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What are Equivalent polynomials?

Definition (Equivalent polynomials)

g(x1, x2) = x1 + x22

f (x1, x2) = x1 + x2 + x22 .

If we replace the variables of g as follows, we obtain f .

x1 → x1 + x2

x2 → x2 .
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What are Equivalent polynomials?

Definition (Equivalent polynomials)

Two n-variate, degree d polynomials f and g (over a field F ) are

said to be equivalent if there exists an invertible matrix A ∈ Fn×n

such that f (x) = g(Ax).

The Equivalence Testing Problem: Can we efficiently check if

two polynomials f and g are equivalent?
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Complexity of Equivalence Testing

Depends on the underlying field.

• over finite fields: NP ∩ co-AM

[Thierauf(1998), Saxena(2006)]

• over Q: not even known if it is decidable or not!

• over other fields: reduces to solving system of polynomial

equations (which could possibly be a harder problem).
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Relation to other Isomorphism problems

Isomorphism problem: Check if there is a bijection between two

structures that preserves some relation on the structure.

Examples: Graph Isomorphism, Algebra Isomorphism, Tensor Iso-

morphism.

Graph Isomorphism: Two graphs are isomorphic if there is a bijec-

tion between the vertex sets which preserves the edge relation.

Given two graphs, check if they are isomorphic.
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Algebra Isomorphism

(A,+, ∗) is a F-Algebra if:

• (A,+) is a F-vector space.

• (A,+, ∗) is a ring.

• the ring multiplication is compatible with the scalar

multiplication of the field, i.e k(B ∗C ) = (kB) ∗C = B ∗ (kC )

for all B,C ∈ A and k ∈ F.

Example The set of all m ×m matrices (Mm,+, ∗).

Algebra Isomorphism: Given bases of two algebras (as structure

table), check if there is a bijection that preserves the + and ∗

operations.
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d-tensor Isomorphism

Consider a partition of n variables into d sets. A d-tensor is a de-

gree d homogeneous polynomial such that each monomial contains

exactly one variable from each of the d variable sets.

Example: f = x1x4 + x2x4 + x3x6 is a 2-tensor.

d-tensor Isomorphism: Given two d-tensors f and g , check if

there exists invertible matrices B1, . . . ,Bd such that f (x1, . . . , xd) =

g(B1x1, . . . ,Bdxd).
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Connections between the isomorphism
problems
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A natural variant of Equivalence Testing

Equivalence test for special polynomial families: Check if a

polynomial f is equivalent to some g ∈ G where G = {g1, g2, . . .} is

a polynomial family.

Some popular polynomial families: Permanent, Determinant,

Power Symmetric polynomial, Sum of Products polynomial, Elemen-

tary Symmetric polynomial, Iterated Matrix Multiplication (IMM)

polynomial, Trace Iterated Matrix Multiplication (Tr-IMM) polyno-

mial, Design polynomials etc...

11



Motivation from Geometric Complexity
Theory

An n-variate, degree d homogeneous polynomial f : A point in the

vector space CN (where N =
(n+d

d

)
).

Orbit of f : O(f ) = {g : g(x) = f (Ax),A is invertible}.

Orbit Closure of f : Ô(f ) - The Zariski closure of O.
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Motivation from Geometric Complexity
Theory

Perm vs Det problem: Show that padded permanent is not in the

orbit closure of (poly-sized) determinant polynomial.

This question also makes sense for permanent vs any other polyno-

mial family G where G is a complete for some low complexity circuit

class C.
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Equivalence test for some well known
polynomial families

[Kayal(2012)] gave efficient randomized algorithms for equivalence

testing of the Permanent polynomial family , Power Symmetric

polynomial family, Sum of Product polynomial family, Elemen-

tary Symmetric polynomial family over any field.

From now on we assume a stronger search version of the equiva-

lence testing problem.
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Determinant Equivalence Testing

The Determinant polynomial family: {Det(Xn)}n≥1 , where Det(Xn)

denotes the determinant of n × n symbolic matrix Xn.

Determinant Equivalence Testing (DET)

• An efficient randomized algorithm is known over :

I C [Kayal(2012)]

I finite fields of sufficiently large characteristic -

Garg,Gupta,Kayal,Saha [GGKS19].

I For fixed n, DET can be efficiently done given oracle access to

INTFACT [GGKS19].

• But it is as hard as Integer Factoring (INTFACT) over

Q [GGKS19].
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IMM Equivalence Testing

The Iterated Matrix Multiplication Polynomial Family

IMMw ,d := (1, 1)-th entry of (X1 · X2 . . .Xd) where each Xi is a

w × w symbolic matrix.

An efficient randomized equivalence test for the Iterated Matrix

Multiplication polynomial (IMM) over Q,C and finite fields is

known from Kayal,Nair,Saha,Tavenas [KNST17].
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IMM vs Determinant Equivalence testing

Both IMM and Determinant polynomial families are complete

for the circuit class VBP, yet they can not have similar algo-

rithmic complexity for the equivalence testing problem (over

Q) unless INTFACT is easy.
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The Trace Iterated Matrix Multiplication
Polynomial

Definition (The Trace Iterated Matrix Multiplication

Polynomial)

Q1 =

x (1)11 x
(1)
12

x
(1)
21 x

(1)
22

 ;Q2 =

x (2)11 x
(2)
12

x
(2)
21 x

(2)
22

 ;Q3 =

x (3)11 x
(3)
12

x
(3)
21 x

(3)
22

 .

w = 2, d = 3.

Tr-IMM2,3 = tr(Q1 · Q2 · Q3) .
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The Trace Iterated Matrix Multiplication
Polynomial

Definition (The Trace Iterated Matrix Multiplication

Polynomial)

Let Q1, . . . ,Qd be w × w symbolic matrices whose entries are

distinct (formal) variables. Then the Trace Iterated Matrix

Multiplication Polynomial denoted as Tr-IMMw ,d is defined as

the trace of the product of these matrices.

Tr-IMMw ,d = tr(Q1 · Q2 . . .Qd) .
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Equivalence test for Tr-IMM (TRACE)

It is syntatically close to the IMM polynomial, which is the (1, 1)-th

entry of the matrix product.

Is the complexity of TRACE similar to the equivalence test for IMM

polynomial?

Or does it resemble that of DET?
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Equivalence test for Tr-IMM (TRACE)

Problem Statement (Equivalence test for Tr-IMMw ,d

polynomial (TRACE))

Given blackbox access to an n-variate degree d polynomial f , check

efficiently if f is equivalent to Tr-IMMw ,d . If yes, then compute

an invertible matrix A ∈ Fn×n such that f (x) = Tr-IMMw ,d(Ax)
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Could there be some relation between special cases of the iso-

morphism problem and the special cases of equivalence test-

ing?
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Some special cases of the Isomorphism
Problems

Full Matrix Algebra Isomorphism (FMAI) Given a basis of an

algebra A ⊆Mm, determine if A is isomorphic toMw where w2 =

dim(A). If yes, compute an isomorphism from A →Mw .
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Some special cases of the Isomorphism
Problems

Matrix Multiplication Tensor Isomorphism (MMTI) Given a 3-

tensor f , check if it is isomorphic to any tensor in the Tr-IMMw ,3

family, i.e check if

f (x) = Tr-IMMw ,3(B1x1,B2x2,B3x3) = Tr-IMMw ,3(Bx)

and if yes, output B1,B2,B3.
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Some special cases of the Isomorphism
Problems

Tensor Isomorphism for Tr-IMM (TRACE-TI) Given a d-tensor

f , check if it is isomorphic to any tensor in the Tr-IMMw ,d family,

i.e check if

f (x) = Tr-IMMw ,d(B1x1, . . . ,Bdxd) = Tr-IMMw ,d(Bx).

and if yes, output B1, . . . ,Bd .
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Results
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Results

Theorem 1 (TRACE is randomized polynomial time

Turing reducible to DET)

Given oracle access to DET over F, TRACE can be solved in

randomized, polynomial time

polynomial time: poly(n, β) running time

randomized: 1− o(1) success probability.
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Approach

Input: Blackbox access to f

Reduce to TRACE-TI

Reduce TRACE-TI to DET and compute A

Check if f (x) = Tr-IMM(Ax) using Schwartz-Zippel lemma

Figure: High level view of the Algorithm
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Part-I: Reduction to TRACE-TI

TRACE: Is f (x) = Tr-IMMw ,d(Ax) for some invertible matrix A?

TRACE-TI: Is f (x) = Tr-IMMw ,d(Bx) for some invertible, block-

diagonal matrix B?

Remark: An efficient randomized algorithm for TRACE-TI over C

was given in [Grochow(2012)] which does not involve reduction to

DET.
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Part-I: Reduction to TRACE-TI

Tr-IMM(x) = tr(Q1 · Q2 . . .Qd)

f = Tr-IMM(Ax) = tr(X1 · X2 . . .Xd)

For example,

Qi =

x1 x2

x3 x4

 ,Xi =

 x1 + x6 2x1

x1 + 2x4 x4 − x9


Xi - space spanned by the linear forms in Xi . The Layer Spaces of

f are X1, . . . ,Xd .
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Part-I: Reduction to TRACE-TI

1.Compute a bases for the layer spaces X1, . . . ,Xd of f .

2. Compute a linear map Â which maps each basis vector to

a distinct variable.

3. Define a new polynomial h(x) = f (Âx). Since we mapped

each basis vector to a distinct variable, h is a d-tensor.

h(x) = f (Âx) = Tr-IMM(AÂx)

We compute Â such that AÂ is block-diagonal. This is the TRACE-

TI problem!
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Computing a basis for the layer spaces

Associated with any n-variate polynomial f , there is a vector space

called the Lie Algebra gf (of the group of symmetries) of f which

consists of n × n matrices E = (eij)n×n satisfying

∑
i ,j∈[n]

eijxj
∂f

∂xi
= 0 .
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Computing a basis for the layer spaces

The basis elements of the Lie Algebra of Tr-IMM are block-diagonal

matrices [Gesmundo(2016)].
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Computing a basis for the layer spaces

The corresponding basis elements of the Lie Algebra of f ∼ Tr-IMM

looks like:
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Computing a basis for the layer spaces

We compute a bases of the Lie Algebra of f .

We exploit this relationship to compute a bases for the irreducible

invariant subspaces V1, . . . ,Vd of gf .

Given a bases of these irreducible invariant subspaces, we then com-

pute a bases of the layer spaces of f and then reorder them ap-

propriately.
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Part-II: Reduction from TRACE-TI to DET

f = tr(X1 · X2 . . .Xd−1 · Xd)

= Y1 · Y2 . . .Yd−1 · Yd

where,

Y1 = [X1(1, ∗), . . . ,X1(w , ∗)]1×w2

Yd = [Xd(∗, 1)T , . . . ,Xd(∗,w)T ]w2×1

Yi =



Xi

. . .

Xi

. . .

Xi


w2×w2

for i ∈ [2, d ].
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Part-II: Reduction from TRACE-TI to DET

1. Using set-multilinear ABP reconstruction [Klivans,Shpilka(2003)],

we compute Y ′1, . . . ,Y
′
d such that:

f = Y ′1 · Y ′2 . . .Y ′d−1 · Y ′d

Y ′i = T−1i−1



Xi

. . .

Xi

. . .

Xi


Ti for i ∈ [2, d − 1]

Idea: Block-diagonalize the matrices Y ′2, . . . ,Y
′
d−1.
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Part-II: Reduction from TRACE-TI to DET

2. For each intermediate matrix, compute blackbox access to circuit

computing ci · det(Xi ) from Y ′i .

3. Use DET to compute X̂i that satisfies exactly one of the follow-

ing:

Xi = Ai · X̂i · Bi

Xi = Ai · X̂i
T
· Bi
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Part-II: Reduction from TRACE-TI to DET

Y ′i = T−1i−1



Xi

. . .

Xi

. . .

Xi


Ti
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Part-II: Reduction from TRACE-TI to DET

Y ′i = T−1i−1



Ai X̂iBi

. . .

Ai X̂iBi

. . .

Ai X̂iBi


Ti
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Part-II: Reduction from TRACE-TI to DET

Y ′i = Pi



X̂i

. . .

X̂i

. . .

X̂i


Qi

4. Compute P̂i , Q̂i for all i ∈ [2, d − 1].

(Ideally, we would want P̂i
−1

Y ′i Q̂i
−1

to be block-diagonal).
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Part-II: Reduction from TRACE-TI to DET

5. Using the P̂i , Q̂i ,Y
′
i ’s , we compute X ′2, . . .X

′
d−1 such that:

X ′2 · X ′3 . . .X ′d−1 = α · A · X2 · X3 . . .Xd−1 · B

6. Compute X ′1,X
′
d (using ABP reconstruction techniques):

X ′1 = α−1 · X1 · A−1 and X ′d = B · Xd

So,

X1 · X2 . . .Xd−1 · Xd = X ′1 · X ′2 . . .X ′d−1 · X ′d
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Conclusion
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