reject H0 | θ = 0.6] =
6∑

k=0

20!

k!(20− k)!
0.6k0.420−k +

20∑
k=15

20!

k!(20− k)!
0.6k0.420−k (3.26)

≈ 13% (3.27)
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Figure 3.4: Power of the 2-sided Binomial test
outlined in this chapter, targeting a test size
of α = 0.05.

We we want this number to be as big as pos-
sible because we want to be able to reject H0

whenever it is false. I hope 13% seems rea-
sonably bad to you. This means that 87%
of the time, we fail to reject H0. But this is
what we accept when we pin down α = 0.05.
As long as we want to do a 5% test, the only
variable we can play with is the sample size,
N . Unsurprisingly, the test power gets big-
ger (which is better) as N increases. Figure
3.4 shows this relationship. The black line
shows the test size, which we have set to
5%. This and the other lines are jagged be-
cause the Binomial distribution is discrete:
this wouldn’t happen with a continuous dis-
tribution. The colored lines show the test
power for 3 different values of θ. Looking at
each line individually, it is comforting that
they are upward-sloping (outside of the jagged shape due to the discrete distribution). Fur-
thermore, as θ becomes further away from the H0 value, the power increases: it is easier to
spot the difference between θ0.5 and θ = 0.8 than it is to spot the difference between θ0.5
and θ = 0.6.
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3.5 The take-away

I write these notes assuming that my students have been introduced to hypothesis tests,
p-values and confidence intervals at an introductory statistics/quantitative methods level.
That is, you have probably seen a mechanical, plug-and-chug, explanation of what to do.
I intend for this to be a chapter on what you’re doing, and why you’re doing it. So what
should you take away from this?

Firstly, here’s what we did:

1. Stated formal null and alternative hypotheses

2. Defined a test statistic

3. Worked out the distribution of the test statistic assuming H0 is true

4. Used this distribution to work out a decision rule

5. Reported at least one of (i) the result and conclusion from a hypothesis test, (ii)
reported and interpreted a p-value, and (iii) reported and interpreted a confidence
interval.

6. Commented on our test’s power of identifying the alternative hypothesis when it is
true

But be aware that we did none of the following

• Divide by the sample standard deviation

• Look up a normal, χ2, Student’s t, or F distribution

• 1.96

although we did look up a distribution table, namely Table 3.2. Don’t worry, what you were
taught in the past (probably) wasn’t wrong. Just be aware that hypothesis tests and the
like can be done without assuming that anything is normally distributed. The reason that
we so often do make a normal approximation is that it makes step 3 a whole lot easier, and
often doesn’t change things too much.

Exercises

Exercise 3.1.
Load the Galton heights dataset. Just focus on parent height. We have a working hypothesis
that within a randomly selected couple, the father is more likely to be taller than the mother.

1. Formally define a population parameter that speaks to this test, and state a formal null
and alternative hypothesis about this parameter that addresses the working hypothesis
above.
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2. Define a test statistic for this hypothesis.

3. What is the distribution of the test statistic when the null hypothesis is true?

4. Calculate the p-value associated with your null and alternative hypotheses. State any
additional assumptions you needed to make for your procedure to be valid (and don’t
make any assumptions tht ou don’t need to). Produce a graph to illustrate what you’re
doing. Hint: This is a computationally intensive exercise that will take you too long
and waste too much paper if you do it by hand.

Exercise 3.2 (Assessing the performance of a “cookbook” hypothesis test).
Consider the following procedure for a hypothesis test for a dataset of N iid coin flips {Xi}Ni=1:

H0 : Pr[Xi = 1] = 0.5, HA : Pr[Xi = 1] 6= 0.5

t = 2
√
N(x̄− 0.5), x̄ =

1

N

N∑
i=1

Xi

Reject H0 if and only if |t| > 1.96

(We will understand why this might be a good approach in some circumstances in the next
chapter.) Evaluate the actual size (i.e. α) of this hypothesis test. How does the actual size
change with sample size N?

You may want to break this problem up into answer the following steps:

1. What component of t is random due to the random sampling procedure (Hint: there
are two possible answers: x̄ and N . Work out which is correct.)

2. What is the distribution of this random component when H0 is true?

3. What values of x̄ mean that you would reject the null? (draw a graph)

4. What is the probability that x̄ falls in to this range?

5. How does this probability relate to α?

Exercise 3.3 (Understanding some Stata code).
Consider the following script:

clear all

set obs 50

generate X = 0

replace X = 1 if runiform () <=0.5

summarize X

generate t = 2*sqrt(r(N))*(r(mean) -0.5)

summarize t

generate reject = 0

replace reject =1 if abs(t) >1.96

summarize reject

Note especially the line that begins generate t = . In relation to Exercise 3.2:
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1. Provide a one-sentence description of what each line of this script does (i.e. thoroughly
comment the code). Also Provide a brief description of what the entire script does.

2. Based on your answer to Exercise 3.2, what is the probability distribution of the
variable reject? Express your answer as a function of α. (Hint: What values could
reject take on, and what are the probabilities of these events?)

3. Modify this code to generate 100,000 simulated draws from t. What is the actual test
size? What number should you use if you wanted to do a 5% test? Hint: This will
take a while. Until you want to get your final answer, run your script with a smaller
simulation size (e.g. 100) to make sure it works,

Exercise 3.4.
Figure 3.4 shows the power of a 2-sided Binomial test, and how it varies by sample size N .
Produce a similar plot that shows the trade-off in a 1-sided test between test power and test
size (α). Set N = 100 constant.

Exercise 3.5.
PoissonData.dta contains data on two variables, X and Y. For each of these variables: Use
the following results to complete this exercise:

If X1, X2, . . . , XN ∼ iidPoisson(λ), then
N∑
i=1

Xi ∼ Poisson (Nλ) (3.28)

1. Perform a 2-sided hypothesis test that the data are drawn from a Poisson(1) distribu-
tion. Do this test at the 5% level of significance.

2. Perform a 1-sided hypothesis test that the data are drawn from a Poisson(1) distribu-
tion, with the alternative being that λ < 1. Do this test at the 5% level of significance.

3. Assign p values to the above hypotheses

4. Construct a 95%, 2-sided confidence interval for λ (much more difficult)

Exercise 3.6.
These questions ask you to annotate figures. If you need to find an area, shade an area
(and tell me what that area is equal to), if you need to find a horizontal and/or vertical
coordinate, label it (and tell me what it is equal to); and so on.

1. You perform the following hypothesis test:

H0 : E[X] = 4, HA : E[X] > 4

test size =α = 0.1

test statistic: z =
1

N

N∑
i=1

Xi − 4

The following figure shows the pdf of z when H0 is true. Annotate this figure to show
how you would find the p-value for this test if your test statistic was z = 1:

51



-3 -2 -1 0 1 2 3

z

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
d
f
of

z

2. You perform the following hypothesis test:

H0 : E[X] = 4, HA : E[X] 6= 4

test size =α = 0.2

test statistic: z =

(
1

N

N∑
i=1

Xi − 4

)2

The following figure shows the pdf of z when H0 is true. Annotate this figure to show
how you would find the critical value (or values) for this test:
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3. You perform the following hypothesis test:

H0 : E[X] = 0, HA : E[X] < 0

test size =α = 0.1

test statistic: z =
1

N

N∑
i=1

Xi − 0

The following figure shows the cdf of z when H0 is true. Annotate this figure to show
how you would find the critical value (or values) for this test:
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4. You perform the following test:

H0 : E[X] = 1, HA : E[X] 6= 1

test size =α = 0.1

test statistic: z =
4

N

N∑
i=1

Xi

The following figure shows the cdf of z when H0 is true. The test statistic for your
sample is z = 6. Annotate this figure to show how you would find the p-value (or
values) for this test.
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5. You are testing the hypothesis:

H0 : β1 = 0, HA : β1 > 0

test size =α = 0.1

test statistic: z = β̂1

The dashed line shows the distribution of z = β̂1 when H0 is true. The solid line shows
the distribution of z = β̂1 when β1 = 1 (i.e. a special case within HA). Annotate this
figure to show how you would work out the the power of this test when β1 = 1.
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Chapter 4

Inference with asymptotic
assumptions

At this point, I am hoping that you have a rather grim view of hypothesis tests in the
context of Chapter 3: we need to know a lot about our random variable in order to derive
the distribution of our test statistic when H0 is true, and even when we know all of this,
the process is a difficult one. Fortunately, we have another tool that allows us to make the
process much simpler: asymptotics. Even if we don’t know (or don’t care) enough about our
random variable to derive exactly its sampling distribution, we can use this tool to work out
what it would be as our sample size N approached infinity. Then we take the leap of faith
that our sample size is large enough that this distribution is a good approximation for our
actual sample.

To do this, we use two theorems about sample means. The Weak Law of Large Numbers
tells that as our sample size N → ∞, the probability that we are arbitrarily close to the
population mean (i.e. E[X]) approaches 1. Then, central limit theorems tell us how we
can appropriately scale things so that they are (usually) normally distributed as N →∞. I
introduce these concepts, then outline how we can use them to derive approximate properties
of our estimator and/or test statistic if we can argue that our sample size is large enough. We
then learn how these are useful for doing inference, and finish with a useful approximation
of transformation of sample means.

4.1 Large-sample properties of estimators

In Chapter 2, we learned that bias, variance, and mean squared error are useful quantities to
summarize the performance of an estimator. These are sometimes referred to small sample
properties of estimators, meaning that they are things that you might need to worry about
if your sample size is small. You may also have to worry about them is N is large, but there
are some other properties that you might need to know about your estimators that relate to
large samples.
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4.1.1 Consistency

Suppose that there is a population parameter θ that you would like to estimate. You have
a sample {Xi}Ni=1, and an estimator θ̂ which takes this sample and spits out a number (an
estimate), which you hope is close to the true value, θ. You want to know if your estimating
procedure is one in which obtaining more observations (i.e. increasing N) gets your estimate
closer to θ. Unfortunately, since your sample is random, so is your estimator θ̂. This means
that no matter how much data you collect, there is still a chance that your estimate is
terrible. What we can work out, though, is whether increasing N will get us close enough
to θ, with probability very close to 1. In math speak, what we want is:

Pr
(
|θ̂ − θ| > ε

)
→ 0 as N →∞, for all ε > 0 (4.1)

which we can write more compactly as plimθ̂ = θ, and say “the probability limit of θ̂ is θ,”
or (since we know θ̂ is an estimator) “θ̂ is a consistent estimator (of θ).” Inspecting (4.1),
what is it telling us. |θ̂ − θ| is the distance between our estimator and the true value, and
ε is a positive number. So the probability that θ̂ is at least ε away from the thing we are
trying to estimate goes to zero as our sample size goes to infinity. The “for all ε > 0” means
that this probability goes to zero no matter what positive number you pick for ε. In other
words, no matter how I define “close enough” (i.e. ε), I can get close enough to the true
value with probability 1 by sending the sample size off to infinity. Loosely speaking, if you
have a consistent estimator, collecting more data means that you are more likely to have a
good estimate.

4.1.2 Asymptotic distribution

In the previous chapter, probably the hardest thing to do computationally was to determine
the sampling distribution of the estimator. In some special cases, such as Bernoulli (coin
flip) and Normal random variables, we can work it out. For large samples, though, this is
more of a classroom exercise rather than something that is done in practice (although if
you deal with a lot of small samples, you may need this). Instead, much inference is based
on determining the asymptotic distribution of an estimator. We may have no idea what the
exact (small sample) distribution is, but we can work out what (a transformation of) it looks
like when N →∞. We then assume that this is a good enough approximation of our actual,
finite sample size. For a lot of cases, we will be using estimators that are (sometimes fancy)
sample means. In this case we can use the work of others (see below) to construct something
that is approximately standard normal when N is large. This is useful because we need to
know much less about the data-generating process in order to work out the (approximate)
distribution. I will leave further discussion of this to the next section.
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4.2 Large-sample properties of sample means

Fortunately for us, (i) many of our estimators and test statistics are just fancy sample means,
and (ii) a lot of work has gone into understanding sample means. I present some of the results
of (ii) below, which will make our life a lot easier.

4.2.1 The Weak Law of Large Numbers

The weak law of large numbers tells us (loosely) that a sample mean (i.e. 1
N

∑
iXi) will get

very close to the equivalent population mean (i.e. E[X]) as our sample size (i.e. N) becomes
large. Formally:

Theorem 2 (Weak law of large numbers). Let Xi be an infinite set of iid Lebesgue integrable
random numbers satisfying E[Xi] = µ for all i. Then:

lim
N→∞

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
= 0, for all ε > 0 (4.2)

The above limit can also be written as:

1

N

N∑
i=1

Xi
p−→ µ (4.3)

or:

plim

(
1

N

N∑
i=1

Xi

)
= µ (4.4)

What does (4.2) mean in plain(er) English? Note that
∣∣∣ 1N ∑N

i=1Xi − µ
∣∣∣ is the distance

between our sample mean and the population mean. This is random because we have a
random sample. Now we define ε as some arbitrary criterion for closeness, and ask the
question: how likely are we to get a sample mean at least ε away from the population mean?
(4.2) tells us that no matter how we define this criterion closeness, as N →∞ our sample will
be close to the population mean with probability approaching 1. Basically, sample means
converge to population means as N → ∞. In other words: sample means are consistent
estimators of population means!

4.2.2 A central limit theorem

So the Weak Law of Large Numbers is useful for point estimates: if we have a sample mean
with a large sample size, we are likely to get very close to the population mean. However
this is not helpful for inference. How do we put a confidence interval around an estimate if
the distribution of the estimator collapses to a point? The answer is to use an appropriate
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scaling of the estimator that doesn’t collapse. To understand the problem, note that the
variance of the sample mean for an iid sample is:

V [x̄N ] = V

[
1

N

N∑
i=1

Xi

]
=

1

N2
V

[
N∑
i=1

Xi

]
=

1

N2

N∑
i=1

V [X] =
1

N2
NV [X] =

V [X]

N
(4.5)

So for finite V [X], V [x̄N ]→ 0 as N →∞. The solution to this can also be seen in Equation
4.5: we need to multiply x̄N by a fudge factor g(N) (actually a fudge function of N) that
increases in such a way that V [g(N)x̄] is a constant. Since g(N) is not random, we can do
the following:

V [g(N)x̄N ] = V [g(N)x̄N ] = [g(N)]2V [x̄N ] = [g(N)]2
V [X]

N
(4.6)

So if g(N) =
√
N , then:

V [g(N)x̄N ] = V [
√
Nx̄N ] = N

V [X]

N
= V [X] (4.7)

a constant! That is, the variance of
√
Nx̄N does not depend on N . Furthermore, we can

scale this a little bit more so it has zero mean:

E
[√

N (x̄N − E[X])
]

= 0 (4.8)

V
[√

N (x̄N − E[X])
]

= V [X] (4.9)

OK, so now we know that, no matter how large or small the sample size,
√
N(x̄N−E[X])

will always have mean zero and variance equal to V [X]. This is almost useful. What is
actually useful is the following:

Theorem 3 (Central limit theorem). Let Xi be an iid random variable with mean E[Xi] = µ
and variance V [Xi] = σ2 <∞. Let:

ZN =

√
N
(

1
N

∑
iXi − µ

)
σ

(4.10)

Then ZN converges in distribution to a standard normal distribution as N →∞. that is:

lim
N→∞

Pr[ZN ≤ z] = Φ(z) (4.11)

where Φ(z) is the standard normal cdf evaluated at z. Alternatively, we could write:

ZN
d−→ N(0, 1) (4.12)

That is, no matter what the distribution of X is, as long as it is iid with finite variance,
we know that the sampling distribution of the mean approaches a normal distribution as
N →∞. We then make the leap of faith that N is “close enough” to infinity that Pr[ZN ≤ z]
is “close enough” to Φ(z) that it is not too terrible to assume that it is equal to Φ(z). Why
is that useful? Perhaps I should re-iterate:
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no matter what the distribution of X is . . .

This means that if we want to say something about the sample mean, we hardly need to know
anything about the distribution of the individual Xs. Only that they are (i) independent
and identically distributed, (ii) finite variance, and (iii) the sample size is sufficiently large
that this is a good approximation. That’s it! Think about all of the hard work we put into
working out a sampling distribution in the previous chapters. We needed to know the exact
distribution of our Xs, and then we had to be lucky to find a monkey trick that got the
distribution of the sample mean into a recognizable form. Now we only need to be able to do
hypothesis tests and calculate p-values and confidence intervals using just one distribution:
the standard normal! This thing can be summarized on a single sheet of paper, and in reality
you will most likely need to memorize maybe two or three numbers to never need this piece
of paper again.

4.3 Using large-sample properties to make inference

easier

It is quite likely that all of the work needed to do inference in Chapter 3 made you wonder
whether statistics and econometrics was always this hard. Fortunately, you now have a new
tool that allows you to make a very useful shortcut. In this previous chapter, we spent a
lot of time deriving the sampling properties of

∑N
i=1Hi, the sum of N iid unfair coin flips,

which came up heads (Hi = 1) with probability θ, and tails (Hi = 0) otherwise. If you’ve
being paying attention in this chapter so far, you would have noticed that the WLLN and
CLT told us things about sample means. Unfortunately,

∑N
i=1Hi is not a sample mean.

Fortunately, if we divide by N , it is exactly a sample mean! Let h̄ = 1
N

∑N
i=1HiAs we could

already do in Section 1.3, we now know that:

E[Hi] = 1× θ + 0× (1− θ) = θ (4.13)

E[H2
i ] = 12 × θ + 02 × (1− θ) = θ (4.14)

V [Hi] = E[H2
i ]− E[Hi]

2 = θ − θ2 = θ(1− θ) (4.15)

Since h̄N is a sample mean, by the WLLN, we know that plimh̄N = E[Hi] = θ. Awesome!
the more we flip the coin, the more likely we are to have a good estimate of θ.

4.3.1 Hypothesis tests with asymptotic approximations

Suppose again that you wish to test the following hypothesis:

H0 : θ = θ0, HA : θ 6= θ0 (4.16)

That is, you are ding a 2-sided test, with the null being that the true value of θ is θ0 (i.e. if
you were testing for a fair coin, you would substitute θ0 = 0.5). Before we go ahead and
derive the sampling distribution for h̄N , which is what we would have done in the previous
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chapter, let’s substitute some of these properties of Hi into the Central Limit Theorem as
stated in Theorem 3. Specifically, for this coin flip variable, when the null hypothesis is true,
we know that:

• 1
N

∑N
i=1Xi in this case is our sample mean h̄N

• µ, the population mean, is equal to θ0, and

• σ, the population standard deviation, is equal to
√
θ0(1− θ0)

Here comes the part that will make inference much easier for you! Now we can define our
test statistic as:

ZN =

√
N(h̄N − θ0)√
θ0(1− θ0)

(4.17)

and by the Theorem, we know that ZN
d−→ N(0, 1). So we know the distribution of the

test statistic when the null is true. Well . . . actually we don’t. We know the asymptotic
distribution of this test statistic when the null is true, and we are going to assume that our
sample size N is large enough that this asymptotic distribution is a good approximation of
the actual distribution. If N = 10, it is probably a terrible assumption. N = 10, 000? Go
for it! Actually, have a good think first, but 10,000 is certainly much better than 10. There
is no real rule of thumb (forget all of this N = 30 stuff you may have been taught in earlier
classes RIGHT NOW) for what N is large enough, because it depends on the distribution
of the random variable, but as you do more of this, you will probably have some intuition
about when it is a good idea and when it’s not.

So how do we use this? Well, we have (i) a null hypothesis and (2-sided) alternative; (ii)
a test statistic, and (iii) a distribution (approximate) of this test statistic when H0 is true.
Suppose we want to do this test at the α = 0.05 level of significance. All we are left with
is finding a rejection rule. Inspection of Equation 4.17 shows us that ZN ≈ 0 is (loosely
speaking) support for H0, and ZN far away from 0 in either direction is support for HA.
Hence, qualitatively, our rejection rule must therefore look something like “reject H0 if ZN is
large and negative, or if ZN is large and positive”. We want to find some critical values that
define this rejection rule. As this is a 2-sided test, if the null is true we want to reject H0 with
probability α/2 = 0.025 in the left tail, and the same 0.025 in the right tail (i.e. so they add
up to 0.05). Fortunately for us, the normal distribution is symmetric about zero, so we only
need to look up one value. Intuitively, you might want to find the left critical value, which
you get by solving 0.025 = Φ(zcL), where Φ(·) is the standard normal cdf. Unfortunately,
this is not provided in standard distribution tables,1 but we solve for the right critical value
1− 0.025 = 0.0975 = Φ(zcR). Then we can use symmetry to get zcL = −zcR. If you go and
look up your distribution tables, you will get zcR ≈ 1.96 (accurate to 2 decimal places, which

1Although you can always use your computer. For example, in Stata: display invnormal(0.025)

returns -1.959964
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is almost always good enough). Hence, the rejection rule is:

Reject H0 if and only if |ZN | ≥ 1.96 (4.18)

To put this in perspective, suppose that you are doing a test for a fair coin: θ0 = 0.5, this
means that your rejection region, in terms of your sample mean hN , is equal to:

√
N(h̄N − 0.5)√
0.5(1− 0.5)

= 2
√
N(h̄N − 0.5) (4.19)

|ZN | > 1.96 ⇐⇒ 2
√
N |h̄N − 0.5| > 1.96 (4.20)

⇐⇒ |h̄N − 0.5| > 1.96

2
√
N
≈ 1√

N
(4.21)

4.3.2 Even more of a shortcut

At this point, you may be worried that even though getting an approximate distribution of
the test statistic is really useful, you might still be stumped because you also need to know
V [X] to use this. What if you want to do a test about a mean, but you don’t know what the
variance is (or can’t be bothered working it out, I won’t judge), and don’t want your test
to based on a bad assumption about this thing V [X], that is not central to your research
question?

Let’s define Di = (Xi−µ)2, which is the squared deviation between our random variable
Xi and its population mean µ. We could always generate this variable if we already had X,
and after this, we could compute its sample mean. If we did this, we would be computing:

d̄N =
1

N

N∑
i=1

Di =
1

N

N∑
i=1

(Xi − µ)2 (4.22)

which is the sample analog of E[Di] = E[(Xi − µ)2] = V [Xi], and hence by the WLLN d̄N
must converge in probability to V [Xi]. Since we have already assumed N is large enough
that our test statistic is close enough to N(0, 1) that we can use it, there is not much more
harm, if at all, in assuming that d̄N is close enough to V [X] to use it as a substitute for
the denominator of the test statistic.2 What’s more, we could also replace µ with x̄N , the
sample mean, because plimx̄N = µ (WLLN). If we make these substitutions, what we end
up with is:

Z ′N

√
N(x̄N − µ)√

1
N

∑N
i=1 (Xi − x̄N)2

d−→ N(0, 1) (4.23)

which contains things that we either (i) can compute from the sample, or (ii) are directly
making a hypothesis about. Note that the numerator is the square root of the sample

2There are some results about the relationship between probability limits and asymptotic distributions
that I am not going in to here, but they work in our favor.
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variance. Usually we would divide by N − 1 instead of N for bias reasons. There’s nothing
wrong with that, but note that (i) 1

N
≈ 1

N+1
for large N , which we have already assumed,

and (ii) we are taking the square root of the thing, so even if you divide by N − 1, the thing
will still be biased (look up Jensen’s inequality). With the formulation in (4.23), we don’t
even need to know the relationship between µ and V [X]. In practice, this is the one we will
be using.

4.3.3 Confidence intervals with asymptotic approximations

Confidence intervals with asymptotic approximations are, like hypothesis tests, exactly the
same as confidence intervals without asymptotic approximations, except that we use an
approximate distribution of the test statistic instead of an exact distribution. For our coin-
flipping example, in working through the hypothesis test example above, we have already
worked out that ZN in (4.17) is approximately distributed N(0, 1) when the null hypothesis
is true. Going back to the previous chapter, we know that confidence intervals ask the
following question: For what values of θ0 would I fail to reject the null hypothesis? We have
already worked out the rejection rule for our 5% test, so we would fail to reject the null
whenever |ZN | ≤ 1.96, or when:

ZN =

√
N |h̄N − θ0|√
θ0(1− θ0)

≤ 1.96 (4.24)

which is somewhat of a headache to solve. However now we will take off our statistics and
econometrics hats, and put on our math hat. Note that if N is reasonably large (again,
we’ve assumed this already, so yes, it is), we suspect that this confidence interval will be
reasonably small. Therefore, we will make the same additional approximation that got us
to (4.23), and instead look for solutions to:

Z ′N =

√
N |h̄N − θ0|

σ̂
< 1.96, where: σ̂ =

√√√√ 1

N

N∑
i=1

(
Hi − h̄N

)2
(4.25)

|h̄N − θ0| < 1.96
σ̂√
N

(4.26)

θ0 ∈
[
h̄N − 1.96σ̂/

√
N, h̄N + 1.96σ̂/

√
N
]

(4.27)

hopefully this is starting to become a bit more familiar.

4.3.4 p-values with asymptotic approximations

Again, we’re not doing much differently with p-values in this chapter, we’re just looking
up a different distribution. For a p-value, our question is: what is the probability that we
observed a test statistic providing at least as unfavorable support for the null hypothesis
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than the one we observed in the sample? We therefore want to know the probability:

Pr

(∣∣∣∣∣
√
N(h̄N − θ0)√
θ0(1− θ0)

∣∣∣∣∣ ≥ zN

)
(4.28)

= Pr

(√
N(h̄N − θ0)√
θ0(1− θ0)

≥ |zN |

)
+ Pr

(√
N(h̄N − θ0)√
θ0(1− θ0)

≤ −|zN |

)
(4.29)

= 1− Φ(|zN |) + Φ(−|zN |) note that these are standard normal cdfs (4.30)

= 1− Φ(|zN |) + (1− Φ(|zN |)) the standard normal is symmetric (4.31)

= 2(1− Φ(|zN |)) (4.32)

where zN is the realized value of our test statistic we computed in our sample. The last
few lines get the expression into something we can look up in standard probability tables.
Typically you are given the cdf for positive numbers only, then you have to use symmetry
to get the number you want.

4.4 Transforming variables

So now you know a lot about sample means. Great! A lot of things can be estimated
using sample means. Unfortunately, sometimes the mean isn’t the thing you are directly
interested in. Instead, you want to report a transform of the sample mean. To tie things in
with our coin-flipping example, suppose that instead of wanting to report an estimate of the
probability of the coin coming up heads (i.e. θ), you want to report how much more likely it
is to flip heads than tails. The population quantity you want to report is therefore:

ρ ≡ θ

1− θ
=

probability of flipping heads

probability of flipping tails
(4.33)

That is if ρ is (say) two, this means that flipping heads is twice as likely as flipping tails
(i.e. θ = 2/3). From here it seems reasonable to use the estimator:

ρ̂ =
θ̂

1− θ̂
(4.34)

That is, just use our estimator for θ, and transform it in the same way you transformed the
population parameter θ. After all, θ̂ is a sample mean (earlier we worked out that it was the
fraction of heads), and we know a lot about sample means. In this case:

E[θ̂] = θ, i.e. it is unbiased (4.35)

V [θ̂] =
1

N
θ(1− θ) (4.36)

plimθ̂ = θ i.e. it is consistent (4.37)
√
N(θ̂ − θ) d−→ N(0, θ(1− θ)) (4.38)
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We know all of these things because θ̂ is a sample mean, but ρ̂ is not a sample mean. Is it
consistent? Biased? Can we put a confidence interval around it? To answer these questions,
we will need the following results.

4.4.1 The continuous mapping theorem

In order to answer the consistency question, we will use the following result:

Theorem 4 (Continuous mapping theorem, loosely stated). If plimθ̂ = θ, and g(x) is a
continuous function, then plimg(θ̂) = g(θ).

in words: If an estimator ρ̂ = g(θ̂) is a continuous transformation of a consistent estimator
θ̂, then ρ̂ is a consistent estimator of ρ = g(θ). Basically, we’re done. We know that θ̂ is
consistent (by the WLLN), and we want to report a continuous transform of it. Therefore ρ̂
is a consistent estimator for ρ.

4.4.2 The delta method

Now we know that we have a nice, consistent point estimate of ρ. But now we want to put
a confidence interval around it. To do that, we need to know, or approximate it. To do this,
we will use the Delta method, which uses the following result:

Theorem 5 (The delta method, univariate case). Let

• θ̂ be a consistent estimator with a normal asymptotic distribution
√
N(θ̂ − θ)

d−→
N(0, V ), and

• g(θ) be a continuous function with a continuous first derivative g′(θ).

then:
√
N(g(θ̂)− g(θ))

d−→ N
(
0, (g′(θ))2V

)
(4.39)

Why is this useful? If θ̂ is asymptotically normal, we can work out the asymptotic
distribution of g(θ̂), in our case ρ̂. For our example, we need the derivative of g:

g′(θ) =
∂

∂θ

θ

1− θ
(4.40)

=
1− θ + θ

(1− θ)2
=

1

(1− θ)2
(4.41)

And so, substituting the particulars of our coin flip estimator θ̂, namely V = θ(1− θ), into
(4.39):

√
N(ρ̂− ρ)

d−→ N

(
0,
θ(1− θ)
(1− θ)4

)
= N

(
0,

θ

(1− θ)3

)
(4.42)
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Hence, a 2-sided, 95% confidence interval for ρ would be:[
θ̂

1− θ̂
− 1.96

√
θ

(1− θ)3N
,

θ̂

1− θ̂
+ 1.96

√
θ

(1− θ)3N

]
(4.43)

4.4.3 Jensen’s inequality

We have established that our transformed estimator ρ̂ is consistent, and we have worked out
an approximation of its sampling distribution. These are some nice large sample properties
to know, but what about bias? The original estimator θ̂ is unbiased because it is a sample
mean. What about ρ̂. Is it, too, unbiased? Sadly, the answer is no: no specifically in this
case, and no in general. This follows from Jensen’s inequality, which states that:

Theorem 6 (Jensen’s inequality). If g(x) is a convex function, and X is a random variable,
then g (E[X]) ≤ E [g(X)].

In words: the function of the expectation of a random variable is less than the expectation
of the function of the random variable. Conversely, if g is a concave function, the direction of
the inequality is reversed. Is our g(x) = x/(1−x) concave of convex? Since it is differentiable,
we can use the 2nd derivative to work it out:

g′(x) =
1

(1− x)2
, g′′(x) = 2(1− x)−3 > 0 (4.44)

So it is convex. Hence E[ρ̂] < ρ, so the estimator is biased. It is not all lost, though. Firstly,
we know the direction of the bias, so that is somewhat helpful. Also, we have already
established that ρ̂ is a consistent estimator, so for large samples this is not so much of a
problem.

Exercises

Exercise 4.1.
Consider the exponential distribution, which has the following properties:

FX(x) = 1− exp(−λx)I(x > 0) (4.45)

fX(x) = λ exp(−λx)I(x > 0) (4.46)

E[Xk] =
k!

λk
(4.47)

It can be used to model the time until an event occurs. We will consider the following two
estimators for λ:

λ̂ =
1

1
N

∑N
i=1Xi

, λ̃ =

√
2

1
N

∑N
i=1X

2
i
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1. Explain how these estimators can be motivated from Equation 4.47 above.

2. Load ExpData.csv, which is a dataset of exponential random numbers. Estimate λ
using both estimators described above.

3. Are these consistent estimators for λ? Explain.

4. What are the asymptotic variances of these estimators? Which one would you prefer?

5. Suppose that you wanted to report the probability that the event had not occurred
after 1 unit of time. Write down this expression as a function of λ.

From now on, let’s just focus on λ̂, although you could do all of this with λ̃ as well.

6. Replace λ with λ̂ in your answer to the previous part. This is an estimator of this
probability. Is this estimator consistent?

7. What is the asymptotic distribution of the estimator of this probability?

8. Construct a 95% confidence interval for this probability.

9. Is λ̂ a biased estimator for λ? Explain. If it is biased, can you say in which direction?

Exercise 4.2 (Simulation exercise – What is so magical about N = 30?).
In an undergraduate statistics course you may have been told that you need a sample size
of at least 30 to justify looking up a normal distribution table. Plot the distribution of the
test statistic t, and evaluate the test size for the hypothesis test:

H0 : E[X] = 0, HA : E[X] 6= 0

t =

√
NX̄√

1
N

∑
i(Xi − X̄)2

reject H0 if and only if |t| > 1.96

assuming that:

1. Xi ∼ iidN(0, 1)

2. Xi ∼ iidN(0, 4)

3. Xi ∼ iidBernoulli(0.5)− 0.5 (you can draw this by generating a fair coin flip variable
then subtracting 0.5 from it).

4. Xi ∼ iidχ2
1 − 1. Note that if Z ∼ N(0, 1), then X2 ∼ χ2

1

Note that once you have generated X from the correct distribution, you can compute t as
follows:
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summarize X

display t = sqrt(_N)*r(mean)/sqrt(r(Var))

within a program, you will want to replace display with return scalar.

Exercise 4.3.
Consider the distribution first introduced in Exercise 1.3. We will continue analyzing the
properties of the following estimators for the parameter in this distribution, which were
introduced in Exercise 2.1:

α̂ =
1
N

∑N
i=1Xi

1− 1
N

∑N
i=1Xi

α̃ = − N∑N
i=1 log(Xi)

1. For each of these estimators, answer do the following questions. For simplicity, I refer
to everything below as α̂, but do this for both α̂ and tα̃.

Hint: for α̃, you will need to do some integration by parts, then use L’Hôpital’s rule.
Either that or use something like thishttps://www.wolframalpha.com

(a) Is α̂ a consistent estimator for α? Explain your answer.

(b) What is the delta method approximation of the variance of α̂?

(c) Suppose that you wish to test:

H0 : α = 2

against:

HA : α 6= 2

Under the null hypothesis, what is the asymptotic (large sample) distribution of√
N(α̂− 2)? That is, complete the right-hand side of:

√
N(α̂− 2)

d−→ ?

(d) Use your answer in the previous part to propose a function of α̂ and N that at
large enough samples is approximately distributed N(0, 1)

(e) Suppose that you collected N = 30 observations and estimated α̂ = 2.2. Use your
answer in part 1d to test this hypothesis. Use a 5% level of significance.

(f) What is the p-value for this test?
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(g) Construct a 2-sided 90% confidence interval around this point estimate.

2. Based on their asymptotic variances alone, which estimator would you prefer to use?

3. Propose an alternative method of testing α = 2 using the sample mean instead of our
estimate of α̂ (just outline the steps). Make sure you state the distribution of the test
statistic under the null, if you made a large-sample approximation to get there, and
the rejection rule.

4. (Simulation exercise): In Exercise 4.3, question 1e, you constructed a rejection rule for
H0 based on a large-sample approximation of the distribution of α̂. Use a simulation
to construct a rejection rule that does not need this approximation. Compare it to
your large-sample approximation rejection rule. Do you think the probability of a
Type II error using the large-sample approximation is close enough to 5% to be a good
approximation? Briefly discuss your answer.

Hint: To do this, you should:

• Simulate the distribution of α̂ when the null hypothesis is true

• Calculate two critical values (i.e. reject if α̂ is not between these critical values)
from your simulated distribution. Think about how you calculated your critical
values when you used the large sample approximation, and how they relate to the
normal distribution.

Exercise 4.4 (A sort-of simulation exercise).
When we simulate a draw from the distribution of an estimator, say µ̂, one thing we may
want to ask is how accurate is our approximation of the bias? That is, how close is the
simulated bias:

BiasS(µ̂) =
1

S

S∑
s=1

(µ̂s − µ)

to

Bias(µ̂) = E (µ̂− µ)

Assume that we have correctly simulated {µ̂s}Ss=1, such that each µ̂s is an iid draw from the
sampling distribution of µ̂.

1. What is the variance of our simulated bias?

2. What is the approximate distribution of:

√
S
(
BiasS(µ̂)− Bias(µ̂)

)
for large S?
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3. How can you use your previous answer to work out how accurate your simulation is?

4. Assume that V [µ̂] = 1. How large doe S be for your simulation to get the bias correct
to the 2nd decimal place with probability 99%?

Express your answers as a function of the actual bias, the simulation size S, E[µ̂] and V [µ̂]
(assuming these are all finite quantities).

Exercise 4.5 (One test, three ways).
You wish to determine whether a randomly selected dime in the population of dimes is fair
or unfair. To this end, you decide to crowd-source your coin-flipping activities. Specifically,
you reach out to 10 random individuals on the internet and ask them to flip a dime 200
times, and report to you the fraction of heads that they flipped. Let Hi,t be the binary
random variable, equal to one if person i’s tth flip is heads, and equal to zero otherwise.
Your sample therefore consists of {Hi}10i=1, where Hi = 1

200

∑200
t=1Hi,t is the fraction of heads

that random individual i flipped. Your sample {Hi}Ni=1 is contained in dimeflips.csv.

1. State a formal hypothesis that the average dime is fair, that is testable with your
sample.

2. Propose a justification for why Hi is close enough to normally distributed (if the null
is true) for us to reasonably assume that it is. State any other assumptions you need
to get there. Derive a function of Hi and T that is approximately N(0, 1).

3. Use your answer to 2, and the following result: Use the following result

If Xi ∼ iidN(µ, σ2), then:

t =

√
N(x̄− µ)√

1
N

∑N
i=1(Xi − x̄)2

∼ tN−1

where tk is Student’s t distribution with parameter k (often referred to as
the “degrees of freedom”).

to suggest a suitable test statistic that has a t distribution (approximately) when the
null is true. Calculate the p-value of this test. Hint: help t.

4. Use your answer to 2, and the following result:

if Z1, Z2, Z3, . . . , ZT ∼ iidN(µ, σ2), then X =
∑T

t=1 Zt ∼ N(Tµ, Tσ2).

to suggest a suitable test statistic that has a normal distribution (approximately) when
the null is true. Perform this test at the 5% level of significance.

5. Use your answer to 2, and the following result:
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if Z1, Z2, Z3, . . . , ZN ∼ iidN(0, 1), then X =
∑N

i=1 Z
2
i ∼ χ2

N . Where χ2
k is the

chi-squared distribution with parameter k (often referred to as the “degrees
of freedom”)

to suggest a suitable test statistic that has a χ2 distribution (approximately) when the
null is true. Perform this test at the 5% level of significance. Hint: help invchi2.

Exercise 4.6.
This exercise covers a large range of things that you might want to find out about, or do
with, an estimator using (mostly) large sample properties. If you are having trouble with a
particular part, I suggest doing that part for all five distributions in the table below in one
go. If you are confident with all of the steps, attempt working through all of them for one
distribution.

Consider the following distributions (you are just given the mean and variance, but you
won’t need any more information):

Distribution E[X] V [X] notes Sample mean H0

Poisson λ λ λ > 0 1.1 λ = 1
Exponential λ−1 λ−2 λ > 0 1.1 λ = 1
χ2 k 2k k > 0 2.8 k = 3
Borel 1

1−µ
µ

(1−µ)3 µ ∈ (0, 1) 2.5 µ = 1
2

Geometric 1
ρ

1−ρ
ρ2

ρ ∈ (0, 1) 1.9 ρ = 1
2

For each of these distributions:

1. Suppose you had an iid sample from this distribution, what is the asymptotic distri-
bution of the sample mean? I.e.:

√
N

(
1

N

N∑
i=1

Xi − E[X]

)
d−→ ?

That is, use a central limit theorem.

2. You wish to test the hypothesis in the rightmost column of the table, against a 2-sided
alternative. Use your a answer to the previous question to construct a test statistic for
this hypothesis that is N(0, 1) when the null is true. Do not use the sample variance
to construct your test statistic.

3. State the rejection region for this test at the 5% level of significance.

4. Use the sample mean provided in the table to test this hypothesis.

5. Assign a p-value to this hypothesis.

[what follows is somewhat trivial for the Poisson and χ2 distributions]
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6. Construct an estimator for the parameter in the distribution based on the relationship
between the parameter and the population mean (i.e. an analogy estimator).

7. Use the sample mean provided to estimate this parameter.

8. Is this a consistent estimator for the parameter? Explain your answer.

9. What is the delta method approximation of the variance of your estimator? Note
that since you don’t know the parameter, you will have to use your estimate of this
parameter in your expression for the variance.

10. Use this approximation to construct a 95% confidence interval for the parameter.

11. Is this estimator biased? Explain your answer. If the estimator is biased, can you work
out the direction of the bias?
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Part II

Basics of programming and handling
data in Stata
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Chapter 5

Getting started in Stata

5.1 Importing, saving, and exporting data

The most likely reason that you open up Stata is that you want to analyze some data. An
important first step is therefore knowing how to import your file. Basically, you need to give
Stata some instructions along the lines of “Go to this folder, and open this file.” On top of
this, you will also need to tell it the file format. While you can look at most of the datasets
that Stata can open using a text editor,1 you need to tell it the “language” it should be
expecting. The bad news is that Stata will not be your friend if you don’t get this right, the
good news is that if you do get it right, Stata is able to open quite a lot of stuff (with the
right instructions).

You can tell Stata to import data through the File→Import drop-down menu. In addi-
tion, Stata also has its own file format with the suffix .dta. You can import this file format
using the use command. While this format usually preserves much more useful information
than the other formats,2 it has its drawbacks, too. First, it is difficult to read in programs
other than Stata; and second, there are sometimes compatibility issues between versions
of Stata.3 The .dta format can be produced using the drop-down menus File→Save or
File→Save As....

Note that all of these functions can be accessed through the command line. For example,
if you have a file thingy.dta in your working directory, instead of File→Open... you
could type use thingy, or if you already have something in memory: use thingy, clear.
Exercise 5.2 is there to help you get more acquainted with how Stata stores data in different
formats.

1MS Windows’ Notepad is a text editor, but it is not a particularly good one. I have found that Notepad++
works pretty well for almost everything.

2My favorites of these are value and data labels, which make using someone else’s data much easier.
3At the time of writing, I had recently encountered a problem with opening files in Stata 13 that were

saved in Stata 14. This can be solved at the newer version end with the version command, but it is annoying,
nonetheless.
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5.2 Scripts

Almost everything that comes with Stata can be done using the drop-down menus. This
seems like a great comfort at first, but I warn you against using Stata like this for (at least)
four reasons:

1. The “almost” part: there are some things that you will not be able to access using the
drop-down menus.

2. The “that comes with Stata” part: Stata has a lot of really good and free user-generated
content.4 These typically are not friendly to those who like to point and click.

3. If you always use the drop-down menus, and you ever want to change what you do
(you should expect to do this all the time), then you will have to re-trace all of your
steps. Will you remember them? Will you have time to do them? Will you get the
changes right on the first try? Probably not (no offense).

4. Pedagogically, I want you to learn something about programming in general, as well as
in Stata specifically. Learning about some fundamental components of programming
languages (such as scripts, for loops, and if statements) will make any programming
language easier to learn in the future.

In addition to not using the drop-down menus, I also encourage you to not use the command
line for anything you think you might want to keep. This leaves us with the following
solution:

It is with a keen sense of irony that I invite you to use the drop-down menus in Stata as
follows: Window → Do-file Editor → New Do-file Editor. Alternatively, ctrl+9 will
also get you there. This opens up a new Do-file editor (duh). This is Stata’s in-built text
editor for scripts, which are set of instructions that Stata follows from top to bottom. These
things are extremely useful for many reasons. So much so, that from now on you should
think about doing everything in Stata exclusively in scripts.

To demonstrate how to get started on a script, let’s have a look at Stata’s system dataset
auto.dta.5 We can access this and see what’s in it by typing the following lines into the
command line:

clear

sysuse auto

describe

clear removes any data that was in memory beforehand (make sure you save regularly!),
sysuse auto loads this dataset, and describe gives us a description of all of the variables
held in memory. One of the variables we have is mpg, which is each cars’ fuel efficiency, in

4E.g. esttab, which you will become familiar with shortly.
5Stata comes with a number of small, pre-loaded datasets that can be accessed with the sysuse command.

These are frequently used in the help files as examples to demonstrate particular programs. There are also
other datasets on Stata’s website that can be accessed using the webuse command.
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Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

mpg | 74 21.2973 5.785503 12 41

Lper100km | 74 11.83116 3.016803 5.749129 19.64286

Table 5.1: Resultant summary of auto dataset after generating Lper100km variable.

miles per gallon. Suppose that, for whatever reason, we wish to do our analysis in liters per
100km instead. This is easily done by generating a variable:

generate Lper100km = 1/(mpg *1.61/3.795) *100

That is, there are 1.61km in a mile, 3.795L per US gallon, and this new unit is based on
100L of fuel:

3.795L/gallon

mile/gallon× 1.61km/mile
= 2.35× L/km× 100

100
= 235L/100km (5.1)

So before we ever want to do analysis on the auto dataset using these units for fuel efficiency,
without scripts we would have to type in all of these lines. This could become tedious if we
have to do this over and over again, so alternatively, you could write the script:

clear // clear everything in memory

sysuse auto // load the system dataset called "auto"

describe // provide a description of the dataset

generate Lper100km = 1/(mpg *1.61/3.795) *100 // convert mpg into L per 100km

summarize mpg Lper100km // provide summary statistics for mpg and Lper100km

which works in exactly the same way as typing stuff into the command window, but you
only have to type it once. This code also produces a table of summary statistics of the old
and new variable, which is shown in Table 5.1.

5.3 The working directory

In many popular MS programs, whenever you save something for the first time you are asked
where you would like the file to be stored. This is a problem if you are using scripts, for at
least these reasons:

1. If your script is a long one, then if you are like me you probably want to go and do
something else while it runs. Go get coffee, grade a paper, mindlessly check Facebook,
etc. If your script has multiple lines telling Stata to write files, you don’t want it
interrupting you whenever it needs to do this with the question “where do you want
me to put this?”

2. If you are collaborating with others (which I strongly encourage), your script will need
to run on many (at least two) machines, which all have different file systems.

77



The solution to these problems is to point Stata in the direction of a “working directory”.
This is the default folder that, if prompted to save, export, import, use, or read or write
anything else for that matter, it will do it here by default.

You can ask Stata about the working directory through the command line by typing dir.
This gives you the file path, e.g. C:/users/Kryten/Metrix, as well as information about
any files and folders that are in this directory. You can go up one level by typing cd ..,
which in this example would get you to C:/users/Kryten. You could go back to the original
by typing either cd Metrix, or the whole file path: cd C:/users/Kryten/Metrix.6 In fact,
this second command will get you there no matter what the current working directory is.

Furthermore, by default Stata assumes that any incomplete file path that you give it
starts at the working directory. So suppose that you had a folder called “figures” inside
your working directory (I almost aways do), then you could tell Stata to save a histogram of
variable x as follows:

hist x

graph export figures/HistogramOfX.png

Exercises

Exercise 5.1.

1. Create a new folder somewhere, and copy “galton heights.csv” into it

2. Stata needs to know which folder you want it to look in by default. This is called
the “working directory”. You can set this by clicking on File --> Change Working

Directory and following the prompts.

3. Type ls into the command window. Stata will tell you the contents of this folder. If
you’re ever unsure what your working directory is, type pwd (print working directory)

4. Stata needs to know a bit about the data file you want it to read. galton heights.csv

is a comma separated variable file. Open it with NotePad or something similar to find
out what that means.

5. Today we will import our file from the command line. It can be done through File -->

... as well, but some things cannot be done with the drop-down tabs. The command
we will use is import delimited, but we need to know the information Stata needs.
To do this, type “help import delimited” into the command line. A help file will
pop up. Get to know how to read these help files. Once you do, they are actually quite
helpful! Work out what you need to type to import your data (I will run through this
with you once you’ve tried yourself)

6If there is a space in the file path, you will need to put double quotes around it, e.g.: cd "C:/this

folder has spaces"
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6. In the command line, try typing (one at a time) “describe”, “summarize”, and
“summarize, detail”. What do these tell you? Have a look at the help files for
describe and summarize Can you summarize only two of the five variables in the
data set? (read the help files).7

7. What is wrong about the summary statistics for mothers and fathers? (think about
how the data are arranged)

8. The height variables are recorded in inches (reasonable in the US), but for some reason
60 inches are subtracted. Create 3 new variables equal to the actual heights:

generate father height actual = father height + 60 If you want to use a sys-
tem of measurements that the majority of the world uses:

generate father height meters

= father height actual / 39.37

9. Check your work with a scatter plot. If you created these variables correctly, what
would the relationship between child height actual and child height be? With
the drop-down menus, use: Graphics --> Twoway graph (scatter, line, etc.)

10. Look at the text that just appeared in the output. Copy and paste it into the command
line. Same results? Good!

11. Try the following, what do they do?

twoway (scatter child height actual mother height actual)

twoway (scatter child height actual mother height actual if son==0)

by son, sort: twoway (scatter child height actual mother height actual)

12. Suppose that you wanted to get rid of some data:

I don’t need to use family id, then: drop family id

I only want to focus on daughters, then: drop if son==1

13. Once you’re done, you can save the data (but not the outputs) by typing:

save filename.dta

dta is a special file format for Stata that allows you to store some additional information
(more on this later).

To load a dta file: use filename

If you already have data in the memory, you will need to clear it first:

7Note that Stata lets you take a few shortcuts: you could have types desc and sum respectively. I will
try to not take the shortcuts, but if you use Stata enough you will probably always use them. I think this is
a drawback of Stata. Having exactly one way to do things makes it easier to read others’ programs. If you
use Python, have a think about what a tab means.
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clear

use filename

Exercise 5.2.
Load one of the system datasets (e.g. sysuse auto, clear), then do the following:

1. Type describe and summarize into the command line. What do these commands do?

2. Use the drop-down menus to export this dataset into the following formats:

(a) Text data in csv format

(b) Text data in fixed format

(c) Stata’s .dta format.

What commands does Stata write into the command line when you export these files?

3. In a good text editor (e.g. Notepad++). Open up the two files you created in the
previous question. In each of these files, how does Stata know when one column ends,
and another begins?

4. Import the .csv and .dta that you created, and describe the data. Has any infor-
mation changed or been destroyed compared to the system dataset?

Exercise 5.3.

1. Find out where Stata’s default working directory is on your machine. I.e. what is ther
working directory when you open Stata?

2. Create a folder somewhere. Write a script that, no matter where it is located, will
export a comma-separated variable version of Stata’s system dataset auto to this folder.

3. What do you need to do to make this script run without errors twice?

Exercise 5.4.
Unpack ExUnderstandingStata.zip into a folder on your hard drive.8 Within this file
structure there should be a folder called ExUnderstandingStata, which contains three folders
called Code, Data, and Outputs. Open up CommentThis.do in Stata’s do file editor.

1. Near the top of this script is a line that says something like:

cd "C:\Users\jbland\Dropbox\MetrixShare\StataLectures\CH05GettingStarted\

↪→ ExUnderstandingStata"

8I don’t need you to understand the dataset used in this exercise, but in case you are interested, there is a
description of the data here: https://vincentarelbundock.github.io/Rdatasets/doc/carData/Cowles.
html
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which won’t work unless you have hacked into my office machine. Change this line so
that it points to the ExUnderstandingStata folder on your machine.

2. Put a comment above every line in this script that describes what that line does. If
you are having trouble working this out, try commenting out the line, using Stata’s
help files (e.g. for the above line, I would type help cd), or using an internet search
(include “Stata” and the command in the search terms).

3. Answer the following questions (include them in the comments for the relevant line of
code):

(a) Explain what“storage type” is in the output that describe produces.

(b) On the line that starts with graph export, what does replace do? (hint: com-
ment out replace and try running the script twice).

(c) What do the jitter and msize options do?
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Chapter 6

For loops

Sometimes we find ourselves copying blocks of code over and over again, and only making
minor changes to each copy. In econometrics, this can often involve running the same
analysis on several different datasets, systematically running every possible combination of
things from two or more sets of things,1 or performing the same transformation of every
variable in our dataset.2 While there is no reason why your carefully copied and pasted
script that is hundreds of lines long could work, it pays to take a pause whenever you get
the urge to do this, and think about writing a for loop. Firstly, if there is an error in the
block of code that you are copying, then there will be hundreds of errors after you ctrl+v

99 times.
The idea of a for loop is as follows:

Hey , STATA! Do this thing in the curly brackets for x = 1, 2, 3, ..., K {

Here is the thing that I want you to do over and over again

I want each iteration to be a little bit different , so I can

include ‘x’ in here to distinguish between each step

} // here is the end of the thing I want you to do

Of course, Stata isn’t intelligent enough to understand this, but it can do something quite
similar, if you give it the right instructions. For example:

1 forvalues ii = 1/5 {

2 display ‘ii’

3 }

which displays the numbers 1 through 5. While this example is somewhat underwhelming,
note that in order to achieve this without using forvalues, I would have to:

1 display 1

2 display 2

3 display 3

4 display 4

5 display 5

1E.g.: Running an analysis for men and women separately, slicing the data by level of education.
2E.g.: We might want to take the natural log of all of all of our variables.
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which is 2 lines longer. More to the point, if I wanted the numbers 1 through 1,000 displayed,
the for loop would still be 3 lines long (all you would have to do is change the 5 line 1 to
1000), and the second script would be 1,000 lines long.

Listing all of the integers between 1 and 1,000 may be a special moment for you in learning
about programming, but it is not particularly useful. One application that is somewhat more
econometrics-y, is reporting a sample mean. In my working directory at the moment, I have
10 files (unimaginatively) called data 1.dta, data 2.dta, . . . , data 10.dta. Each of these
contains exactly one variable, called x. I want to report the sample mean of x in each dataset.
Of course, I could always do this without a loop:

clear

use data_1.dta

quietly summarize x

display ‘r(mean)’

clear

use data_2.dta

quietly summarize x

display ‘r(mean)’

clear

use data_3.dta

quietly summarize x

display ‘r(mean)’

// and so on

But that is 4 lines of code per dataset, for 10 datasets. That’s 40 lines of very repetitive
code! Instead, I could do the same thing as follows:

forvalues dd = 1/10 {

clear

use data_ ‘dd ’.dta

quietly summarize x

display ‘r(mean)’

}

which doesn’t get any bigger if I have 100 datasets or 1,000,000 datasets.
How do you think I created these .dta files for this example? Hint: I’m lazy:

forvalues dd = 1/10 {

clear

set obs 1000

gen x = rnormal ()

save data_ ‘dd ’.dta , replace

drop x

}

This chapter is a brief introduction to for loops without much application in economet-
rics. Once you understand this, go ahead and read Chapter 15, which demonstrates how
this can be useful when you want to run many, similar regressions.

83



Exercises

Exercise 6.1.
Write one for loop that does all of the following

1. Computes the sum of the first 1,000 integers. That is, the final line of your script
should display

∑k
x=1 x

2. Displays the first 1,000 Fibonacci numbers. These numbers follow the sequence xn =
xn−1 + xn−2, and start with x1 = x2 = 1.

3. Puts 1,000 numbers from the Linear Congruential Generator into a column of data
(this is a rather outdated method of getting a sequence of uniform pseudo-random
numbers). This generator is defined by the sequence:

xn = mod(axn−1 + c,m)

Use the parameterization m = 232, a = 1664525, c = 1013904223. If you divide these
by m you should get something that looks like a standard uniform. Show these numbers
in a histogram.

Exercise 6.2.
Using the Galton Heights dataset, write a for loop that generates dummy variables:

ParentHeightDifferece ki =

{
1 if abs(mother heighti − father heighti) ≥ k inches

0 otherwise

for k = 1, 2, . . . 10. Write a few lines of code after this to check that your loop worked
correctly.
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Chapter 7

Types of data

7.1 How your computer thinks (or doesn’t think) about

data

7.2 Censored and truncated data

7.3 Categorical data

7.3.1 Unordered

7.3.2 Ordered
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Chapter 8

Merging data, and wide & long
formats

This chapter demonstrates some useful tools for merging data and handling panel data.

8.1 One-to-one merges

Frequently you have more than one data file that contains information you would like to
study.

To begin with, we will look at two datasets:

• USCensusTab04.xls contains state abbreviations (i.e. AL, AK, etc), and state popu-
lations between 2000 and 1990

• us state.xls contains state abbreviations and their full names

We aim to merge these two datasets so that we can have full state names and populations
in the same dataset. This is a 1:1 merge because each row in the first file corresponds to
exactly one row in the second file, and vice versa.

The following code imports the first dataset, appropriately labels some variables, and
saves it in Stata’s .dta format.

import excel "USCensusTab04.xls", sheet("Table 4") cellrange(A7:C57)

rename A StateAbbrev

rename B pop2000

rename C pop1990

// Have a look at the Tab04 dataset

list in 1/10

save tab04.dta , replace

clear

The output from list in 1/10 is
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+--------------------------------+

| StateA~v pop2000 pop1990 |

|--------------------------------|

1. | AL 4447100 4040587 |

2. | AK 626,932 550,043 |

3. | AZ 5130632 3665228 |

4. | AR 2673400 2350725 |

5. | CA 33871648 29760021 |

|--------------------------------|

6. | CO 4301261 3294394 |

7. | CT 3405565 3287116 |

8. | DE 783,600 666,168 |

9. | DC 572,059 606,900 |

10. | FL 15982378 12937926 |

+--------------------------------+

that is, each row of data contains a state abbreviation (string variable), and that state’s
population in 2000 and 1990. We wish to import the actual name of the state into the
dataset as well. We could, if we really wanted to waste our time, go ahead and manually
code up:

generate State = .

replace State = "Alabama" if StateAbbrev == State = "AL"

// and so on ...

but we have better things to do. Fortunately, we also have the file us states.csv, which
has this information. First we need to get it in to a useful format:

import delimited "us_states.csv"

rename v2 StateName

rename v3 StateAbbrev

drop v1

// Have a look at the us_states dataset

list in 1/10

which gives us the output:

+------------------------+

| StateName StateA~v |

|------------------------|

1. | Alabama AL |

2. | Alaska AK |

3. | Arizona AZ |

4. | Arkansas AR |

5. | California CA |

|------------------------|

6. | Colorado CO |

7. | Connecticut CT |
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8. | Delaware DE |

9. | Florida FL |

10. | Georgia GA |

+------------------------+

So now we have a variable called StateAbbrev in each dataset, and we would like to have
the column StateName alongside everything else in tab04.dta. To do this, all we need to
do is:

merge 1:1 StateAbbrev using tab04.dta

This line gives us the output:

Result # of obs.

-----------------------------------------

not matched 1

from master 0 (_merge==1)

from using 1 (_merge==2)

matched 50 (_merge==3)

-----------------------------------------

which tells us that we successfully merged 50 rows of each dataset, and there was one left
over from the “using” dataset, tab04.dta. We can find out about this row by:

list if _merge ~=3

+----------------------------------------------------------+

| StateN~e StateA~v pop2000 pop1990 _merge |

|----------------------------------------------------------|

51. | DC 572,059 606,900 using only (2) |

+----------------------------------------------------------+

It looks like DC did not appear in this file, but everything else worked well:

// Have a look at the merged dataset

list in 1/10

+------------------------------------------------------------+

| StateName StateA~v pop2000 pop1990 _merge |

|------------------------------------------------------------|

1. | Alaska AK 626,932 550,043 matched (3) |

2. | Alabama AL 4447100 4040587 matched (3) |

3. | Arkansas AR 2673400 2350725 matched (3) |

4. | Arizona AZ 5130632 3665228 matched (3) |

5. | California CA 33871648 29760021 matched (3) |
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|------------------------------------------------------------|

6. | Colorado CO 4301261 3294394 matched (3) |

7. | Connecticut CT 3405565 3287116 matched (3) |

8. | Delaware DE 783,600 666,168 matched (3) |

9. | Florida FL 15982378 12937926 matched (3) |

10. | Georgia GA 8186453 6478216 matched (3) |

+------------------------------------------------------------

Good!
We can fix the one row that merge could not help us by:

replace StateName = "District of Columbia" if StateAbbrev == "DC"

Annoying, but not as much as coding up 51 lines like this one.
If we are going to do other merges, we may want to drop merge now, because it will

try to generate another merge variable for the next merge.

8.2 Wide and long datasets

Here we use emp-unemployment.xls, which can be found here: http://www.icip.iastate.
edu/tables/employment/unemployment-states. I have modified this file slightly to make
it easier to import into Stata. Specifically, I have appended the year columns with a “Y” so
that the variable is preserved. Otherwise Stata just names these A, B, C, D, etc., because
we aren’t allowed to have variable names that start with a number.

Once we import the data, we notice a problem:

clear

import excel "emp -unemployment.xls", sheet (" States ") cellrange(B7:AL59) firstrow

desc

------------------------------------------------------------------------

storage display value

variable name type format label variable label

------------------------------------------------------------------------

Area str20 %20s Area

Y1980 double %10.0g Y1980

Y1981 double %10.0g Y1981

Y1982 double %10.0g Y1982

Y1983 double %10.0g Y1983

The trouble is that we have one column for each year’s unemployment rate (the rows cor-
respond to states). This is a good way to organize things in a table, but it is terrible for
organizing things in Stata. This file is in wide format: in terms of our panel data notation,
each row corresponds to a different i subscript, and each column corresponds to a different t
subscript. (e.g. one row will be for Ohio, and there will be one column for every year of data
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we have). We would like to transform the data into long format, where each row corresponds
to a different i-t pair, (e.g. one row will be Ohio in 2007). To see this:

list Area Y1980 Y1981 Y1982 Y1983 in 1/3

+-----------------------------------------------+

| Area Y1980 Y1981 Y1982 Y1983 |

|-----------------------------------------------|

1. | United States 7.1 7.6 9.7 9.6 |

2. | Alabama 8.9 10.6 14.1 13.8 |

3. | Alaska 9.6 9.4 9.9 9.9 |

+-----------------------------------------------+

We fix this using the reshape command. The syntax on the next line is as follows:

• reshape long tells Stata that we want to convert a wide dataset to long,

• Y tells Stata that all of the columns that correspond to a different t index start with
the string “Y”

• i(Area) tells Stata that Area is the i-index of the data

• j(year) tells stata that the (new) t-index is to be called “year”, it will be equal to
everything that follows the “Y” in the wide dataset. (e.g. the Y2006 column will be
coded as year = 2006)

reshape long Y, i(Area) j(year)

// Problem solved!

list in 1/5

+-----------------------+

| Area year Y |

|-----------------------|

1. | Alabama 1980 8.9 |

2. | Alabama 1981 10.6 |

3. | Alabama 1982 14.1 |

4. | Alabama 1983 13.8 |

5. | Alabama 1984 11 |

+-----------------------+

Y is a terrible name for unemployment, so as a good practitioner we may want to think about
doing something like:

rename Y unemp

Finally, Area is a string variable, which is not always easy to use in Stata. To fix this, we
can use the encode command to assign an integer to every unique string in a variable
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encode Area , generate(state)

A nice feature of this is that Stata remembers what these strings were, so you don’t have
to use data labels to get the state names back, even if you drop the original variable. This
means that the actual state name, rather than "state=3" will chow up in all of your graphs,
regression outputs, etc. For example:

quietly regress unemp i.state

coefplot , drop(_cons)

produces Figure 8.1, which shows the coefficients on the state dummy variables.
Of course, encode also allows you to do some naughty things that would get you stupid

results, such as regress state unemp, summarize state, hist state, kdensity state,
and so on. Stata will not give you an error here, so be careful. Go and do a Google search
of “log(NAICS)” if you want a good example of what not to do with encoded variables.

Figure 8.1:

we will use this dataset later, so before
moving on, let’s:

save unemp_long.dta , replace

And if, for whatever reason, you ever
want to go back to the wide format, you can
do this:

reshape wide unemp , i(state) j(year)

8.3 Many-to-one and one-

to-many merges

Earlier, we had two datasets, each with
the same number of rows. Our expecta-
tion was that there was a on-to-one map-
ping between rows of these two datasets.
In many cases, however, we have to imple-
ment a many-to-one or one-to-many match.
This means that rows in one dataset corre-
spond to many rows of the other. To illustrate this point, we continue with the (long
format of) the dataset in Part 2, where we have yearly (t) data on US states (i). For
whatever reason, we wish to include some characteristics that are in ”list-state-capitals-
us-764j.xlsx”, which can be found here: http://www.downloadexcelfiles.com/us_en/

download-excel-file-list-state-capitals-united-states#.WH0AMBsrKUk.
Since it is easier to do the merge for a dataset that is already in Stata’s .dta format,

let’s load this in first:

clear
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import excel "list -state -capitals -us -764j.xlsx", sheet("List of State Capitals of US")

↪→ cellrange(A2:K52) firstrow

generate Area = State

The dataset we want to merge this with recode ”State” as ”Area”. We need these to have
the same name. We also need to save the dataset in Stata’s .dta format:

// Save the data for merging

save list -state -capitals -us -764j.dta , replace

// Go back to the long version of the unemployment data from Part 2

use unemp_long.dta

We have a variable called Area in both datasets. We need to tell Stata which file is the
“many” set, and which is the “one”. For us, the data currently in memory is the “many”,
because we are matching on State (named Area), and there are multiple years for each state
in this file. The list-state-capitals-us-764j.dta file contains exactly one row per state,
so this is the “one”.

merge m:1 Area using "list -state -capitals -us -764j.dta"

Result # of obs.

-----------------------------------------

not matched 72

from master 72 (_merge==1)

from using 0 (_merge==2)

matched 1,800 (_merge==3)

-----------------------------------------

There are some that did not match:

tab Area if _merge ~=3

Area | Freq. Percent Cum.

---------------------+-----------------------------------

District of Columbia | 36 50.00 50.00

United States | 36 50.00 100.00

---------------------+-----------------------------------

Total | 72 100.00

But that be expected, because DC, and the whole of the USA, does not appear in our dataset.
Let’s check that it worked:

list State unemp Capital in 1/10

sort year

list State unemp Capital in 1/10

which generates the output:
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+------------------------------+

| State unemp Capital |

|------------------------------|

1. | Alabama 8.9 Montgomery |

2. | Alabama 10.6 Montgomery |

3. | Alabama 14.1 Montgomery |

4. | Alabama 13.8 Montgomery |

5. | Alabama 11 Montgomery |

|------------------------------|

6. | Alabama 9.2 Montgomery |

7. | Alabama 9.7 Montgomery |

8. | Alabama 8.1 Montgomery |

9. | Alabama 7.2 Montgomery |

10. | Alabama 7 Montgomery |

+------------------------------+

. sort year

. list State unemp Capital in 1/10

+-----------------------------------------+

| State unemp Capital |

|-----------------------------------------|

1. | Connecticut 5.8 Hartford |

2. | Rhode Island 7.2 Providence |

3. | Mississippi 7.4 Jackson |

4. | Maryland 6.6 Annapolis |

5. | Delaware 7.6 Dover |

|-----------------------------------------|

6. | Michigan 12.3 Lansing |

7. | Arizona 6.6 Phoenix |

8. | Utah 6.2 Salt Lake City |

9. | Georgia 6.3 Atlanta |

10. | South Carolina 6.7 Columbia |

+-----------------------------------------+

Looks good!
Note that we can also do this as a one-to-many merge if we happened to start with

list-state-capitals-us-764j.dta in the memory:

clear all

use list -state -capitals -us -764j.dta

merge 1:m Area using unemp_long.dta
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Exercises

Exercise 8.1.
This exercise was (part of) the 4820 computational exam in 2017.

Files auto1.csv and auto2.csv contain data on cars. auto1.csv contains car charac-
teristics, and auto2.csv contains prices.

1. Merge the two files so that we have price and characteristics in the same file

2. Briefly comment on any observations that don’t match up, then drop them.

3. To check that you’ve merged things in correctly, produce a scatter plot of price (vertical
axis) against mpg (horizontal axis). Use different colored dots for foreign and domestic
cars.
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Chapter 9

Non-linear models

Ai and Norton (2003)
Bland and Cook (2017)
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Part III

Some common econometric techniques
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Chapter 10

Ordinary Least Squares (linear
regression)

This chapter is a companion to Bailey (2016) chapters 3-7. As such, it assumes that you have
read them and understand them. That said, there will be some overlap. This is deliberate.

10.1 Some properties of bivariate OLS

In Bailey (2016) Chapter 3, we are introduced to bivariate OLS, or bivariate linear regression.
The “bivariate” part of this means that we have two variables. These are usually notated
as:

• Yi is the dependent, or left-hand-side (LHS) variable, and

• Xi is the independent, explanatory, or right-hand-side (RHS) variable. I prefer not to
use “independent”, for reasons that will become clear when we study endogeneity.

To see how these names fit in, note that the equation that we are trying to estimate is:

Yi = β0 + β1Xi + εi (10.1)

where β0 and β1 are parameters that we are trying to estimate, and εi is an error term. Thus
Xi is on the RHS, Yi is on the LHS, Xi explains Yi, and Yi depends on Xi.

Without telling Stata anything else, when you ask it to regress, it will estimate a model
that is valid if the following criteria are met:

1. E[εi]=0. That is, the error term has zero mean. This is more of a normalization than
a criterion, in that we can always dink with β0 to make this true.

2. E[Xiεi] = 0. In words: there is no (linear) correlation between the explanatory variable
Xi and the error term εi. This could be why Xi is often referred to as the “independent
variable”: because it is assumed to be independent of εi. We will spend most of the
remainder of this course worrying that Xi is not independent of εi (in specific cases),
and how/if we can fix this problem.
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3. V [εi] = σ2 for all i. In words: the variance of εi is a constant. Specifically, we might
worry that the variance of εi depends on Xi. This assumption is called homoskedastic-
ity.

4. cov(εi, εj) = 0 for all i 6= j. If this is not true, then one error will tell you something
about another, and so the rows of our dataset are not independent observations.

When we regress Y X, we probably want to answer a question that looks like one of the
following:

1. How can I predict Yi using Xi? or

2. What is the causal effect of Xi or Yi?

If our goal is prediction, then all we need is Assumption 1. This isn’t really an assumption,
so we are good to go. Specifically, if we are trying to predict Yi without an Xi, we would
just use ȳ, the sample mean of {yi}Ni=1. If we used Xi as well, then this must be at least
as good as just using ȳ. On the other hand, if we want to get an unbiased estimate of the
causal effect of Xi on Yi, that is E[β̂1] = β1, then we need Assumption 2 to be true.

What about the others? Well, if all we wanted was a point prediction, nobody would care.
However it is <understatement> somewhat standard </understatement> to report mea-
sures of precision of your estimates, or do inference. In that case, you also need Assumptions
3 and 4.

10.1.1 Derivation of the bivariate OLS slope estimator

There are a few ways to motivate the OLS estimator. For this chapter, I will focus on
minimizing the sum of squared residuals. Graphically, we seek to minimize the squared
distance between the predicted value of our model, and the y-coordinate. We therefore seek
the solution to:

(β̂0, β̂1) = arg min
β0,β1

[
N∑
i=1

(Yi − β0 − β1Xi)
2

]
(10.2)

In words: our estimators are the inputs to the function in the square brackets (i.e. the
arguments) that minimize this function. Note that if we were to plot this thing as either a
function of β0 or β1, it would look f(x) = ax2 + bx+ c, where β0, β1 = 0, and a is a positive
constant. Hence, we are solving for the minimum of a very fancy parabola. Furthermore,
this parabola is U-shaped (i.e. globally convex), so we can find the minimizers by solving
the first-order conditions of the problem. Essentially, we will solve for “slope of parabola
= 0” rather than “find the minimizers.” Because we know the problem is convex, we know
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that these two things are the same. The first-order conditions (FOC) are:

0 =
∂

∂β0

[
N∑
i=1

(Yiβ0 − β1Xi)
2

]
= −2

N∑
i=1

(Yi − β̂0 − β̂1Xi) (10.3)

0 =
∂

∂β1

[
N∑
i=1

(Yi − β0 − β1Xi)
2

]
= −2

N∑
i=1

(Yi − β̂0 − β̂1Xi)Xi (10.4)

We can re-arrange the FOC for β0 as:

β̂0 =
1

N

N∑
i=1

(Yi − β̂1Xi) = ȳ − β̂1x̄ (10.5)

substituting this into the FOC for β̂1:

0 = −2
N∑
i=1

(Yi − ȳ + β̂1x̄− β̂1Xi)Xi (10.6)

0 =
N∑
i=1

[
(Yi − ȳ)Xi − β̂1(Xi − x̄)Xi

]
(10.7)

β̂1

N∑
i=1

(Xi − x̄)Xi =
N∑
i=1

(Yi − ȳ)Xi (10.8)

β̂1

N∑
i=1

(Xi − x̄)(Xi − x̄) =
N∑
i=1

(Yi − ȳ)(Xi − x̄) (10.9)

β̂1 =

∑N
i=1(Yi − ȳ)(Xi − x̄)∑N
i=1(Xi − x̄)(Xi − x̄)

(10.10)

=

∑N
i=1(Yi − ȳ)(Xi − x̄)∑N

i=1(Xi − x̄)2
(10.11)

where the step in line (10.9) follows by noting that
∑N

i=1(Zi − z̄)c = 0 for any data {Zi}Ni=1

and constant c. For example, data {Xi}Ni=1 and constant c = x̄. Here the “constant” is
random, because it is a sample mean, but it is constant over all of the terms in the sum.

By multiplying the numerator and denominator by 1/N , we can see that the estimator
is a function of the sample variance of X, and the sample covariance of X and Y :

β̂1 =
1
N

∑N
i=1(Yi − ȳ)(Xi − x̄)

1
N

∑N
i=1(Xi − x̄)2

=
ĉov(Xi, Yi)

V̂ (X)
(10.12)

This is not the sample correlation between X and Y .1

1To get the sample correlation, replace the denominator of this expression with

√
V̂ (X)V̂ (Y )
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10.1.2 Unbiasedness

Ideally, we would like β̂1 to be an unbiased estimator of β1. When is this the case? To begin
with, it is useful to express β̂1 in terms of β1 and the errors. To do this, we substitute in
Yi = β0 + β1Xi + εi to the numerator:

β̂1 =

∑N
i=1(Yi − ȳ)(Xi − x̄)∑N

i=1(Xi − x̄)2
(10.13)

=

∑N
i=1(β0 + β1Xi + εi − β0 − β1x̄− ε̄)(Xi − x̄)∑N

i=1(Xi − x̄)2
(10.14)

=

∑N
i=1(β1(Xi − x̄) + (εi − ε̄))(Xi − x̄)∑N

i=1(Xi − x̄)2
(10.15)

= β1

∑N
i=1(Xi − x̄)2∑N
i=1(Xi − x̄)2

+

∑N
i=1(Xi − x̄)(εi − ε̄)∑N

i=1(Xi − x̄)2
(10.16)

= β1 +

∑N
i=1(Xi − x̄)εi∑N
i=1(Xi − x̄)2

(10.17)

which is useful because now we have the thing we are tying to estimate (i.e. β1) in the
expression.

OK. Now for bias. We hope to show that β̂1 gets the right value on average. But now
that we have two random variables (i.e. Y and X), we nee to be a bit more specific about
what we mean by “on average”. Here, we will assume that the Xs are constant. To do this,
we take expectations that are conditional on the Xs (i.e. we treat them as a constant):

E[β̂1 | X] = E

[
β1 +

∑N
i=1(Xi − x̄)εi∑N
i=1(Xi − x̄)2

| X

]
(10.18)

= E[β1 | X] + E

[∑N
i=1(Xi − x̄)εi∑N
i=1(Xi − x̄)2

| X

]
(10.19)

= β1 +

∑N
i=1(Xi − x̄)E[εi | X]∑N

i=1(Xi − x̄)2
(10.20)

which is about as far as we can go without any more assumptions. In particular, we can
only say the second term, of this expression is zero if we know that E[εi | X] = 0. Mathe-
matically, this means that β̂1 is unbiased if and only if the errors are uncorrelated with the
Xs. In econometrics, we say “X is exogenous.” When X and ε are correlated, we say “X
is endogenous”, and β̂1 is biased. This is the scourge of causal inference, and we will spend
almost all of our time worrying that X is endogenous, and if it is, how (or if) we can fix the
problem.

If we know whether X and ε are positively or negatively correlated, then we may be able
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to predict the direction of the bias by noting that:

E[β̂1] = β1 +
1
N

∑N
i=1E[(Xi − x̄)εi]

1
N

∑
i=1E[(Xi − x̄)2]

= β1 +
cov(X, ε)

σ2
X

= β1 + corr(X, ε)
σ2
ε

σ2
X

(10.21)

Since the variance terms must be positive, this tells us that the direction of the bias has the
same sign as the correlation between X and ε.

10.1.3 Variance (in a very special case: homoskedasticity)

So we’ve worked out an estimator for the slope coefficient β1, and that this estimator is
unbiased in a very special set of circumstances. We can now get point estimates of causal
effects (again, if we’re lucky). After this, we want to do inference. That is, we want to put
a standard error around our point estimate, calculate a confidence interval, a p-value, or do
a hypothesis tests. All of these require the variance of β̂1. To get here, we take the variance
(conditional on X) of both sides of Equation 10.17:

V [β̂1 | X] = V

[
β1 +

∑N
i=1(Xi − x̄)εi∑N
i=1(Xi − x̄)2

| X

]
(10.22)

= V

[∑N
i=1(Xi − x̄)εi∑N
i=1(Xi − x̄)2

| X

]
(since β1 is a constant) (10.23)

=
V
[∑N

i=1(Xi − x̄)εi | X
]

(∑N
i=1(Xi − x̄)2

)2 (Since we are treating X as a constant) (10.24)

Just focusing on the numerator, we can note that each element of the sum is in expectation
zero (conditional on X). That is, since we have assumed E[εi | X] = 0, we can do the
following:

E

[
N∑
i=1

(Xi − x̄)εi | X

]
=

N∑
i=1

E[(Xi − x̄)εi | X] (10.25)

=
N∑
i=1

(Xi − x̄)E[εi | X] (10.26)

=
N∑
i=1

(Xi − x̄)× 0 (10.27)

= 0 (10.28)

101



So going back to the numerator of Equation 10.24:

V

[
N∑
i=1

(Xi − x̄)εi | X

]
= E

( N∑
i=1

(Xi − x̄)εi − E

[
N∑
i=1

(Xi − x̄)εi | X

])2

| X

 (10.29)

= E

( N∑
i=1

(Xi − x̄)εi − 0

)2

| X

 (10.30)

= E

( N∑
i=1

(Xi − x̄)εi

)2

| X

 (10.31)

= E

[
N∑
i=1

N∑
j=1

(Xi − x̄)εi(Xj − x̄)εj | X

]
(10.32)

=
N∑
i=1

N∑
j=1

E [(Xi − x̄)εi(Xj − x̄)εj | X] (10.33)

=
N∑
i=1

N∑
j=1

(Xi − x̄)(Xj − x̄)E [εiεj | X] (10.34)

where the last step follows because we are conditioning on X.
Up to this point, we have made no new assumptions. Specifically, all we have assumed is

that E[εi | X] = 0, which we needed for β̂1 to be unbiased anyway.2 But going forward, we
need to assume more structure on our errors in order to get something we can work with.
In particular, we need to assume something about E[εiεj | X], which is the variance of εi if
i = j, and the covariance of εi and εj otherwise. How we calculate our standard errors is a
topic that deserves a whole chapter, and this is exactly what you get in Chapter 11. But for
now, let’s go ahead with the simplest, and therefore most dangerous assumption:

E[εiεj | X] =

{
σ2 if i = j

0 otherwise
= σ2I(i = j) (10.35)

This is telling us that:

• The variance of εi is constant for every observation in our data.

• Every possible pair of observations in our data have errors that are uncorrelated.3

Both of these could be wrong, and we will work on coping strategies for that later. But for
the moment, let us suppose that this is a reasonable assumption to make for our application,

2In fact, we could have even got away with assuming E[εi] = 0, which is a weaker assumption because it
does not say anything about dependence between ε and X.

3My use of uncorrelated is very deliberate here. Specifically, I could have used the word independent, but
I didn’t.
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and work out how we should calculate our standard errors. If we substitute this assumption
into Equation 10.34, we get:

N∑
i=1

N∑
j=1

(Xi − x̄)(Xj − x̄)E [εiεj | X] (10.36)

=
N∑
i=1

N∑
j=1

(Xi − x̄)(Xj − x̄)I(i = j)σ2 (10.37)

=
N∑
i=1

(Xi − x̄)2σ2 (10.38)

= σ2

N∑
i=1

(Xi − x̄)2 (10.39)

That is, the only nonzero components of this double sum are the bits where i = j.
Now we can substitute this back into our expression for V [β̂1 | X]:

V [β̂1 | X] =
σ2
∑N

i=1(Xi − x̄)2(∑N
i=1(Xi − x̄)2

)2 (10.40)

=
σ2∑N

i=1(Xi − x̄)2
(10.41)

which is great, except we don’t know what σ2 is (it is a population parameter). Fortunately,
we can replace it with an estimator of it (which happens to be both consistent and unbiased):

σ̂2 =
1

N − 2

N∑
i=1

(Yi − β̂0 − β̂1Xi)
2 =

1

N − 2

N∑
i=1

ε̂2i (10.42)

Which yields our estimator for the variance of β̂1:

V̂ [β̂1] =
σ̂2∑N

i=1(Xi − x̄)2
(10.43)

10.2 regress: Implementing OLS in Stata

OK, so now that we understand what we’re doing, let’s actually do it. For this example, I
am going to use the galton heights.csv dataset to estimate the equation:

child heighti = β0 + β1av parent heighti + εi (10.44)

where av parent heighti is the average of the heights of the child’s parents (in units of
inches, minus sixty inches). All I have to do to estimate this is:
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Source | SS df MS Number of obs = 934

-------------+---------------------------------- F(1, 932) = 108.20

Model | 1243.54014 1 1243.54014 Prob > F = 0.0000

Residual | 10711.1131 932 11.4926106 R-squared = 0.1040

-------------+---------------------------------- Adj R-squared = 0.1031

Total | 11954.6533 933 12.8131332 Root MSE = 3.3901

------------------------------------------------------------------------------

child_height | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

av_parent_~t | .6625512 .0636941 10.40 0.000 .5375509 .7875516

_cons | 2.342302 .4375628 5.35 0.000 1.483579 3.201025

------------------------------------------------------------------------------

Table 10.1: Estimation output for Equation10.44.

clear all

import delimited "galton_heights.csv"

desc

generate av_parent_height = (father_height+mother_height)/2

regress child_height av_parent_height

which gives me the output in Table 10.1. There’s a lot of information here, a lot of which
most people will care about, but all of it could be useful to someone, depending on the
application. Of most importance are our estimates for β0 and β1, the constant and slope
term respectively. These are β̂0 = 2.34 and β̂1 = 0.66. Immediately to the right of these
numbers are the standard errors, and everything to the right of that are functions of the
estimates and their standard errors. Specifically, we get t-statistics for the test that each
parameter is equal to zero, the p-value associated with that (2-sided) test, ans a 2-sided 95%
confidence interval for that parameter. That is (for large enough N):4

tk = β̂k/se(β̂k) (10.45)

pk = 2Φ(|tk|) (10.46)

CIk = β̂k ± 1.96se(β̂) (10.47)

10.3 Variable labels and esttab: Producing outputs

that people actually want to look at Stata

So up to this point you can implement a (bivariate) linear regression, and get an output
like Table 10.1. That’s great! You can estimate stuff, and hopefully draw conclusions about

4Stata sometimes uses a t-distribution to calculate these values rather than a normal. If the number of
degrees of freedom in the t distribution is greater than 30, these two distributions practically indistinguish-
able.
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your data and answer your research question. However that’s at most half the battle. You
now have to present this information to an audience in a way that makes it easy for them
to take in. There are several problems with presenting results in the format of Table 10.1.
These include, but are not limited to:

1. It takes up a lot of space. For journals and presentations, this is bad. Furthermore,
we usually want to show the results of a few regressions at once, and we can’t do this
with a foll regression output like the one in Table 10.1.

2. There is a lot of information that you don’t want your seminar audience worrying
about For example, should we always include R2? A large R2 is neither necessary nor
sufficient to do valid inference, so why show it? Especially if it is small and you suspect
there are some audience members who don’t really understand R2 and want to waste
your time with stupid questions.

3. There is redundant information. For example the t, p, and CI columns are all functions
of the coefficients, standard errors, and sample size. Again, this is a waste of space.

4. Sometimes the variable names are not intuitive, and we would like to display something
other than an almost meaningless string. This is especially a problem if spaces help.
For example, suppose that we wanted to call av parent height “average parent

height”. Stata won’t let us do this because when you go to summarize average

parent height, it will want to summarize three variables called average, parent,
and height.

Let’s begin with the example inBailey (2016) chapter 3 of investigating how the presi-
dential vote changes with income changes. To begin with, we might want to show our reader
(or seminar audience) a visual representation of some of our data. Some might be interested
in the variable rdi4, which is national income growth (Bailey, quite reasonably, calls this
“percent change in income”). Maybe we want to plot a histogram of this. However if we
were to:

import excel "PresVote.xlsx", sheet(" PresVote ") firstrow // import the data

hist rdi4 // Produce a histogram

We get Figure 10.1a, which shows all of the information we need, but has a terrible horizontal
axis label. What we really want to do is avoid those pesky people at the back of a seminar
who are not paying attention from interrupting you to ask what variable is on the horizontal
axis. What we really want is something like Figure 10.1b, which I got by typing:

import excel "PresVote.xlsx", sheet(" PresVote ") firstrow // import the data

label variable rdi4 "Income change" // Assign a variable label

hist rdi4 // Produce a histogram

What I did here was assign a “variable label”. This does not change anything real about
how Stata reads your code, other than telling it something like: “whenever you produce an
output with the variable rdi4, use the variable’s label, rather than its name.” This label
stays in the memory until you get rid of the variable, so I will get “Income change” instead
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Figure 10.1: A poorly labeld figure, and a better one.

of “rdi4” in the output of everything generated below that understands variable labels as
well. If, for whatever reason, we want to revert back to the stupid, unintuitive “rdi4”, we
can always use the nolabel option (after the comma).

What about regression tables? Table 10.1 is ugly and cumbersome, especially if we
wanted to show more than one estimation in a small amount of space. For example, we
may want also to estimate the relationship between child and parent height for just sons and
just daughters, then compare the estimates side by side. Another example of this is Bailey
treatment of the PresVote dataset in the Chapter 3 slides, which slices the data by (among
other things) re-election years (e.g. Obama in 2012, GW Bush in 2000), and non re-election
years (e.g. Obaba in 2008, GW Bush in 2004). The mechanics of getting these estimates is,
at this point, easy:

regress vote rdi4

regress vote rdi4 if reelection ==1

regress vote rdi4 if reelection ==0

But this gives us three huge tables (like Table 10.1) that only render nicely in fixed-width
font. What we would like to do is show all three in the same table, but only show a subset of
the information, maybe just coefficients, standard errors, and something to do with p-values.
Something like Bailey’s Table 3.3. would be lovely (although we don’t see p-values here),
and fortunately Stata’s esttab command does just that. To begin, esttab is part of an
add-on package called estout, so it doesn’t come pre-installed. Fortunately, you can install
it on your machine with the <sarcasm> unnecessarily cumbersome </sarcasm> command:

ssc install estout

You will only ever have to do this once.
Here’s how it works. Firstly, you tell Stata to store your estimates, and give them a

name. To do this, you can either do something like:

regress vote rdi4

estimates store reg_1
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. esttab reg_*

------------------------------------------------------------

(1) (2) (3)

vote vote vote

------------------------------------------------------------

rdi4 2.291*** 2.670** 1.078

(4.29) (3.79) (1.49)

_cons 45.94*** 45.58*** 46.94***

(27.15) (18.85) (24.91)

------------------------------------------------------------

N 17 11 6

------------------------------------------------------------

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001

Table 10.2: esttab output

regress vote rdi4 if reelection ==1

estimates store reg_2

which are the first and second regressions we want to report, or we can put all of this in one
line:

eststo reg_3: regress vote rdi4 if reelection ==0

if we type esttab reg *, this gives us the output in Table 10.2: The reg * part of this tells
Stata to put all regressions that start with “reg ” into the table. Alternatively, we could
have typed: esttab reg 1 reg 2 reg 3, but who has the time?

So this table has the right layout, but maybe we want it:

1. In a different format (maybe one that we could paste into a MS Word or LATEXdocument).

2. To show standard errors, rather than p-values

3. To show the R2

4. To use the value label for rdi4 that we defined earlier.

5. Identify what we’re doing in each column.

to achieve this, we modify the esttab line to the following:

esttab reg_* using votereg.rtf , se r2 label replace mtitles ("All data" "Re-election" "Not re

↪→ -election ")

This gets us Table 10.3
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(1) (2) (3)
All data Re-election Not re-election

Income change 2.291∗∗∗ 2.670∗∗ 1.078
(0.534) (0.704) (0.724)

Constant 45.94∗∗∗ 45.58∗∗∗ 46.94∗∗∗

(1.692) (2.418) (1.884)
Observations 17 11 6
R2 0.551 0.615 0.357

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10.3: esttab table.

10.4 Interactions and the margins command

Once you get into multivariate OLS, you will probably want to include dummy variables
and interactions. Once you’ve done this, you probably want to know the marginal effects
associated with particular groups in your data. For this section, suppose that you are using
the Galton heights dataset, and want to allow the relationship between parents’ heights and
child height to very by whether the child is a son or a daughter. One regression you might
want to run would be:

regress child_height i.son c.father_height ##i.son c.mother_height ##i.son

which generates the output in Table 10.4 Here I have made extensive use of Stata’s #
operator. Specifically, including (say) c.father height##i.son tells Stata to include all
possible interactions of father height and the son dummy variable. Here c. tells Stata
to treat father height as a continuous variable, and the i. tells Stata to treat son as a
categorical variable. Hence, the model we have estimated is:

child heighti = β1soni + β2father heighti + β3soni × father heighti (10.48)

+ β4mother heighti + β5soni × mother heighti + β0 + εi

From a quick eyeball of Table 10.4, we can see that: sons are taller than daughters (β1 > 0),
taller father and mother heights mean taller daughters (β2 > 0, β4 > 0), and that the
slope for sons and daughters with respect for their parents’ heights are approximately the
same (β3 ≈ 0, β5 ≈ 0). However what is more difficult from this model is (i) accessing the
predictions of child height conditional on whether the child is a son or daughter, and (ii)
determining the marginal effect (i.e. causal effect) of parent height on the height of a son.
Of course, while knowing the point estimates is useful, ideally we want tut standard errors
around these things, too. This is where the margins command comes in handy. To generate
the model’s prediction for the average son and daughter in the sample, all we have to type
is:

margins i.son
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Source | SS df MS Number of obs = 934

-------------+---------------------------------- F(5, 928) = 323.96

Model | 7600.37366 5 1520.07473 Prob > F = 0.0000

Residual | 4354.27961 928 4.69211165 R-squared = 0.6358

-------------+---------------------------------- Adj R-squared = 0.6338

Total | 11954.6533 933 12.8131332 Root MSE = 2.1661

-------------------------------------------------------------------------------------

child_height | Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------------------+----------------------------------------------------------------

1.son | 4.70059 .5896612 7.97 0.000 3.543366 5.857814

father_height | .3708232 .0383549 9.67 0.000 .2955508 .4460955

|

son#c.father_height |

1 | .0448174 .0574864 0.78 0.436 -.068001 .1576357

|

mother_height | .3029348 .0451339 6.71 0.000 .2143584 .3915112

|

son#c.mother_height |

1 | .0250605 .0621703 0.40 0.687 -.0969502 .1470711

|

_cons | -.5894999 .4086313 -1.44 0.149 -1.391448 .2124486

-------------------------------------------------------------------------------------

Table 10.4: Estimation output from a regression using the Galton heights dataset, with a
lot of interactions.

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

son |

0 | 4.061379 .1018357 39.88 0.000 3.861524 4.261234

1 | 9.276831 .0988235 93.87 0.000 9.082888 9.470774

------------------------------------------------------------------------------

Table 10.5: margins output telling us our model’s predictions for the heights of sons and
daughters (rember the units here are inches minus 60in).

109



-------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

--------------+----------------------------------------------------------------

father_height |

son |

0 | .3708232 .0383549 9.67 0.000 .2955508 .4460955

1 | .4156406 .0428204 9.71 0.000 .3316046 .4996765

--------------+----------------------------------------------------------------

mother_height |

son |

0 | .3029348 .0451339 6.71 0.000 .2143584 .3915112

1 | .3279953 .042756 7.67 0.000 .2440857 .4119048

-------------------------------------------------------------------------------

Table 10.6: margins output telling us our model’s predictions for the slopes for sons and
daughters on father and mother height.

which produces the output in Table 10.5. This is the model’s prediction of average son and
daughter height, conditional on all of the RHS variables we have included in the regression.
That is, for daughters, margins computed:∑

i=daughter β̂2father heighti + β̂4mother heighti + β̂0

number of daughters in sample
(10.49)

which is the sample mean of ŷi, if we restrict the sample to daughters only.
Now what about those pesky slope interactions? What if I wanted to make statements

like “a son whose mother is 1in taller will on average be xin taller”. x here is equal to β̂4+ β̂5,
but I can’t be bothered adding these up in my head (nor should you expect the person sitting
in the back of your seminar to), and the standard error associated with this is a function of
ĉov(β̂4, β̂5) and the data, both of which we don’t see in Table 10.4. Fortunately, margins
can do this too:

margins i.son , dydx(father_height mother_height)

Which produces the output in Table 10.6 which produces the output in Table 10.6. This
actually shows the four slopes we could be interested in. In order from top to bottom, they
are: β̂2. β̂2 + β̂3, β̂4. and β̂4 + β̂5.

Exercises

Exercise 10.1.
Download the galton heights.csv file and load it into Stata.

1. Using Stata’s esttab function,5 produce one table that can be read by your preferred

5If you have not already install it, execute the command ssc install estout.
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typesetting/word processing package (e.g. LATEX, MS Word, Libre Office, etc.) showing
regressions that estimate:

i. The effect of average parent height (i.e. 0.5×(father height+mother height))
on child height

ii. The effect of average parent height on daughters only

iii. The effect of average parent height on sons only

iv. The effect of mother height on daughter height

Your table should show standard errors, not t-statistics, as is default with esttab.
Also include the R2 for each regression in the table, and a description of the restriction
(e.g. something like “sons only”, “daughters only”, or “none”.).

2. Interpret the slope coefficient from model (i) as if it is causal

3. Plot the squared residuals from model (i) against average parent height. Do you see
evidence for heteroskedasticity? Explain. Estimate model (i) with heteroskedasticity-
robust standard errors. What has changed? What has not changed?

4. Pick one model and suggest why there might be an omitted variable in it. If this is
true, are we under- or over-estimating the causal effect?

Exercise 10.2.
Simulate two data-generating process, one with homoskedasticity, and one with heteroskedas-
ticity. Specifically, contrast the distributions of the t-statistic when the null hypothesis
H0 : β1 = 0 is true, for the slope coefficient in these four cases:

1. Homoskedastic error, estimation assumes homoskedasticity

2. Homoskedastic error, estimation assumes heteroskedasticity

3. Heteroskedastic error, estimation assumes homoskedasticity

4. Heteroskedastic error, estimation assumes Heteroskedastic

Summarize your results as follows:

1. A table showing the rejection probabilities of the 5%, 2-sided test.

2. A plot of the densities of the four t-statistics, all on the same axis. For this, use the
kdensity function. This is a kernel-smoothed density estimator, which I do not require
you to understand. It is basically a fancy histogram.

Then comment on the implications of not assuming heteroskedasticity when it is present,
and when it is present.
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Exercise 10.3 (Simulation exercise – model fishing).
Consider a dataset with a LHS variable Y , and four RHS variables X1, and X2. Suppose that
you (were naughty and) wanted to model fish for the most statistically significant coefficient.
Specifically, you execute the following commands in Stata:

regress Y X1

regress Y X2

regress Y X1 X2

and report the model with the smallest p-value on a slope coefficient.
Your task: Simulate the distribution of this p-value when the true data-generating

process is:

Yi ∼ iidN(0, 1) (10.50)

X1,i, X2,i ∼ iidN(0, 1) (10.51)

with a sample size of N = 100. That is, there is no relationship between Y and any of the
Xs, so the p-value for any of these regressions should be uniformly distributed (this uses
an asymptotic assumption). The minimum of these four p-values will not be uniform. How
frequently will we report results that are significant at the 5% level?

Exercise 10.4 (Simulation Exercise: Measurement error).
Consider the following data0generating process discussed in Bailey (2016), section 5.3:

Yi = β0 + β1X
∗
1,i + εi (10.52)

X1,i = X∗1,i + νi (10.53)

Write a simulation demonstrating that as V [νi] increases, β̂1 is biased toward zero.

Exercise 10.5 (Simulation exercise: regression discontinuity).
Consider the following situation: At the beginning of a semester, students take a test. The
test score is equal to their ability in the subject (unobservable to the econometrician), plus
a random error. Those who score at or above 75 on the test are assigned to “class A”, and
everyone else to “class B”. At the end of the semester, students take a second test. The
score on this test is equal to their ability at the beginning of the semester, plus a positive
amount if they were in “class A”. We wish to estimate the effect of being in class A on this
second test score.

Note that we can simulate this data generating process as follows (I played around with
the numbers until it looked interesting:

Abilityi ∼ N(70,
√

30) (10.54)

Score1i | Abilityi ∼ N(Abilityi,
√

5) (10.55)

ClassAi =

{
1 if Score1i ≥ 75

0 otherwise
(10.56)

Score2i = Abilityi + 10ClassAi (10.57)
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1. Write a .do file that simulates N = 1, 000 draws from this distribution, then estimates
the causal effect of being assigned to class A using regression discontinuity.

2. Suppose that students who score between 70 and 75 re-take the test, so that they get
a second draw from 10.55. What assumption are we violating if this is happening and
we estimated the causal effect using regression discontinuity?

3. Modify your .do file to simulate this process (but leave the original parts there so that
you can compare them)

4. Generate a plot similar to Figure 11.10 in Bailey (2016) for both data-generating
processes. Is this something you can always do? How can you tell that there is a
problem with the second estimation?

5. Simulate the sampling distribution of the estimator for the causal effect of being in class
A for both data generating processes. In addition to this, also simulate the distribution
of the estimator for the coefficient on the dummy variable for class A in the simple
bivariate regression for the following cases:

(a) Using the entire dataset

(b) Using only the data associated with test scores between 70 and 80.

Why does the second model do better?
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Chapter 11

Standard errors under different
assumptions about ε

”He is in this, as in many other cases, led by an invisible hand to promote an end
which was no part of his intention. But his standard errors, on the other hand,
will always be wrong, for this is the nature of the applied economist.” - Adam
Smith

DeLuca (2019)

For all of Section I of Bailey (2016) (and for a lot of the following sections), we assume
that the error terms of our regressions, {εi}Ni=1, (among other things):

1. Have a constant variance. That is, no matter two rows of the data we are looking at,
it must be that:

V [εi] = V [εj] = σ2, for all i, j ∈ {1, 2, . . . N} (11.1)

This is the assumption of homoskedasticity.

2. Are uncorrelated with each other. That is, for any two rows i and j of our dataset:

corr(εi, εj) = 0, for all i 6= j (11.2)

Note that if either of these are not true, we needn’t worry about all of the nice properties
of OLS breaking down. Importantly, if these are the only problems we have, then our slope
estimator is still unbiased. What we should worry about, however, is that our standard errors
are not calculated correctly, and so without any correction for this, we report the results of
hypothesis tests at our own peril. If the former assumption is violated, we refer to this as
heteroskedasticity: the variance of the error term is not constant across observations. This is
eminently fixable without having any additional insights into your data. On the other hand,
if the latter is not true, then we need to know a bit more about our data to fix the problem.
For a thorough run-through of these procedures, have a look at Cameron and Miller (2015).
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What follows is a simplification of that work to the realm of bivariate OLS. The extension
to multivariate OLS, and some non-OLS techniques, is relatively straightforward with the
right matrix algebra background.

To begin with, let’s see how far we can get with V [β̂1] without making any additional
assumptions about the error term. The variance of β̂1 when you reg y x is:

V [β̂1] = V

[∑
i(Xi − X̄)εi∑
i(Xi − X̄)2

]
(11.3)

Noting that we are treating the Xs as fixed, without loss of generality, we can write this as:

V [β̂1] =
V
[∑

i(Xi − X̄)εi
](∑

i(Xi − X̄)2
)2 (11.4)

The denominator of this is only a function of the data, so it is easily computable, and
doesn’t depend on any assumptions about ε. The numerator, however, simplifies differently
depending on our understanding of ε. Before we make any further assumptions about ε, note
that we can express the denominator of 11.4, without loss of generality, as follows:

V

[∑
i

(Xi − X̄)εi

]
= E

(∑
i

(Xi − X̄)εi − E

[∑
j

(Xj − X̄)εj

])2
 (11.5)

= E

(∑
i

(Xi − X̄)εi

)2
 (11.6)

= E

[∑
i

∑
j

(
(Xi − X̄)εi

) (
(Xj − X̄)εj

)]
(11.7)

= E

[∑
i

∑
j

(Xi − X̄)(Xj − X̄)εiεj

]
(11.8)

=
∑
i

∑
j

(Xi − X̄)(Xj − X̄)E[εiεj] (11.9)

where (11.5) follows by the definition of variance, (11.6) follows because the expectation of
any εi is zero, and (11.7) expands the squared term. What follows are further simplifications
of (11.9), after making various assumptions about E[εiεj].

11.1 Homoskedasticity: the *standard* standard er-

rors

If you have been regging y x with free abandon up to this point, this is what you have
been doing. Depending on how deep your understanding of OLS is, you would have been
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implicitly, or (I really hope) explicitly, been making the assumption that the error term has
constant variance, and that any two randomly selected errors are uncorrelated with each
other. More formally, this means that:

Assumption 1 (Homoskedasticity).

V [εi] = E[ε2i ] = σ2 for all i = 1, 2, . . . N

E[εiεj] = 0 for all i 6= j

Note that these two restrictions allow us to say something about all of the terms in (11.9).
Specifically:

E[εiεj] =

{
σ2 if i = j

0 otherwise
(11.10)

This means that we can simplify (11.9) as follows:∑
i

∑
j

(Xi − X̄)(Xj − X̄)E[εiεj] =
∑
i

(Xi − X̄)2E[ε2i ] (11.11)

=
∑
i

(Xi − X̄)2σ2 (11.12)

= σ2
∑
i

(Xi − X̄)2 (11.13)

Substituting this into (11.4) yields:

V [β̂1] =
V
[∑

i(Xi − X̄)εi
](∑

i(Xi − X̄)2
)2 (11.14)

=
σ2
∑

i(Xi − X̄)2(∑
i(Xi − X̄)2

)2 (11.15)

=
σ2∑

i(Xi − X̄)2
(11.16)

The denominator of this is a problem for your computer (i.e. it can always be calculated):
it is N times the sample variance of X. σ2, however, is an unknown. Fortunately we can
consistently and unbiasedly estimate it using the residuals from the regression as follows:

σ̂2 =
1

N − k
∑
i

ε̂2i (11.17)

where k is the number of parameters in our model (for bivariate OLS, k = 2). And so, if
we are happy with Assumption 1, we (or if we have something better than a pen and paper,
our favorite statistical package) can compute our standard errors as follows:

V̂ [β̂1] =
1

N−k
∑

i ε̂
2
i∑

i(Xi − X̄)2
(11.18)
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At this point, we should make an important distinction between (11.16) (11.18). (11.16)
is the actual variance of β̂1. However since we do not know the true value of σ2, we must
estimate this variance. Therefore (11.18) is an estimator of (11.16). (11.18) is what Bailey
(2016) reports in his equations 3.9 and 3.10.1

Since we usually like to report things in the same units, we typically take the square root
of this thing and report the standard error, rather than the variance:

se[β̂1] =

√
1

N−k
∑

i ε̂
2
i∑

i(Xi − X̄)2
(11.19)

11.2 Heteroskedasticity: reg y x, robust

While Assumption 1 may seem like a reasonable restriction, there are plenty of cases where we
assume homoskedasticity at our own peril. The next step is to relax the “constant variance”
part of Assumption 1, while maintaining the assumption that the errors are independent.
That is, we drop the “identically” from the iid assumption:

Assumption 2 (Heteroskedasticity).

V [εi] = σ2
i (σ2

i is not necessarily equal to σ2
j )

E[εiεj] = 0 for all i 6= j

Going back to 11.9, the E[εiεj] (i 6= j) part of this, as in the previous section, means that
we can set all of the i 6= j components of the double summation equal to zero, leaving us
just with the i = j terms:∑

i

∑
j

(Xi − X̄)(Xj − X̄)E[εiεj] =
∑
i

(Xi − X̄)2E[ε2i ] (11.20)

However, unlike homoskedasticity, this is as far as we can get. Therefore we can simplify the
expression for the variance to:

V [β̂1] =

∑
i(Xi − X̄)2E[ε2i ](∑
i(Xi − X̄)2

)2 (11.21)

A quick glance of (11.21) suggests that we need an estimate for E[ε2i ] for every i. While ε̂2i
is a candidate for this, it is a terrible one because we only get one of those for each i, and
so ε̂2i does not plim to E[ε2i ]. Fortunately, closer inspection of (11.21) reveals that we need
only estimate the numerator, specifically:

V [β̂1] =

∑
i(Xi − X̄)2E[ε2i ](∑
i(Xi − X̄)2

)2 (11.22)

=
1
N

∑
i(Xi − X̄)2E[ε2i ]

1
N

(∑
i(Xi − X̄)2

)2 (11.23)

1Put simply: β̂1 is the OLS estimator for β1. (11.18) is the estimator of the variance of the OLS estimator
for β1. :p
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and by some law of large numbers arguments:2

1

N

∑
i

(Xi − X̄)2ε̂2i
p−→ 1

N

∑
i

(Xi − X̄)2E[ε2i ] (11.24)

So we can estimate the variance of β̂1, under Assumption 2, as follows:

V̂ [β̂1] =

∑
i(Xi − X̄)2ε̂2i(∑
i(Xi − X̄)2

)2 (11.25)

se[β̂1] =

√ ∑
i(Xi − X̄)2ε̂2i(∑
i(Xi − X̄)2

)2 (11.26)

Importantly, this formula requires no additional information about the data generating pro-
cess to compute it (although it requires stronger assumptions than some of the techniques
in later sections of this chapter). Contrast this to later sections of this chapter. If you
can reg y x, you can always estimate standard errors that are robust to heteroskedasticity.
In Stata, just reg y x, robust instead. These standard errors are often referred to as
“heteroskedasticity-robust standard errors”, or simply “robust standard errors”. Try to use
the former, they are not robust to everything (see, for example, the next section)!

11.3 Clustering: “I think you have 3 statistically inde-

pendent observations”

In Section 11.1, we explored the implications of assuming that our errors were independently
and identically distributed. In Section 11.2 we relaxed the “identically” distributed part
by allowing each εi to have a different variance. In this Section, we will work to relax the
“independently” part of this. In relation to (11.9), this means that we can now allow for
E[εiεj] 6= 0 for some i 6= j.

The “some” in the previous sentence is an important one: in particular, I was very
deliberate in not using the word “all”. To understand this, and what is to come, it is
important why we can’t do this for “all” i 6= j. Note that the sample analog of (11.9) is:∑

i

∑
j

(Xi − X̄)(Xj − X̄)ε̂iε̂j (11.27)

That is, we have replaced E[εiεj] with ε̂iε̂j. We can re-arrange this as follows:∑
i

∑
j

(Xi − X̄)(Xj − X̄)ε̂iε̂j =
∑
i

[
(Xi − X̄)ε̂i

]∑
j

[
(Xj − X̄)ε̂j

]
(11.28)

Each one of these summation terms is the solution to the sum-of-squares minimization prob-
lem! In other words, when we do OLS, we are exactly setting these things equal to zero.

2I am being somewhat hand-wavy here.
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Therefore, using (11.28) for the (sample equivalent of) the denominator of (11.4) means that
we would compute standard errors of zero, and our t-statistics would shoot off to infinity.
This is no good: we need to do better! Unlike heteroskedasticity, where we could say “we can
construct standard errors that are robust to any kind of hereoskedasticity without knowing
what that heterskedasticity looks like”, we can’t make a similar statement of the form “we
can construct standard errors that are robust to any kind of correlation between the error
terms, without knowing what that correlation looks like.” But sometimes we can know a bit
about the structure of this correlation, or at least have a good story about why the proposed
structure is a believeable one.

One such instance of this is clustering. In this situation, we believ that the data are
divided into distinct clusters. If two observations are not in the same cluster, then we
have a good reason to believe that their errors ar uncorrelated. On the other hand, for
two observations within the same cluster, then we cannot make the argument that they are
uncorrelated.

An example Consider, for example, the task of estimating the mean height students on
campus. The two following methods would achieve unbiased estimators of these quantities,
both of which require the collection of 100 observations:

1. Randomly select N students on campus, and measure their heights {hi,1}Ni=1. Take the

average of these heights. This is your estimate µ̂1 = 1
N

∑N
i=1 hi,1.

2. Randomly select one student on campus. Measure his/her height on T days over the
course of the academic year {h1,t}Tt=1. Take the average of these heights. This is your

estimate µ̂2 = 1
T

∑T
t=1 h1,t.

Suppose that each sample contains the same number of observations: N = T = 100. Both
sampling procedures generate a point estimate using 100 observations. As (by assumption)
any randomly selected student’s height will on average be equal to the population mean,
both procedures produce unbiased estimates. But what is generating the variation in mea-
surements in these two procedures? Suppose that we can model a measurement of student
i’s height at time t as follows:

hi,t = µ+ ηi + εi,t (11.29)

Where µ is the population mean height (the thing we are trying to estimate), ηi is student i’s
deviation from the mean height (i.e. how much taller/shorter is i than the average height),
and εi,t is an iid error in measurement for student i on day i. We assume without loss
of generality that E[ηi] = E[εi] = 0. With some loss of generality, let’s also assume that
V [ηi] <∞ and V [εi,t] <∞.

For sampling procedure 1, every row of our dataset belongs to a different student, so
the variation in hi,t is driven by both ηi and εi,t, so we could alternatively write this as

hi,t = µ+ψi,t, where ψi,t is the combined error term ηi+ εi,t. Hence µ̂1 p−→ µ, good! The more
observations we collect in sampling procedure 1, the more likely we are to be arbitrarily close
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to µ. Additionally, by standard central limit arguments:
√
N(µ̂1 − µ)

d−→ N(0, V [ηi + εi,t]),
and so all of our inference can be done in the *usual* way.

For sampling procedure 2, things become more complicated. To see this, note that since
we are repeatedly sampling the same student’s height, we always get the same ηi in our
equation. Therefore, instead of (loosely) converging to µ, we get a really good estimate of
µ + η1, the single student’s height. By “really good” here, I don’t mean that we should be
happy: we have a really good estimate of something we don’t want to know, and hence a
really bad estimate of the population mean height. While in sampling procedure 1, increasing
the sample size gets us closer (in the plim sense) to µ, increasing the sample size in sampling
procedure 2 gets us closer to µ + ηi. This is in expectation equal to µ, but it does not have

the same nice convergence properties (both
p−→ and

d−→) as µ̂1. One way of looking at this
problem is that sampling procedure 2 does not collect statistically independent observations:

for t 6= s : cov(h1,t, h1,s) = E [(η1 + ε1,t)(η1 + ε1,s)] (11.30)

= E
[
η21 + ε1,sη1 + ε1,tη1,t + ηi,tη1,s

]
(11.31)

= E
[
η21
]
6= 0 (11.32)

OK, so it seems reasonable, even before reading the above section, that any econome-
trician with half a brain should realize that procedure 2 is a terrible one for estimating µ.
Why would we ever see such a procedure at all then? The answer is that we usually don’t,
but we often see things that are a mix of procedures 1 and 2. In this context, this might be
because it is cheaper to sample one person N times than sample N people once (perhaps the
study requires getting consent from all of the participants, but only once per participant).
Clearly we would never want to just sample 1 person, but maybe we settle for sampling a
few people a few times. Therefore, it is reasonably common to see a sampling procedure like
the following:

3. Randomly select N students on campus, and measure their heights on T days over the
course of the academic year {hi,t}i=N,t=Ti=1,t=1 . Take the average of these heights. This is

your estimate µ̂3 = 1
NT

∑T
t=1

∑N
i=1 hi,t.

For the sake of simplicity, we have assumed that we have a balanced panel: each student is
measured T times, hence we have NT observations. This assumption is unnecessary, and
does not affect any of the discussion below.

Again, µ̂3 is an unbiased estimator of µ because everything that goes in to the average
is on average equal to µ. Moreover, as N →∞ (i.e. as we sample more and more students),
this thing will plim to µ, and will be asymptotically normal. However, we need to be careful
about how we apply this second property when doing inference. Specifically, it is reckless
to think, or apply a technique that assumes, that we have NT statistically independent
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observations. To see this, note the following for two arbitrary observations in our dataset:

cov(hi,t, hj,s) = E [(ηi + εi,t)(ηj + εj,s)] (11.33)

= E [ηiηj + ηiεj,s + ηjεi,t + εi,tεj,s] (11.34)

= E [ηiηj] + 0 + 0 + 0 (11.35)

=

{
E [η2i ] > 0 if i = j

0 if i 6= j
(11.36)

What this is telling us is that observations that correspond to the same student are not
statistically independent, but observations that correspond to different students are statis-
tically independent. Actually, 11.36 tells us more than this: observations corresponding to
the same student are correlated, and we know that this correlation must be positive. The
implications of this are as follows:

• E[µ̂3] = µ (good)

• As N →∞, µ̂3 → µ (good)

• As N → ∞, neither the standard, nor the heteroskedasticity-robust, standard errors
approach the asymptotic standard deviation of µ̂3.

The third point is really bad: we can get a good point estimate of µ quite easily, but unless
you keep reading, you can’t do any hypothesis tests. Please keep reading!

Formally, we have a variable ci which identifies the cluster that observation i belongs to
such that:

ci = cj ⇐⇒ i and j are in the same cluster (11.37)

ci 6= cj ⇐⇒ i and j are not in the same cluster (11.38)

So in terms of our estimator µ̂3, two rows of our dataset have the same c if and only if they
correspond to the same student. In the Galton Heights dataset, we may be worried that
errors within families are correlated. For example, if one child in a family is a glutton for
protein, then their siblings may be protein-starved. If protein consumption positively affects
height, then the errors would be negatively correlated within families.3

Now let’s go back to Equation 11.9. Now our problem is that we have some is and js
for which E[εiεj] 6= 0. Specifically, if observations i and j correspond to the same student,
then E[εiεj] = E[η2i ] 6= 0. Fortunately, we also have variable c in our dataset that tells us
which observations belong to the same student. Our solution to this problem is remarkably
similar to the heteroskedastisity problem: we suspect that some errors are correlated, so we
don’t assume that their correlation to zero. Specifically, note that we can (trivially) write
Equation 11.9 as follows:∑

i

∑
j

(Xi − X̄)(Xj − X̄)E[εiεj] =
∑
i

∑
j

(Xi − X̄)(Xj − X̄) (E[εiεj]I(E[εiεj] 6= 0))

(11.39)

3This story is not particularly plausible to me, but if true, the errors would be negatively correlated.
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The sample analog of this is:∑
i

∑
j

(Xi − X̄)(Xj − X̄) (ε̂iε̂jI(E[εiεj] 6= 0)) (11.40)

That is, we replace the thing we don’t know, E[εiεj], with something that we do know, ε̂iε̂j.
Note that we haven’t replaced I(E[εiεj] 6= 0) with anything. This is because we know what
this is! We have made an argument that our data falls into groups, called clusters, such that
if i and j are in the same cluster, their errors could be correlated, but they could not be
correlated if they were not in the same cluster. Hence:

I(E[εiεj] 6= 0) =

{
1 if ci = cj

0 otherwise
(11.41)

Hence, we can calculate standard errors that respect this kind of dependence by substituting:∑
i

∑
j

(Xi − X̄)(Xj − X̄) (ε̂iε̂jI(ci = cj)) (11.42)

into the numerator of our equation for V [β̂]. Hence:

V clu[β̂1] =

∑
i

∑
j(Xi − X̄)(Xj − X̄) (ε̂iε̂jI(ci = cj))(∑

i(Xi − X̄)2
)2 (11.43)

seclu[β̂1] =

√√√√∑i

∑
j(Xi − X̄)(Xj − X̄) (ε̂iε̂jI(ci = cj))(∑

i(Xi − X̄)2
)2 (11.44)

This is often referred to as “cluster-robust standard errors”. Now compare this to (11.25),
which is the estimator of the variance of β̂1 when we have heteroskedasticity (but not clus-
tering). In particular, if there is only one observation per cluster (i.e. ci = i, and hence
all cis are different), then V clu[β̂1] collapses to (11.25), because I(ci = cj) = 1 only when
i = j. The implication of this is that the cluster-robust standard errors are also robust to
heteroskedasticity.

In Stata, we can calculate these standard errors using the vce option in our estimation:

regress Y X, vce(cluster clusterid)

where cluster tells Stata that you want to calculate cluster-robust standard errors, and
clusterid is the variable that identifies the clusters, i.e. ci.

Further reading

1. Cameron and Miller (2015): Much more detail about cluster-robust inference. Extends
this discussion to multivariate OLS (everything works the same way, just more matrix
algebra).
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2. Abadie et al. (2017): A working paper (i.e. as yet peer reviewed) discussing the
motivation for clustering and some common misconceptions about it.

3. A blog post by Marc F. Bellemare (Metrics Monday) discussing the above working
paper on clustering: http://marcfbellemare.com/wordpress/12712#more-12712

Exercises

Exercise 11.1.
Consider a constant-only model for Galton’s data from Problem Set 5, where we just model
the mean of child height:

child heighti,f = β0 + εi,f (11.45)

where the “i,f” subscript indicates child i in family f .
We will investigate the implications of error terms with the following property:

εi,f = ηi +
ρ

Fi − 1

∑
j∈f,i 6=j

ηj (11.46)

ηi ∼ iidN(0, σ2
η) (11.47)

Where Fi is the number of children (including i) in i’s family. The normal assumption for
ηi is not necessary here, but we make it so it is clear what we are simulating.

Here, the notation under the sum indicates that we are summing over all other children
in the same family as i. E.g. if the first 4 observations in out dataset were in the same
family:

ε1,1 = η1 +
ρ

3
(η2 + η3 + η4)

ε2,1 = η2 +
ρ

3
(η1 + η3 + η4)

1. Calculate E[εi,f ] and V [εi,f ]

2. Calculate cov(εi,f , εj,f ), for i 6= j. That is, what is the correlation between child i and
child j’s error term if they have the same parents?

3. Interpret the role of parameter ρ in your expression for cov(εi,f , εj,f ). What does it
mean if ρ = 0? ρ > 0? ρ < 0?

4. Would there be anything wrong with using OLS if this is how ε behaves? Will it affect
bias? consistency? standard errors? What is wrong with the usual assumptions we
make to do OLS?
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Exercise 11.2 (Simulation exercise).
Refer to Exercise 11.1. Fix ηi ∼ iidN(0, 1), assume that β0 = 0 and investigate the role of ρ.
Specifically, suppose that you have a sample of 1,000 children, each in a family of four. That
is, children i = 1, 2, 3, 4 are in family 1, i = 5, 6, 7, 8 are in family 2, and so on. Simulate the
test statistic of the following procedures for ρ = 0, 0.5,−0.5:

1. regress child height, then test that β0 = 0, reject H0 if |t| > 1.96 (i.e. the usual
way that you would test that β0 = 0)

2. regress child height, restricting your sample to only one child per family (i.e. use
child 1, 5, 9, 13, . . . , 997). Reject H0 if |t| > 1.96.

3. regress child height, restricting your sample to only the first 250 observations in
your sample. Reject H0 if |t| > 1.96.

Summarize your results in a table that shows how the rejection probabilities vary with these
three procedures and the three values for ρ.

Given that you are simulating the distribution of the test statistic under the null, what
should these rejection probabilities be equal to, and do they differ from this value? if so,
how do they differ?

Exercise 11.3 (Simulation exercise).
Modify your simulation from the previous question to show that appropriate clustering fixes
the problem.
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Chapter 12

Maximum Likelihood

12.1 How some estimators relate to maximum likeli-

hood

12.1.1 Sample mean for a Bernoulli (coin flip) variable

In the early chapters of this material, we learned about why sample means were useful
estimators. For Bernoulli random variables, we could estimate the probability of a success
by taking the sample mean. Let’s see how we can do it with maximum likelihood.

We start with the assumption that our data are distributed according to:

Xi ∼ iidBernoulli(θ) (12.1)

and wish to estimate θ. The probability mass function of one observation in our data is:

pXi(x) =


θ if x = 1

1− θ if x = 0

0 otherwise

(12.2)

= θI(x=1)(1− θ)I(x=0) (12.3)

Since we have assumed that the Xis are iid, we can multiply the probability of each obser-
vation together to get the probability mass function for all rows of our data.

pX1,X2,...,XN (x1, x2, . . . , xN ; θ) =
N∏
i=1

pXi(xi) (12.4)

=
N∏
i=1

θI(x=1)(1− θ)I(x=0) (12.5)

which is also the likelihood function evaluated at θ. We take logs to get the log-likelihood
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(because it is easier to maximize):

logL(θ) = log

[
N∏
i=1

θI(Xi=1)(1− θ)I(Xi=0)

]
(12.6)

=
N∑
i=1

log
[
θI(Xi=1)(1− θ)I(Xi=0)

]
(12.7)

=
N∑
i=1

[I(Xi = 1) log(θ) + I(Xi = 0) log(1− θ)] (12.8)

= N
[
X̄ log(θ) + (1− X̄) log(1− θ)

]
(12.9)

We find the maximum likelihood estimator by taking the derivative and setting it equal to
zero:

θ̂ = arg max
θ

logL(θ) (12.10)

FOC: 0 = N

[
X̄

θ̂
− 1− X̄

1− θ̂

]
(12.11)

θ̂ = X̄ (12.12)

That is, the maximum likelihood estimator of θ is also the sample mean!
Now suppose that we want to test that θ is equal to a specific value, say θ0. Substituting

θ̂ into the likelihood function yields:

LU = N
[
X̄ log(X̄) + (1− X̄) log(1− X̄)

]
(12.13)

and our restricted likelihood is:

LR = N
[
X̄ log(θ0) + (1− X̄) log(1− θ0)

]
(12.14)

So the likelihood ratio test statistic is:

LR = 2
[
LU − LR

]
(12.15)

= 2N
[
X̄ log(X̄) + (1− X̄) log(1− X̄)− X̄ log(θ0)− (1− X̄) log(1− θ0)

]
(12.16)

= 2N
[
X̄ log(X̄/θ0)− (1− X̄) log((1− X̄)/(1− θ0))

]
(12.17)

How do we know that this thing is distributed χ2
1 for large N? Note that the likelihood

ratio is a function of X̄, the sample mean, and θ0, the value of θ if H0 is true. θ0 is fixed
for the hypothesis, so it is really only a function of X̄. Let’s make a 2nd-order Taylor series
approximation of this function:

LR(X̄) ≈ LR(θ0) + (X̄ − θ0)
∂LR(x)

∂X̄

∣∣∣∣
x=θ0

+
1

2
(X̄ − θ0)2

∂2LR(x)

∂X̄2

∣∣∣∣
x=θ0

(12.18)

= 0 + (X̄ − θ0)2N
[
log

(
x

θ0

)
+
x

x
− log

(
1− x
1− θ0

)
+

1− x
1− x

]
x=θ0

(12.19)

+
1

2
(X̄ − θ0)22N

[
1

x
+

1

1− x

]
x=θ0
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Noting that everything on the first line of Expression 12.19 is zero:

LR(X̄) ≈ 1

2
(X̄ − θ0)2

2N

θ0(1− θ0)
(12.20)

=

(√
N(X̄ − θ0)√
θ0(1− θ0)

)2

(12.21)

So when the null is true, the thing inside the parentheses is asymptotically standard normal.
Since the LR is approximately this thing squared (the approximation gets better as N →∞),
it follows that:

LR(X̄)
d−→ χ2

1 (12.22)

12.1.2 Linear regression

Let’s restrict our attention to the bivariate linear regression model. The data-generating
process is often described as:

Yi = β1 + β2Xi + εi (12.23)

E[εi | X] = 0 (12.24)

V [εi | X] = σ2, (homoskedasticty) (12.25)

E[εiXi] = 0, (exogeneity) (12.26)

Note that we have already assumed a few things here (specifically, homoskedasticity). Now,
we are going to make a very restrictive assumption:

εi | Xi ∼ iidN(0, σ2) (12.27)

We have seen lots of normals show up in our analysis, but this is not usually where they show
up: usually we make an argument that a sample mean is approximately normal because N
is large. Here, on the other hand, we have assumed that the errors are normal. This is
therefore a much more restrictive model than the one we write down when we do OLS, but
let’s see where it gets us.

The parameters we wish to estimate are the intercept and slope coefficients, β0 and β1,
as well as the variance parameter σ2. First note that:

Yi | Xi ∼ N(β0 + β1Xi, σ
2) (independent) (12.28)

Here I don’t write “iid” because the distribution of Yi | Xi changes with Xi. Using the above
result this information, we can construct the pdf of one observation;

fY |X(y; β0, β1, σ
2) = φ(y; β0 + β1Xi, σ

2) (12.29)

=
1√

2πσ2
exp

(
− 1

2σ2
(y − β0 − β1Xi)

2

)
(12.30)
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Usually I would just leave this as the first line, with φ(·;µ, σ2) representing the normal
density function with mean µ and variance σ2, however we need to use some properties of
this to derive the estimator for (β0, β1, σ

2). Thats the probability (density), or likelihood, of
observing one row of the data. Now we assume that each rows are independent, so we can
multiply these densities together to get the probability density function of th data when the
parameters are known:

fY1,Y2,...,YN ;X1,X2,...,XN (y; β0, β1, σ
2) =

N∏
i=1

fYi|Xi(Yi; β0, β1, σ
2) (12.31)

=
N∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(Yi − β0 − β1Xi)

2

)
(12.32)

This is the likelihood, which in principle you could go ahead and maximize, but it is much
easier to maximize the log-likelihood:

logL(β0, β1, σ
2) = log

(
N∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(Yi − β0 − β1Xi)

2

))
(12.33)

=
N∑
i=1

log

(
1√

2πσ2
exp

(
− 1

2σ2
(Yi − β0 − β1Xi)

2

))
(12.34)

=
N∑
i=1

[
log 0− 1

2
log(2πσ2)− 1

2σ2
(Yi − β0 − β1Xi)

2

]
(12.35)

= − N
2

log 2πσ2︸ ︷︷ ︸
A

− 1

2σ2

N∑
i=1

(Yi − β0 − β1Xi)
2

︸ ︷︷ ︸
B

(12.36)

Note that the only component of this expression that contains β0 and β1 is B. Therefore, we
don’t need to consider A if we just want to estimate β0 and β1. Furthermore, since 1/2σ2 > 0,
we don’t need to consider this constant either. So maximizing th log-likelihood with respect
to the slope and intercept term is equivalent to the following optimization problems:

(β̂0, β̂1) = arg max
β0,β1

[
−

N∑
i=1

(Yi − β0 − β1Xi)
2

]
(12.37)

(β̂0, β̂1) = arg min
β0,β1

[
N∑
i=1

(Yi − β0 − β1Xi)
2

]
(12.38)

That is, arg maxx g(x) returns the x that maximizes g(x) (i.e. the argument of g that max-
imizes g), whereas maxx g(x) equals the maximum value of g(x). Importantly here, the
second optimization problem is one that we’ve seen before: Yi− β̂ + 0− β̂1Xi is the residual
of observation i, and so the above minimization problem is exactly the same minimization
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problem we used to derive the OLS estimator: we are minimizing the sum of squared resid-
uals! Hence, without further derivations, we know that:

β̂ML
1 = β̂OLS

1 =

∑N
i=1(Yi − Ȳ )(Xi − X̄)∑N

i=1(Xi − X̄)2
(12.39)

β̂ML
0 = β̂OLS

0 = Ȳ − β̂OLS
1 X̄ (12.40)

Letting SSR equal the (minimized) residual sum of squares, we can write the estimator for
σ2 as:

σ̂2 = arg max
σ2

[
−N

2
log 2πσ2 − 1

2σ2
SSR

]
(12.41)

FOC: 0 = − N

2σ̂2
+

SSR

2(σ̂2)2
(12.42)

0 = −Nσ̂2 + SSR (12.43)

σ̂2 =
SSR

N
=

1

N

N∑
i=1

(Yi − β̂0 − β̂1Xi)
2 (12.44)

which is almost the equation we use for OLS (we usually divide by N − k to eliminate bias).
OK, that’s estimation. Now suppose that we wish to test a restriction. Note that the

maximized log-likelihood can be simplified to:

max logL = −N
2

log(2πSSR/N)− N

2SSR
SSR (12.45)

= −N
2

[log(SSR) + log(2π/N) + 1] (12.46)

Letting RSS and USS be the restricted and unrestricted sum of squared residuals respec-
tively, the likelihood ratio test statistic is:

LR = 2
[
logLU − logLR

]
(12.47)

= −N
2

[log(USS)− log(RSS)] (12.48)

=
N

2
log(RSS/USS) (12.49)

Which is qualitatively what we’re doing with an F -test in OLS: comparing how much worse
our restricted model fits the data.

Exercises

Exercise 12.1.
In Game Theory, an indefinitely repeated game is one that is repeated until a random
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condition is met. One way to implement this in an economic experiment is to roll a die
after every repetition: if a 6-sided die roll is (say) four or less, then the game is repeated for
another round, otherwise there are no more repetitions. For this particular stopping rule,
what we achieve is a stopping probability of δ = 1/3. That is, if we roll a 1, 2, 3, or 4,
we continue, and if we roll a 5 or 6, we stop. One concern an experimenter might have is
that the number of repetitions that two subsets of the sample had were very different. This
might happen if one group had unusually long game lengths, and another had unusually
short game lengths. This could be a problem because we want to attribute differences in
participants’ behavior to something else, like the different payoffs in the game. Therefore,
it is common in situations like this to report the results of a hypothesis test that the two
groups experienced similar game lengths.

EndRound.csv is a stripped-down dataset from an experiment of mine and some co-
authors [note to self: insert citation when we actually publish it]. Each row of this file
contains one instance of a repeated game. The file contains two variables: EndRound is
the number of rounds that this game was played for, and group identifies whether this row
correpsonds to Group 1 or Group 2 in the experiment. The EndRound variable was generated
almost exactly as described above: during the experiment at the end of every repetition, I
rolled a 20-sided die, and we played another one if the number was sufficiently low.

Let Xi be the number of rounds that participants play game i. Given the description
above, Xi must follow a Geometric distribution, which has probability mass function:

p(x) =

{
(1− δ)x−1δ if x = 1, 2, 3, 4, . . .

0 otherwise

You can think of this as Xi is the number of times you have to flip an unfair coin that comes
up heads with probability δ, until you have seen one head.

1. What is the likelihood of observing a sample {xi}Ni=1?

2. What is the log-likelihood function? Express your answer as a function of δ, N , and
the sample mean only.

3. What is δ̂, the maximum likelihood estimator for δ?

4. Use the data to estimate δ for each group individually, and for both groups pooled.

5. Report the p-value for the test that the two groups have the same δ (do the Likelihood
Ratio test).

6. Suppose that you were unable to solve for δ̂ explicitly. Write a script that finds δ̂ (just
for the pooled estimate) using:

(a) Grid search. For this, use a grid of {0.01, 0.02, 0.03, . . . 0.99} (i.e. 99 evenly spaced
points on the unit interval)

(b) Newton’s method.
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Do you encounter any problems with either of these? How many iterations does it
take Newton’s method to converge to within 0.01 of δ̂? Discuss one advantage and
disadvantage of using Newton’s method over a grid search.

Exercise 12.2.
Download the Galton heights dataset. Create a dummy variable that is equal to one if the
child is taller than both parents, zero otherwise. This will be our LHS variable of interest.

1. Estimate LPM, probit, and logit models using average parent height and the son
dummy variable on the RHS. Include the log-likelihood of the probit and logit models
in this table

2. Using the margins command, compute the marginal effects of average parent height
and child sex on the probability of a child being taller than their parents.

3. Plot the predicted values of the OLS model and the probit model. Comment on these
predictions.

4. Estimate another Probit model that tests whether the relationship between Pr[taller]
and average parent height is different between sons and daughters. Use a likelihood
ratio test.

5. Use this model to estimate (i) the probability that a son is taller than both his parents,
and (ii) the probability that a daughter is taller than both of her partents. Put 95%
confidence intervals around these numbers.

6. (*) Report the diffenence in these probailities, and a confidence interval for that num-
ber. Explain the interpretation of this number.

7. Suppose that you wanted to estimate the model:

Pr[taller | Xi] = Φ(β0 + β1mother heighti + β2father heighti . . .

+ β3father heighti × mother heighti + β4soni)

Estimate this model using the following code:

generate MxFheight = mother_height*father_height

probit taller mother_height father_height MxFheight son

Now explicitly derive the cross-partial marginal effect:

∂ Pr[taller | Xi]

∂father heighti∂mother heighti

Briefly explain the interpretation of this partial derivative.

Do you think Stata gives you this when you type:
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margins , dydx(FxMheight)

What went wrong?

Exercise 12.3.
Download and read the following paper:

Duggan, Mark, and Steven D. Levitt. “Winning Isn’t Everything: Corruption in
Sumo Wrestling.” The American Economic Review 92.5 (2002): 1594-1605

This is one of the papers discussed in Freakonomics.

1. Briefly explain why two Sumo wrestlers may face different incentives to win the same
match.

2. Consider a simplified version of the econometric model in their Equation (1).

Wini,j,t,d = β0 + β1Bubblei,j,t,d + γRankdiffi,j,t + εi,j,t,d (12.50)

In the paper, they estimated limited probability models. How would you interpret
estimates β̂1 and γ̂ from these? (assuming that the LPM is econometrically valid).

3. Suppose instead that you estimated a Probit model:

Pr[Wini,j,t,d = 1] = Φ (β0 + β1Bubblei,j,t,d + γRankdiffi,j,t) (12.51)

and obtain estimates β̃0, β̃1, and γ̃. Write down a functions of these estimates that
has the same interpretations as your answer to part 2. Note how Duggan and Levitt
define the variable Bubblei,j,t,d.

4. Briefly explain what the data would look like if there was not any match fixing going
on.

5. Duggan and Levitt point out that it is plausible that effort could explain the Bubble
effect. Re-write equation 12.50 with an “effort” variable to reflect this. We typically
don’t observe effort, so how will this affect the estimate of β1?

6. Briefly explain one of the ways that Levitt and Duggan try to convince the reader that
(at least some of the) bubble effect is due to match fixing.
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Chapter 13

Instrumental variables (2SLS)

13.1 Over-identification test

In the case that we are lucky enough to have more than one instrument, we can do an over-
identification test. Qualitatively, what we are doing in this test is estimating β̂1 for for each
of our instruments separately, and determining if this changes our answer in any appreciable
way. There are two possible outcomes of this test:

1. If all of the β̂1s are close to each other, then we conclude that either all instruments
satisfy the exclusion condition, or all instruments do not satisfy the exclusion condition.

2. If at least one β̂1 is very different from the others, then we conclude that at least
one instrument does not satisfy the exclusion condition, and at least one instrument
satisfies the exclusion condition.

Importantly, note that we can never know that all of our instruments are valid.
To demonstrate this, we need an example of using 2SLS with multiple instruments. Berry

et al. (1995) is one such example. In particular, we are interested in estimating the demand
curve for cars, and how this shifts with three characteristics:

• air: a dummy variable for whether the car has air conditioning as standard

• weight: The weight of the car (units are unspecified in the dataset, but are somewhat
irrelevant for this example), and

• hp: how powerful the car is.

A cut-down version of the specification in Berry et al. (1995) is as follows:

log(Qi)− log(Q0) = β0 + β1pi + β2airi + β3weighti + β4hpi + εi (13.1)

whereQi is the quantity of car i sold in the market, andQ0 is a measure of the potential size of
the market (e.g. the population of consumers in the market). Econometrically, we worry that
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(1) (2) (3)
delta price delta

price -0.000361∗ -0.0000753∗∗∗

(-2.15) (-5.38)
air 0.753 3118.0 -0.480

(0.76) (1.36) (-1.44)
weight 0.00154∗ 2.709 0.00124∗∗∗

(2.26) (1.17) (3.84)
hp 0.0494 169.6∗∗∗ -0.000510

(1.63) (6.21) (-0.12)
Z air -80797.3

(-1.26)
Z weight 104.0

(1.88)
Z hp 111.0

(0.15)
Constant -12.71∗∗∗ -294891.0 -9.854∗∗∗

(-5.74) (-1.87) (-13.64)
Observations 131 131 131
F 46.73 14.98
method 2SLS 2SLS (1st stage) OLS
p overid .

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13.1: 2SLS estimation of equation 13.1 using data from Berry et al. (1995).

price is endogenous. It is somewhat common in this field to use the average characteristics
of all cars not produced by the firm that produces car i are valid instruments for pi. I will
ignore the justification of this here, but use theis as an example of an over-identification test.
Specifically, we have one endogenous regressor (price), and three instruments (average air,
weight, and hp of cars not made by manufacturer i). The results of this estimation are
shown in Table 13.1. I also log price and run the estimations again in Table 13.2 so that the
coefficient has an elasticity interpretation. Column 1 shows the 2SLS results, column 2 is the
first stage regression, and column 3 is a näıve OLS specification that we should never take
seriously. The F -statistic in column 2 provides strong support for the instruments satisfying
the inclusion condition.

Now let’s focus on the exclusion condition. We can never directly test that the exclusion
condition is satisfied, but we can do an over-identification test. To implement this in STATA,
simply code up estat overid below your 2SLS command. By default this displays two tests.
In my code I get STATA to report the p-value of the first, the Sargan (score) test, in the
esttab tables. In both tables, the p-value is large, so we conclude that one of the following
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(1) (2) (3)
delta log(price) delta

log(price) -8.031∗∗ -2.192∗∗∗

(-3.02) (-5.78)
air 1.625 0.257∗∗ -0.141

(1.68) (3.11) (-0.41)
weight 0.00272∗∗∗ 0.000273∗∗ 0.00159∗∗∗

(3.68) (3.29) (4.86)
hp 0.0389∗ 0.00626∗∗∗ 0.000674

(2.11) (6.39) (0.15)
Z air -3.318

(-1.44)
Z weight 0.00514∗

(2.60)
Z hp 0.00304

(0.12)
Constant 55.64∗∗ -5.996 8.574∗∗

(2.59) (-1.06) (2.73)
Observations 131 131 131
F 94.11 16.33
method 2SLS 2SLS (1st stage) OLS
p overid .

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13.2: Table 13.1, but with logged price, so that we can interpret the coefficient as an
elasticity.
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(1) (2) (3)
delta delta delta

log(price) -207.7 -110.0∗ -168.4
(-0.83) (-2.34) (-0.90)

air 5.629 2.602 4.414
(0.71) (1.59) (0.74)

weight 0.00571 0.00357∗∗ 0.00485
(1.00) (2.82) (1.13)

hp 0.122 0.0580 0.0961
(0.74) (1.82) (0.78)

Constant 426.7 221.7∗ 344.4
(0.81) (2.25) (0.87)

Observations 131 131 131
instrument air weight hp

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13.3: Table 13.2, using only one instrument.

is true:

• All of the instruments are valid,

• All of the instruments are equally bad,

but we don’t know which.
For the sake of completeness, I also include Table 13.3, which shows the three possible

2SLS estimations using only one instrument. The coefficients on log(price) vary wildly, but
not so much as to reject the null for the over-identification tests.

The code that generated these tables follows in the panel below:

clear all

set more off

import excel "cars_data.xls", sheet("PS_ cars_data ") cellrange(B10:H141) firstrow

desc

global M = 100*10^6

// generate share data

qui gen share = Q/$M

egen shareCAR = total(share)

gen share0 = 1-shareCAR

// delta (estimate of quality)

gen delta = log(share)-log(share0)

// RHS characteristics

local X "air weight hp"

// Instruments of average characteristics of cars not produced by firm i

qui sum firm
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local nfirms = r(max)

foreach x of local X {

qui gen Z_‘x’ = .

forvalues ii= 1/‘nfirms ’ {

qui sum ‘x’ if firm ~=‘ii’

qui replace Z_‘x’ = r(mean) if firm == ‘ii’

}

}

// Tables using all instruments

forvalues kk = 1/2 {

eststo reg_ ‘kk’_1: ivregress 2sls delta air weight hp ( price = Z_*)

estadd scalar p_overid = r(p_score)

estadd local method "2SLS"

eststo reg_ ‘kk’_2: regress price air weight hp Z_*

estadd local method "2SLS (1st stage)"

eststo reg_ ‘kk’_3: regress delta air weight hp price

estadd local method "OLS"

replace price = log(price)

esttab reg_ ‘kk’_* using cars ‘kk ’.tex , label scalars(F method p_overid) compress nogaps

↪→ replace

label variable price "log(price)"

}

// Table using each instrument separately

foreach x of local X {

eststo reg0_ ‘x’: ivregress 2sls delta air weight hp ( price = Z_‘x’)

estadd local instrument "‘x’"

}

esttab reg0_* using cars0.tex , label compress nogaps replace scalars(instrument)

Exercises

Exercise 13.1.
Bailey (2016) claims that (see p305):

A weak instrument does a poor job of explaining the endogenous variable (X).
Weak instruments magnify the problems associated with quasi-instruments and
also can cause bias in small samples.

We will explore this today.
Specifically, simulate the sampling distribution of β̂2SLS

1 from the following data-generating

137



process for N = 1000:

Yi = Xi + η1,i (13.2)

Xi = 0.1Z1,i + 0Z2,i + 0Z3,i + 0Z4,i + 0Z5,i + 0.1Z6,i + η2,i (13.3)

Zi,1, Z2,i, . . . Z5,i ∼ iidN(0, 1) (13.4)

Z6,i = η3,i (13.5)η1,iη2,i
η3,i

 ∼ iidN

0
0
0

 ,
 1 0.8 0.2

0.8 1 0
0.2 0 1

 (13.6)

Equation 13.6 is the formal way of stating that each vector (η1,i, η2,i, η3,i)
′:

• Is independent of any other vector (i.e. uncorrelated with vectors with different sub-
scripts)

• Each ηk,i has a marginal distribution of N(0, 1).

• corr(η1,i, η2,i) = 0.8, corr(η1,i, η3,i) = 0.2, and corr(η2,i, η3,i) = 0

The following code will simulate draws for η from this distribution:

matrix M = 0, 0, 0

matrix V = (1, 0.8, 0.2\ 0.8, 1, 0 \ 0.2, 0, 1)

drawnorm eta1 eta2 eta3 , n(1000) cov(V) means(M)

Specifically, simulate the sampling distribution of β̂2sls
1 , the estimator for the causal effect

of X on Y using the following procedures:

1. Using just Z1 as an instrument for X

2. Using Z1, Z2, Z3, Z4, and Z5 as instruments for X

3. Using Z1 and Z6 as instruments for X

4. Using Z1, Z2, Z3, Z4, Z5, and Z6 as instruments for X

Summarize the distributions of these four estimators both graphically and in an esttab

table. Include the mean, standard deviation, and mode in you summary table.
Explain why specification (a) allows you to estimate the causal effect of X on Y , and

why you cannot make this claim with the other specifications. Discuss these in the context
of your simulation results.

Exercise 13.2.
Can we include endogenous controls in our 2SLS estimation? Produce a simulation that
investigates this concept. Specifically, discuss the results of two simulations showing:

1. That if controls are exogenous, the estimate of the causal effect is unbiased
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2. That is controls are endogenous, the estimate of the causal effect is biased.

Before you start your coding, have a think about the simplest data-generating process that
will prove your point.

Hint: The following code will simulate draws from a multivariate normal distribution
with zero mean, unit marginal variances, and pre-defined correlations ‘c1’, ‘c2’:

matrix M = 0, 0, 0

matrix V = (1, ‘c1’ ‘c2 ’\ ‘c1’, 1, ‘c2 ’ \ ‘c1 ’ ‘c2’ 1)

drawnorm r1 r2 r3, n(1000) cov(V) means(M)

FYI, if you are interested in this problem, you should read Marc Bellemare’s blog post about
this, and Frölich (2008).
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Chapter 14

Time series

14.1 Autoregressive and moving average (ARMA) mod-

els: the basic building blocks of time series models

While there are many ways in which observations in a time series {Yt}Tt=1 could be dependent
on each other, we almost always start with dependence due to an autoregressive process, a
moving average process, or a combination thereof. The autoregressive model assumes that
Yt depends on the variable’s lags, for example:

Yt = 1 + 0.2Yt−1 + εt, εt ∼ iid, E[εt] = 0, V [εt] = σ2 (14.1)

Is an AR(1) process, which means that the deterministic component of Yt is a (linear)
function of the realization of same variable in the previous period.

In general, we can write an autoregresive process as:

Yt = α +
k∑
τ=1

φτYt−τ + εt (14.2)

where k is the number of lags of Yt included in the model, and {φτ}kτ=1 are the coefficients
on these lags. If there are k lags in the model, we call this an “AR(k)” model.

Figure 14.1 shows a white noise process (panel (a), basically just iid errors with no
dependence), followed by three autoregressive processes. Panel (b) shows an AR(1) process
with α = 0 and φ1 = 0.7. Compared to panel (a), in this plot large values of Y are likely to
be followed by another large value. This is because, on average, E[Yt | Yt−1] = 0.7Yt−1 > 0.

The other building block of time series processes is the moving average. An example of
this is:

Yt = ψεt−1 + εt (14.3)

which is an MA(1) process. The “MA” part means “moving average”, in that Yt is a
(weighted) average of errors that have occurred in the past. The “(1)” part means that only
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(a) AR(0) – White noise (b) AR(1) – positive autocorrelation
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(c) AR(2) (d) AR(1) – neagtive autocorrelation
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Figure 14.1: Simulated autoregressive processes.
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(a) MA(1) (b) MA(2)
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Figure 14.2: Simulated moving average processes.

the error that occurred one time period into the past (i.e. εt−1) shows up in this process. In
general, we can write an arbitrary MA(k) process as:

Yt = α +
k∑
τ=1

ψτ εt−τ + εt (14.4)

Note that while these processes look almost exactly the same, except that for the moving
average process, we are lagging the errors, instead of the Y . Some simple moving average
processes are shown in Figure 14.2. It might be difficult to spot the difference between these
and the autoregressive processes in Figure 14.1, this is why the autocorrelation function and
partial autocorrelation function are useful.

Bailey (2016, chapter 13) also discusses at length an “autoregressive errors” (thi is what
I’m calling it, not Bailey) regression model that takes the form:

Yt = β0 + β1Xt + εt, εt = ρεt−1 + νt (14.5)

Note that the equation for Yt is neither an AR(1) nor MA(1) process, but the equation for
εt is and AR(1) process.

14.2 Stationarity and properties of ARMA processes

Until we get to the unit root problem, we are going to implicitly assume that we are dealing
with stationary processes. Intuitively, this means that if you pick two time periods, say t
and s, then any unconditional beliefs you have about Yt and Ys are going to be the same.
Additionally, any unconditional beliefs you have about Yt+1 and Ys+1 sill be the same. In
fact any unconditional beliefs you have about Yt+τ and Ys+τ for any τ will be the same.
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Please read through this again and underline, highlight, etc. the “unconditional” part.
Here’s an example. Consider the AR(1) process:

Yt = 0.5Yt−1 + εt (14.6)

which happens to be stationary. If I asked you to make a forecast of Yt at a particular time,
but gave you no more information than the above equation, then you’d probably (and quite
rightly) note that since you don’t know Yt−1, or any of the other Y s that came before it,
and you know the errors are all mean zero, that a good point prediction would be to choose
E[Yt] = 0. But if I asked you to make a prediction for some other time period s, you would
have done exactly the same thing: since I’ve given you nothing to refine your beliefs, this
is the best you can do. Now if I told you the actual value of Yt−1, you’d be able to make
a better forecast of Yt, namely E[Yt | Yt−1] = 0.5Yt−1, but then you’d be conditioning on
something.

For our purposes, we will think about stationary time series as follows:

Result 1. If a process Yt is stationary, then (among other things):

E[Yt] = E[Yt+1] = E[Yt−1] = E[Yt+τ ] for all τ ∈ N (14.7)

V [Yt] = V [Yt+1] = V [Yt−1] = V [Yt+τ ] for all τ ∈ N (14.8)

cov(Yt, Yt+1) = cov(Yt+1, Yt+2) = cov(Yt+τ , Yt+1+τ ) for all τ ∈ N (14.9)

cov(Yt, Yt+s) = cov(Yt+τ , Yt+τ+s) for all τ, s ∈ N (14.10)

Basically all of those things are constant. Importantly, note that in general:

cov(Yt, Yt+s) 6= cov(Yt, Yt+τ ) for all τ, s ∈ N (14.11)

which of course isn’t even true for our AR(1) process above, because the effect of Yt on Yt+s
diminishes as s gets larger. In fact, this is another property of stationary processes: as we
want to forecast further and further into the future, any information we have now becomes
more and more useless.

14.3 Diagnostics

Like most chapters, Bailey jumps right into a concept’s implication for OLS without going
over some more fundamental concepts. I cover some that I think are important here. Specif-
ically, we focus on a univariate time series {Yt}tt=1, and the implications of autocorrelation
on the properties of a sample mean. In particular, we may be worried that at least one of
the following are true:

1. ȳ is a biased estimator of E[Yt]

2. The method we use for calculating standard errors for ȳ assume that the time series is
not serially correlated, and so we may be over- or under-stating significance.
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14.3.1 Autocorrelation and partial autocorrelation functions

Autocorrelation and partial autocorrelation functions are useful ways to graphically represent
the serial correlation in a time series. For stationary time series, the autocorrelation function
(ACF) is defined as:

R(τ) =
E[(Yt − µ)(Yt−τ − µ)]

σ2
(14.12)

In words, this is the correlation between our random variable, and its value τ periods in the
past, or corr(Yt, Yt−τ ). If Yt is an MA(k) process, then R(τ) 6= 0 for τ = k, and zero for
τ > k.

The partial autocorrelation function is defined recursively, and involves projection ma-
trices. In upholding my promise to not go into matrix algebra, I will hold off on the formal
definition, and provide this intuition instead: You estimate the model:

Yt = β0 + β1Yt−1 + β2Yt−2 + . . .+ βτYt−τ + εt (14.13)

The partial autocorrelation function is equal to:

α(τ) = plimβ̂τ (14.14)

That is, after controlling for all lags of lower order, how much additional explanatory power
does Yt−τ provide for Yt. An AR(k) process will have α(τ) 6= 0 for τ = k, and zero for τ > k.

We can therefore use the sample analog of these to diagnose the presence of autocorrela-
tion, and maybe even the type of autocorrelation present (if it is not too fancy). Fortunately,
Stata calculates plots of these very simply:

ac Y // For autocorrelation function

pac Y // For partial autocorrelation function

Sometimes these are reasonably easy to spot. For example Figures 14.3 and 14.4 show
these functions for an AR(1) and MA(1) process respectively. For the PACF in Figure 14.3,
we only identify one significant lag: the first. This is consistent with an AR(1) process.
Since the higher-order lags appear to be insignificant in the PACF, this tells us that Yt−1
adequately characterizes the serial correlation of Yt. For the ACF in Figure 14.4, again we
only identify one significant lag: the first. This is consistent with an MA(1) process. Since
the higher-order lags appear to be insignificant in the ACF, this tells us that εt−1 adequately
characterizes the serial correlation of Yt. We may not be so lucky. For example, Figure 14.5
shows the ACF and PACF for an ARMA(1,1) process. It is not clear from the “eyeball”
hypothesis test that this is indeed the case. That said, this figure is evidence for the presence
of autocorrelation, it is just not very helpful in identifying the type of autocorrelation.

14.4 Declaring time series datasets and dealing with

lagged variables

So you want to do some time series, and you want to do it in Stata? Good! However before
diving in to your analysis, it may be helpful o know how Stata can make it easier for you.
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Figure 14.3: ACF and PACF of a simulated AR(1) process: Yt = 0.5Yt−1 + εt

Figure 14.4: ACF and PACF of a simulated MA(1) process: Yt = εt + 0.5εt−1
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Figure 14.5: ACF and PACF of a simulated ARMA(1,1) process: Yt = 0.5Yt−1 + εt + 0.5εt−1

For the most part, this boils down to including lagged variables in regressions, plots, and so
on.

Before we learn the easy way, here’s how you could do it manually. Suppose you had a
single column of data Y, that was sorted from earliest to latest observation. If you wanted
to create the lag of this variable, you could do something like:

generate Ylag = .

forvalues tt = 2/_N {

replace Ylag = Y[_n] if ‘tt ’==_n

}

Furthermore, you might even realize that this works with the single line:

generate Ylag = [_n -1]

OK. Thats great. But Stata can help you out a bit more than this. Specifically, Stata has a
“lag” operator that works similarly to i.X.1 If you want to include the first lag of Y, you just
L.Y. If you want to include its second lag, you L2.Y. And for the third lag, um . . . (drumroll)
L3.Y (actually, L1.Y works for the first lag too). However while Stata is smart enough to
know exactly what to do when you i.X, it needs to know a bit more information to use the
L. operator. Specifically, if you have an integer variable that identifies time periods, then
all you need to do it tell Stata what this variable is. If this variable is called t, then all you
have to do is:

tsset t

1Remember that when you i.X, you include a dummy variable for every unique vaue of X.
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For example, using the Toledo Airport weather dataset, the following code:

generate t = date(date ,"YMD " ,1901)

tsset t

does this. The first line takes the string-format date, which is in ISO 8601 format (e.g. 2018-02-05),
and hence a string, into an integer equal to the number of days that date is after 1901.

14.5 Prediction and forecasting

For most of this course, we have focused on estimating things: sample means, probabilities,
causal effects, and so on. However onve we get into modeling times series data, we might
also be interested in prediction: or models tell us, given some information about things now,
what is going to happen tomorrow, or next week, or in a year? Note that this language
is way different from how we think about causal inference. When we seek the “right” (i.e.
causal) marginal effect, we want to ask questions like “if I change X, what will this do to
Y ?”, but with prediction, we might not actually care about the causal mechanism, we just
want the number. Fortunately for us, most of our knowledge of OLS and the like follows
through with point predictions. However we need to treat randomness slightly differently.

14.5.1 Example: Prediction with univariate problems

Suppose that we have a dataset of N iid observations of Yi: {Yi}Ni=1. We are going to come
across another Y in the future, call it YN+1, and we’d like to have some kind of idea what
it will be. You might be tempted, and you’d also be on the right track, to take the sample
mean of the N Y s that we already have, and use this as our point prediction of YN+1:

ŶN+1 =
1

N

N∑
i=1

Yi = Ȳ (14.15)

This is a great place to start! In fact, if you were going to be making a decision based on a
point prediction, and your payoff of this decision was decreasing in the mean squared error
of your prediction, i.e. E[(ŶN+1 − YN+1)

2], then this would be very good.
But being a good econometrician, you also want to eYpress some level of uncertainty

in your prediction. Again, you might be tempted to report something like the confidence
interval:

ŶN+1 ± 1.96

√
1

N
s2, s2 =

1

N

N∑
i=1

(Yi − Ȳ )2 (14.16)

which would be nice if it was correct, but you’d be vastly overstating how much you know
about YN+1. The problem is that this thing is an expression of our uncertainty about the
population mean, not an expression of our uncertainty about YN+1. If it helps, note that
as N gets large, this confidence interval collapses about the point prediction, which would
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be absolutely awesome: just collect a lot of data, and we’ll be able to predict everything
perfectly! The trouble is we really want to account for the randomness associated with
getting a new draw of Y . This is a draw from the population distribution of Y , not a draw
from the sampling distribution of Ȳ .

One fairly reasonable thing to do would therefore be to use the 2.5th and 97.5th per-
centiles of or sample for the prediction interval. As N → ∞, these plim to the 2.5th and
97.5th percentiles of the population distribution, and so we are literally (and consistently)
estimating two points for which Y has a 95% chance of falling between. Alternatively, we
could get a bit more fancy and calculate the smallest interval that covers 95% of our data.,
however if the distribution is symmetric and single-peaked, we will be calculating the same
thing.

Another popular way of doing this is to assume that the data come from a Normal
distribution (think about whether this is a good assumption for your own application, it
probably won’t be). If this is the case, we can use the sample mean Ȳ and variance s2 to
claim that:

YN+1 ∼ N(µ, σ2) =⇒ YN+1
approx∼ N

(
Ȳ , s2

)
(14.17)

Note that there are three sources of randomness here:

1. YN+1 is (assumed to be) normally distributed with mean µ and variance σ2

2. We don’t know µ, but we have Ȳ , an estimate of it, which if N is large enough will be
approximately N(µ, σ2/N)

3. We don’t know σ2, but we have s2, an estimate of it. It can be shown that (N −
1)s2/σ2 d−→ χ2

N−1. Let’s assume that this process is negligible (basically you get t
critical values rather than normal ones)

So we have:

YN+1 − Ȳ√
s2

=
(YN+1 − µ)− (Ȳ − µ)√

s2
(14.18)

d−→ (YN+1 − µ)− (Ȳ − µ)√
σ2

(14.19)

approx∼ N(0, 1)−N(0, 1/N) (14.20)

= N (0, 1 + 1/N) (14.21)

=⇒ 0.95 ≈ Pr
[∣∣YN+1 − Ȳ

∣∣ ≤ 1.96
√
s2(1 + 1/N)

]
(14.22)

Note with the above expression, as N → ∞ the 1/N term goes to zero, which reflects us
knowing the population mean for sure.
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14.5.2 Example: Prediction in bivariate OLS

OK, but what if we have some Xs as well? To begin with, our point prediction can remain
the same, we simply condition on X because for bivariate OLS (hopefully the multivariate
case is obvious):

ˆYN+1 | XN+1 = ̂E[YN+1 | XN+1] = β̂0 + β̂1XN+1 (14.23)

Again, our prediction interval needs to take into account that we are uncertain about the
parameters β0 and β1, and that we are getting a new draw of Y . In the context of OLS, we
are drawing a new error term.

Note that:

ŶN+1 − YN+1 = β̂0 + β̂1XN+1 − β0 − β1XN+1 − εN+1 (14.24)

= (β̂0 − β0) + (β̂1 − β1)XN+1︸ ︷︷ ︸
B =error with mean prediction

−εN+1 (14.25)

= (α̂0 − α0) + (β̂1 − β1)(XN+1 − X̄)︸ ︷︷ ︸
B =error with mean prediction

−εN+1 (14.26)

where we make the substitution α0 = β0 + X̄β1. Note that B and εN+1 are (assumed to be)
independent, we can analyze them separately. B is the component of the prediction error
associated with us not knowing the conditional mean. We can calculate its variance in the
same way we’d calculate the variance of a linear combination of the parameters. Noting that
the population βs are constants, the estimators are unbiased, and the following results:2

α̂0 − α0 ∼ N(0, σ2/N) (14.27)

β̂1 − β1 ∼ N

(
0,

σ2∑
i(Xi − X̄)2

)
W (14.28)

and all of these are independent, so:

V [ŶN+1] = V
[
α̂0 + β̂1(XN+1 − X̄)− εN+1

]
(14.29)

= V [α̂0] + V [β̂1](XN+1 − X̄)2 + V [εN+1] (14.30)

=
σ2

N
+

σ2∑
i(Xi − X̄)

(XN+1 − X̄)2 + σ2 (14.31)

= σ2

[
1

N
+

(XN+1 − X̄)2∑
i(Xi − X̄)

+ 1

]
(14.32)

which is almost like our expression for the unconditional prediction variance in the previous
example. The middle term is the extra bit, which states that our prediction becomes less
accurate the further away from the mean of X that we want to make predictions. Note,
however, that this terms would also appear in our confidence interval for the population
mean conditional on X. The first two terms will go to zero as N →∞, and we are just left
with V [ŶN+1] ≈ σ2 for large N .

2Here I just state the result for α̂0, although we’ve derived the result for β̂1.
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Exercises

Exercise 14.1 (Forecasting the weather, Part I. Solution provided).
Use an autoregressive model with month fixed effects to forecast the maximum temperature
at Toledo Airport. Estimate your model on a 70% random sample of your data, then evaluate
your forecasts based on the 30% you didn’t use. Generate a plot of the root-mean-squared
error of your model against the number of lags you include. Show the RMSE for 1 through
100 lags.

Exercise 14.2 (Forecasting the weather, Part II).
Use an autoregressive model to forecast the maximum temperature at Toledo Airport. Specif-
ically, focus on models that include 15 RHS variables(excluding the constant) of the form:

Tt = α0 + β1Tt−1 + β2Tt−2 + β3Tt−3 + . . .+ γ1Tt−365×1 + γ2Tt−365×2 + γ3Tt−365×3 + εt
(14.33)

where Tt is the maximum temperature at Toledo Airport on day t. Note that this model
includes the standard lags (i.e. yesterday, 2 days ago, etc), but also includes lags going back
in integer multiples of years (here we will assume away the leapyear problem).

1. Explain why including the “usual” lags (i.e. the variables on β coefficients) might be
a good idea for your forecast.

2. Explain why including the yearly lags might be useful.

3. Randomly divide your sample into a estimation (sometimes referred to as “training”)
dataset (70% of observations), and a testing dataset (30%), and estimate all possible
models like this that you could that have 15 RHS variables (i.e. 0 day lags, 15 year
lags; 1 day lag, 14 year lags; 2 day lags, 13 year lags, and so on). Produce a plot of the
root-mean-squared error of your forecasts against the number of day lags. Hint: save
some time and write a for loop.

4. Explain why your answer is not one of the endpoints (i..e. 15 daily lags or 15 yearly
lags).

Exercise 14.3.
Draw a sample of 10,000 errors εt ∼ iidN(0, 1), then simulate T = 10, 000 observations of
the following time series:

1. AR(1): Yt = 0.7Yt−1 + εt

2. AR(1): Yt = −0.7Yt−1 + εt

3. AR(2): Yt = 0.2Yt−1 + 0.5Yt−2 + εt

4. MA(1): Yt = 0.7εt−1 + εt
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5. MA(2): Yt = 0.2εt−1 + 0.5εt−2 + εt

6. ARMA(2,2) Yt = 0.7Yt−1 − 0.2Yt−2 + εt + 0.3εt−1 + 0.7εt−2

7. Noise: Yt = εt (i.e. no lags of anything)

Then:

1. Produce a table showing summary statistics (just mean and standard deviation) of all
of the above time series.

2. Produce four plots for each time series. These are (i) the empirical autocorrelation
function, (ii) the empirical partial autocorrelation function, (iii) a line plot of Yt against
time, and (iv) a scatter plot of Yt against Yt−1. Combine these four plots into one
figure (Hint: help graph combine). For plots (iii) and (iv), just show the last 1,000
simulated observations (otherwise it gest messy).

3. Comment on how these plots could help you identify (i) if you have autocorrelation in
your data, and (ii) the type of autocorrelation in your data. Note that you can almost
always do (i), but sometimes (ii) is difficult.

Exercise 14.4.
Load the provided data file ThreeTimeSeries.dta.

1. For each the variables y1, y2, and y3, plot the acf and pacf in the same figure. You
should look up the help file on graph combine to see how to achieve this.

2. Use your answers to the previous part to diagnose the type of autocorrelation present
in these time series. While this is generally difficult for arbitrary ARMA processes,
use the following fact: (1) Each of these is either AR(p) or MA(q). (2) The order (i.e.
p or q) is always less than 4. Your answer should include the type of autocorrelation
(i.e. AR or MA), and the order (i.e. the number of lags, p or q).

Exercise 14.5.
For the following processes, calculate E[Yt], V [Yt], cov(Yt, Yt−1), and cov(Yt, Yt−2). State
explicitly where you assume stationarity. εt is iid with mean 0 and variance σ2.

1. Yt = εt + 0.2εt−1

2. Yt = 0.8Yt−1 + εt

If you want more practice and more of a challange, try doing this for the time series variables
in Exercise 14.3.

Exercise 14.6.
Consider the dynamic model:

Yt = γYt−1 + β0 + β1Xt + εt (14.34)

Bailey (2016) in Section 13.4 states that if:
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• The errors εt are autoregressive, e.g.: εt = ρεt−1 + νt

• γ = 0, and

• Xt is autoregressive, e.g.: Xt = ψXt−1 + ηt

then β̂1 is biased.
Write a simulation that demonstrates this, and one that shows that β̂1 is not biased if ρ =

0 (i.e. if the errors are not autocorrelated.) Specifically, use the following parameterization:

β0 = 0, β1 = 1

ψ = ρ = 0.5

νt, ηt ∼ iidN(0, 1)
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Part IV

Advanced reg-monkeying
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Chapter 15

Looping over variables: one reg y x,

robust, many regressions.

In the process of doing research, unless you have perfect foresight you will be constantly
updating the way you analyze your data, and how you communicate this. This could include
things like:

• changing the variables that you include on the RHS of your regressions

• changing the way your regression tables are labeled

• changing the hypothesis tests that you do

All of these changes could be motivated by, for example:

• recognizing a mistake

• recognizing a better way to analyze your data or display your results

• being told by a referee or conference participant that you are doing it wrong. Especially
for a referee, you should pay attention to this! (even if you think they are nuts)

To demonstrate this problem, we will investigate the determinants of speeding fines. We will
use a dataset (also used in Bailey, 2016), which is a cut-down version of the dataset used in
Makowsky and Stratmann (2009).

The dataset includes information about people who were pulled over for speeding. In
particular, we are interested in the effect of MPHover (how must faster than the speed limit
a person was driving) on amount (the fine they received). Additionally, we might be worried
if the other variables in the dataset had any bearing on speeding: if they do, this could be
evidence for discrimination. In order to drive home our point (that there is discrimination),
we run five regressions two different ways. The five regressions are:

1. reg amount MPHover //i.e. just bivariate OLS

2. reg amount MPHover age female
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3. reg amount MPHover Black Hispanic

4. reg amount MPHover StatePol OutTown OutState

5. reg amount MPHover age female Black Hispanic StatePol OutTown OutState

That is, in 2-4 we control for some things that could be related, and regression 5 we put
them all together. The “two different ways” are:

1. Using the entire sample

2. Only using observations of people who were actually fined (there are a lot of zeros)

We want to show 2 tables. The first for all regressions without the restriction, and the second
with the restriction (only people who got fined). In addition to this, we would like to do
a hypothesis test that all of the controls jointly do not affect fines (i.e. no discrimination),
and include the p-value in our regression tables. By my reckoning we need about 3 lines of
code per regression:

eststo reg_1: regress amount mphover controls ... if restriction

test controls

estadd scalar p=round(‘r(p) ’,0.0001)

then for each restriction:

esttab reg_*, scalars(p) ...

so we’re looking at 2 × 5 × 3 = 30 lines of code for the regressions and hypothesis tests,
and another 2 to get the table outputs. More to the point, if we want to add another set of
controls, we need to code up another 3× 2 = 6 additional lines, as well as change the code
for the last column on the table (which would now be the 6th column). This seems tedious,
and a great way to make a mistake. Instead, we are going to do the following:

1. Define our three sets of controls

2. Define the two restrictions

3. Loop over the controls and restrictions

This way, if we want to add or remove some controls, or a referee/seminar attendant says
we deed to do something differently, we simply change one line of code in steps 1 or 2, and
STATA will take care of the rest:

clear all

set more off

import delimited "M08_speeding_tickets_text.csv"

desc

summarize

// how Stata deals with strings
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local strA "stringA" //here we are generating two variables , strA and strB and ’adding ’ them

↪→ togehter to create a vairable called both.

local strB "stringB"

local both "‘strA ’ ‘strB ’"

disp "‘both ’"

/*In the coding literature this called string concatenation. We are ’adding ’ strings

↪→ together so we can define our controls and then run multiple regressions adding in a

↪→ control at a time. Note that there are some missing values in "amount ". These are

↪→ recorded in the data editor as ".". Let ’s assume that in these cases no fine was

↪→ issued. We will create a variable called "nofine", and replace the missing values

↪→ with zeros.

*/

generate nofine = 0

replace nofine = 1 if amount ==.

replace amount = 0 if nofine ==1

summarize

// Define the controls here

local control_0 ""

local controllabel_0 "-"

local control_1 "black"

local controllabel_1 "black"

local control_2 "female"

local controllabel_2 "female"

local control_3 "outtown outstate statepol" // location controls

local controllabel_3 "location"

local control_4 "hispanic"

local controllabel_4 "hispanic"

local controllabel_5 "all"

//when we go through the outdie loop ‘ii’ for the first time , ii=-1, which will include all

↪→ the data since all the amounts are 0 or greater ,

//the second time we go through the outside loop , since we have a strict inequality we are

↪→ going to exclude all fines equal to 0, i.e. only run on peple who got fined.

forvalues ii = -1/0 {

local control_all = ""

forvalues cc = 0/4 {

// All regressions except the one with all controls are done here

quietly eststo reg_ ‘cc ’: regress amount mphover ‘control_ ‘cc’’ if

↪→ amount >‘ii ’

estadd local controls ‘controllabel_ ‘cc’’

local control_all = "‘control_all ’ ‘control_ ‘cc ’’"

disp "‘control_all ’"

}

// The final column with all controls

quietly eststo reg_all: regress amount mphover ‘control_all ’ if amount >‘ii’

estadd local controls ‘controllabel_5 ’

esttab reg_* using Looping_over_variables ‘ii ’.tex , se compress nogaps

↪→ replace keep(mphover) scalars(controls)

drop *reg_*

}

The above code produces the following Tables 15.1 and 15.2

Exercise 15.1.
You are unsure whether amount and/or mphover should be logged or not in Table 15.2.1

Write a script that produces an esttab table with four columns, corresponding to the 4

1Note that this doesn’t make much sense with Table 15.1 because we can’t (or at least shouldn’t) log the
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(1) (2) (3) (4) (5) (6)
amount amount amount amount amount amount

mphover 8.345∗∗∗ 8.340∗∗∗ 8.273∗∗∗ 8.031∗∗∗ 8.323∗∗∗ 7.971∗∗∗

(0.0437) (0.0437) (0.0436) (0.0402) (0.0437) (0.0401)
N 68357 68357 68357 68357 68357 68357
controls - black female location hispanic all

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 15.1: All data used

(1) (2) (3) (4) (5) (6)
amount amount amount amount amount amount

mphover 6.886∗∗∗ 6.889∗∗∗ 6.871∗∗∗ 6.899∗∗∗ 6.884∗∗∗ 6.887∗∗∗

(0.0385) (0.0385) (0.0385) (0.0382) (0.0385) (0.0382)
N 31674 31674 31674 31674 31674 31674
controls - black female location hispanic all

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 15.2: Restricting to positive amounts.

possible combinations of logging or not logging these variables. You may use the regress

command exactly once.

zeros. If we applied this same script to the whole dataset, the columns with logged amount on the LHS will
be for regressions dropping all observations with no fine (i.e. the restriction in Table 15.2).
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Part V

Simulation techniques
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Chapter 16

An introduction to Monte Carlo
techniques

16.1 Stata’s (pseudo) random number generators

16.2 Using random number generators

16.3 Stata’s simulate command

Stata allows you to break up the simulation process into two steps. This is helpful because
you can concentrate on getting one thing done well at a time. These steps are:

1. Write a program that simulates one draw from the distribution you are trying to
simulate.

2. Use Stata’s simulate command to run this program over and over again lots of times.
It puts a “sample” from this simulated distribution in the data editor.

To begin with, let’s work through the example for the simulate function in Stata’s
help file. You can access this by typing: help simulate. This example simulates draws
from a lognormal distribution: if X ∼ N(µ, σ2), then Y = exp(X) ∼ lognormal(µ, σ2), i.e.
log(Y ) = X N(µ, σ2), hence if you log Y , it has a normal distribution.

We would like to simulate the distributions of the sample mean and variance of Y ∼
lognormal(0, 1). To do this, we will need to:

0. Set the sample size to simulate

1. draw X ∼ N(0, 1)

2. Generate Y = exp(X)

3. Summarize Y (to get the mean and variance of our simulated sample)
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4. Store the mean and variance as data

5. Go back to step 1. Stop when we have done this enough that we have approximated
the distribution well.

Steps 0-3 for a sample size of 20 on their own would be:

set obs 20 // (0)

generate X = rnormal (0,1) // (1)

generate Y = exp(X) // (2)

summarize Y // (3)

Note that we can access the stored results of summarize using ‘r(.)’, specifically:

display "‘r(mean)’"

display "‘r(Var)’"

To see what else we can access from summarize, type help summarize into the command
line.

If we want to use this procedure for simulating data, it will take a long time. A more
elegant way to set this problem up is to write a program that performs steps 0-3, then let
Stata’s simulate program do steps 4 and 5. The first step is to write a program. This
one is a cut and paste from the simulate help file, then I have commented above each line
explaining what it does:

// Clear everything in the memory so that we know that we are starting fresh

clear all

/*Tell stata that we are writing a program. It knows that everything between

here and "end" is part of the program The program name is lnsim (i.e.

lognormal simulation) rclass lets us know that we can access variables generated

by the program through ‘r(.)’ (more on this later)

*/

program define lnsim , rclass

// Sometimes newer and older versions of Stata work slightly differently.

↪→ Make Stata behave as if it’s Stata 13

// This line is not always needed

version 13

/*

define the syntax of the program

Here we let Stata know the inputs to the program

These inputs are:

obs = number of observations. It must be an integer , and by default

↪→ is equal to 1

mu = parameter mu in the lognormal distribution. It must be a real

↪→ number , and by default it is equal to 0

sigma = sigma in the lognormal distribution. It must be a real

↪→ number , and by default it is equal to 1

If you don ’t specify these inputs when calling the function , Stata will use

↪→ the default values.

*/

syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]

// Drop all variables from the memory

drop _all

// Set the number of observations in the dataset (i.e. step 0)

set obs ‘obs ’

// Define a temporary variable called z (it will be deleted when the program

↪→ finishes)

tempvar z
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// generate z but taking the exponential of a normal random variable with

↪→ mean mu and standard deviation sigma

// This is our random sample

gen ‘z’ = exp(rnormal(‘mu ’,‘sigma ’))

// Summarize z. This calculates the mean and variance of the random sample

summarize ‘z’

// Tell Stata to store the mean calcualted in summarize as a scalar called

↪→ mean

return scalar mean = r(mean)

// Tell Stata to store the Variance calcualted in summarize as a scalar

↪→ called Var

return scalar Var = r(Var)

end

If you run this script as is, you probably won’t notice much. What is going on in the
background is Stata adds this function nlsim to its memory, so you can now use it just like
you would use summarize or tabulate. To see this, once you have run the above script, try
typing the following into the command line (or pasting it below this script):

// Check that the program works by itself

lnsim , obs (20) mu(0) sigma (1)

display r(mean)

display r(Var)

This will display the sample mean and variance of your simulated sample of 20 observations.
However we want a “sample” of the sample mean and variance, not just one observa-

tion. If you really had nothing better to do, you could click run 1,000 times (actually this
is probably not enough repetitions) and copy and paste the numbers into a spreadsheet.
Fortunately, Stata can do this for you. Here’s how:

simulate SampleMean = r(mean) SampleVariance = r(Var), reps (1000): lnsim , obs (20) mu(0)

↪→ sigma (1)

which will give you a dataset that looks something like this (just showing the first 10 draws):

. list in 1/10

+---------------------+

| Sample~n Sample~e |

|---------------------|

1. | 1.208445 .8967296 |

2. | 1.50637 1.604306 |

3. | 2.138609 6.13594 |

4. | 2.690951 6.772248 |

5. | 1.46579 1.116809 |

|---------------------|

6. | 1.088434 .5308753 |

7. | 1.803651 3.82006 |

8. | 2.250783 7.55613 |

9. | 1.89442 6.097122 |

10. | 1.069643 .364791 |

+---------------------+
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So we have a “sample” of sample means and variances. The following script will do all of
this for 10,000 repetitions, then outputs some histograms of

• The simulated sample mean and variance, See Figure 16.1, and

• The simulated t-statistics testing H0 : E[X] = exp(1/2) (this is the true population
mean). Specifically:

t =
x̄− exp(1/2)√

s2X/N

See Figure 16.2. Alarmingly, the last 3 lines of this script calculates that about 15% of
these t-statistics are greater than 1.96 in absolute value, but 1.96 is the critical value
for the 5% test. We would be rejecting H0 much too frequently!!

clear all

// run the script where I have defined the function lnsim

do ExampleLogNormal01

// check that the program works by itself

lnsim , obs (20) mu(0) sigma (1)

display r(mean)

display r(Var)

set more off

set seed 42

simulate SampleMean = r(mean) SampleVariance = r(Var), reps (10000): lnsim , obs (20) mu(0)

↪→ sigma (1)

list in 1/10

// histograms of means and variances

histogram SampleMean

graph export ExampleLogNormalMean.pdf , replace

histogram SampleVariance

graph export ExampleLogNormalVariance.pdf , replace

// t-statistics

generate t = (SampleMean -exp (1/2))/sqrt(SampleVariance /20)

histogram t

graph export ExampleLogNormalT.pdf , replace

generate reject = 0

replace reject = 1 if abs(t) >1.96

summarize reject
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Figure 16.1: Simulated sample means and variances of 10,000 draws from log(Xi) ∼
iidN(0, 1).
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Figure 16.2: Simulated t-statistics for the hypothesis that E[X] = exp(1/2) (which is true
in this case).
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Exercises

Exercise 16.1 (Power calculations).
In this exercise, we will investigate an application of the power calculation. This can be
useful in (at least two) stages of research:

• Once your data are collected and analyzed, you can defend a null result by showing that
an economically significant false null would be identified by your test a good fraction
of the time.

• Before you collect your data, it may be able to help you collect a better data set.

We will focus on the second here.
Suppose that we wish to test that the means of two subsets of the population are equal.

To fix ideas, consider a drug trial where we have a treated group and a control group. Since
we have a finite budget, we can only collect 100 observations. How many people should be
in the treatment group, and how many in the control?

Let random variable X be some measure of an individual patient health in the control
group, and Y be the same measure of patient health in the treatment group. A reasonable
hypothesis to test is:

H0 E[X] = E[Y ] HA : E[X] > E[Y ]

To test this, we assign NY test subjects to the treatment, and 100−NY to the control. We
therefore have samples:

{Xi}100−NYi=1 , {Yi}NYi=1

A simple test of the above hypothesis using data like this is the two-sample t-test, which is
outlined here, and can be easily implemented using Stata’s ttest command. Please read
about this test, it is a very useful one, but for now we take it that it is the right one for this
example. For this exercise, we ask the question:

How many observations should we assign to the treatment group?
This is going to be a function of the distributions of X and Y, and how economically

significant the difference in means has to be to be excited about the new drug. For the
purpose of this simulation, we want to be able to maximize the power of a 5% test when
E[Y ]−E[X] = 1. That is, if Y is (in expectation) one unit better that Y , then we want our
test to be able to reject the null as frequently as possible. To further simplify things, fix the
population DGP as:

Xi ∼ iidN(0, 1), Yi ∼ iidN(1, 2)

1. Write a program that simulates 100 draws (total) from X and Y , and outputs the
p-value of the t-test assuming different variances. The program should take NY as an
input.
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2. Simulate the distribution of the p-values when the null is false. That is, when X and
Y conform to the distributions above. Do this for a reasonable range of NY . E.g. 20,
40, 60, 80.

3. For each value of NY , calculate the fraction of times that you would reject the null on
a 5% test (i.e. what fraction of p-values are less than 5%?)

4. Find the NY that maximizes this fraction.

Extensions: The intersection of experiment design, econometrics, and eco-
nomics!

Your payoff from this trial is $1bn times the power of this test:

5. You have a budget of $100,000, Each control observation costs $100, and each treatment
observation costs $200. How do you allocate your budget to maximize payoff? Is it
optimal to spend the entire budget?

6. How much would you be willing to pay to reduce the variance of Y (e.g. by using
better testing equipment)? How does this change your allocation of 100 test subjects
between treatment and control? Express your answer as an elasticity of demand for

precision ( 1
σ2
Y

). That is, report:
∂σ−2
Y

∂P
P
σ−2
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Chapter 17

Simulations with OLS

When running simulations for regressions, we often want our source of randomness to be only
from the error term, and not from repeated draws of right-hand side variables. Therefore
when running simulations for regressions, we need to be able to keep some variables in
the constant for all simulation steps, while randomly drawing the component that we are
interested in: usually the error term.

To help understand this, note that frequently we derive result for OLS estimators assum-
ing that the RHS variable(s) are constant. That is, we think about the thought experiment
where we collect the same X data, but get different draws of ε every time.

Sadly, when we write our simulation program, we need to include a drop all command
at the beginning so that Stata allows us to overwrite data in the memory. Fortunately, there
are two easy fixes to this. One of them is better because it uses the processor and memory
less. The following discussion is motivated from Example 2 in the Stata documentation on
the simulate function, which can be found here.

17.1 Method 1: Load the variables you want to keep

constant when you run the program

0. Before running your program, generate the variables you want to keep constant. Them
save them to the hard drive. For example, if you want to keep your RHS variable x
constant. E.g.: if you want to have X distributed N(0,1), with the same draws every
time:

clear _all

set obs 100

generate x = rnormal ()

save keepx.dta

1. Start the program, Clear any data in the memory

program define myprogram // etc , put the relevant things in here

clear _all
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2. load x from your stored file keepx.dta

use keepx.dts

3. generate y, for example if we want the true model to be y = 1 + 2x+ ε, with the error
term distributed N(0, 0.12):

generate y = 1+2*x + 0.1* rnormal ()

4. Run the regression, then end

regress y x

end

The program will automatically return anything regress stores in its results. Type
help regress and look at what is in e(.).

This method is cumbersome because it requires Stata to load your x variable every time.
It would be faster if it did not have to (reading and writing to the hard drive takes time).
Fortunately, there is:

17.2 Method 2: Keep x in memory

This method takes advantage of Stata’s capture command. One useful feature of the
capture command is that it will allow your .do file to proceed to the next line, even if
it returns an error. Here’s why it is useful in our case. We need to run a script like this one
(note that drop y is commented out here):

clear all

set seed 42

set obs 20

generate x = rnormal ()

program define myprogram , rclass

//drop y

generate y = x + rnormal ()*0.1

regress y x

end

simulate b = _b[x], reps (100): myprogram

So the first generate gets us our RHS variable x, which we want to keep constant. The
program myprogram will work just fine on the first simulation step, but then Stata will kick
up a fuss on the second step because when it comes to generate y = ..., this variable
already exists. Alternatively, if we uncomment drop y, then on the first step Stata gives us
an error because y does not exist. We need a line just before this one to tell Stata something
like “if y exists, drop it, otherwise do nothing”. This is where capture come in. If we
replaced the line //drop y with capture drop y, then this will work. Specifically, on the
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first step drop y returns an error, but capture tells Stata to ignore it; then on subsequent
steps it does not return an error, so y gets dropped.

Here is the step-by-step guide to this method:

0. Before running your program, generate the variables you want to keep constant. For
example, if you want to keep your RHS variable x constant. E.g.: if you want to have
x distributed N(0, 1), with the same draws every time:

clear _all

set obs 100

generate x = rnormal ()

1. Use Stata’s capture command to drop y if is in the memory, and do nothing otherwise.
Specifically for us, if we have a variable y hanging round in the memory from a previous
simulation step, we want to delete it, but we don’t want to drop y because Stata will
kick up a fuss on the first run through because y doesn’t exist yet. So we can proceed
with:

program define myprogram // etc , put the relevant things in here

2. Get rid of y if it is in the memory, otherwise proceed without doing anything:

capture drop y

3. generate y, for example if we want the true model to be y = 1 + 2x+ ε, with the error
term distributed N(0, 0.12):

generate y = 1+2*x + 0.1* rnormal ()

4. As before, run the regression and end the program.

regress y x

end

Finally, no matter which method we used, we can:

simulate _b _se , reps (10000): myprogram

which simulates the distribution of the estimators for the slope and intercept (stored in
e( b)) and the standard errors (stored in e( se)).

Exercises

Exercise 17.1 (Endogeneity).
Investigate what happens when X and ε are correlated (this is the problem we ran into with
the flu shots and death example). To do this, you should compare the case where X and ε
are uncorrelated to a case where they are. Try this:
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1. Run the simulation of y step as:

generate y = 1 + 2*x + rnormal ()*0.1

2. Run another simulation with:

generate y = 1 + 2*x + rnormal ()*0.1 + 0.2*x

That is, in case (1) X and ε are uncorrelated, and in case (2) corr(Xi, εi) = 0.2.
What is the bias in these cases?

Exercise 17.2 (How many observations do I need to get a good confidence interval?).
Bailey (2016, ch 4) States that that the slope coefficient estimator is approximately normally
distributed for large samples. But how large is large enough for this to be a good assumption?
The answer to this question depends on the data-generating process. If the εis are normally
distributed, then this is exactly true for any sample size. For other distributions of the error
term, we can use simulation to inform us.

One consequence of the normal approximation being bad is that the probability that a
95% confidence interval (constructed using a large-sample result) contains the true value
of the slope coefficient is not necessarily 95%. Neither can we be sure of whether this
confidence interval will contain the true value with probability greater or less than the
intended value. We will use simulation to explore this. Note that such a simulation could
be used to tell us how many observations we should collect, or to tell us that, for a fixed
sample size, whether we should think about constructing confidence intervals without using
a large-sample approximation (more on how to do this in a couple of weeks).

We will investigate the relationship between sample size and large-sample confidence
intervals when the error term is uniformly distributed. Specifically, consider the true data-
generating model:

yi = β0 + β1xi + εi

εi ∼ iidU [−1, 1]

Since the error term is iid with mean zero we know that for large samples the slope coefficient
estimator is approximately normal, but we have no guarantee that this is the case for small
samples.

1. Choose 3-4 sample sizes to investigate. Remember that things approach normality on
a
√
N scale.

2. Choose intercept and slope coefficients (this won’t change your answer too much).

3. Write a program that simulates this data-generating process and the subsequent re-
gression, holding X fixed.

4. Run a simulation for each of your chosen sample sizes, store the slope coefficients and
their standard errors
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5. Use these to construct 2-sided 95% confidence intervals around the slope coefficient

6. For each sample size, generate a variable that is equal to 1 if your true value is inside
the confidence interval, and zero otherwise.

7. For each sample size, compare the nominal size of the confidence interval (i.e. 95%) to
the actual size of your confidence interval.

Note that if A ∼ U [0, 1], Then B = 2A− 1 ∼ U [−1, 1].
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Chapter 18

Techniques for drawing random
numbers

This section of the Masters course is going to cover some common simulation techniques.
Generally, we will exploit a mathematical theorem to generate random numbers in a partic-
ular way. A good reference for this material (and the basis for a lot of my notes) is Chapter
8 of Judd (1998).

18.1 Inversion

18.1.1 What inversion is and how it works

Consider a uniform random variable U ∼ U [0, 1] and another continuous random variable
X with cdf FX(·). Since X is continuous, its cdf can be inverted. Therefore we can do the
following:

Pr
(
F−1X (U) ≤ x

)
= Pr (U ≤ FX(x)) (18.1)

= FU (FX(x)) (18.2)

=


FX(x) if FX(x) ∈ (0, 1)

0 if FX(x) ≤ 0

1 if FX(x) ≥ 1

(18.3)

That is, the cdf of the transformed random variable F−1X (U) is identical to FX(·). Therefore
is we can:

1. Invert the cdf of X, and

2. generate (pseudo) random uniforms

we can draw from the distribution of X as follows:

X = F−1X (U) (18.4)
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18.1.2 Example

Consider an exponential random variable X with cdf:

FX(x) =

{
0 if x ≤ 0

1− exp(−x) if x > 0
(18.5)

For x > 0, we can invert the cdf as follows:

u = FX(x) (18.6)

= 1− exp(−x) (18.7)

exp(−x) = 1− u (18.8)

x = − log(1− u) (18.9)

Therefore X = − log(1− U) has the desired distribution. To implement this in Stata:

clear all

set seed 42

set obs 30 // number of random values to be generated

generate U = uniform () // draw uniforms

generate X = -log(1-U) // inversion

// plot the empirical cdf against the target

generate cdf = 1-exp(-X) // target

cumul X, generate(cX) // empirical cdf

label variable cX "simulated"

sort X

twoway (line cdf cX X)

graph export inversion.png , replace

which generates Figure 18.1. Here I have deliberately shown an example with a small sim-
ulation size (30 observations). We should expect any random sample to exhibit deviations
from the true cdf because it is . . . well, random!

Exercises

Exercise 18.1.
Generate the equivalent of Figure 18.1 for the following:

1. The normal distribution – use Stata’s inverse normal function invnormal().

2. A special case of the Beta distribution:

FX(x) =


xα if 0 < x < 1

0 if x ≤ 0

1 if x ≥ 1

Do this for α = 0.5
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Figure 18.1: Simulation of 30 random numbers with cdf FX(·) defined in Equation 18.5

3. The triangular distribution:

fX(x) =


0 if x ≤ 0
2x
c

if 0 < x ≤ c
2(1−x)

c
if c < x ≤ 1

0 if x > 1

Do this for c = 0.2 and c = 0.5. Note that you will have to integrate the cdf to get the
pdf.

Exercise 18.2.
For Exercise 18.1 question 2):

1. Use your simulation to approximate E[X] and V [X]

2. Provide an estimate of the accuracy of these approximations. Hint: Did you use a
sample mean? What do we know about the asymptotic properties of sample means?
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Chapter 19

Using pseudo random numbers to
calculate things

While Chapter 18 introduces methods for drawing pseudo random numbers that conform to
a particular distribution. This chapter is about using them to calculate things. Again, the
theory in this chapter draws heavily from Chapter 8 of:

Judd, K. L. (1998). Numerical methods in economics. MIT press.

19.1 Monte Carlo Integration

19.1.1 Expectations of random variables

If we can draw pseudo random numbers from the distribution of X, it is straightforward
to use these to calculate the expectation of X. In particular, given a sample {xs=1}S of S
simulated draws, we can approximate E[X] as follows:

E[X] ≈ 1

S

S∑
s=1

xs (19.1)

that is, we simply compute the sample mean of our random numbers. If we can further
establish that each xs is independent,1, then we can use a Lindeberg-Levy Central Limit
Theorem argument:

√
S

(
1

S

S∑
s=1

xs − E[X]

)
d−−→ N(0, V [X]) (19.2)

to assign a degree of accuracy to our approximation. Therefore the precision of our approxi-
mation is proportional to

√
S. This tells us that as we increase S, the simulation size, we get

1This is the case if, for example, we draw X using the method of inversion (see Section 18.1), and the
uniform draws we use for this are independent. On the other hand, if we use Markov chain techniques, then
the draws are typically not independent.
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closer and close to the true value of E[X]. Unlike collecting real data, with simulation this
is not so much of a thought experiment: increasing S is relatively cheap, and one is really
only limited by the available RAM ({xs}Ss=1 must be held in your computer’s memory),2 and
the processor speed.

19.1.2 Expectations of functions of random variables

Equation 19.2 is useful because it tells us how large of a simulation we need to achieve a
desired level of accuracy. The trouble is that if we need a simulation to evaluate E[X], we
probably also need a simulation to evaluate V [X]. This is not actually too much trouble,
because variance is also an expectation. That is:

V [X] ≈ 1

S

S∑
s=1

(xs − E[X])2 (19.3)

where we can substitute in our approximation for E[X]. Alternatively, we can use:

V [X] = E[X2]− E[X]2 ≈ 1

S

S∑
s=1

x2s −

(
1

S

S∑
s=1

xs

)2

(19.4)

Approximating V (X) is a special case of approximating E[g(X)].3 If we can draw from
X, then this is a simple extension:

E[g(X)] ≈ 1

S

S∑
s=1

g(xs) (19.5)

19.1.3 Expectations when you can’t draw directly from X

For whatever reason, it might be that we can’t find an appropriate way to draw pseudo
random numbers from X directly. When X is a continuous random variable, this does not
have to be a deal-breaker. To see this, note that for continuous X with pod f(·):

E[g(X)] =

∫
R
g(x)f(x)dx (19.6)

=

∫
R

g(x)f(x)

h(x)
h(x)dx (19.7)

Where (19.7) makes the much celebrated algebra monkey trick of multiplying by a fancy
one. In this case

1fancy =
h(x)

h(x)

2Even this is not so much of an issue: if a very large S is required, the simulation can be split up into
blocks of smaller simulations. Form this, you will get a sample mean for each block, and it is simply a matter
of taking the mean of the blocks’ sample means.

3Here g(x) = X2 − E[X]
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Note here that we have implicitly assumed that h(x) 6= 0 for all x in the support of X. The
implication of (19.7) is that if we can draw from any pdf h(·), whose support has the same
support as X, then we can approximate E[g(X)] as follows:

1. Draw a simulated sample {ys}Ss=1 from the pdf h(·).

2. Generate the transformed sample according to zs = g(ys)f(ys)/h(ys)

3. Compute the sample mean of zs:

E[g(x)] ≈ 1

S

S∑
s=1

zs

19.1.4 Example

We wish to evaluate E[|X|], the expected absolute value of X, where X conforms to the
logistic distribution with location and scale parameters both equal to one. That is, the pdf
of X is:

f(x) =
exp(−(x− 1))

(1 + exp(−(x− 1)))2
(19.8)

but we are unable to draw directly from this distribution (perhaps because (i) we have
forgotten about inversion, and (ii) that you can read up on it in Section 18.1). To get
around this, we use normal draws. In particular, we draw from Z ∼ N(1, 1). The reason for
this is that the logistic distribution looks a lot like the normal distribution, as long as the
means and scale are similar. By drawing from N(1, 1) instead of the standard normal, we
make f(z)/φ(z) ≈ 1 for most draws of z. The procedure is therefore:

E[|X|]
∫
|x|f(x)dx =

∫
|x|f(x)

φ(x)
φ(x)dx (19.9)

So the procedure is:

1. Generate {zs}Ss=1, a sample of independent normals with µ = σ2 = 1

2. Generate the transformed variable ys = |z|f(z)
φ(z)

3. E[|X|] ≈ 1
S

∑S
s=1 ys

The following code implements this in Stata:

clear all

set seed 42

set obs 100 // number of random values to be generated

// Step 1

generate Z = rnormal ()+1
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// Step 2: do this in stages

generate absZ = abs(Z)

generate fZ = exp(-(Z-1))/(1+ exp(-(Z-1)))^2

generate phiZ = normalden(Z-1)

generate Y = absZ*fZ/phiZ

// Step 3

summarize Y

// and look at the mean

// Since we can use inversion , let ’s try this too

generate U = runiform ()

generate X = 1+log(U/(1-U)) // I looked this up on Wikipedia

generate absX = abs(X)

summarize Y absX

which generates the output:

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

Y | 100 1.601705 3.358623 .0113715 25.86216

absX | 100 1.593992 1.301472 .0280923 5.829037

where Y was computed using the above method, and absX was computed using inversion.

Exercises

Exercise 19.1 (Solution provided).
Let X ∼ Beta(3, 7). Use Equation 19.7 and uniform random numbers to compute E[(X −
0.5)2].

Exercise 19.2 (Solution provided).
You are an expected utility maximizer with Constant Relative Risk Aversion utility function
over money:

u(x) =
x1−r

1− r

where r = −u′′(x)/u′(x) is your coefficient of relative risk aversion. You are offered a lotter
that pays out a random amount $X, where X is drawn from the triangular pdf:

fX(x) =


4x if 0 ≤ x < 0.5

4(1− x) if 0.5 ≤ x < 1

0 otherwise

Calculate the certainty equivalent of this lottery, as a function of r, for r ∈ (−0.5, 0.5).
Summarize your answer in a plot. You have forgotten how to draw from X directly, so use
draws from the uniform distribution to perform these calculations.

Your final plot should look something like this:
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Note that I have also coded up a measure of the accuracy of this approximation.
Hint: You need a rather large simulation size to get an accurate approximation of the

expected utility. One way to check how accurate you are is to check the accuracy of your
certainty equivalent for r = 0. That is, if you are risk neutral, it is easy to work out what
the certainty equivalent is. Once you are happy with how well your simulation approximates
this, move on to coding up a for loop to generate the plot.

Exercise 19.3.
The game of Yatzee is a die-rolling game with a similar scoring system to Poker. In each
round, a player rolls five six-sided dice (at most) three times. After the first and second
rolls, the player can choose to only roll a subset of the dice. Their score for the round is a
function of the numbers facing upward after the third roll. The highest possible score, called
a “Yatzee” occurs when all five dice have the same number (i.e. five ones, five twos, etc.).

Consider the following strategy:

1st roll: Roll all 5 dice (there really isn’t any decision to make)

2nd roll: Determine the modal outcome of the previous roll.

– If there is exacty one mode, roll only the dice that do not show this modal number.

– If there is more than one mode, pick the mode with the highest value, and roll
only the dice that do not show this modal.

– If there is no mode, roll all 5 dice

3rd roll: Follow the same rule as for the 2nd roll.

Write a simulation to answer the following questions:

1. What is the probability of scoring a Yatzee by following this strategy?
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2. What is the distribution of points induced by this decision rule? You can find the list of
scoring rules here: https://en.wikipedia.org/wiki/Yahtzee#Rules. Assume that
the player chooses the highest scoring option from the “upper section” only.4 Show
your answer graphically, and also report the expected score with a measure of the
accuracy of this simulated moment.

3. Suppose that instead of following the above decision rule with probability one, you
accidentally roll a die that you shouldn’t with probability θ. That is, for every die that
you shouldn’t roll, you accidentally roll it with probability θ, and these accidental rolls
are independent of each other. How does this change your answer to question 2.

4. Ex-ante, it seems reasonable that rolling all the dice in the second roll might be optimal
if the modal outcome is a small number (i.e. 1 or 2). Also, it seems pretty obvious
that if there is no modal outcome after the first or second roll, one should hang on to
a 6. Write down a modified decision rule to reflect this, and determine whether this
tweak results in a better outcome.

5. How much would a risk-neutral5 player benefit if they were allowed to make 4, 5, or 6
rolls, instead of just 3?

Exercise 19.4.
Suppose you have the constant absolute risk aversion (CARA) utility function:

u(x) = − exp(−ax), a > 0 (19.10)

Which means that if you have a choice between different lotteries (i.e. probability distri-
butions over monetary outcomes), say random variables X1 and X2, you will choose the
distribution that maximizes E[u(X)].

Suppose that you are exposed to a risky asset X, which means that your wealth will be
equal to $X + 100 when you sell the asset. The distribution of X can be described by the
Laplace distribution, which has pdf and cdf:

f(x) =
1

20
exp

(
−|x|

10

)
(19.11)

F (x) =

{
1
2

exp (x/10) if x ≤ 0

1− 1
2

exp (−x/10) otherwise
(19.12)

Assume that a = 1. Approximate the certainty equivalent of this distribution of wealth for
a = 1. That is, calculate the amount of money $w such that u(w) = E[u(X + 100)]. Make
this calculation twice, assuming that:

4You could code up the lower section as well, but that would be more menial work, for a very similar
(albeit longer) looking program.

5I.e. they only care about the mean of the distribution of points.
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1. You have access to a Laplace random number generator (In Stata, type help rlaplace).
This requires Stata 15+.

2. You can only draw standard normal random numbers

3. You can only draw uniform random numbers

Provide an estimate of the accuracy of your approximation.
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Part VI

More advanced probability and
statistics
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Chapter 20

Exact tests

20.1 Dependence of categorical variables: The Fisher

exact test

Agresti (1992)
The Fisher exact test can be used to test for association between categorical variables.

In the simplest case, we might have paired observations of two binary variables {xi, yi}Ni=1

and hypothesize that they are independent. That is, X |= Y . In the classic example, Fisher
proposes an experiment to test whether is colleague can determine by taste whether milk has
been added before or after tea. The null hypothesis is that she cannot, or formally that the
probability that she reports “milk first” does not depend on whether the milk was poured
before or after the tea [CITATION NEEDED]. The test generalizes to an arbitrary number
of categories and an arbitrary number of categorical variables.

20.1.1 Test for independence of two binary variables

In the simple case that we are testing for independence of two binary variables, it is sometimes
informative to visualize the data in a contingency table. This is shown in Table 20.1, where
nj,k =

∑
i I(xi = j)I(yi = k). Intuitively, if X |= Y , we would expect that the empirical and

marginal distributions of X and Y should be similar, which would be expressed in the data

Y = 0 Y = 1 row total
X = 0 n0,0 n0,1 n0,0 + n0,1

X = 1 n1,0 n1,1 n1,0 + n1,1

column total n0,0 + n1,0 n0,1 + n1,1 N

Table 20.1: A contingency table showing the joint frequencies of two binary variables
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as:

p̂(X = 0 | Y = 0) =
n0,0

n0,0 + n1,0

≈ n0,0 + n0,1

N
= p̂(X = 0) (20.1)

p̂(Y = 0 | X = 0) =
n0,0

n0,0 + n0,1

≈ n0,0 + n1,0

N
= p̂(Y = 0) (20.2)

An “eyeball” hypothesis test therefore could be to compare these empirical frequencies.
More formally, we can calculate the probability of observing data as extreme as Table 20.1
assuming that (1) X and Y are independent, and (2) the marginal frequencies are constant.

One-sided test: We wish to calculate the probability of observing data at least as extreme
as those actually observed, conditional on the row and column totals. That is, we fix N ,
R1 = n1,0 + n1,1 and C1 = n0,0 + n0,1. Without loss of generality we can assume that
n1,0

n0,0
≤ n1,1

n0,1
.1 This inequality tells us that if the empirical frequencies were equal to the

population frequencies, then Pr(X = 1 | Y = 0) ≤ Pr(X = 1 | Y = 1), with one inequality
strict implying the other. If the second inequality is strict, then the null is false. Under the
null hypothesis, the probability that X = 1 is independent of Y , let this probability be p.
The relevant probability mass functions of n1,0 and n1,1 are therefore:

f(n1,0 | N,C1, R1) =

(
n0,0 + n1,0

n1,0

)
pn1,0(1− p)N−C1−n1,0 (20.3)

f(n1,1 | N,C1, R1) =

(
n0,1 + n1,1

n1,1

)
pn1,1(1− p)C1−n1,1 (20.4)

for values of n1,0 and n1,1 in the appropriate support. Under the null hypothesis, n1, and
n1,1 conditional on the row and column totals are independent, so we can multiply these
probabilities together to show that the joint distribution is proportional to:

f(n1,0, n1,1 | N,C1, R1) ∝
(
N − C1

n1,0

)(
C1

n1,1

)
pR1(1− p)N−R1 (20.5)

f(n1,1 | N,C1, R1) ∝
(
N − C1

R1 − n1,1

)(
C1

n1,1

)
pR1(1− p)N−R1 (20.6)

where the second line substitutes in n1,0 = R1 − n1,1. Note that following this substitution,
the component of f(n1,1 | N,C1, R1) that is proportional to p does not vary with n1,1.
Therefore any ratio of these probabilities will not be a function of p. It is this step that
allows us to determine the p-value exactly without knowing the marginal probability p. For

1We can always re-define our variables to make this hold.
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the one-sided test, we seek:

Pr[N1,1 ≥ n1,1 | N,C1, R1] (20.7)

=

∑n1,1

m=0

(
N−C1

R1−m

)(
C1

m

)
pR1(1− p)N−R1∑R1

m=0

(
N−C1

R1−m

)(
C1

m

)
pR1(1− p)N−R1

(20.8)

=

∑n1,1

m=0

(
N−C1

R1−m

)(
C1

m

)∑R1

m=0

(
N−C1

R1−m

)(
C1

m

) (20.9)

=

∑n1,1

m=0

(
N−C1

R1−m

)(
C1

m

)(
N
R1

) (20.10)

(20.10) has a reasonably straight-forward interpretation. The denominator is the number of
ways that R1 out of N observations can satisfy X = 1. The term inside the summation in
the numerator is the number of ways m observations can satisfy X = Y = 1 while there still
being R1 observations satisfying X = 1 and C1 observations satisfying Y = 1. Therefore the
entire denominator is the number of ways that we can have n1,1 ≥ m without altering the
row and/or column totals.

(20.10) also raises a computational issue: each binomial coefficient contains 3 factorials
to be computed, and can therefore be very large if N is large. One solution is to compute
this summation in logs, then exponentiate the final answer:

Define: λ(a, b) ≡ log

(
a

b

)
= log

(
a∑
k=1

k

)
− log

(
a−b∑
k=1

k

)
− log

(
b∑

k=1

k

)
γ(m) ≡ λ(N − C1, R1 −m) + λ(C1,m)− λ(N,R1)

=⇒ p =

n1,1∑
m=0

exp[γ(m)]

The example in Section ?? uses this method.
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Chapter 21

Order statistics

In most Econometrics courses, as well as applications of Econometrics, we are obsessed with
properties of the mean, and maybe if we are rigorous, the variance of a random sample. But
this is not the be all and end all of summarizing data. Sometimes in this course, I get you to
simulate the distribution of two estimators, one based on the sample mean, and one based
(say) the minimum. The former is attractive because we know a lot about sample means.
Specifically, due to the weak law of large numbers, central limit theorem, and so on, it is
relatively simple to approximate properties of an estimator that is based on a sample mean.
But sometimes using something like a sample minimum gets us a better result, maybe because
this estimator has a smaller variance, or converges faster. The problem is that we cannot
apply the standard Chapter 4 arguments, because all of that was about properties of sample
means. We are not 1

N

∑
iXi-ing something, so we can;t use this material. Fortunately, we

can derive some results about order statistics (i.e., minimum, maximum, median, quartiles,
deciles, etc) that will help us do stuff similar to Chapters 3 and 4.

For the rest of this Chapter, suppose that we have a sample of N iid draws from a
distribution with cdf FX(x), the support of X is a subset of the real number line.

21.1 Sample maximum and minimum

The sample maximum is equal to the highest number in our sample. We can denote this as

Y = max
i
{Xi} (21.1)

Note that this is a random variable with the same support as X: Y is random because X is
random, and it has the same support as X because Y is equal to one of the draws from X
that we got in our sample {Xi}Ni=1. In order to completely characterize the distribution of
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Y , we need to work out its cdf. Let’s denote this as:

FY (y) = Pr[Y ≤ y] (21.2)

= Pr [All Xs ≤ y] (21.3)

= Pr [X1 ≤ y ∩X2 ≤ y ∩ . . . XN ≤ y] (21.4)

=
N∏
i=1

Pr [Xi ≤ y] , because we assumed independence (21.5)

= Pr [Xi ≤ y]N , because we assumed identical (21.6)

= FX(y)N (21.7)

This is the cdf of X raised to the power of N . If X is a continuous random variable, then
we can find the pdf of the maximum by taking the derivative:

fY (y) =
∂FY (y)

∂y
(21.8)

=
∂

∂y
FX(y)N (21.9)

= NfX(y)FX(y)N−1 (21.10)

The sample minimum is equal to the lowest number in our sample. We can denote this
as

Y = min
i
{Xi} (21.11)

The derivation of the cdf of the minimum is slightly more involved, but begins in the same
place:

FY (y) = Pr [Y ≤ y] (21.12)

= Pr [at least one Xi ≤ y] (21.13)

= 1− Pr [all Xis > y] (21.14)

= 1− Pr [X1 > y ∩X2 > y ∩ . . . ∩XN > y] (21.15)

= 1−
N∏
i=1

Pr [Xi > y] , because we assumed independence (21.16)

= 1−
N∏
i=1

(1− Pr [Xi ≤ y]) (21.17)

= 1− (1− Pr [Xi ≤ y])N , because we assumed identical (21.18)

= 1− (1− FX(y))N (21.19)

The cdf of some order statistics are shown on Figure 21.1. Note that since the uniform
distribution has a finite support, the minimum and maximum will converge in probability to
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(a) Xi ∼ iidU [0, 1] (b) Xi ∼ iidN(0, 1)
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Figure 21.1: Cumulative distribution functions of minimum (dashed lines) and maximum
(solid) line oder statistics for various sample sizes. Note that the black line shows the cdfs
of the minimum, and maximum for N = 1, as well as the cdf for X itself.

the minimum and maximum1 of the support of X, in this case 0 and 1 respectively. For the
normal distribution, the support is the whole real number line: as we increase the sample
size, outliers are more likely.

1Really the infimum and supremum.
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Chapter 22

Further reading

22.1 Reference & Text books

22.1.1 General econometrics and statistics references

• Cunningham, S. (2018). Causal Inference: The Mixtape. http://scunning.com/

mixtape.html

• Wackerly, D., Mendenhall, W., and Scheaffer, R. (2007). Mathematical statistics with
applications. Nelson Education

• Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT
press

• Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Nelson
Education

• Bailey, M. (2016). Real econometrics: The right tools to answer important questions

• Koop, G., Poirier, D. J., and Tobias, J. L. (2007). Bayesian econometric methods.
Cambridge University Press

22.1.2 Specific types of econometrics

• Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university
press

• Moffatt, P. G. (2015). Experimetrics: Econometrics for experimental economics. Pal-
grave Macmillan
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22.1.3 Other

Computational techniques

• Judd, K. L. (1998). Numerical methods in economics. MIT press

22.2 Popular press

• Silver, N. (2012). The signal and the noise: why so many predictions fail–but some
don’t. Penguin

• List, J. and Gneezy, U. (2014). The why axis: hidden motives and the undiscovered
economics of everyday life. Random House

• Pearl, J. and Mackenzie, D. (2018). The Book of Why: The New Science of Cause and
Effect. Basic Books
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Appendix A

Past exam questions

A.1 ECON5820 Final Exams

A.1.1 Computational exams

Exercise A.1 (2017 5820 Final Computational Exam).
Consider the expectation:

E[Φ(1 +X)] =

∫ ∞
0

Φ(1 + x)fX(x)dx (?)

where X ∼ Exponential(1), fX(x) is the pdf of this distribution, and Φ(·) is the standard
normal cdf.

1. (30 points) Approximate (?) using any functions and/or random number generators
available in Stata.

2. (30 points) Approximate (?) using inversion.

3. (30 points) Approximate (?) using only χ2
1 random numbers. You may not use the χ2

1

cdf.

4. (10 points) Approximate (?) using only standard normal random numbers. You may
not use the normal cdf to generate uniform random numbers.

5. (10 points) Explain (in a comment) why in question 4 you can’t just replace the χ2
1

parts of your answer to question 3 with their normal equivalents.

The correct answer is about 0.94, but it’s all about how you get there.

Hint: https://www.stata.com/manuals13/dfunctions.pdf

193

https://www.stata.com/manuals13/dfunctions.pdf


A.1.2 Written exams

Exercise A.2 (2017 5820 Final Written Exam).
Consider Levitt’s IV approach for estimating the effect of police on crime. Specifically, he
estimates the following model using 2SLS:

crimei = β0 + β1policei + εi (A.1)

using the variable “firefightersi” as an instrumental variable.1 Remember that his justifi-
cation for this is that cities that hire more firefighters will probably also hire more police
officers, but the variation in firefighters is should be uncorrelated with crime.

1. In the context of this estimation and Equation A.1, explain the inclusion condition
and how/if one could go about testing that it is satisfied.

2. In the context of this estimation and Equation A.1, explain the exclusion condition
and how/if one could go about testing that it is satisfied.

3. One could also argue that the number of publicly funded hospitals in a city could
also be correlated with the number of police officers. If the crime variable of interest is
violent crime, explain why this variable may not be a valid instrument for the number of
police officers. For this problem, assume that both police and publicly funded hospitals
are funded at the local (city) level.

4. Suppose that the federal government wishes to give cities funding to expand their
police force by 10%. Unfortunately, there is not enough money to do this for every
city, and so the funds must be rationed. The government is considering two rationing
mechanisms:

(a) Selecting the cities with the highest crime rates, or

(b) Randomly selecting cities (e.g.: for each city, flip a coin. If it comes up heads, the
city gets the funding.)

In the context of the inclusion and exclusion conditions, explain why selected is a
valid instrument for mechanism (b), but not for mechanism (a).

[For questions 5-8, assume that we are using rationing mechanism (b)]

Suppose that the selected cities can opt in to the additional funding (i.e. they do not
have to accept it). In our dataset we have the following variables:

1I.e.: in Stata: ivregress 2sls crime (police = fire)
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Variable Description
Crimei,t Crime rate
Policei,t Number of police officers (per 100,000 of city’s population)
Firei,t Number of fire fighters (per 100,000 of city’s population)
Selectedi,t Dummy variable = 1 if the city was selected for extra funding
Acceptedi,t Dummy variable = 1 if the city accepted the funding

5. Write down the intention to treat regression equation (either write down the Stata
command, or briefly and accurately describe how you would go about estimating it),
and discuss how its interpretation is different from:

ivregress 2sls Crime (Accepted = Selected)

6. We have established that selected is a valid instrument for police. Therefore, we
may want to estimate:

ivregress 2sls crime (police = fire selected)

Explain why this model is over-identified, and what information rejecting and failing
to reject the null hypothesis of the over-identification test gives us.

7. Suppose that you knew for sure that selected satisfied the exclusion condition. What
does rejecting the null hypothesis in (6) tell you now?

8. Briefly describe a table of descriptive statistics that you may want to look at before
being satisfied with your results in (5). Why would you want to do this?

For the remaining questions: Suppose that instead of using method 4b (randomly
selecting cities) outlined above, the federal government provided funding to cities with
populations between 300,000 and 500,000. The funding was enough to increase this
number by 1 police officer per 10k people. Your dataset now contains the following
variables (and nothing else):

Variable Description
Crimei,t Crime rate
Popi,t Population

This program had no issues with compliance: all cities with populations within this
range received the funding and used it to increase the size of their police force.

9. Write down an econometric specification that allows you to estimate this causal effect of
police on crime rates using this dataset. Explain which coefficient(s) can be interpreted
as the causal effect, and how to interpret it. Restrict yourself to linear specifications
with interactions. Don’t worry about windows.
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10. Suppose that at some time after the policy was announced, but before it was imple-
mented, some cities had the opportunity to re-draw their boundaries (thus artificially
raising or lowering their population). Explain why this may make your analysis in the
previous question invalid.
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Appendix B

Solutions to selected problems

Solution to Exercise 2.2

1. cdf

F + γ̂ = Pr[γ̂ ≤ x] = Pr[X1, X2, . . . , XN ≤ x] (B.1)

=
N∏
i=1

Pr[Xi ≤ x] since we have iid data (B.2)

= (FX(x))N (B.3)

=


0 if x ≤ 0(
x
γ

)N
if 0 < x < γ

1 if x ≥ 1

(B.4)

2. Pdf: This is equal to zero everywhere, except for in the support, where we can take
the derivative of the cdf:

fγ̂(x) =
NxN−1

γN
I(0 < x < γ) (B.5)

3. Mean: We need the variance later, so it is going to be easier in the long run to work
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out:

E[γ̂k] =

∫ γ

0

xkfγ̂(x)dx (B.6)

=

∫ γ

0

xk
NxN−1

γN
dx (B.7)

=

∫ γ

0

Nxk+N−1

γN
dx (B.8)

=
Nxk+N

γN(k +N)

∣∣∣∣γ
0

(B.9)

=
Nγk+N

γN(k +N)
(B.10)

=
N

N + k
γk (B.11)

E[γ̂] =
N

N + 1
γ (B.12)

4. Variance:

V [γ̂] = E[γ̂2]− E[γ̂]2 (B.13)

=
N

N + 1
γ2 −

(
N

N + 1

)2

γ2 (B.14)

=
Nγ2

N + 1

(
1− N

N + 1

)
(B.15)

Solution to Exercise 2.3
Bias:

E[µ̂] = E

[
1

N

N∑
i=1

Xi

]
(B.16)

=
1

N

N∑
i=1

E[Xi] (B.17)

=
1

N

N∑
i=1

µ, (iid) (B.18)

= µ =⇒ unbiased (B.19)
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E[µ̃] = E
[
N min

i
{Xi}

]
(B.20)

= NE
[
min
i
{Xi}

]
(B.21)

= N
µ

N
, (given) (B.22)

= µ =⇒ unbiased (B.23)

Variance:

V [µ̂] = V

[
1

N

N∑
i=1

Xi

]
(B.24)

= N
1

N2
V [Xi] =

1

N
V [Xi], (iid) (B.25)

=
1

N

(
E[X2

i ]− E[Xi]
2
)

(B.26)

=
1

N

(
2µ2 − µ2

)
(B.27)

=
µ2

N
(B.28)

V [µ̃] = V
[
N min

i
{Xi}

]
(B.29)

= N2V [min
i
{Xi}] (B.30)

= N2V [Exponential(µ/N)] (B.31)

= N2 µ
2

N2
(B.32)

= µ2 (B.33)

MSE: Since both are unbiased, MSE[µ̂] = V [µ̂] and MSE[µ̃] = V [µ̃].
By these measures, µ̂ is unambiguously better than µ̃: both are unbiased, but µ̂ has

smaller variance.
Simulation:

Let’s start by working out µ̌. This is motivated from:

E[X2] = 2µ2 (B.34)

µ̌ =

√√√√ 1

2N

N∑
i=1

X2
i (B.35)

So in terms of the code, once we have simulated {Xi}Ni=1, we need to generate X2
i , take its

mean, then divide by 2 and take te square root.
The code below produces the following output table:

. summarize
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Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

muHat | 10,000 .9983377 .1829214 .4800103 1.714862

muTilde | 10,000 .9992013 .9903682 .0001359 10.60011

muC | 10,000 .9791806 .1963733 .4536264 1.972492

The mean values are close enough to 1 to confirm that our calculations in part 1 are correct.
µ̌ appears to be biased downward. For the standard deviation for the simulated sampling
distribution, note that: √

V [µ̂] =
1√
30
≈ 0.18 (B.36)√

V [µ̂] = 1 (B.37)

Good!
The simulated sampling distributions are shown in the plot below. Again, we are much

better off using the sample mean than the minimum. The sampling distribution of estimator
µ̌ is almost indistinguishable from that of µ̂, so it does better than µ̃, but we might want
to explore its properties further if we want to use it (as a general rule, estimators that are
sample means are hard to beat).

0
.5

1
1.

5
2

2.
5

0 2 4 6 8 10
x

kdensity muHat kdensity muTilde
kdensity muC

// Clear everything from memory

clear

clear all

/* First we write a program that generates a sample conforming to N=30 and mu=1,

then applies the two estimators

*/

program define ExponentialSim , rclass
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// Here our inputs are the number of observation , and mu, the parameter we

↪→ want to estimate

syntax [, obs(integer 30) mu(real 1) ]

// Set the sample size

set obs ‘obs ’

// declare some temporary variables that we will use later

tempvar x x2

// Generate x according to the specified distribution

generate ‘x’ = -‘mu ’*log(runiform ())

// Summarize x. We need to calcualte its mean and the minimum

summarize ‘x’

// estimators

return scalar muHat = r(mean)

return scalar muTilde = ‘obs ’*r(min)

// muC , based on 2nd raw moment

generate ‘x2 ’ = ‘x’^2

summarize ‘x2 ’

return scalar muC = sqrt(r(mean)/2)

end

// check that the program is running properly

ExponentialSim , obs (30) mu(1)

disp "‘r(muHat) ’"

disp "‘r(muTilde)’"

// run the simulation

set seed 42

quietly simulate muHat=r(muHat) muTilde=r(muTilde) muC=r(muC), reps (10000): ExponentialSim ,

↪→ obs (30) mu(1)

summarize

twoway (kdensity muHat) (kdensity muTilde) (kdensity muC)

graph export ExExponentialSim.pdf , replace

Solution to Exercise 14.1
See Figure B.1.

clear all

set more off

set seed 42

import delimited TempToledoAirport.csv

desc

generate t = date(date ,"YMD " ,1901)

tsset t

// tsline tmax

generate R = runiform ()

sort R

generate estimation = 1

replace estimation = 0 if _n <= 0.3*_N

tab estimation

generate AllData = .

generate ModelSelection = .

generate lags = .

local RHS ""

sort t

generate month_temp = substr(date , 6,2)

tab month_temp
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Figure B.1: Exercise 14.1: Root mean squared forecast error for the daily maximum tem-
perature at Toledo Airport, as a function of the number of lags included in the model. It
appears that the best model under consideration uses about 15 lags.

encode month_temp , generate(month)

forvalues ll = 0/100 {

if ‘ll ’>0 {

local RHS "‘RHS ’ L‘ll ’.tmax"

}

quietly regress tmax i.month ‘RHS ’

quietly replace lags = ‘ll’ if _n==‘ll’

quietly predict tHat , xb

quietly generate tError2 = (tmax -tHat)^2

quietly summarize tError2

quietly replace AllData = sqrt(‘r(mean)’) if _n==‘ll’

drop tHat tError2

quietly regress tmax i.month ‘RHS ’ if estimation ==1

if ‘ll’ ==15 {

estimates store modelSelected

predict tempHat , xb

}

quietly predict tHat , xb

quietly generate tError2 = (tmax -tHat)^2 if estimation ==0

quietly summarize tError2

quietly replace ModelSelection = sqrt(‘r(mean)’) if _n==‘ll ’

drop tHat tError2

display ‘ll’

}

twoway (line AllData ModelSelection lags)

graph export ToledoWeatherForecast1.png , replace
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estimates replay modelSelected

generate tError2 = (tmax -tempHat)^2

regress tError2 i.month if estimation ==0

Solution to Exercise 19.1

clear all

set seed 42

set obs 100

generate U = runiform ()

generate gU = (U-0.5) ^2

generate hU = 1

generate fU = betaden(3,7,U)

generate Y = gU*fU/hU

estpost summarize Y

esttab using MCIntegrationEx1.tex , replace cells("count mean sd min max") noobs

Which generates the following table:

(1)

count mean sd min max
Y 100 .0547719 .0800443 3.93e-13 .2622285

So we conclude that E[(X − 0.5)2] ≈ 0.055 Solution to Exercise 19.2

clear all

set seed 42

set obs 1000000

generate U = runiform ()

generate R = .

generate EU = .

generate Y = .

generate Yp1sd = .

generate Ym1sd = .

forvalues rr = 1/100 {

local r = -0.5 + ‘rr ’/100*(0.5 -( -0.5))

generate uU = 1/(1-‘r’)*(U)^(1-‘r’) // function to evaluate

generate fU = 4*U // pdf of X for 0<x

↪→ <0.5

quietly replace fU = 4*(1-U) if U>0.5 // pdf of X for 0.5<x<1

generate hU = 1 // pdf of U

generate T = uU*fU/hU

quietly summarize T

local EU = r(mean)

local std = sqrt(r(Var)/_N)

/* Certainty equivalent calculation

we are trying to solve:

u(y) = EU

after substituting in u(.) on the LHS:
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y^(1-r)/(1-r) = EU

y^(1-r) = (1-r)*EU

y = [(1-r)*EU]^(1/(1 -r))

*/

quietly replace EU = ‘EU ’ if ‘rr ’==_n

local y = ((1-‘r’)*‘EU ’)^(1/(1-‘r’))

display ‘r’ ‘y’

quietly replace R = ‘r’ if ‘rr ’==_n

quietly replace Y = ‘y’ if ‘rr ’==_n

quietly replace Yp1sd = ‘y’+‘std ’ if ‘rr ’==_n

quietly replace Ym1sd = ‘y’-‘std ’ if ‘rr ’==_n

drop uU fU hU T

}

label variable R "r: CRRA parameter"

label variable Y "certainty equivalent ($)"

label variable Yp1sd "CE+1sd"

label variable Ym1sd "CE -1sd"

twoway (line Y R) (line Yp1sd R, lpattern(dash)) (line Ym1sd R, lpattern(dash))

graph export MCIntergrationEx2.png , replace
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