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Abstract 

In this paper we present a new 3D frame representation with rotations and non-uniform scaling. The 

representation has the same memory footprint as the equivalent quaternion representation but with 

better GPU performance for 3x3 matrix conversions. Unlike quaternions, the new representation also 

supports extracting 𝑧-axis of the frame for free to better support use-cases that doesn’t require full 

frame matrix extraction. In the appendix we provide drop-in HLSL implementations. 

1 QUATERNION BASICS 

Quaternions are often used for 3D rotations due to their compact representation and efficient 

operations that are useful for rotations. Quaternions representing 3D rotations have unit length, and 

can thus be defined with 3 values instead of 4, and the 4th component calculated as: 

 
𝑞𝑤 = √1 − 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2 (1) 

𝑞𝑤 has two roots ±𝑞𝑤 and because both −𝑞 and +𝑞 result in the same 3D rotation, 𝑞 must be 

negated if 𝑞𝑤 is negative, prior to discarding 𝑞𝑤 for the proper recovery of 𝑞 with the above 

equation. Vectors can be rotated directly with a unit quaternion using the following equation: 

 𝑣′ = 𝑞 ∗ 𝑣 ∗ 𝑞∗ = 2𝑞𝑣 × (𝑞𝑣 × 𝑣 + 𝑞𝑤𝑣) + 𝑣 

𝑞𝑣 = [𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧] 
(2) 

From the performance point of view, this is fine for rotating couple of vectors, but for more vectors 

it’s more efficient to first convert the quaternion to orthonormal 3x3 matrix and transform vectors 

with the matrix instead: 

 𝑥 = [1 − 2𝑞𝑦
2 − 2𝑞𝑧

2, 2𝑞𝑥𝑞𝑦 + 2𝑞𝑧𝑞𝑤, 2𝑞𝑥𝑞𝑧 − 2𝑞𝑦𝑞𝑤] 

𝑦̂ = [2𝑞𝑥𝑞𝑦 − 2𝑞𝑧𝑞𝑤 , 1 − 2𝑞𝑥
2 − 2𝑞𝑧

2, 2𝑞𝑦𝑞𝑧 + 2𝑞𝑥𝑞𝑤] 

𝑧̂ = [2𝑞𝑥𝑞𝑧 + 2𝑞𝑦𝑞𝑤, 2𝑞𝑦𝑞𝑧 − 2𝑞𝑥𝑞𝑤, 1 − 2𝑞𝑥
2 − 2𝑞𝑦

2] 

(3) 

The terms shown below can be shared to reduce the computation cost of the matrix: 

1 − 2𝑞𝑧
2, 2𝑞𝑥𝑞𝑦, 2𝑞𝑥𝑞𝑧, 2𝑞𝑦𝑞𝑧 

There are also other shared terms (2𝑞𝑥
2, 2𝑞𝑦

2, 2𝑞𝑥𝑞𝑤, 2𝑞𝑦𝑞𝑤 , 2𝑞𝑧𝑞𝑤), but on GPUs supporting Fused 

Multiply-Add (FMA1) and free “multiply by two” modifier, an attempt to share those have a negative 

performance impact. For example, calculating 𝑥𝑦 the term 2𝑞𝑧𝑞𝑤 is effectively free with FMA and 

calculating it separately would just increase the cost. A reminder why simply “counting muls and 

adds” isn’t necessarily a good way to assess the real performance on GPUs. 

 
1 FMA - https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation 

https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation


 

2 PERFORMANCE EVALUATION 

For performance evaluation we use Radeon GPU Analyzer2 by AMD targeting RDNA2 architecture to 

validate the generated ISA assembly of simple test shaders written in HLSL. However, FMA and 

“multiply by two”-modifier have been supported by all GPUs for a long time, thus the generated ISA 

assembly should be quite similar regardless of the target GPU architecture. NVIDIA is unfortunately 

opaque about the compiled ISA assembly and doesn’t allow algorithm performance validation nor 

optimization for their architectures, so we assume that the generated ISA assembly on NVIDIA GPUs 

closely matches RDNA2. 

Furthermore, we assess the performance based on the utilized full-rate (FR) and quarter-rate (QR) 

instructions of the compiled ISA assembly. QR instructions that are used for “Transcendental 

Functions“ (e.g. square root and division) are assumed to be substantially more expensive than FR 

instructions, thus we try to minimize their use. For widely used GCN architecture, QR instructions are 

4 times more expensive than FR instructions, while for RDNA it’s a bit more complicated3. 

There are various other factors influencing performance, like the GPU architecture and the 

surrounding code and how Instruction Level Parallelism (ILP) can be utilized in the context, or how 

code uses VGPRs and influences parallelism and occupancy. We consider these as “factors out of our 

control” and thus focus purely on FR and QR instruction count with the assumption that lowering the 

number of the instructions generally improves the overall performance. Explicitly, we don’t profile 

the code as a microbenchmark because these factors can have substantial impact on the 

performance with misleading results for a code snippet supposed to be embedded in a large shader 

code body. 

As a baseline for the quaternion solution, the basis vectors in Equation (3) can be evaluated with 17 

FR instructions. In contrast, transforming a vector directly with a quaternion in Equation (2) requires 

18 FR instructions. In addition, calculation of 𝑞𝑤 with the Equation (1) followed by matrix conversion 

with Equation (3) uses 20 FR + 1 QR instructions. A 3D vector multiplication by a 3x3 matrix uses 9 FR 

instructions. Because unit quaternions represent only 3D rotations, axis scaling requires additional 

float per scale factor (e.g. 1 float for uniform scaling, or 3 floats for fully non-uniform scaling) and 3 

FR instructions per axis, so 3D rotation with fully non-uniform scaling using quaternion 

representation requires 6 floats and 29 FR + 1 QR instructions to extract the full scaled frame. 

  

 
2 Radeon GPU Analyzer - https://gpuopen.com/rga 
3 RDNA Architecture - https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf 

 

https://gpuopen.com/rga
https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf


 

3 MOTIVATION 

For some use-cases only the 𝑧-axis of the 3D frame is needed. For example, to check if a 3D point is 

within the cone of a spotlight, and if so, only then extract the full frame for shadow map calculation. 

For this check, it would require 13 FR + 1 QR instruction to extract only the unit 𝑧̂-axis from the 

quaternion representation, and if needed, additional 3 FR instructions for the scaled 𝑧-axis. Ideally, 

we would like to have a representation which enables us to get the 𝑧-axis for free while having the 

same storage overhead and computation cost of the quaternion representation. 

4 THE REPRESENTATION 

To be able to efficiently extract the scaled 𝑧-axis of the frame from a representation, we would like 

to store the axis directly as part of the representation and thus be able to get the axis for free. For 

the scaled 𝑥𝑦-axes of the frame we would like to provide additional data using the same total 

memory footprint as the quaternion representation that can be evaluated at similar performance 

cost. 

First, we unambiguously define the normalized 3D frame for given 𝑧-axis by calculating quaternion 

rotation from [0, 0, 1] to the 𝑧-direction: 

 ℎ = 𝑧̂ + [0, 𝜀, 1] 

𝑞𝑧𝑟𝑜𝑡 = [[0,0,1] × ℎ̂, ℎ̂𝑧] = [−ℎ̂𝑦, ℎ̂𝑥 , 0, ℎ̂𝑧] 
(4) 

𝜀 is a small number to avoid zero-vector thus a singularity when 𝑧̂ = [0, 0, −1] and small enough to 

minimize errors for the basis vectors. We use 𝜀 = 0.000001, which seems to work well. 

Next, we rotate the 𝑥𝑦-frame about the 𝑧-axis for the desired frame orientation, for which we define 

the rotated frame 𝑥𝑦-axes and transform them with 𝑞𝑧𝑟𝑜𝑡 using the Equation (2): 

 𝑥𝑟 = [cos𝛼 , sin 𝛼 , 0] 

𝑦𝑟 = [−sin𝛼 , cos𝛼 , 0] 

𝑥 = 2ℎ̂ ∗ (−ℎ̂𝑥 ∗ cos𝛼 − ℎ̂𝑦 ∗ sin 𝛼) + [cos𝛼 , sin𝛼 , 0] 

𝑦 = 2ℎ̂ ∗ (ℎ̂𝑥 ∗ sin 𝛼 − ℎ̂𝑦 ∗ cos 𝛼) + [−sin𝛼 , cos 𝛼 , 0] 

(5) 

Because the length of ℎ is squared in 𝑥 and 𝑦 evaluation (due to multiplying ℎ̂ with ℎ̂𝑥 and ℎ̂𝑦), this 

enables us to discard the normalization of ℎ and multiply the axes by the inverse squared length 

instead: 

 
𝑎 =

2

ℎ ∙ ℎ
 

𝑥 = ℎ ∗ 𝑎 ∗ (−ℎ𝑥 ∗ cos𝛼 − ℎ𝑦 ∗ sin𝛼) + [cos𝛼 , sin𝛼 , 0] 

𝑦 = ℎ ∗ 𝑎 ∗ (ℎ𝑥 ∗ sin𝛼 − ℎ𝑦 ∗ cos 𝛼) + [−sin𝛼 , cos 𝛼 , 0] 

(6) 

To introduce non-uniform scaling to these axes we multiply all terms with the scaling factors: 

 𝑥 = ℎ ∗ 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑥 ∗ (−ℎ𝑥 ∗ cos𝛼 − ℎ𝑦 ∗ sin𝛼) + 𝑠𝑐𝑎𝑙𝑒𝑥 ∗ [cos 𝛼 , sin𝛼 , 0] 

𝑦 = ℎ ∗ 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑦 ∗ (ℎ𝑥 ∗ sin𝛼 − ℎ𝑦 ∗ cos 𝛼) + 𝑠𝑐𝑎𝑙𝑒𝑦 ∗ [−sin𝛼 , cos 𝛼 , 0] 
(7) 



 

Instead of using 𝛼, 𝑠𝑐𝑎𝑙𝑒𝑥 and 𝑠𝑐𝑎𝑙𝑒𝑦, which requires QR transcendental 𝑠𝑖𝑛 and 𝑐𝑜𝑠 instructions, 

we can pass the scaled rotation coefficients: 

 𝑐𝑥 = 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑥 ∗ cos𝛼 

𝑠𝑥 = 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑥 ∗ sin𝛼 

𝑐𝑦 = 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑦 ∗ cos𝛼 

𝑠𝑦 = 𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒𝑦 ∗ sin𝛼 

𝑥 = ℎ ∗ (−ℎ𝑥 ∗ 𝑐𝑥 − ℎ𝑦 ∗ 𝑠𝑥) +
[𝑐𝑥 , 𝑠𝑥 , 0]

𝑎
 

𝑦 = ℎ ∗ (ℎ𝑥 ∗ 𝑠𝑦 − ℎ𝑦 ∗ 𝑐𝑦) +
[−𝑠𝑦, 𝑐𝑦, 0]

𝑎
 

(8) 

The inverse of 𝑎 in the equation enables us to eliminate the division (QR instruction): 

 
𝑏 =

1

𝑎
= 0.5 ∗ ℎ ∙ ℎ 

𝑥 = ℎ ∗ (−ℎ𝑥 ∗ 𝑐𝑥 − ℎ𝑦 ∗ 𝑠𝑥) + 𝑏 ∗ [𝑐𝑥 , 𝑠𝑥 , 0] 

𝑦 = ℎ ∗ (ℎ𝑥 ∗ 𝑠𝑦 − ℎ𝑦 ∗ 𝑐𝑦) + 𝑏 ∗ [−𝑠𝑦, 𝑐𝑦, 0] 

(9) 

This requires us to pass 4 coefficients 𝑐𝑥 , 𝑠𝑥 , 𝑐𝑦, 𝑠𝑦 to the functions, but we can only afford 3 scalars 

to achieve the same memory footprint as the quaternion representation. However, we can eliminate 

one scalar with a little added computation: 

 
𝐴𝑠𝑝𝑒𝑐𝑡 =

𝑐𝑦

𝑐𝑥
=
𝑠𝑦

𝑠𝑥
=
𝑆𝑐𝑎𝑙𝑒𝑦

𝑆𝑐𝑎𝑙𝑒𝑥
 

𝑥 = ℎ ∗ (−ℎ𝑥 ∗ 𝑐𝑥 − ℎ𝑦 ∗ 𝑠𝑥) + 𝑏 ∗ [𝑐𝑥 , 𝑠𝑥 , 0] 

𝑦 = ℎ ∗ 𝐴𝑠𝑝𝑒𝑐𝑡 ∗ (ℎ𝑥 ∗ 𝑠𝑥 − ℎ𝑦 ∗ 𝑐𝑥) + 𝑏 ∗ 𝐴𝑠𝑝𝑒𝑐𝑡 ∗ [−𝑠𝑥 , 𝑐𝑥 , 0] 

(10) 

Furthermore, in the calculation of ℎ in Equation (4) we use normalized vector 𝑧̂, but the 

representation contains scaled 𝑧-axis of the frame, which would require vector normalization. 

Instead of normalizing the 𝑧-axis we can calculate ℎ as follows: 

 ℎ = [𝑧𝑥 , 𝑧𝑦 + 𝜀, 𝑧𝑧 + |𝑧|] (11) 

While the evaluation of ℎ still requires QR sqrt instruction, there is no need to multiply the vector 

with the inverse length, thus saving instructions. If 𝑧 is already normalized by prior code, the 

calculation can be eliminated or if prior code calculates |𝑧|2 the result can be used to reduce the 

cost. The 𝜀 can be also applied only upon to rotation coefficient calculation to the scaled 𝑧-axis thus 

eliminating the need to apply it again during the frame extraction. 

 

We also tried to calculate 𝑦-axis as the cross-product of 𝑥-axis and 𝑧-axis and instead of 𝐴𝑠𝑝𝑒𝑐𝑡 

multiplying the resulting cross-product with 
𝑆𝑐𝑎𝑙𝑒𝑦

𝑆𝑐𝑎𝑙𝑒𝑥∗𝑆𝑐𝑎𝑙𝑒𝑧
, but this resulted the same number of 

instructions for the frame extraction. 



 

5 CALCULATING THE ROTATION COEFFICIENTS  

The rotation coefficients can be calculated by first extracting the 𝑥-axis of the 𝑞𝑧𝑟𝑜𝑡 using the 

equation (3): 

 𝑥𝑧𝑟𝑜𝑡 = −𝑎 ∗ ℎ𝑥 ∗ ℎ + [1,0,0] (12) 

The frame extraction with Equation (10) expects the rotation coefficients 𝑐𝑥 and 𝑠𝑥 to be multiplied 

by 𝑎 ∗ 𝑆𝑐𝑎𝑙𝑒𝑥: 

 𝑎𝑠𝑥 = 𝑎 ∗ 𝑆𝑐𝑎𝑙𝑒𝑥 

𝑥′𝑧𝑟𝑜𝑡 = −𝑎 ∗ 𝑎𝑠𝑥 ∗ ℎ𝑥 ∗ ℎ + [𝑎𝑠𝑥 , 0,0] 
(13) 

From this vector we can get the rotation coefficients: 

 𝑐𝑥 = 𝑥′𝑧𝑟𝑜𝑡 ∙ 𝑥 

𝑠𝑥 = −𝑥′𝑧𝑟𝑜𝑡 ∙ 𝑦̂ 
(14) 

6 PARTIALLY NON-UNIFORM SCALING 

We derived a representation for 3D frame supporting independent non-uniform scaling of all the 3 

axes of the frame. However, sometimes it’s sufficient to have only a partially non-uniform scaling. 

Below we describe couple of modified versions with more restricted scaling cases while retaining the 

good properties of the representation. 

A trivial modification is to assume 𝐴𝑠𝑝𝑒𝑐𝑡 = 1 for uniform 𝑥𝑦-scaling with a separate 𝑧-scaling, 

which reduces the memory footprint to 5 values, frame extraction cost to 17 FR + 1 QR instructions 

and rotation coefficient calculation cost to 19 FR + 1 QR instructions. 

Another modification is to have separate scaling for 𝑥-axis and 𝑦-axis and keep the 𝑧̂-axis length 1. 

To retain the 5-value memory footprint the 𝐴𝑠𝑝𝑒𝑐𝑡 can be encoded into 𝑧-axis length by multiplying 

the length with 
1

𝐴𝑠𝑝𝑒𝑐𝑡
=

𝑆𝑐𝑎𝑙𝑒𝑥

𝑆𝑐𝑎𝑙𝑒𝑦
. This representation requires 26 FR + 1 QR instructions for the frame 

extraction and 18 FR + 1 QR instruction for calculating the rotation coefficients. The added cost in 

the frame extraction is due to the required normalization of the scaled 𝑧-axis. 

7 RESULTS 

With the new 3D frame representation, we were able to reduce the non-uniformly scaled and 

rotated 3D frame computation to 21 FR + 1 QR instructions, which is 8 FR instructions less than the 

equivalent quaternion representation with the same memory footprint. We can also extract the 𝑧-

axis for free from the representation for use-cases that doesn’t require the full 3D frame. The cost 

can be further reduced if the 𝑧-axis is normalized or if squared length of the 𝑧-axis is calculated in a 

prior use of the representation. 

The calculation of the rotation coefficients including the scaling aspect ratio is also quite efficient 

using only 20 FR + 2 QR instructions making it quite a viable option for some applications. This is 

quite significantly less than hundreds of lines of branchy ISA assembly we got with the matrix-to-



 

quaternion code in the Appendix, though the implementation we used can most definitely be 

improved for GPUs. 

Regarding the error, we generated 1 billion random unit quaternions, calculated the 3x3 matrix from 

them using Equation 3) and performed the conversion back and forth from the representation with 

scale factors set to 1. For each matrix we calculated the max angular error of the basis vectors of the 

original and the converted matrix. With 𝜀 = 0.000001 and 32-bit floats we got the max error of 0.1°. 

8 APPENDIX 

HLSL implementations for different non-uniform rotation coefficient calculations and frame 

extractions: 

// epsilon 
static const float s_eps=0.000001f; 
 
// get rotation coefficients from orthonormal matrix and scale vector  
// scale_.xyz = independent scaling for xyz-axes 
float3 get_rot_coeffs_x_y_z(out float3 zdir_, float3x3 rot_, float3 scale_) 
{ 
  float3 h=rot_[2]; 
  h*=scale_.z; 
  h.y+=s_eps; 
  zdir_=h; 
  h.z+=scale_.z; 
  float a=2.0f/dot(h, h); 
  float asx=a*scale_.x; 
  float3 xdir=h*(-asx*h.x*a); 
  xdir.x+=asx; 
  return float3(dot(xdir, rot_[0]), -dot(xdir, rot_[1]), scale_.y/scale_.x); 
} 
 
// get rotation coefficients from orthonormal matrix and scale vector  
// scale_.x = xy-axes scaling, scale_.y = z-axis scaling 
float2 get_rot_coeffs_xy_z(out float3 zdir_, float3x3 rot_, float2 scale_) 
{ 
  float3 h=rot_[2]; 
  h*=scale_.y; 
  h.y+=s_eps; 
  zdir_=h; 
  h.z+=scale_.y; 
  float a=2.0f/dot(h, h); 
  float asx=a*scale_.x; 
  float3 xdir=h*(-asx*h.x*a); 
  xdir.x+=asx; 
  return float2(dot(xdir, rot_[0]), -dot(xdir, rot_[1])); 
} 
 
// get rotation coefficients from orthonormal matrix and frame scale vector  
// scale_.x = x-axis scaling, scale_.y = y-axis scaling 
float2 get_rot_coeffs_x_y(out float3 zdir_, float3x3 rot_, float2 scale_) 
{ 
  float3 h=rot_[2]; 
  h.y+=s_eps; 
  zdir_=h*(scale_.x/scale_.y); 
  h.z+=1.0f; 
  float a=2.0f/dot(h, h); 
  float asx=a*scale_.x; 
  float3 xdir=h*(-asx*h.x*a); 
  xdir.x+=asx; 
  return float2(dot(xdir, rot_[0]), -dot(xdir, rot_[1])); 
} 
 
// extract scaled frame from z-axis and rotation coefficients 
// independent scaling for xyz-axes 
void extract_frame_x_y_z(out float3 x_, out float3 y_, out float3 z_, float3 zdir_, float3 rc_) 
{ 



 

  z_=zdir_; 
  zdir_.z+=length(zdir_); 
  float sx=(-zdir_.x*rc_.x-zdir_.y*rc_.y); 
  float b=dot(zdir_, zdir_)/2.0f; 
  x_=zdir_*sx+float3(rc_.x*b, rc_.y*b, 0.0f); 
  float sy=(zdir_.x*rc_.y-zdir_.y*rc_.x)*rc_.z; 
  b*=rc_.z; 
  y_=zdir_*sy+float3(-rc_.y*b, rc_.x*b, 0.0f); 
} 
 
// extract scaled frame from z-axis and rotation coefficients 
// shared scaling for xy-axes and a separate scaling for z-axis 
void extract_frame_xy_z(out float3 x_, out float3 y_, out float3 z_, float3 zdir_, float2 rc_) 
{ 
  z_=zdir_; 
  zdir_.z+=length(zdir_); 
  float sx=(-zdir_.x*rc_.x-zdir_.y*rc_.y); 
  float sy=(zdir_.x*rc_.y-zdir_.y*rc_.x); 
  rc_*=dot(zdir_, zdir_)/2.0f; 
  x_=zdir_*sx+float3(rc_.x, rc_.y, 0.0f); 
  y_=zdir_*sy+float3(-rc_.y, rc_.x, 0.0f); 
} 
 
// extract scaled frame from z-axis and rotation coefficients 
// separate scaling for x- and y-axes, z-axis is unit length 
void extract_frame_x_y(out float3 x_, out float3 y_, out float3 z_, float3 zdir_, float2 rc_) 
{ 
  float rcp_rn=rsqrt(dot(zdir_, zdir_)); 
  zdir_*=rcp_rn; 
  z_=zdir_; 
  zdir_.z+=1.0f; 
  float sx=(-zdir_.x*rc_.x-zdir_.y*rc_.y); 
  float b=dot(zdir_, zdir_)/2.0f; 
  x_=zdir_*sx+float3(rc_.x*b, rc_.y*b, 0.0f); 
  float sy=(zdir_.x*rc_.y-zdir_.y*rc_.x)*rcp_rn; 
  b*=rcp_rn; 
  y_=zdir_*sy+float3(-rc_.y*b, rc_.x*b, 0.0f); 
} 
 
 

HLSL implementation for 3x3 matrix to quaternion conversion: 

float4 convert_to_quat(float3x3 m_) 
{ 
  // check for positive matrix trace 
  float tr=m_[0].x+m_[1].y+m_[2].z; 
  float4 q; 
  if(tr>0) 
  { 
    float s=sqrt(tr+1.0f); 
    q.w=s*0.5f; 
    s=0.5f/s; 
    q.x=(m_[1].z-m_[2].y)*s; 
    q.y=(m_[2].x-m_[0].z)*s; 
    q.z=(m_[0].y-m_[1].x)*s; 
    return q; 
  } 
   
  // find largest diagonal value and setup element indices 
  uint i=m_[1].y>m_[0].x?1:0; 
  if(m_[2].z>m_[i][i]) 
    i=2; 
  const uint next[3]={1, 2, 0}; 
  uint j=next[i], k=next[j]; 
 
  // convert the matrix 
  float s=sqrt(m_[i][i]-m_[j][j]-m_[k][k]+1.0f); 
  q[i]=s*0.5f; 
  s=0.5f/s; 
  q.w=(m_[j][k]-m_[k][j])*s; 
  q[j]=(m_[i][j]+m_[j][i])*s; 
  q[k]=(m_[i][k]+m_[k][i])*s; 
  return q; 
} 


