{ "cells": [ { "cell_type": "markdown", "id": "79ebfce1-f5ac-4e39-83db-11416e310e8e", "metadata": { "tags": [] }, "source": [ "# Jupyter AI with the SageMaker endpoint\n", "\n", "This demo showcases the IPython magics Jupyter AI provides out-of-the-box for Amazon SageMaker.\n", "\n", "First, make sure that you've set your `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` environment variables either before starting JupyterLab or using the `%env` magic command within JupyterLab.\n", "\n", "Then, load the IPython extension:" ] }, { "cell_type": "code", "execution_count": 1, "id": "24f3f446-2b1d-4802-a47c-d298c06fc86e", "metadata": { "tags": [] }, "outputs": [], "source": [ "%load_ext jupyter_ai" ] }, { "cell_type": "markdown", "id": "9f2b0270-1c33-4918-b534-4ec104f90141", "metadata": {}, "source": [ "Jupyter AI supports language models hosted on SageMaker endpoints that use JSON APIs. Authenticate with AWS via the `boto3` SDK and have the credentials stored in the `default` profile. Guidance on how to do this can be found in the [`boto3` documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html).\n", "\n", "You will need to deploy a model in SageMaker, then provide it as your model name (as `sagemaker-endpoint:my-model-name`). See the [documentation on how to deploy a JumpStart model](https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-deploy.html).\n", "\n", "All SageMaker endpoint requests require you to specify the `--region-name`, `--request-schema`, and `--response-path` options.\n", "\n", "The `--region-name` parameter is set to the [AWS region code](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html), such as `us-east-1` or `eu-west-1`.\n", "\n", "The `--request-schema` parameter is the JSON object the endpoint expects as input, with the prompt being substituted into any value that matches the string literal `\"\"`. For example, the request schema `{\"text_inputs\":\"\"}` will submit a JSON object with the prompt stored under the `text_inputs` key.\n", "\n", "The `--response-path` option is a [JSONPath](https://goessner.net/articles/JsonPath/index.html) string that retrieves the language model's output from the endpoint's JSON response. For example, if your endpoint returns an object with the schema `{\"generated_texts\":[\"\"]}`, its response path is `generated_texts.[0]`." ] }, { "cell_type": "code", "execution_count": 2, "id": "31f3e6e3-48cf-4e60-96d3-8b8e1dd34bec", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/markdown": [ "What is the weather like in the US today?" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": { "text/markdown": { "jupyter_ai": { "model_id": "jumpstart-dft-hf-text2text-flan-t5-xl", "provider_id": "sagemaker-endpoint" } } }, "output_type": "execute_result" } ], "source": [ "%%ai sagemaker-endpoint:jumpstart-dft-hf-text2text-flan-t5-xl --region-name=us-east-1 --request-schema={\"text_inputs\":\"\"} --response-path=generated_texts.[0]\n", "Generate a question about weather today." ] }, { "cell_type": "code", "execution_count": null, "id": "4ad8c62e-b0a5-4091-94e3-4067ed8d6c4a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 5 }