{ "cells": [ { "cell_type": "markdown", "id": "f78e12b6", "metadata": {}, "source": [ "![Finance Toolkit](https://github.com/JerBouma/FinanceToolkit/assets/46355364/198d47bd-e1b3-492d-acc4-5d9f02d1d009)\n", "\n", "The Finance Toolkit can take in any dataset which means it works very well with the software and APIs from any other provider let is be Intrinio, OpenBB, Yahoo Finance, Quandl, etc. For this illustration, I have collected custom statements and have imported them as a CSV file but as you can imagine this would also work with direct API calls. This dataset is obtained from Yahoo Finance, which can be collected via `yfinance`. Note that the `yfinance` library is not part of the Finance Toolkit and needs to be installed separately." ] }, { "cell_type": "code", "execution_count": 1, "id": "b256daa1", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "from financetoolkit import Toolkit" ] }, { "cell_type": "markdown", "id": "9e6cf4ea", "metadata": {}, "source": [ "First, let's read in the custom dataset obtained from Yahoo Finance." ] }, { "cell_type": "code", "execution_count": 2, "id": "2bcdac0d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ttm2022-12-312021-12-312020-12-312019-12-31
Breakdown
Total revenue9.402800e+108.146200e+105.382300e+103.153600e+102.457800e+10
Cost of revenue7.382500e+106.060900e+104.021700e+102.490600e+102.050900e+10
Gross profit2.020300e+102.085300e+101.360600e+106.630000e+094.069000e+09
Research development3.257000e+093.075000e+092.593000e+091.491000e+091.343000e+09
Selling general and administrative4.260000e+093.946000e+094.517000e+093.145000e+092.646000e+09
Total operating expenses7.517000e+097.021000e+097.110000e+094.636000e+093.989000e+09
Operating income or loss1.268600e+101.383200e+106.496000e+091.994000e+098.000000e+07
Interest expense1.430000e+081.910000e+083.710000e+087.480000e+086.850000e+08
Total other income/expenses net1.190000e+08-2.190000e+081.620000e+08-1.220000e+08-1.040000e+08
Income before tax1.335600e+101.371900e+106.343000e+091.154000e+09-6.650000e+08
Income tax expense1.165000e+091.132000e+096.990000e+082.920000e+081.100000e+08
Income from continuing operations1.219100e+101.258700e+105.644000e+098.620000e+08-7.750000e+08
Net income1.222200e+101.258300e+105.519000e+096.900000e+08-8.620000e+08
Net income available to common shareholders1.223500e+101.258300e+105.519000e+096.900000e+08-8.620000e+08
Basic average shares3.160500e+093.130000e+092.958000e+092.799000e+092.661000e+09
Diluted average shares3.477000e+093.475000e+093.387000e+093.249000e+092.661000e+09
EBITDANaN1.765700e+109.625000e+094.224000e+092.174000e+09
Basic EPS3.880000e+004.020000e+001.870000e+002.500000e-01-3.300000e-01
Diluted EPS3.510000e+003.620000e+001.630000e+002.100000e-01-3.300000e-01
\n", "
" ], "text/plain": [ " ttm 2022-12-31 \\\n", "Breakdown \n", "Total revenue 9.402800e+10 8.146200e+10 \n", "Cost of revenue 7.382500e+10 6.060900e+10 \n", "Gross profit 2.020300e+10 2.085300e+10 \n", "Research development 3.257000e+09 3.075000e+09 \n", "Selling general and administrative 4.260000e+09 3.946000e+09 \n", "Total operating expenses 7.517000e+09 7.021000e+09 \n", "Operating income or loss 1.268600e+10 1.383200e+10 \n", "Interest expense 1.430000e+08 1.910000e+08 \n", "Total other income/expenses net 1.190000e+08 -2.190000e+08 \n", "Income before tax 1.335600e+10 1.371900e+10 \n", "Income tax expense 1.165000e+09 1.132000e+09 \n", "Income from continuing operations 1.219100e+10 1.258700e+10 \n", "Net income 1.222200e+10 1.258300e+10 \n", "Net income available to common shareholders 1.223500e+10 1.258300e+10 \n", "Basic average shares 3.160500e+09 3.130000e+09 \n", "Diluted average shares 3.477000e+09 3.475000e+09 \n", "EBITDA NaN 1.765700e+10 \n", "Basic EPS 3.880000e+00 4.020000e+00 \n", "Diluted EPS 3.510000e+00 3.620000e+00 \n", "\n", " 2021-12-31 2020-12-31 \\\n", "Breakdown \n", "Total revenue 5.382300e+10 3.153600e+10 \n", "Cost of revenue 4.021700e+10 2.490600e+10 \n", "Gross profit 1.360600e+10 6.630000e+09 \n", "Research development 2.593000e+09 1.491000e+09 \n", "Selling general and administrative 4.517000e+09 3.145000e+09 \n", "Total operating expenses 7.110000e+09 4.636000e+09 \n", "Operating income or loss 6.496000e+09 1.994000e+09 \n", "Interest expense 3.710000e+08 7.480000e+08 \n", "Total other income/expenses net 1.620000e+08 -1.220000e+08 \n", "Income before tax 6.343000e+09 1.154000e+09 \n", "Income tax expense 6.990000e+08 2.920000e+08 \n", "Income from continuing operations 5.644000e+09 8.620000e+08 \n", "Net income 5.519000e+09 6.900000e+08 \n", "Net income available to common shareholders 5.519000e+09 6.900000e+08 \n", "Basic average shares 2.958000e+09 2.799000e+09 \n", "Diluted average shares 3.387000e+09 3.249000e+09 \n", "EBITDA 9.625000e+09 4.224000e+09 \n", "Basic EPS 1.870000e+00 2.500000e-01 \n", "Diluted EPS 1.630000e+00 2.100000e-01 \n", "\n", " 2019-12-31 \n", "Breakdown \n", "Total revenue 2.457800e+10 \n", "Cost of revenue 2.050900e+10 \n", "Gross profit 4.069000e+09 \n", "Research development 1.343000e+09 \n", "Selling general and administrative 2.646000e+09 \n", "Total operating expenses 3.989000e+09 \n", "Operating income or loss 8.000000e+07 \n", "Interest expense 6.850000e+08 \n", "Total other income/expenses net -1.040000e+08 \n", "Income before tax -6.650000e+08 \n", "Income tax expense 1.100000e+08 \n", "Income from continuing operations -7.750000e+08 \n", "Net income -8.620000e+08 \n", "Net income available to common shareholders -8.620000e+08 \n", "Basic average shares 2.661000e+09 \n", "Diluted average shares 2.661000e+09 \n", "EBITDA 2.174000e+09 \n", "Basic EPS -3.300000e-01 \n", "Diluted EPS -3.300000e-01 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Balance Sheet Statements\n", "tsla_balance = pd.read_csv(\"external_datasets/TSLA_balance.csv\", index_col=0)\n", "googl_balance = pd.read_csv(\"external_datasets/GOOGL_balance.csv\", index_col=0)\n", "\n", "# Income Statements\n", "tsla_income = pd.read_csv(\"external_datasets/TSLA_income.csv\", index_col=0)\n", "googl_income = pd.read_csv(\"external_datasets/GOOGL_income.csv\", index_col=0)\n", "\n", "# Cash Flow Statements\n", "tsla_cash = pd.read_csv(\"external_datasets/TSLA_cash.csv\", index_col=0)\n", "googl_cash = pd.read_csv(\"external_datasets/GOOGL_cash.csv\", index_col=0)\n", "\n", "# Show one of the datasets\n", "tsla_income" ] }, { "cell_type": "markdown", "id": "63b7f2ff", "metadata": {}, "source": [ "Then, it's time to acquire the normalization files via the Toolkit to be used to normalize the results." ] }, { "cell_type": "code", "execution_count": 3, "id": "060d49af", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Files are being saved to /Users/jeroenbouma/Downloads. Please see the following: https://www.jeroenbouma.com/projects/financetoolkit/external-datasets to understand how to work with these files. In essence, all it requires is to match up the rows in your dataframe with the normalization format.\n" ] } ], "source": [ "Toolkit(\"TSLA\").get_normalization_files()" ] }, { "cell_type": "markdown", "id": "0ff2648e", "metadata": {}, "source": [ "With this information, by copying over each name as defined by Yahoo Finance for the balance, income and cash flow statements as also defined above, the normalisation files can be filled. The result can be found within the `examples/external_datasets` folder of the project as found [here](https://github.com/JerBouma/FinanceToolkit/tree/main/examples).\n", "\n", "The way you should be filling these sheets is by looking at the index names of the DataFrame depicted above and placing the name at the correct position of the first column of the CSV (Column A). As an example the name `Total revenue` can be matched in the `income.csv` with `Revenue`. Do not change the names in Column B since the FinanceToolkit is dependent on those. So for the `income.csv` this will look like:\n", "\n", "|Income|Generic|\n", "|:----|:----|\n", "|Total revenue|Revenue|\n", "|Cost of revenue|Cost of Goods Sold|\n", "|Gross profit|Gross Profit|\n", "| |Gross Profit Ratio|\n", "|Research development|Research and Development Expenses|\n", "| |General and Administrative Expenses|\n", "| |Selling and Marketing Expenses|\n", "|Selling general and administrative|Selling, General and Administrative Expenses|\n", "| |Other Expenses|\n", "|Total operating expenses|Operating Expenses|\n", "| |Cost and Expenses|\n", "| |Interest Income|\n", "|Interest expense|Interest Expense|\n", "| |Depreciation and Amortization|\n", "|EBITDA|EBITDA|\n", "| |EBITDA Ratio|\n", "|Operating income or loss|Operating Income|\n", "| |Operating Income Ratio|\n", "|Total other income/expenses net|Total Other Income|\n", "|Income before tax|Income Before Tax|\n", "| |Income Before Tax Ratio|\n", "|Income tax expense|Income Tax Expense|\n", "|Net income|Net Income|\n", "| |Net Income Ratio|\n", "|Basic EPS|EPS|\n", "|Diluted EPS|EPS Diluted|\n", "|Basic average shares|Weighted Average Shares|\n", "|Diluted average shares|Weighted Average Shares Diluted|\n", "\n", "As you can see some are not filled. This is because the Yahoo Finance source doesn't have data on each. This is fine, to some extend, as any calculations that are not possible because of this will simply be excluded.\n", "\n", "Now it's time to convert each dataset in the right format." ] }, { "cell_type": "code", "execution_count": 4, "id": "78bd727e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2022-12-312021-12-312020-12-312019-12-31
Breakdown
GOOGLCash and cash equivalents21879000000.020945000000.026465000000.018498000000.0
Other short-term investments91883000000.0118704000000.0110229000000.0101177000000.0
Total cash113762000000.0139649000000.0136694000000.0119675000000.0
Net receivables40258000000.039304000000.030930000000.025326000000.0
Inventory2670000000.01170000000.0728000000.0999000000.0
..................
TSLACommon stock3000000.01000000.01000000.00.0
Retained earnings12885000000.0331000000.0-5399000000.0-6083000000.0
Accumulated other comprehensive income-361000000.054000000.0363000000.0-36000000.0
Total stockholders' equity44704000000.030189000000.022225000000.06618000000.0
Total liabilities and stockholders' equity82338000000.062131000000.052148000000.034309000000.0
\n", "

65 rows × 4 columns

\n", "
" ], "text/plain": [ " 2022-12-31 \\\n", " Breakdown \n", "GOOGL Cash and cash equivalents 21879000000.0 \n", " Other short-term investments 91883000000.0 \n", " Total cash 113762000000.0 \n", " Net receivables 40258000000.0 \n", " Inventory 2670000000.0 \n", "... ... \n", "TSLA Common stock 3000000.0 \n", " Retained earnings 12885000000.0 \n", " Accumulated other comprehensive income -361000000.0 \n", " Total stockholders' equity 44704000000.0 \n", " Total liabilities and stockholders' equity 82338000000.0 \n", "\n", " 2021-12-31 \\\n", " Breakdown \n", "GOOGL Cash and cash equivalents 20945000000.0 \n", " Other short-term investments 118704000000.0 \n", " Total cash 139649000000.0 \n", " Net receivables 39304000000.0 \n", " Inventory 1170000000.0 \n", "... ... \n", "TSLA Common stock 1000000.0 \n", " Retained earnings 331000000.0 \n", " Accumulated other comprehensive income 54000000.0 \n", " Total stockholders' equity 30189000000.0 \n", " Total liabilities and stockholders' equity 62131000000.0 \n", "\n", " 2020-12-31 2019-12-31 \n", " Breakdown \n", "GOOGL Cash and cash equivalents 26465000000.0 18498000000.0 \n", " Other short-term investments 110229000000.0 101177000000.0 \n", " Total cash 136694000000.0 119675000000.0 \n", " Net receivables 30930000000.0 25326000000.0 \n", " Inventory 728000000.0 999000000.0 \n", "... ... ... \n", "TSLA Common stock 1000000.0 0.0 \n", " Retained earnings -5399000000.0 -6083000000.0 \n", " Accumulated other comprehensive income 363000000.0 -36000000.0 \n", " Total stockholders' equity 22225000000.0 6618000000.0 \n", " Total liabilities and stockholders' equity 52148000000.0 34309000000.0 \n", "\n", "[65 rows x 4 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from financetoolkit import helpers\n", "\n", "balance_sheets = helpers.combine_dataframes(\n", " {\n", " \"TSLA\": tsla_balance,\n", " \"GOOGL\": googl_balance,\n", " },\n", ")\n", "income_statements = helpers.combine_dataframes(\n", " {\n", " \"TSLA\": tsla_income,\n", " \"GOOGL\": googl_income,\n", " },\n", ")\n", "cash_flow_statements = helpers.combine_dataframes(\n", " {\"TSLA\": tsla_cash, \"GOOGL\": googl_cash},\n", ")\n", "\n", "# The TTM column is dropped as it contains only a portion of this year\n", "income_statements = income_statements.drop(columns=[\"ttm\"])\n", "cash_flow_statements = cash_flow_statements.drop(columns=[\"ttm\"])\n", "\n", "# Show the Results\n", "balance_sheets" ] }, { "cell_type": "markdown", "id": "e1f148f9", "metadata": {}, "source": [ "With this done, it's now time to initialize the Toolkit and start using the Finance Toolkit with these custom datasets. By looking at the Balance Sheet Statement you can see that the column names have changed to the normalisation files.\n", "\n", "**Note:** It is important to always ensure that dates go from left to right. For example this dataset starts at 2022 and ends at 2019. This should be reversed to accommodate shifting the DataFrames accordingly throughout the Toolkit. E.g. for growth metrics or specific ratios that require current and past values." ] }, { "cell_type": "code", "execution_count": 5, "id": "a977bdfb", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Obtaining historical statistics: 100%|██████████| 2/2 [00:00<00:00, 9.31it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2019202020212022
Breakdown
GOOGLCash and Cash Equivalents18498000000.026465000000.020945000000.021879000000.0
Short Term Investments101177000000.0110229000000.0118704000000.091883000000.0
Cash and Short Term Investments119675000000.0136694000000.0139649000000.0113762000000.0
Accounts Receivable25326000000.030930000000.039304000000.040258000000.0
Inventory999000000.0728000000.01170000000.02670000000.0
Other Current Assets4412000000.05490000000.07054000000.08105000000.0
Total Current Assets152578000000.0174296000000.0188143000000.0164795000000.0
Long Term Investments13078000000.020703000000.029549000000.030492000000.0
Goodwill20624000000.021175000000.022956000000.028960000000.0
Intangible Assets1979000000.01445000000.01417000000.02084000000.0
Other Fixed Assets2342000000.03953000000.05361000000.06623000000.0
Fixed Assets123331000000.0145320000000.0171125000000.0200469000000.0
Total Assets275909000000.0319616000000.0359268000000.0365264000000.0
Accounts Payable5561000000.05589000000.06037000000.05128000000.0
Tax Payables274000000.01485000000.0808000000.0NaN
Deferred Revenue1908000000.02543000000.03288000000.03908000000.0
Deferred Revenue358000000.0481000000.0535000000.0599000000.0
Other Current Liabilities9405000000.010409000000.09799000000.09106000000.0
Total Current Liabilities45221000000.056834000000.064254000000.069300000000.0
Long Term Debt4554000000.013932000000.014817000000.014701000000.0
Deferred Tax Liabilities1701000000.03561000000.05257000000.0514000000.0
Other Non Current Liabilities2534000000.02269000000.02205000000.02247000000.0
Total Non Current Liabilities29246000000.040238000000.043379000000.039820000000.0
Total Liabilities74467000000.097072000000.0107633000000.0109120000000.0
Common Stock50552000000.058510000000.061774000000.068184000000.0
Retained Earnings152122000000.0163401000000.0191484000000.0195563000000.0
Accumulated Other Comprehensive Income-1232000000.0633000000.0-1623000000.0-7603000000.0
Total Equity201442000000.0222544000000.0251635000000.0256144000000.0
Total Liabilities and Shareholder Equity275909000000.0319616000000.0359268000000.0365264000000.0
TSLACash and Cash Equivalents6268000000.019384000000.017576000000.022185000000.0
Short Term InvestmentsNaNNaN131000000.05932000000.0
Cash and Short Term Investments6268000000.019384000000.017707000000.022185000000.0
Accounts Receivable1324000000.01886000000.01913000000.02952000000.0
Inventory3552000000.04101000000.05757000000.012839000000.0
Other Current AssetsNaNNaNNaN2941000000.0
Total Current Assets12103000000.026717000000.027100000000.040917000000.0
Goodwill198000000.0207000000.0200000000.0194000000.0
Intangible Assets339000000.0313000000.01717000000.0593000000.0
Other Fixed Assets1077000000.01536000000.02138000000.04193000000.0
Fixed Assets22206000000.025431000000.035031000000.041421000000.0
Total Assets34309000000.052148000000.062131000000.082338000000.0
Accounts Payable3771000000.06051000000.010025000000.015255000000.0
Deferred Revenue1889000000.02210000000.02372000000.02810000000.0
Deferred Revenue1207000000.01284000000.02052000000.02804000000.0
Other Current Liabilities317000000.0241000000.0294000000.0354000000.0
Total Current Liabilities10667000000.014248000000.019705000000.026709000000.0
Long Term Debt11634000000.09607000000.05245000000.01597000000.0
Deferred Tax LiabilitiesNaN151000000.024000000.082000000.0
Other Non Current Liabilities2691000000.03330000000.03546000000.05330000000.0
Total Non Current Liabilities15532000000.014221000000.010843000000.09731000000.0
Total Liabilities26199000000.028469000000.030548000000.036440000000.0
Common Stock0.01000000.01000000.03000000.0
Retained Earnings-6083000000.0-5399000000.0331000000.012885000000.0
Accumulated Other Comprehensive Income-36000000.0363000000.054000000.0-361000000.0
Total Equity6618000000.022225000000.030189000000.044704000000.0
Total Liabilities and Shareholder Equity34309000000.052148000000.062131000000.082338000000.0
Short Term Debt1785000000.02132000000.01589000000.01502000000.0
\n", "
" ], "text/plain": [ " 2019 2020 \\\n", " Breakdown \n", "GOOGL Cash and Cash Equivalents 18498000000.0 26465000000.0 \n", " Short Term Investments 101177000000.0 110229000000.0 \n", " Cash and Short Term Investments 119675000000.0 136694000000.0 \n", " Accounts Receivable 25326000000.0 30930000000.0 \n", " Inventory 999000000.0 728000000.0 \n", " Other Current Assets 4412000000.0 5490000000.0 \n", " Total Current Assets 152578000000.0 174296000000.0 \n", " Long Term Investments 13078000000.0 20703000000.0 \n", " Goodwill 20624000000.0 21175000000.0 \n", " Intangible Assets 1979000000.0 1445000000.0 \n", " Other Fixed Assets 2342000000.0 3953000000.0 \n", " Fixed Assets 123331000000.0 145320000000.0 \n", " Total Assets 275909000000.0 319616000000.0 \n", " Accounts Payable 5561000000.0 5589000000.0 \n", " Tax Payables 274000000.0 1485000000.0 \n", " Deferred Revenue 1908000000.0 2543000000.0 \n", " Deferred Revenue 358000000.0 481000000.0 \n", " Other Current Liabilities 9405000000.0 10409000000.0 \n", " Total Current Liabilities 45221000000.0 56834000000.0 \n", " Long Term Debt 4554000000.0 13932000000.0 \n", " Deferred Tax Liabilities 1701000000.0 3561000000.0 \n", " Other Non Current Liabilities 2534000000.0 2269000000.0 \n", " Total Non Current Liabilities 29246000000.0 40238000000.0 \n", " Total Liabilities 74467000000.0 97072000000.0 \n", " Common Stock 50552000000.0 58510000000.0 \n", " Retained Earnings 152122000000.0 163401000000.0 \n", " Accumulated Other Comprehensive Income -1232000000.0 633000000.0 \n", " Total Equity 201442000000.0 222544000000.0 \n", " Total Liabilities and Shareholder Equity 275909000000.0 319616000000.0 \n", "TSLA Cash and Cash Equivalents 6268000000.0 19384000000.0 \n", " Short Term Investments NaN NaN \n", " Cash and Short Term Investments 6268000000.0 19384000000.0 \n", " Accounts Receivable 1324000000.0 1886000000.0 \n", " Inventory 3552000000.0 4101000000.0 \n", " Other Current Assets NaN NaN \n", " Total Current Assets 12103000000.0 26717000000.0 \n", " Goodwill 198000000.0 207000000.0 \n", " Intangible Assets 339000000.0 313000000.0 \n", " Other Fixed Assets 1077000000.0 1536000000.0 \n", " Fixed Assets 22206000000.0 25431000000.0 \n", " Total Assets 34309000000.0 52148000000.0 \n", " Accounts Payable 3771000000.0 6051000000.0 \n", " Deferred Revenue 1889000000.0 2210000000.0 \n", " Deferred Revenue 1207000000.0 1284000000.0 \n", " Other Current Liabilities 317000000.0 241000000.0 \n", " Total Current Liabilities 10667000000.0 14248000000.0 \n", " Long Term Debt 11634000000.0 9607000000.0 \n", " Deferred Tax Liabilities NaN 151000000.0 \n", " Other Non Current Liabilities 2691000000.0 3330000000.0 \n", " Total Non Current Liabilities 15532000000.0 14221000000.0 \n", " Total Liabilities 26199000000.0 28469000000.0 \n", " Common Stock 0.0 1000000.0 \n", " Retained Earnings -6083000000.0 -5399000000.0 \n", " Accumulated Other Comprehensive Income -36000000.0 363000000.0 \n", " Total Equity 6618000000.0 22225000000.0 \n", " Total Liabilities and Shareholder Equity 34309000000.0 52148000000.0 \n", " Short Term Debt 1785000000.0 2132000000.0 \n", "\n", " 2021 2022 \n", " Breakdown \n", "GOOGL Cash and Cash Equivalents 20945000000.0 21879000000.0 \n", " Short Term Investments 118704000000.0 91883000000.0 \n", " Cash and Short Term Investments 139649000000.0 113762000000.0 \n", " Accounts Receivable 39304000000.0 40258000000.0 \n", " Inventory 1170000000.0 2670000000.0 \n", " Other Current Assets 7054000000.0 8105000000.0 \n", " Total Current Assets 188143000000.0 164795000000.0 \n", " Long Term Investments 29549000000.0 30492000000.0 \n", " Goodwill 22956000000.0 28960000000.0 \n", " Intangible Assets 1417000000.0 2084000000.0 \n", " Other Fixed Assets 5361000000.0 6623000000.0 \n", " Fixed Assets 171125000000.0 200469000000.0 \n", " Total Assets 359268000000.0 365264000000.0 \n", " Accounts Payable 6037000000.0 5128000000.0 \n", " Tax Payables 808000000.0 NaN \n", " Deferred Revenue 3288000000.0 3908000000.0 \n", " Deferred Revenue 535000000.0 599000000.0 \n", " Other Current Liabilities 9799000000.0 9106000000.0 \n", " Total Current Liabilities 64254000000.0 69300000000.0 \n", " Long Term Debt 14817000000.0 14701000000.0 \n", " Deferred Tax Liabilities 5257000000.0 514000000.0 \n", " Other Non Current Liabilities 2205000000.0 2247000000.0 \n", " Total Non Current Liabilities 43379000000.0 39820000000.0 \n", " Total Liabilities 107633000000.0 109120000000.0 \n", " Common Stock 61774000000.0 68184000000.0 \n", " Retained Earnings 191484000000.0 195563000000.0 \n", " Accumulated Other Comprehensive Income -1623000000.0 -7603000000.0 \n", " Total Equity 251635000000.0 256144000000.0 \n", " Total Liabilities and Shareholder Equity 359268000000.0 365264000000.0 \n", "TSLA Cash and Cash Equivalents 17576000000.0 22185000000.0 \n", " Short Term Investments 131000000.0 5932000000.0 \n", " Cash and Short Term Investments 17707000000.0 22185000000.0 \n", " Accounts Receivable 1913000000.0 2952000000.0 \n", " Inventory 5757000000.0 12839000000.0 \n", " Other Current Assets NaN 2941000000.0 \n", " Total Current Assets 27100000000.0 40917000000.0 \n", " Goodwill 200000000.0 194000000.0 \n", " Intangible Assets 1717000000.0 593000000.0 \n", " Other Fixed Assets 2138000000.0 4193000000.0 \n", " Fixed Assets 35031000000.0 41421000000.0 \n", " Total Assets 62131000000.0 82338000000.0 \n", " Accounts Payable 10025000000.0 15255000000.0 \n", " Deferred Revenue 2372000000.0 2810000000.0 \n", " Deferred Revenue 2052000000.0 2804000000.0 \n", " Other Current Liabilities 294000000.0 354000000.0 \n", " Total Current Liabilities 19705000000.0 26709000000.0 \n", " Long Term Debt 5245000000.0 1597000000.0 \n", " Deferred Tax Liabilities 24000000.0 82000000.0 \n", " Other Non Current Liabilities 3546000000.0 5330000000.0 \n", " Total Non Current Liabilities 10843000000.0 9731000000.0 \n", " Total Liabilities 30548000000.0 36440000000.0 \n", " Common Stock 1000000.0 3000000.0 \n", " Retained Earnings 331000000.0 12885000000.0 \n", " Accumulated Other Comprehensive Income 54000000.0 -361000000.0 \n", " Total Equity 30189000000.0 44704000000.0 \n", " Total Liabilities and Shareholder Equity 62131000000.0 82338000000.0 \n", " Short Term Debt 1589000000.0 1502000000.0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# initialize the Toolkit\n", "companies = Toolkit(\n", " tickers=[\"TSLA\", \"GOOGL\"],\n", " balance=balance_sheets,\n", " income=income_statements,\n", " cash=cash_flow_statements,\n", " format_location=\"external_datasets\",\n", " reverse_dates=True, # Important when the dates are descending\n", ")\n", "\n", "# Show the Balance Sheet\n", "companies.get_balance_sheet_statement()" ] }, { "cell_type": "markdown", "id": "7d1c961c", "metadata": {}, "source": [ "With this, it is now possible to do ratio calculations on these custom datasets. Let's have a look at the output of the extended Dupont model." ] }, { "cell_type": "code", "execution_count": 6, "id": "5195ca1f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Obtaining historical data: 100%|██████████| 3/3 [00:00<00:00, 9.69it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2019202020212022
GOOGLInterest Burden Ratio0.90670.85740.86751.0493
Tax Burden Ratio0.95590.97680.96590.8013
Operating Profit Margin0.24480.26340.35220.2522
Asset TurnoverNaN0.6130.7590.7807
Equity MultiplierNaN1.40461.43171.4269
Return on EquityNaN0.190.32070.2362
TSLAInterest Burden Ratio-0.12031.72791.02411.0082
Tax Burden Ratio-10.7750.3460.84960.9097
Operating Profit Margin-0.02710.03660.11780.1684
Asset TurnoverNaN0.72950.9421.1277
Equity MultiplierNaN2.99752.18031.929
Return on EquityNaN0.04780.21060.336
\n", "
" ], "text/plain": [ " 2019 2020 2021 2022\n", "GOOGL Interest Burden Ratio 0.9067 0.8574 0.8675 1.0493\n", " Tax Burden Ratio 0.9559 0.9768 0.9659 0.8013\n", " Operating Profit Margin 0.2448 0.2634 0.3522 0.2522\n", " Asset Turnover NaN 0.613 0.759 0.7807\n", " Equity Multiplier NaN 1.4046 1.4317 1.4269\n", " Return on Equity NaN 0.19 0.3207 0.2362\n", "TSLA Interest Burden Ratio -0.1203 1.7279 1.0241 1.0082\n", " Tax Burden Ratio -10.775 0.346 0.8496 0.9097\n", " Operating Profit Margin -0.0271 0.0366 0.1178 0.1684\n", " Asset Turnover NaN 0.7295 0.942 1.1277\n", " Equity Multiplier NaN 2.9975 2.1803 1.929\n", " Return on Equity NaN 0.0478 0.2106 0.336" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "companies.models.get_extended_dupont_analysis()" ] }, { "cell_type": "markdown", "id": "9ce41a5c", "metadata": {}, "source": [ "This can also be extended into the area of efficiency ratios." ] }, { "cell_type": "code", "execution_count": 7, "id": "5eb89c8d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Obtaining financial statements: 0it [00:00, ?it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "There is an index name missing in the provided financial statements. This is 'Operating Cash Flow'. This is required for the function (get_cash_conversion_efficiency) to run. Please fill this column to be able to calculate the ratios.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2019202020212022
GOOGLDays of Inventory Outstanding (DIO)NaN3.71973.12235.553
Days of Sales Outstanding (DSO)NaN56.247749.75151.3374
Operating Cycle (CC)NaN59.967452.873356.8904
Days of Accounts Payable Outstanding (DPO)NaN24.015419.125316.1455
Cash Conversion Cycle (CCC)NaN35.95233.74840.7448
Receivables TurnoverNaN0.15410.13630.1407
Inventory Turnover RatioNaN98.1262116.900965.7307
Accounts Payable Turnover RatioNaN15.198619.084622.6069
SGA-to-Revenue Ratio0.17310.15890.14140.1495
Fixed Asset TurnoverNaN1.35881.62831.5223
Asset Turnover RatioNaN0.6130.7590.7807
Operating Ratio0.7780.77410.69450.7354
TSLADays of Inventory Outstanding (DIO)NaN56.077844.734455.9945
Days of Sales Outstanding (DSO)NaN18.576412.881410.8991
Operating Cycle (CC)NaN74.654157.615966.8936
Days of Accounts Payable Outstanding (DPO)NaN71.971272.95176.1207
Cash Conversion Cycle (CCC)NaN2.6829-15.3351-9.2271
Receivables TurnoverNaN0.05090.03530.0299
Inventory Turnover RatioNaN6.50888.15936.5185
Accounts Payable Turnover RatioNaN5.07155.00344.795
SGA-to-Revenue Ratio0.10770.09970.08390.0484
Fixed Asset TurnoverNaN1.3241.78042.1311
Asset Turnover RatioNaN0.72950.9421.1277
Operating Ratio0.99670.93680.87930.8302
\n", "
" ], "text/plain": [ " 2019 2020 2021 \\\n", "GOOGL Days of Inventory Outstanding (DIO) NaN 3.7197 3.1223 \n", " Days of Sales Outstanding (DSO) NaN 56.2477 49.751 \n", " Operating Cycle (CC) NaN 59.9674 52.8733 \n", " Days of Accounts Payable Outstanding (DPO) NaN 24.0154 19.1253 \n", " Cash Conversion Cycle (CCC) NaN 35.952 33.748 \n", " Receivables Turnover NaN 0.1541 0.1363 \n", " Inventory Turnover Ratio NaN 98.1262 116.9009 \n", " Accounts Payable Turnover Ratio NaN 15.1986 19.0846 \n", " SGA-to-Revenue Ratio 0.1731 0.1589 0.1414 \n", " Fixed Asset Turnover NaN 1.3588 1.6283 \n", " Asset Turnover Ratio NaN 0.613 0.759 \n", " Operating Ratio 0.778 0.7741 0.6945 \n", "TSLA Days of Inventory Outstanding (DIO) NaN 56.0778 44.7344 \n", " Days of Sales Outstanding (DSO) NaN 18.5764 12.8814 \n", " Operating Cycle (CC) NaN 74.6541 57.6159 \n", " Days of Accounts Payable Outstanding (DPO) NaN 71.9712 72.951 \n", " Cash Conversion Cycle (CCC) NaN 2.6829 -15.3351 \n", " Receivables Turnover NaN 0.0509 0.0353 \n", " Inventory Turnover Ratio NaN 6.5088 8.1593 \n", " Accounts Payable Turnover Ratio NaN 5.0715 5.0034 \n", " SGA-to-Revenue Ratio 0.1077 0.0997 0.0839 \n", " Fixed Asset Turnover NaN 1.324 1.7804 \n", " Asset Turnover Ratio NaN 0.7295 0.942 \n", " Operating Ratio 0.9967 0.9368 0.8793 \n", "\n", " 2022 \n", "GOOGL Days of Inventory Outstanding (DIO) 5.553 \n", " Days of Sales Outstanding (DSO) 51.3374 \n", " Operating Cycle (CC) 56.8904 \n", " Days of Accounts Payable Outstanding (DPO) 16.1455 \n", " Cash Conversion Cycle (CCC) 40.7448 \n", " Receivables Turnover 0.1407 \n", " Inventory Turnover Ratio 65.7307 \n", " Accounts Payable Turnover Ratio 22.6069 \n", " SGA-to-Revenue Ratio 0.1495 \n", " Fixed Asset Turnover 1.5223 \n", " Asset Turnover Ratio 0.7807 \n", " Operating Ratio 0.7354 \n", "TSLA Days of Inventory Outstanding (DIO) 55.9945 \n", " Days of Sales Outstanding (DSO) 10.8991 \n", " Operating Cycle (CC) 66.8936 \n", " Days of Accounts Payable Outstanding (DPO) 76.1207 \n", " Cash Conversion Cycle (CCC) -9.2271 \n", " Receivables Turnover 0.0299 \n", " Inventory Turnover Ratio 6.5185 \n", " Accounts Payable Turnover Ratio 4.795 \n", " SGA-to-Revenue Ratio 0.0484 \n", " Fixed Asset Turnover 2.1311 \n", " Asset Turnover Ratio 1.1277 \n", " Operating Ratio 0.8302 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "companies.ratios.collect_efficiency_ratios()" ] }, { "cell_type": "markdown", "id": "f13f7c92", "metadata": {}, "source": [ "Optional parameters can also be used, as an example to see the growth of each item in the financial statement." ] }, { "cell_type": "code", "execution_count": 8, "id": "2537373e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2019202020212022
Breakdown
GOOGLCash and Cash EquivalentsNaN0.4307-0.20860.0446
Short Term InvestmentsNaN0.08950.0769-0.2259
Cash and Short Term InvestmentsNaN0.14220.0216-0.1854
Accounts ReceivableNaN0.22130.27070.0243
InventoryNaN-0.27130.60711.2821
Other Current AssetsNaN0.24430.28490.149
Total Current AssetsNaN0.14230.0794-0.1241
Long Term InvestmentsNaN0.5830.42730.0319
GoodwillNaN0.02670.08410.2615
Intangible AssetsNaN-0.2698-0.01940.4707
Other Fixed AssetsNaN0.68790.35620.2354
Fixed AssetsNaN0.17830.17760.1715
Total AssetsNaN0.15840.12410.0167
Accounts PayableNaN0.0050.0802-0.1506
Tax PayablesNaN4.4197-0.45595.3465
Deferred RevenueNaN0.33280.2930.1886
Deferred RevenueNaN0.34360.11230.1196
Other Current LiabilitiesNaN0.1068-0.0586-0.0707
Total Current LiabilitiesNaN0.25680.13060.0785
Long Term DebtNaN2.05930.0635-0.0078
Deferred Tax LiabilitiesNaN1.09350.4763-0.9022
Other Non Current LiabilitiesNaN-0.1046-0.02820.019
Total Non Current LiabilitiesNaN0.37580.0781-0.082
Total LiabilitiesNaN0.30360.10880.0138
Common StockNaN0.15740.05580.1038
Retained EarningsNaN0.07410.17190.0213
Accumulated Other Comprehensive IncomeNaN-1.5138-3.5643.6845
Total EquityNaN0.10480.13070.0179
Total Liabilities and Shareholder EquityNaN0.15840.12410.0167
TSLACash and Cash EquivalentsNaN2.0925-0.09330.2622
Short Term InvestmentsNaN2.0925-0.993244.2824
Cash and Short Term InvestmentsNaN2.0925-0.08650.2529
Accounts ReceivableNaN0.42450.01430.5431
InventoryNaN0.15460.40381.2302
Other Current AssetsNaN0.15460.4038-0.4891
Total Current AssetsNaN1.20750.01430.5099
GoodwillNaN0.0455-0.0338-0.03
Intangible AssetsNaN-0.07674.4856-0.6546
Other Fixed AssetsNaN0.42620.39190.9612
Fixed AssetsNaN0.14520.37750.1824
Total AssetsNaN0.520.19140.3252
Accounts PayableNaN0.60460.65680.5217
Deferred RevenueNaN0.16990.07330.1847
Deferred RevenueNaN0.06380.59810.3665
Other Current LiabilitiesNaN-0.23970.21990.2041
Total Current LiabilitiesNaN0.33570.3830.3554
Long Term DebtNaN-0.1742-0.454-0.6955
Deferred Tax LiabilitiesNaN-0.987-0.84112.4167
Other Non Current LiabilitiesNaN0.23750.06490.5031
Total Non Current LiabilitiesNaN-0.0844-0.2375-0.1026
Total LiabilitiesNaN0.08660.0730.1929
Common StockNaNinf0.02.0
Retained EarningsNaN-0.1124-1.061337.9275
Accumulated Other Comprehensive IncomeNaN-11.0833-0.8512-7.6852
Total EquityNaN2.35830.35830.4808
Total Liabilities and Shareholder EquityNaN0.520.19140.3252
Short Term DebtNaN0.1944-0.2547-0.0548
\n", "
" ], "text/plain": [ " 2019 2020 2021 2022\n", " Breakdown \n", "GOOGL Cash and Cash Equivalents NaN 0.4307 -0.2086 0.0446\n", " Short Term Investments NaN 0.0895 0.0769 -0.2259\n", " Cash and Short Term Investments NaN 0.1422 0.0216 -0.1854\n", " Accounts Receivable NaN 0.2213 0.2707 0.0243\n", " Inventory NaN -0.2713 0.6071 1.2821\n", " Other Current Assets NaN 0.2443 0.2849 0.149\n", " Total Current Assets NaN 0.1423 0.0794 -0.1241\n", " Long Term Investments NaN 0.583 0.4273 0.0319\n", " Goodwill NaN 0.0267 0.0841 0.2615\n", " Intangible Assets NaN -0.2698 -0.0194 0.4707\n", " Other Fixed Assets NaN 0.6879 0.3562 0.2354\n", " Fixed Assets NaN 0.1783 0.1776 0.1715\n", " Total Assets NaN 0.1584 0.1241 0.0167\n", " Accounts Payable NaN 0.005 0.0802 -0.1506\n", " Tax Payables NaN 4.4197 -0.4559 5.3465\n", " Deferred Revenue NaN 0.3328 0.293 0.1886\n", " Deferred Revenue NaN 0.3436 0.1123 0.1196\n", " Other Current Liabilities NaN 0.1068 -0.0586 -0.0707\n", " Total Current Liabilities NaN 0.2568 0.1306 0.0785\n", " Long Term Debt NaN 2.0593 0.0635 -0.0078\n", " Deferred Tax Liabilities NaN 1.0935 0.4763 -0.9022\n", " Other Non Current Liabilities NaN -0.1046 -0.0282 0.019\n", " Total Non Current Liabilities NaN 0.3758 0.0781 -0.082\n", " Total Liabilities NaN 0.3036 0.1088 0.0138\n", " Common Stock NaN 0.1574 0.0558 0.1038\n", " Retained Earnings NaN 0.0741 0.1719 0.0213\n", " Accumulated Other Comprehensive Income NaN -1.5138 -3.564 3.6845\n", " Total Equity NaN 0.1048 0.1307 0.0179\n", " Total Liabilities and Shareholder Equity NaN 0.1584 0.1241 0.0167\n", "TSLA Cash and Cash Equivalents NaN 2.0925 -0.0933 0.2622\n", " Short Term Investments NaN 2.0925 -0.9932 44.2824\n", " Cash and Short Term Investments NaN 2.0925 -0.0865 0.2529\n", " Accounts Receivable NaN 0.4245 0.0143 0.5431\n", " Inventory NaN 0.1546 0.4038 1.2302\n", " Other Current Assets NaN 0.1546 0.4038 -0.4891\n", " Total Current Assets NaN 1.2075 0.0143 0.5099\n", " Goodwill NaN 0.0455 -0.0338 -0.03\n", " Intangible Assets NaN -0.0767 4.4856 -0.6546\n", " Other Fixed Assets NaN 0.4262 0.3919 0.9612\n", " Fixed Assets NaN 0.1452 0.3775 0.1824\n", " Total Assets NaN 0.52 0.1914 0.3252\n", " Accounts Payable NaN 0.6046 0.6568 0.5217\n", " Deferred Revenue NaN 0.1699 0.0733 0.1847\n", " Deferred Revenue NaN 0.0638 0.5981 0.3665\n", " Other Current Liabilities NaN -0.2397 0.2199 0.2041\n", " Total Current Liabilities NaN 0.3357 0.383 0.3554\n", " Long Term Debt NaN -0.1742 -0.454 -0.6955\n", " Deferred Tax Liabilities NaN -0.987 -0.8411 2.4167\n", " Other Non Current Liabilities NaN 0.2375 0.0649 0.5031\n", " Total Non Current Liabilities NaN -0.0844 -0.2375 -0.1026\n", " Total Liabilities NaN 0.0866 0.073 0.1929\n", " Common Stock NaN inf 0.0 2.0\n", " Retained Earnings NaN -0.1124 -1.0613 37.9275\n", " Accumulated Other Comprehensive Income NaN -11.0833 -0.8512 -7.6852\n", " Total Equity NaN 2.3583 0.3583 0.4808\n", " Total Liabilities and Shareholder Equity NaN 0.52 0.1914 0.3252\n", " Short Term Debt NaN 0.1944 -0.2547 -0.0548" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "companies.get_balance_sheet_statement(growth=True)" ] }, { "cell_type": "markdown", "id": "d57bfa61", "metadata": {}, "source": [ "And you can look into performance and risk measurements as well." ] }, { "cell_type": "code", "execution_count": 9, "id": "38fa9e62", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABM4AAAHWCAYAAACPNMUEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gb1fn9z6hrtavt3eveC9gY24AxxoAhdAjGmISATWihOoFAIN80CJCQ0GKCA78QTAIEMAmEQABTDBgwLrhg3Muuvd7i7U276vf3x8wdSbsqo7bSrN7P8/hZWRqNRiNp5s57z3uOwBhjIAiCIAiCIAiCIAiCIAgiAE2qN4AgCIIgCIIgCIIgCIIg0hEqnBEEQRAEQRAEQRAEQRBEEKhwRhAEQRAEQRAEQRAEQRBBoMIZQRAEQRAEQRAEQRAEQQSBCmcEQRAEQRAEQRAEQRAEEQQqnBEEQRAEQRAEQRAEQRBEEKhwRhAEQRAEQRAEQRAEQRBBoMIZQRAEQRAEQRAEQRAEQQSBCmcEQRAEQRAEQRAEQRAEEQQqnBEEQRBEgvnDH/6A0aNHQ6vVYvr06aneHHzyyScQBAGffPJJqjclak4//XScfvrpqd6MiPz617+GIAip3gwCwNKlSzFy5MhUb8YA+HekpaUl1ZtCEARBEEQUUOGMIAiCSAmrVq2CIAgB/0pKSrBgwQK8++67Ma/36aefxqpVqxK3oVGyZs0a3H333Zg7dy6ef/55PPTQQwOW4YUsJf+I6PB4PKioqIAgCHF9j4ihT7KOFQ899BDefPPNhK83Gnbs2IFFixZhxIgRMJlMqKysxMKFC7FixYoBy7a3t+Omm25CZWUlLBYLjj/+ePzhD38IuW7/45NGo0FFRQXOPvtsRYV5Xjzs/89kMgVd/rnnnsOkSZNgMpkwbty4oNsPAHV1dVi8eDHy8vJgtVpx8cUX49ChQxG3hyAIgiCUoEv1BhAEQRCZzf33349Ro0aBMYZjx45h1apVOO+88/Df//4XF1xwQdTre/rpp1FUVISlS5cmfmMV8PHHH0Oj0eC5556DwWAIusykSZPwj3/8I+C+e++9F9nZ2fj5z38+GJs5ZPn444/R0NCAkSNH4qWXXsK5556b6k0i0pRkHSseeughLFq0CJdccklC16uUL7/8EgsWLMDw4cNx/fXXo6ysDLW1tfjqq6/w5JNP4rbbbgtYfunSpfjf//6HW2+9FRMnTsT27dvx0ksv4ac//WnI11i4cCGuvvpqMMZQXV2Np59+GmeccQbeeecdRb+5lStXIjs7W/6/VqsdsMwzzzyDm266CZdddhl+8pOfYN26dbj99tvR29uLe+65R16up6cHCxYsQGdnJ+677z7o9Xo8/vjjmD9/PrZt24bCwkIlu40gCIIgQkKFM4IgCCKlnHvuuTjxxBPl///whz9EaWkp/vnPf8ZUOEs1TU1NMJvNIYtmAFBaWoqrrroq4L7f/e53KCoqGnA/ER0vvvgiTjjhBFxzzTW47777YLPZYLFYUr1ZhALos0oMDz74IHJzc7Fp0ybk5eUFPNbU1BTwf5vNhrfffhs33XQTHn/8cfl+h8MR9jXGjx8fcKy69NJLcdxxx+GJJ55QVDhbtGgRioqKQj7e19eHn//85zj//PPx+uuvAwCuv/56eL1ePPDAA7jhhhuQn58PQCyA7t+/Hxs3bsSsWbMAiOeVqVOn4tFHHw2q+iUIgiCIaKBWTYIgCCKtyMvLg9lshk4XOLfj9XrxxBNPYMqUKTCZTCgtLcWNN96I9vZ2eZmRI0di586d+PTTT+UWIO6P1dbWhrvuugvTpk1DdnY2rFYrzj33XGzfvl3RdrndbjzwwAMYM2YMjEYjRo4cifvuuy/gAlMQBDz//POw2Wzy68fTCtbR0YHly5ejqqoKRqMRY8eOxe9//3t4vd6A5V555RXMnDkTOTk5sFqtmDZtGp588smw6163bh0uv/xyDB8+HEajEVVVVfjxj3+Mvr6+iNuldF/yltTXXnsNDz74IIYNGwaTyYQzzzwTBw4cGLDeZ599FmPGjIHZbMbs2bOxbt06BXvJR19fH9544w0sWbIEixcvRl9fH/7zn/8MWG7p0qXIzs7GoUOHcM4558BisaCiogL3338/GGPycjU1NRAEAX/84x/x+OOPY8SIETCbzZg/fz6+/fZbRdv04osvYubMmTCbzSgoKMCSJUtQW1ur6Ll1dXX44Q9/iIqKChiNRowaNQo/+tGP4HQ65WUOHTqEyy+/HAUFBcjKysJJJ52Ed955J2A9/p/Db37zG1RWViInJweLFi1CZ2cnHA4Hli9fjpKSEmRnZ2PZsmUDCieCIODWW2/FSy+9hAkTJsBkMmHmzJn47LPPApY7fPgwbr75ZkyYMAFmsxmFhYW4/PLLUVNTE7Acb9X+9NNPcfPNN6OkpATDhg2TH3/33Xcxb948WCwW5OTk4Pzzz8fOnTsH7KM333wTU6dOhclkwtSpU/HGG28o2rfhjhVK92swBEGAzWbDCy+8IK+3v6Kto6MDS5cuRV5eHnJzc7Fs2TL09vYOWFes352DBw9iypQpA4pmAFBSUjJgewVBCPjeA4DRaIz4Ov5MmzYNRUVFqK6uVrQ8YwxdXV0DXpezdu1atLa24uabbw64/5ZbboHNZgv4LF5//XXMmjVLLpoBwMSJE3HmmWfitddei+p9EARBEEQwSHFGEARBpJTOzk60tLSAMYampiasWLECPT09A5RXN954I1atWoVly5bh9ttvR3V1NZ566ils3boVX3zxBfR6PZ544gncdtttAS2PpaWlAMQL4TfffBOXX345Ro0ahWPHjuGZZ57B/PnzsWvXLlRUVITdzuuuuw4vvPACFi1ahDvvvBMbNmzAww8/jN27d8sX6//4xz/w7LPPYuPGjfjrX/8KADjllFNi2i+9vb2YP38+6urqcOONN2L48OH48ssvce+996KhoQFPPPEEAOCDDz7AlVdeiTPPPBO///3vAQC7d+/GF198gTvuuCPk+levXo3e3l786Ec/QmFhITZu3IgVK1bg6NGjWL16ddhti3Zf/u53v4NGo8Fdd92Fzs5OPPLII/j+97+PDRs2yMs899xzuPHGG3HKKadg+fLlOHToEC666CIUFBSgqqpK0T5766230NPTgyVLlqCsrAynn346XnrpJXzve98bsKzH48F3vvMdnHTSSXjkkUfw3nvv4Ve/+hXcbjfuv//+gGX//ve/o7u7G7fccgvsdjuefPJJnHHGGdixY4f8/QrGgw8+iF/84hdYvHgxrrvuOjQ3N2PFihU47bTTsHXr1qCFDU59fT1mz56Njo4O3HDDDZg4cSLq6urw+uuvo7e3FwaDAceOHcMpp5yC3t5e3H777SgsLMQLL7yAiy66CK+//jouvfTSgHU+/PDDMJvN+NnPfoYDBw5gxYoV0Ov10Gg0aG9vx69//Wt89dVXWLVqFUaNGoVf/vKXAc//9NNP8eqrr+L222+H0WjE008/je985zvYuHEjpk6dCgDYtGkTvvzySyxZsgTDhg1DTU0NVq5cidNPPx27du1CVlZWwDpvvvlmFBcX45e//CVsNhsA8Xd0zTXX4JxzzsHvf/979Pb2YuXKlTj11FOxdetW2fh/zZo1uOyyyzB58mQ8/PDDaG1txbJlywIKcKEId6yIdr/6849//APXXXcdZs+ejRtuuAEAMGbMmIBlFi9ejFGjRuHhhx/Gli1b8Ne//hUlJSXy7xeI77szYsQIrF+/Ht9++638uYQiKysLixcvxqpVq3D99ddjxowZYZcPRXt7O9rb2zF27FhFy48ePRo9PT2wWCy45JJL8Oijjwb8lrZu3QoAAWpkAJg5cyY0Gg22bt2Kq666Cl6vF9988w2uvfbaAa8xe/ZsrFmzBt3d3cjJyYnpfREEQRAEAIARBEEQRAp4/vnnGYAB/4xGI1u1alXAsuvWrWMA2EsvvRRw/3vvvTfg/ilTprD58+cPeD273c48Hk/AfdXV1cxoNLL7778/7LZu27aNAWDXXXddwP133XUXA8A+/vhj+b5rrrmGWSyWsOsLRv/tfuCBB5jFYmH79u0LWO5nP/sZ02q17MiRI4wxxu644w5mtVqZ2+0Oue61a9cyAGzt2rXyfb29vQOWe/jhh5kgCOzw4cNht1XpvuSvO2nSJOZwOOT7n3zySQaA7dixgzHGmNPpZCUlJWz69OkByz377LMMQNDPMxgXXHABmzt3bsDzdToda2pqCljummuuYQDYbbfdJt/n9XrZ+eefzwwGA2tubpbfEwBmNpvZ0aNH5WU3bNjAALAf//jH8n2/+tWvmP+wqqamhmm1Wvbggw8GvPaOHTuYTqcbcH9/rr76aqbRaNimTZsGPOb1ehljjC1fvpwBYOvWrZMf6+7uZqNGjWIjR46UPyP+OUydOpU5nU552SuvvJIJgsDOPffcgPWffPLJbMSIEQH38d/n5s2b5fsOHz7MTCYTu/TSS+X7gn2v1q9fzwCwv//97/J9/Pd/6qmnBnx3u7u7WV5eHrv++usD1tHY2Mhyc3MD7p8+fTorLy9nHR0d8n1r1qxhAAZsfzBCHSuU7tdQWCwWds011wy4n39Hrr322oD7L730UlZYWCj/P97vzpo1a5hWq2VarZadfPLJ7O6772bvv/9+wGfv/77OOussZjAYWGlp6YDjTTAAsB/+8IesubmZNTU1sQ0bNrAzzzyTAWCPPvpo2Oc+8cQT7NZbb2UvvfQSe/3119kdd9zBdDodGzduHOvs7JSXu+WWW5hWqw26juLiYrZkyRLGGGPNzc0MQNBj+J///GcGgO3ZsyfieyIIgiCIcFCrJkEQBJFS/vznP+ODDz7ABx98gBdffBELFizAddddh3//+9/yMqtXr0Zubi4WLlyIlpYW+d/MmTORnZ2NtWvXRnwdo9EIjUY87Xk8HrS2tiI7OxsTJkzAli1bwj73f//7HwDgJz/5ScD9d955JwAoauGKltWrV2PevHnIz88PeM9nnXUWPB6P3CKXl5cHm82GDz74IKr1m81m+bbNZkNLSwtOOeUUMMZktUcoot2Xy5YtC/B8mzdvHgDIqXebN29GU1MTbrrppoDlli5ditzcXEXvp7W1Fe+//z6uvPJK+b7LLrtMblEMxq233irf5q2ITqcTH374YcByl1xyCSorK+X/z549G3PmzJG/F8H497//Da/Xi8WLFwd8fmVlZRg3blzY76zX68Wbb76JCy+8cIDihm8rIH4vZ8+ejVNPPVV+LDs7GzfccANqamqwa9eugOddffXV0Ov18v/nzJkDxtgAtc6cOXNQW1sLt9sdcP/JJ5+MmTNnyv8fPnw4Lr74Yrz//vvweDwAAr9XLpcLra2tGDt2LPLy8oJ+N66//voAY/gPPvgAHR0duPLKKwP2m1arxZw5c+T91tDQgG3btuGaa64J+I4sXLgQkydPHvA60RDtfo2Wm266KeD/8+bNQ2trK7q6ugDE990BxH2wfv16XHTRRdi+fTseeeQRnHPOOaisrMRbb70VsOzVV1+Nmpoa7NmzB8XFxTjrrLNw5MgR+fH169dDEAR89NFHAc977rnnUFxcjJKSEsyZMwdffPEFfvKTn2D58uVht+2OO+7AihUr8L3vfQ+XXXYZnnjiCbzwwgvYv38/nn76aXm5vr6+kD6RJpNJbinnf4O1lvKkTiXt5wRBEAQRDmrVJAiCIFLK7NmzA4oDV155JWbMmIFbb70VF1xwAQwGA/bv34/Ozs4B/jyc/obXwfB6vXjyySfx9NNPo7q6Wr7QBxAxde3w4cPQaDQD2pDKysqQl5eHw4cPR3z9aNm/fz+++eYbFBcXB32cv+ebb74Zr732Gs4991xUVlbi7LPPxuLFi/Gd73wn7PqPHDmCX/7yl3jrrbcCfOIAsX02HNHuy+HDhwf8n5t689fl+2/cuHEBy+n1eowePTrstnBeffVVuFwuzJgxI8A/bc6cOXjppZdwyy23BCyv0WgGrHv8+PEAMMCPq/928WXD+Sft378fjLGgzwUQUMDqT3NzM7q6uiK22R0+fBhz5swZcP+kSZPkx/3X0f9z4AWn/q2wubm58Hq96OzsDPg8Q+2H3t5eNDc3o6ysDH19fXj44Yfx/PPPo66uLsDDKtj3atSoUQH/379/PwDgjDPOCPqerVar/N5CbZOSYng4ot2v0RLu92C1WuP67nBmzZqFf//733A6ndi+fTveeOMNPP7441i0aBG2bduGyZMn46uvvsIbb7yB1157DaNGjcJ7772HU045BWeddRbWrVuH0tJSfPvtt9DpdAEFUwC4+OKLceutt0IQBOTk5GDKlCkxBzt873vfw5133okPP/wQP/vZzwCIBVh/Lz9/7Ha7XKDlf4OFGdjt9oBlCIIgCCJWqHBGEARBpBUajQYLFizAk08+if3792PKlCnwer0oKSnBSy+9FPQ5oYpL/jz00EP4xS9+gWuvvRYPPPAACgoKoNFosHz58gFm+6HgSp/BwOv1YuHChbj77ruDPs6LPCUlJdi2bRvef/99vPvuu3j33Xfx/PPP4+qrr8YLL7wQ9LkejwcLFy5EW1sb7rnnHkycOBEWiwV1dXVYunRpxP0R7b70VxT5w0IYg8cC/27MnTs36OOHDh1SXIRLBF6vF4Ig4N133w36/rOzswdtWzihPodEfj633XYbnn/+eSxfvhwnn3wycnNzIQgClixZEvS70b+owZf5xz/+gbKysgHL9w8NUSOR9ncivzsGg0E2zh8/fjyWLVuG1atX41e/+hW+/PJLAMBJJ50EAKisrMT777+PU089FQsXLsQnn3yCZ599Fuedd94AT7Vhw4bhrLPOUrwdkaiqqkJbW5v8//Lycng8HjQ1NQVMmDidTrS2tso+igUFBTAajWhoaBiwTn5fJP9KgiAIgoiE+kcfBEEQxJCDt4j19PQAEM21P/zwQ8ydOzeieiBUcev111/HggUL8NxzzwXc39HRgaKiorDrHDFiBLxeL/bv3y+rTgDRRLyjowMjRoyI+J6iZcyYMejp6VF0cWowGHDhhRfiwgsvhNfrxc0334xnnnkGv/jFL4Kade/YsQP79u3DCy+8gKuvvlq+X2m7Zzz7Mhh8/+3fvz9AaeRyuVBdXY3jjz8+7POrq6vx5Zdf4tZbb8X8+fMDHvN6vfjBD36Al19+Gf/3f/8XcP+hQ4fkAiQA7Nu3DwBk83kOV0H5s2/fvgHL+TNmzBgwxjBq1KiA11BCcXExrFZrxOTOESNGYO/evQPu37Nnj/x4Igm1H7KysuTi9euvv45rrrkGjz76qLyM3W5HR0eHotfgRvolJSVhv/v+35n+BNsnwQh1rIh3v8ZbYI/nuxMOruzlBSW+nbW1tbLqcOLEiXjnnXdw5plnYubMmThy5AieeeaZhG1DMBhjqKmpCQgmmD59OgCxjfu8886T79+8eTO8Xq/8uEajwbRp07B58+YB692wYQNGjx5NwQAEQRBE3JDHGUEQBJFWuFwurFmzBgaDQS5SLV68GB6PBw888MCA5d1ud8BFucViCXqRrtVqByhoVq9ejbq6uojbxC/ceJIl57HHHgMAnH/++RHXES2LFy/G+vXr8f777w94rKOjQy4utra2Bjym0Whw3HHHAQjevgT4FC/++4MxhieffFLRtsWzL4Nx4oknori4GH/5y18C2rNWrVqlqODC1WZ33303Fi1aFPBv8eLFmD9/flC14lNPPSXfZozhqaeegl6vx5lnnhmw3Jtvvhnw3jZu3IgNGzbg3HPPDblN3/3ud6HVavGb3/xmwL5ijA343PzRaDS45JJL8N///jdoQYCv77zzzsPGjRuxfv16+TGbzYZnn30WI0eOjNvrqz/r168PaIGsra3Ff/7zH5x99tnydyrYd2PFihUB7bzhOOecc2C1WvHQQw/B5XINeLy5uRmAqEiaPn06XnjhhYAW0A8++ECxB1moY0W8+zXUepUSz3cHANauXRtULcg9+SZMmAAA8vf8/vvvD/CzmzNnDv7v//4PNTU1GDduXFxtqf3hn58/K1euRHNzc0B7+RlnnIGCggKsXLlywLJZWVkBx9xFixZh06ZNAb+VvXv34uOPP8bll1+esG0nCIIgMhdSnBEEQRAp5d1335WVHE1NTXj55Zexf/9+/OxnP5P9jObPn48bb7wRDz/8MLZt24azzz4ber0e+/fvx+rVq/Hkk09i0aJFAICZM2di5cqV+O1vf4uxY8eipKQEZ5xxBi644ALcf//9WLZsGU455RTs2LEDL730kqL2veOPPx7XXHMNnn32WXR0dGD+/PnYuHEjXnjhBVxyySVYsGBBwvfLT3/6U7z11lu44IILsHTpUsycORM2mw07duzA66+/jpqaGhQVFeG6665DW1sbzjjjDAwbNgyHDx/GihUrMH369AB1nD8TJ07EmDFjcNddd6Gurg5WqxX/+te/BnidhSKefRkMvV6P3/72t7jxxhtxxhln4IorrkB1dTWef/55Ret86aWXMH369AFeXZyLLroIt912G7Zs2YITTjgBgGgc/t577+Gaa67BnDlz8O677+Kdd97BfffdN6D1d+zYsTj11FPxox/9CA6HA0888QQKCwtDttEComrot7/9Le69917U1NTgkksuQU5ODqqrq/HGG2/ghhtuwF133RXy+Q899BDWrFmD+fPn44YbbsCkSZPQ0NCA1atX4/PPP0deXh5+9rOf4Z///CfOPfdc3H777SgoKMALL7yA6upq/Otf/5IDHBLF1KlTcc455+D222+H0WiUzdx/85vfyMtccMEF+Mc//oHc3FxMnjwZ69evx4cffhjRR5BjtVqxcuVK/OAHP8AJJ5yAJUuWoLi4GEeOHME777yDuXPnygXPhx9+GOeffz5OPfVUXHvttWhra8OKFSswZcoUWa0ajlDHinj368yZM/Hhhx/iscceQ0VFBUaNGhXUMy0U8X53brvtNvT29uLSSy/FxIkT4XQ68eWXX+LVV1/FyJEjsWzZMgDAcccdh9tvvx1/+tOfMGvWLFx55ZXIy8vDunXr8Morr2DevHn4/PPPcf3114ds+46WESNG4IorrsC0adNgMpnw+eef45VXXsH06dNx4403ysuZzWY88MADuOWWW3D55ZfjnHPOwbp16/Diiy/iwQcfREFBgbzszTffjP/3//4fzj//fNx1113Q6/V47LHHUFpaKge4EARBEERcDGKCJ0EQBEHIPP/88wxAwD+TycSmT5/OVq5cybxe74DnPPvss2zmzJnMbDaznJwcNm3aNHb33Xez+vp6eZnGxkZ2/vnns5ycHAaAzZ8/nzHGmN1uZ3feeScrLy9nZrOZzZ07l61fv57Nnz9fXiYcLpeL/eY3v2GjRo1ier2eVVVVsXvvvZfZ7faA5a655hpmsVii3h9TpkwZsB3d3d3s3nvvZWPHjmUGg4EVFRWxU045hf3xj39kTqeTMcbY66+/zs4++2xWUlLCDAYDGz58OLvxxhtZQ0ODvJ61a9cyAGzt2rXyfbt27WJnnXUWy87OZkVFRez6669n27dvZwDY888/H3Zble5L/rqrV68OeH51dXXQ13n66afZqFGjmNFoZCeeeCL77LPPIn4+X3/9NQPAfvGLX4RcpqamhgFgP/7xjxljvs/o4MGD7Oyzz2ZZWVmstLSU/epXv2Iej2fAdv7hD39gjz76KKuqqmJGo5HNmzePbd++PeA1fvWrX7Fgw6p//etf7NRTT2UWi4VZLBY2ceJEdsstt7C9e/eG3F7O4cOH2dVXX82Ki4uZ0Whko0ePZrfccgtzOBzyMgcPHmSLFi1ieXl5zGQysdmzZ7O33347YD2hPgf+G9y0aVPQ99Lc3CzfB4Ddcsst7MUXX2Tjxo1jRqORzZgxI+A7xRhj7e3tbNmyZayoqIhlZ2ezc845h+3Zs4eNGDGCXXPNNRFf23+bzznnHJabm8tMJhMbM2YMW7p0Kdu8efOA/Ttp0iRmNBrZ5MmT2b///W92zTXXsBEjRkTavSGPFYwp26+h2LNnDzvttNOY2WxmAOT3HWy/+u+L6urqAe8tlu/Ou+++y6699lo2ceJElp2dzQwGAxs7diy77bbb2LFjxwYs/9xzz7GZM2cyk8nEsrOz2bx589grr7zCGGPsvvvuYwDYb37zG3l5/l2Iheuuu45NnjyZ5eTkML1ez8aOHcvuuece1tXVFXT5Z599lk2YMIEZDAY2ZswY9vjjjwc9N9TW1rJFixYxq9XKsrOz2QUXXMD2798f0zYSBEEQRH8ExhLozEsQBEEQBJHmLF26FK+//npEVVJNTQ1GjRqFP/zhD2EVPpmAIAi45ZZbAtpbCYIgCIIgMgHyOCMIgiAIgiAIgiAIgiCIIFDhjCAIgiAIgiAIgiAIgiCCQIUzgiAIgiAIgiAIgiAIgggCeZwRBEEQBEEQBEEQBEEQRBBIcUYQBEEQBEEQBEEQBEEQQaDCGUEQBEEQBEEQBEEQBEEEQZfqDQiH1+tFfX09cnJyIAhCqjeHIAiCIAiCIAiCIAiCSCGMMXR3d6OiogIaTfL1YGldOKuvr0dVVVWqN4MgCIIgCIIgCIIgCIJII2prazFs2LCkv05aF85ycnIAiDvDarWmeGsIgiAIgiAIgiAIgiCIVNLV1YWqqiq5ZpRs0rpwxtszrVYrFc4IgiAIgiAIgiAIgiAIABg0Sy8KByAIgiAIgiAIgiAIgiCIIFDhjCAIgiAIgiAIgiAIgiCCQIUzgiAIgiAIgiAIgiAIgghCWnucKYExBrfbDY/Hk+pNyWi0Wi10Ot2g9RgTBEEQBEEQBEEQBEEkG1UXzpxOJxoaGtDb25vqTSEAZGVloby8HAaDIdWbQhAEQRAEQRAEQRAEETeqLZx5vV5UV1dDq9WioqICBoOB1E4pgjEGp9OJ5uZmVFdXY9y4cdBoqAuYIAiCIAiCIAiCIAh1o9rCmdPphNfrRVVVFbKyslK9ORmP2WyGXq/H4cOH4XQ6YTKZUr1JBEEQBEEQBEEQBEEQcaF6WRApm9IH+iwIgiAIgiAIgiAIghhKUKWDIAiCIAiCIAiCIAiCIIJAhTOCIAiCIAiCIAiCIAiCCAIVzgiCIAiCIAiCIAiCIAgiCFQ4G2QEQQj779e//jUA4I033sBJJ52E3Nxc5OTkYMqUKVi+fLm8nlWrViEvL0/Ra06cOBFGoxGNjY2Jf0MEQRAEQRAEQRAEQRBDFCqcDTINDQ3yvyeeeAJWqzXgvrvuugsfffQRrrjiClx22WXYuHEjvv76azz44INwuVxRv97nn3+Ovr4+LFq0CC+88EIS3hFBEARBEARBEARBEMTQRJfqDUgkjDH0uTwpeW2zXgtBECIuV1ZWJt/Ozc2FIAgB9wHAf//7X8ydOxc//elP5fvGjx+PSy65JOrteu655/C9730P8+fPxx133IF77rkn6nUQBEEQBEEQRLS4PV7c8eo2zByej2tPHZXqzSEIgiCImBhShbM+lweTf/l+Sl571/3nIMuQmN1ZVlaGl19+Gd9++y2mTp0a83q6u7uxevVqbNiwARMnTkRnZyfWrVuHefPmJWQ7CYIgCIIgCCIUO+u78M43DdhwqI0KZwRBEIRqoVbNNOS2227DrFmzMG3aNIwcORJLlizB3/72NzgcjqjW88orr2DcuHGYMmUKtFotlixZgueeey5JW00QBEEQBEEQPmwONwCgs88JxliKt4YgCIIgYmNIKc7Mei123X9Oyl47UVgsFrzzzjs4ePAg1q5di6+++gp33nknnnzySaxfvx5ZWVmK1vO3v/0NV111lfz/q666CvPnz8eKFSuQk5OTsO0lCIIgCIIgiP7YnKKFisvDYHd5YTYkbrxMEARBEIPFkCqcCYKQsHbJdGDMmDEYM2YMrrvuOvz85z/H+PHj8eqrr2LZsmURn7tr1y589dVX2LhxY4CvmcfjwSuvvILrr78+mZtOEARBEARBZDi9Trd8u7PPRYUzgiAIQpVQq6ZKGDlyJLKysmCz2RQt/9xzz+G0007D9u3bsW3bNvnfT37yE2rXJAiCIAiCIJJOr9MX2tXZF306PEEQBEGkA0NHnjWE+PWvf43e3l6cd955GDFiBDo6OvCnP/0JLpcLCxculJfzeDzYtm1bwHONRiPGjh2Lf/zjH7j//vsHhAtcd911eOyxx7Bz505MmTJlMN4OQRAEQRAEkYFwjzOACmcEQRDJps/pwX+31+P0icUoyTGlenOGFKQ4S0Pmz5+PQ4cO4eqrr8bEiRNx7rnnorGxEWvWrMGECRPk5Xp6ejBjxoyAfxdeeCHeeusttLa24tJLLx2w7kmTJmHSpEmkOiMIgiAIgiCSSh8pzgiCIAaNN7fV4e5/fYPHP9if6k0ZcpDiLIUsXboUS5cuHXD/ggULsGDBgpiey/F4PCEf27Vrl9JNJAiCIAiCIIiYsPkVzrqocEYQBJFUGjr6AADVLT0p3pKhBynOCIIgCIIgCIJIOP3DAQiCIIjk0WUXj7kNnfYUb8nQY9AKZ7/73e8gCAKWL18+WC9JEARBEARBEESKoHAAgiCIwYMfZxs67WCMpXhrhhaDUjjbtGkTnnnmGRx33HGD8XIEQRAEQRAEQaQYUpwRBEEMHrwl3un2os3mTPHWDC2SXjjr6enB97//ffy///f/kJ+fn+yXIwiCIAiCIAgiDbA5yOOMIAhisOiy+46z1K6ZWJJeOLvllltw/vnn46yzzoq4rMPhQFdXV8A/giAIgiAIgiDUh3+qpv8FHUEQBJF4/JW9jVQ4SyhJTdV85ZVXsGXLFmzatEnR8g8//DB+85vfJHOTCIIgCIIgCIIYBGzUqkkQBDFodPX5jrkNnX0p3JKhR9IUZ7W1tbjjjjvw0ksvwWQyKXrOvffei87OTvlfbW1tsjaPIAiCIAiCIIgkQuEABEEQg4f/cZZaNRNL0hRnX3/9NZqamnDCCSfI93k8Hnz22Wd46qmn4HA4oNVqA55jNBphNBqTtUkEQRAEQRAEQQwSFA5AEAQxODjdXvS5fJMV1KqZWJJWODvzzDOxY8eOgPuWLVuGiRMn4p577hlQNCMIgiAIgiAIYujQ6yDFGUEQxGDQ3c9Hsp5aNRNK0gpnOTk5mDp1asB9FosFhYWFA+4nCIIgCIIgCGLowBgL8Dizu7xwuD0w6mjynCAIItH0n5wgxVliSXqqJhGcxsZG3HHHHRg7dixMJhNKS0sxd+5crFy5Er29vfJyX375Jc477zzk5+fDZDJh2rRpeOyxx+DxeAas8+2338b8+fORk5ODrKwszJo1C6tWrQr6+v/6179wxhlnID8/H2azGRMmTMC1116LrVu3ysusWrUKeXl5iX7rBEEQBEEQxBDH4fbCywLv8zeuJgiCIBJHl108vmo1AgDR44wxFu4pRBQMauHsk08+wRNPPDGYL5mWHDp0CDNmzMCaNWvw0EMPYevWrVi/fj3uvvtuvP322/jwww8BAG+88Qbmz5+PYcOGYe3atdizZw/uuOMO/Pa3v8WSJUsCfggrVqzAxRdfjLlz52LDhg345ptvsGTJEtx000246667Al7/nnvuwRVXXIHp06fjrbfewt69e/Hyyy9j9OjRuPfeewd1XxAEQRAEQRBDD/9ggGyj2ORC7ZoEQRDJoUs6vo4szAIgTl6099IxN1EkrVUzJTAGuHojL5cM9FmAICha9Oabb4ZOp8PmzZthsVjk+0ePHo2LL75YlLbbbLj++utx0UUX4dlnn5WXue6661BaWoqLLroIr732Gq644grU1tbizjvvxPLly/HQQw/Jy955550wGAy4/fbbcfnll2POnDn46quv8Mgjj+DJJ5/E7bffLi87fPhwzJw5k6rSBEEQBEEQRNzYHKL6wajTIN+iR4/DTYUzgiCIJMGPr0XZRnT2udDS40RDZx8KLIYUb9nQYGgVzly9wEMVqXnt++oBgyXiYq2trbLSzL9o5o8gCFizZg1aW1sHqMUA4MILL8T48ePxz3/+E1dccQVef/11uFyuoMveeOONuO+++/DPf/4Tc+bMwT//+U9kZ2fj5ptvDvnaBEEQBEEQBBEPPN3NYtTBatID6JMVEQRBEERi6ZLCAXLNepTlmsTCWYcdUypyU7xlQwPyOBtkDhw4AMYYJkyYEHB/UVERsrOzkZ2djXvuuQf79u0DAEyaNCnoeiZOnCgvs2/fPuTm5qK8vHzAcgaDAaNHjw5YdvTo0dDpfDXTxx57TH7t7OxsdHZ2JuS9EgRBEARBEJkJV5yZ9VrkmvUAfBd2BEEQRGLhHpJWsx7luWYAQEMXBQQkiqGlONNnicqvVL12HGzcuBFerxff//734XA45PsHo3Xy2muvxUUXXYQNGzbgqquuonZNgiAIgiAIIi64x5nF6CucUasmQRBEcuDHV6tJjyyDmF7c2NmXyk0aUgytwpkgKGqXTCVjx46FIAjYu3dvwP2jR48GAJjNYnV4/PjxAIDdu3fjlFNOGbCe3bt3Y/LkyfKynZ2dqK+vR0VFYKuq0+nEwYMHsWDBAgDAuHHj8Pnnn8PlckGvFwcxeXl5yMvLw9GjRxP4TgmCIAiCIIhMhRfOsgw6X+GMjKoJgiCSgn+rpkEnNhY2dJDiLFFQq+YgU1hYiIULF+Kpp56CzWYLudzZZ5+NgoICPProowMee+utt7B//35ceeWVAIDLLrsMer0+6LJ/+ctfYLPZ5GWvvPJK9PT04Omnn07QOyIIgiAIgiCIQHqdYttQloEUZwRBEMmGe0hazTqU55oAAA2dVDhLFENLcaYSnn76acydOxcnnngifv3rX+O4446DRqPBpk2bsGfPHsycORMWiwXPPPMMlixZghtuuAG33norrFYrPvroI/z0pz/FokWLsHjxYgBiIuYjjzyCO++8EyaTCT/4wQ+g1+vxn//8B/fddx/uvPNOzJkzBwBw8skn484778Sdd96Jw4cP47vf/S6qqqrQ0NCA5557DoIgQKPx1VM9Hg+2bdsWsP1GozGk9xpBEARBEARB2Bw+xZmVCmcEQRBJxb9Vs0wunFGrZqJQReGs3eaE1ZrqrUgcY8aMwdatW/HQQw/h3nvvxdGjR2E0GjF58mTcddddcuLlokWLsHbtWjz44IOYN28e7HY7xo0bh5///OdYvnx5QALm8uXLMXr0aPzxj3/Ek08+CY/HgylTpmDlypVYtmxZwOv/8Y9/xOzZs7Fy5Ur87W9/Q29vL0pLS3Haaadh/fr1sPrt7J6eHsyYMWPA9h84cCCJe4ggCIIgCIJQM1xxZjFqqXBGEASRZLrs4jE316xHBQ8H6LSDMRZQNyBiQxWFs/3HejCivCjVm5FQysvLsWLFCqxYsSLscvPmzcN7772naJ0XXXQRLrroIkXLLl68WFashWLp0qVYunSpovURBEEQBEEQBMfncUapmgRBEMmmW27V1KPEagQAONxedPS6kG8xpHLThgSq8DjrpJMsQRAEQRAEQagGm+xx5hcO0OdO5SYRBEEMWTr9PM5Mei0KpWJZPbVrJgRVFM66SdZNEARBEARBEKqhT1KcWfwVZzSmJwiCSDiMsYBUTQAozxN9zhopICAhqKJwRrJugiAIgiAIglAPPBzAbNDBahLdYcjjjCAIIvHYXV64PAyAGA4AAGVWn88ZET+qKJzRSZYgCIIgCIIg1IN/OABXQPQ43HB7vKncLIIgiCEHr5doNQKyDFoAQEUeJWsmElUUzsIpzhhjg7glRDjosyAIgiAIgiAA/3AAnZyqCQDddvI5IwiCSCT+bZo8QbMslxfOSHGWCNRROAtiJKrXiyfg3t7ewd4cIgT8s+CfDUEQBEEQBJGZ9MrhAFrotRpYJBUEdZIQBEEkFu4fydviAaCcF846qHCWCHSRF0k9wVI1tVot8vLy0NTUBADIysqSq6vE4MIYQ29vL5qampCXlwetVpvqTSIIgiAIgiBSCPc4421DuWY9bE4PFc4IgiASDD+u5vqpe8tzRY+zxi4qnCUCVRTOginOAKCsrAwA5OIZkVry8vLkz4QgCIIgCILIXPpcUqqmUbzcsJr1qO+0U+GMIAgiwfBWTWtA4cznccYYI5FRnKikcOYMer8gCCgvL0dJSQlcLjoJpxK9Xk9KM4IgCIIgCAIAYHOIE99mvTg+5Bd0VDgjCIJILJ29vFXTVzgrtYqFM7vLi45eF/IthpRs21BBJYWz8CdYrVZLRRuCIAhi0Knr6MOrG4/gqpNHoCTHlOrNIQiCSBt4OABXnPEWonChXwRBEET0dEmhK/6KM5Nei0KLAa02Jxo67VQ4ixNVhAN0OzyU2EgQBEGkHau+qMafPj6AlzccSfWmEARBpA2MMTkcwOLncQaQ4owgCCLRyOEA5kBdFE/WbOzqG/RtGmqoonDm8TL0OCi6miAIgkgvWntEK4HmbkeKt4QgCCJ9cLi98Epz3mYqnBEEQSSVzr6BrZqALyCgnpI140YVhTMA6OilkyxBEASRXnBpPJ2jCIIgfNj8JryzDFI4gHRBF8mChSAIgogO3gLvn6oJ+AICGjupcBYvqimc0ewUQRAEkW70OMRzU0eIEBuCIIhMhPubmfQaaDVikluu1EKUyWP6pi47rnhmPd7d0ZDqTSEIYgjR1TfQ4wzwtWo2UOEsblQRDgDQ7BRBEASRfnST4owgCGIAvHDG1WYAkJvFFWeZa7/y3s5GbKhuQ21bL86ZUgaNVFQkCIKIB1+rZmB5pyKPF87I4yxeSHFGEARBEDHC/TepcEYQBOHDJgUDZBl8qffkcQa0SL6Y9Z12fFXdmuKtIQhiqBCqVbPMKnqcUatm/FDhjCAIgiBixKc4o1ZNgiAITp+kOLP4K86ocIaWHl+QzBtb6lK4JQRBDCV8qZqBhTOuOKvv7ANjbNC3ayihmsJZRwafZAmCIIj0gzGGbmmGz+b0wOn2pniLCIIg0gMeDmD2U5zxcIBMLpy1+hXO/rejQS4wEgRBxIrXy9AtHXP7p2qWWsXCmd3lzehjbyJQTeGMPmiCIAginXC4vXB5fLN3dJ4iCIIQ4R5nFuPAVs0uuwteb2YqH1p7fOpkm9ODNbsaU7g1BEEMBbodbnAxmdUc6HFm0mtRYDEAoICAeKHCGUEQBEHEAG/T5HRSsiZBEASA4OEAvIWIMaDHmZkBAa028Txx8uhCAMC/qV2TIIg44W2aJr0GRp12wOPluRQQkAiocEYQBEEQMcCDATjtFBBAEAQBAOgNEg5g0mth1ImXHp0Zerxs6RZbNa8/bRQAYN3+ZjR1kQqEIIjY8SVq6oM+7iuc0bEmHtRTOMvQEyxBEASRnnB/Mw4laxIEQYgEU5wBmR0QYHd5ZB+imcMLMHNEPrwMeGt7fYq3jCAINRMqUZNTnkvJmolAPYWzDDzBEgRBEOlL/1ZNStYkCIIQsUmKM4shsG2It2t2ZeC4vk1q09RpBFjNOnz3hEoAwL+oXZMgiDjo6pOCAUIUzsokxVl9BxXO4oEKZwRBEAQRAwM9zug8RRAEAQC9Dq44CyycZbLijAcDFGYbIAgCLphWAYNWg90NXdjd0JXirSMIQq10ya2auqCP81bNxi7yOIsHKpwRBEEQRAz0b9VsJ8UZQRAEAL9WTWPwVs0ue+aN61t6RH+zQosRAJCbpceZk0oAAG9sJdUZQRCxobRVs4EUZ3GhmsJZJkdXEwRBEOlH/3AA8jgjCIIQ6Q3RqpnJijNeOCvKMcr3XTpDbNd8Y2sd3B5vSraLIAh1IyvOQhbOfOEAjFE9JVZUUzhjbGBbDEEQBEGkigEeZxl4IUgQBBEMm6Q4M1M4gEyr5HFWZDHI950+oQT5WXo0dzvwxcHWVG0aQRAqJlKqJvc463N5ZD80InpUUTgz6aXo6gw8yRIEQRDpCVeclUjqAUp/JgiCEOkLFQ4gefBk4pi+pVtq1cz2Fc4MOg0uOr4CAPDGlqMp2S6CINRNlzSRG6pV06TXokAq2Nd3ks9ZrKiicMarp5l4kiUIgiDSE+5xNixf9I4gjzOCIAgRmyO4x5lVVpxlnuqBK84Ks40B9196wjAAwHs7GwdYABAEQUTC16oZPBwAAMqsUkBAJ/mcxYoqCmeZLOsmCIIg0hM+w1dVkAWAPM4IgiA43OOMUjV9yB5n/Qpnxw/LxehiC+wuL977tjEVm0YQhIqJ1KoJABV5Pp8zIjZUUTjjX4KOPprNJwiCINKDHl44yxcLZ5l4IUgQBBEMOVUzROGsKwOPl609XHFmCLhfEAR8VwoJ+De1axIEESWRUjUBn89ZA7Vqxow6CmdZmeuHQBAEQaQnvFWzqkBs1exxuOGiVDSCIAi5cGYJEQ6QiYUzWXFmMQ547BKpcLb+UCvqO+jCliAI5XRGSNUEgPJccaxKirPYUUfhjDzOCIIgiDSDe9FU5JkhCOJ91K5JEESmwxiDLUSrpjVDWzW9XoY2nqqZYxjw+LD8LJw0ugCMAW9uqxvszSMIQsXwpMxwrZrlpDiLG3UUzjL0JEsQBEGkL91+KUa+CR6yFCAIIrNxuL1gTLzdPxzA3+OM8YUygC67C26v+H55ul1/vjtDDAn495a6jNo3BEHEjtPtRZ9LVPgqa9UkxVmsqKJwlmvKXFk3QRAEkZ7wwlmOSY+8LMmLkxRnBEFkODa/ZEizPrjHmdvL5HbOTKBF8jfLMelg1GmDLnPutDIYdRocaOrBjrrOwdw8giBUCvc3A4BsU+hUzQqpVbOx006F+RhRR+FM8jijCxKCIAgiHfB6mdyqmW3UIS9LVBDQeYogiEyHF8RMeg20GiHgsSyDFjrpPv8LvqFOqERNf3JMepw9pQyAqDojCIKIBBcW5Rh1A463/nDFWa/TI7d2EtGhisIZeZwRBEEQ6USP0zfoyDHpkCepKNp7qVWTIIjMJlQwACAmSOZmoAULT9Qsyg7epsn57gliSMB/t9dT2AxBEBHpkrofwgUDAIBJr0W+1B3R0EU+Z7GgisJZTgaeYAmCIIj0pUcaqOi1Aow6jdyqSecpgiAyHTkYwBi8JVEunGWQQrfVJirOCoMkavozb2wRirKNaLU58dm+5sHYNIIgVIySRE0OJWvGhyoKZ1apX5cuSAiCIIh0wN/fTBAEWXFGrZoEQWQ6vQ5RcZalD+63k4kT4tzjrDCC4kyn1eDi6RUAqF2TIIjI8FZNaxh/M46crNlBhbNYUEfhLANnpgiCIIj0pccheUpIAxXZ44xSNQmCyHB6lSrOMqpwJinOwniccXi75ge7j2XUPiIIInq4V2S4RE0O9zlr7KRWzVhQReEsT/I463a44fFSCgRBEASRWrinRLaRF864xxld5BAEkdmE8zgDfBd4/DiaCbRKhbPiCIozAJhcbsWE0hw43V58srcp2ZtGEISKiaZVsyKPWjXjQRWFsxy/L0IXzbwQBEEQKcbXqhlYOCNlNEEQmQ73ODMbQinOMs+CpVVu1YysOBMEAVMqrQCAemqpIggiDDwhk4cphqPMKrVqUuEsJlRRONNrNbBIJ99MOskSBEEQ6UmPrDgTByp5ZmrVJAiCAIA+WXEWvlUzkybD5VZNS2TFmf9ybVKoAEEQRDCiadUsz+OFM2rVjAVVFM6AzPRDIAiCINKTbnugGStXnFE4AEEQmY6NhwMYg7dqcmVEJo3pueKsKCey4gzwKdP48wiCIILha9VUEg7ga9VkjOyvokU9hTPZeDlzTrIEQRBEetLj6N+qKZ2jqHBGEESGI4cD6CkcAADsLg+6pXNGkUVZ4axAUpy12KhwRhBEaHypmspbNXudnozymEwU6imcZaAfAkEQBJGecI+zbF44ky4EexxuuDzelG0XQRBEquHhAKEUZ5nWqtkmFb90GkGRKgQAirKpVZMgiMjwApiSVk2zQYt8qUOikXzOokZFhbPMmp0iCIIg0hfuKZEjzfBZzXoIgvgYnacIgshkeDhAJI+zTDlWyv5m2QYI/EQRgUILtWoSBBGZrihSNQGgTGrXrCefs6hRXeEsU2anCIIgiPTFFw4gqge0GkGWyVO7JkEQmUwv9zgLUTizZljhTPY3U5CoyeGtmq02J3kREQQREl4bUaI4A4CKXLFdkxRn0aOawpnPP4ZmXgiCIIjUwls1uccZ4B8QQOcpgiAyl14XL5yFb9XMlMKZT3GmvHBWKLVqOt1e2VOTIAjCH8aY3AGhtA28LJcna1LhLFqSWjhbuXIljjvuOFitVlitVpx88sl49913Y1pXpp1kCYIgiPSlfzgA4PM5I8UZQRCZTK90fLQYwyvOHG4v7FKRbSjTKnmcFUkqMiVkGXQwS+EKbRQQQBBEEPpcHrg8oiJVSTgAAJTzwlkHtWpGS1ILZ8OGDcPvfvc7fP3119i8eTPOOOMMXHzxxdi5c2fU68o0WTdBEASRvnT38zgDKP2ZIAgCAGxSOIA5hOIsx6iTPSG5WkIpf19fg6v+ukFVKqyWbp/HWTTw5VvI54wgiCB09YnHQZ1GCNka359yyeOssYsUZ9GS1MLZhRdeiPPOOw/jxo3D+PHj8eCDDyI7OxtfffVV1OsixRlBEASRLgRTnOVTqyZBEAT6IoQDaPw8IaP1Ln7m00P4/EALNhxqjW8jBxFZcRZFqyYAFHKfsx5K1iQIYiC+Nk294uARrjirJ8VZ1Chrhk0AHo8Hq1evhs1mw8knnxx0GYfDAYfDd3Lo6uqSb/sKZ+qZYSIIgiCGJl39wgEAatUkCIIAfIqzUB5ngDiu7+xzRTUhbnd55CQ4NaVNxuJx5r88tWoSBBEMfvy0mpSXdPw9zhhjigtuxCCEA+zYsQPZ2dkwGo246aab8MYbb2Dy5MlBl3344YeRm5sr/6uqqpIf4xcknTSTTxAEQaQQh9sDp9sLIFSrJp2nCILIXLjHWbjWIW5kHU3hrLatFzxgsllFKizeahl1q6ZfsiZBEER/ok3UBHytmr1OD7pV1PKeDiS9cDZhwgRs27YNGzZswI9+9CNcc8012LVrV9Bl7733XnR2dsr/amtr5ceoVZMgCIJIB3rsvoEGKc4IgiB8MMZ8qZohwgGA2Mb11S02+baaFGe81bI4SsVZQTZv1VTPeyUIYvCQFWdRFM7MBq2cAt/QQT5n0ZD0Vk2DwYCxY8cCAGbOnIlNmzbhySefxDPPPDNgWaPRCKMx+EmFn2BtTg9cHi/02qTX/AiCIAhiAN12n3+PVuOTuOdbaIIn0Rxq7kG2UYcSqynVm0IQhALsLq+sCrNEaNUEfObWSqhp9RXOWlSiOPN6mdxqGa3irMgiXhO12tTxXgmCGFy65FZN5YUzQFSddfS60NDZhwllOcnYtKTj8TJ4vWxQX3PQPM44Xq83wMdMKf6V1K4+V9Q+AQRBEASRCHzBAIEDlTyzeFHUTpYCCeHLgy343v/bAACozDNj+vA8zKjKw4zheZhSkQuTXlmCFEEQg4fN6SuEmcP8RmNRnNW09sq31VJM6rK74JYu7gos0RXO+PLkcUYQRDC43240ijNADAjY3dCFxk71Ks42VrfhB3/5ZFBfM6mFs3vvvRfnnnsuhg8fju7ubrz88sv45JNP8P7770e9Lq1GQI5Jh267Gx1UOCMIgiBSBE8xyu5nxpqbRa2aiWRzTbt8u66jD3UdfXjnmwYAgF4rYHK5FTOG52PG8DycOLIAlXnmVG0qQRASfVIwgFmvhUYT2nTaGkvhTIWtmlwZl2PSwaiLrtjPFWotKnmvBEEMLr5WzehKOjwgoF7FhbPatl7Zb3iwSGrhrKmpCVdffTUaGhqQm5uL4447Du+//z4WLlwY0/pyzXp0293UBkMQBEGkDN6qmdOvcOYLsaFzVCI4LKlLfnT6GMwbV4StRzqw9UgHttW2o6XHie1HO7H9aCdWfQloBOCVG07G7FEFKd5qgshsuOLMEsbfDPC1FsVaOFNLqyYvekXrbwYAhbxVUyXvlSCIwSXWVs0KqXDWKKUUq5Ejbb2RF0owSS2cPffccwldX65Zj6PtfVQ4IwiCIFIGDwfwDwYAgHwpVbPb4SYvzgRQKw2KJpbl4JQxRThlTBEA0Xz8aHsfttZ2YOuRdrz/bSPqO+3YfLiNCmcEkWJsDklxFiZRE4i+VdPu8gSoI9psTni8LMBnMh1pjTFR0/85bTYnGGMQhPR+rwRBDC68AyKaVE0AKJOSNRtUrDhLReFMVaN6n5Fo8gpnr2w8gu8+/QWautX7RSIIgiCSR7c9+Ayfv8cETfDEz+E2UV0yotAScL8gCKgqyMJFx1fgVxdOwWUzhwEA6jvUO3NKEEMF3qoZLhgAiL5wxi+SLFJBzsvU4SfJvdi4eiwauMeZ28uiClEgEsPKTw5iybPrZV9TQt00dzvw3OfV6FDBcUMpsaRqAj7FGRXOokOVhbNkXpCs+rIGW4504M2tdUl7DYIgCEK9+MIBAi8MtRoBVuk+8jmLD7vLg2Nd4gXniIKssMtWSN5m9RSrThAph7dqZilUnCmdDK+W2jRHF2cjX/KTVIPPWUu3VDiLQXFm0mtlZbNawhCGCnsau/DI+3vw1aE2fL6/OdWbQySAv35+CA+8vQt/X3841ZuSMHhB3WqKzeNMzeEAtVQ4C0/eIBgv10kz1l8dakvaaxAEQRDqpTtEqyYA5Entmp196X9Bl87wAVGOUSef+0PBQwHq2klxRhCpplcunClTnCktnB1uFQtnI4ssckCYGnzOWqREzKIYQ814wa2VkjUHlYf/twdMDENFbRudW4YCx6Qi0eHWwS+4JItYWzXLpVbNHodbXoea6HG4U3JMVFXhLJYEnmjo7HPJF0SbqtvgkeKjCYIgCILTLSvOBg5U8ilZMyFwCf7wwqyIvj4+xRld3BBEqumVWjUjKc6iHdNXt4jHhFGFWSiS0ybTv3DGjf2LYlCcAb52TQoIGDw+39+CT/f5VGapaAkjEk+XdI3f2DV0xgqxtmqaDVp5UlKNqjM+uZoXZZpovKiqcJbsVs2j7b4DY7fDjV31XUl5HYIgCEK9yIqzINL4XElx1k6Fs7jgM8LDI7RpAj7FWbeDUrcJItX0SuEAliCKXH/4mN7m9MDl8UZcL1ecjSj0V5ylvwrLFw4Qo+KMJ2uS4mxQ8HoZHn53NwCgzCq2s1HhbGjAxwdq9vXyx+tlsnVItKmagO/7rcZJR/6bHJYfeYyYSKhw5kf/No+vDrUm5XUIgiAI9cLDAfp7nAFAnpkrzugiJx78FWeRMBu0sipDjQNAghhKcI+zSKma/p48Sto1a1p8rZrFUhFKDSosroortMSmOONKNTX4uQ0F/rO9Djvru5Bj1OH/LpgEAKhtp8LZUIDXDxo77WBM/V1l3Q633E5sjUF5VSVNTKqxdbVWLpyZB/V1VVU4yzNL3jFJmsk/2q9wtqGaCmcEQRBEID2S4iwnqMdZ8kNsMgG5cKZAcQYAFXnizCn5nBFEavGlaoYvnOm0GtknkrdQhcLu8qBeUomMKrLIRSg1FJP4NhblxKY445MCbaQ4Szp2lwd/fH8fAOBHC8bg+GF5AICjbX3wkn2P6uHjsl6nJ+IxRw3wCQeTXgOjLvzxNhhjS7IBAAebexK6XYMBHyNWKRwjJgpVFc6S36opDrhPGl0AANhAPmcEQRBEP3irZjCPMx4OQB5n8SG3ZRVYFC3P2zXrO6lwRhCpxKYwHABQPq7nF0k5Jh3ys/RyESrdPc7sLo/siVlkiTUcQB3vdSiw6ssa1HX0oTzXhGvnjkJ5rgk6jQCnx4tj3UOjvS+T8Ve2qtHXqz+yv1kMbZoAMKZYvYUzrpIjxVkYkt6q2SF+CGdPLkO2UYduuxu7G8jnjCAIgvDRI4cDhG7VbKdWzZjxehlqpYks5YozStYkiHSAe5xFCgcAfMfQSOP6aqlNc1SRBYIgyIqzljRXYXFfMr1WiKmVCvC1eJLiLLm025z489oDAIA7z54Ak14LnVaDSunC/IgK29kIH3aXBw63z0uxYQhMssWaqMkZUyxOTB5oUl/hrJY8ziIzWIqzEYVZmDUyHwD5nBEEQRCB8MFKsHAAatWMn2PddjjdXmg1gtyCGQmuOKsjjzOCSClyqmaEcABA+bhe9jcrFC/0ZBVWd3qrsFplfzNjxHTgUBSSx9mgsOLjA+i2uzGxLAeXzqiU7+eTNxQQoG76+ygOBcVZV4yJmpwxUqvmsS6H7N2rBjxeJtdsSHEWBn6C7XN54HB7Er5+34eQhZNGFwIAvjrUlvDXIQiCINSJf4pRUMVZFg8HUM8gJN3gM/uVeWbotMqGKXKrJhXOCCKlyK2a+siKM8WFM+mYMFIKC5HDAWyOtDb59iVqxhYMAPg8zlpt6V0kVDNHWnvxj69qAAD3nTcJWo2vyMkVLbWkZlY1/Y8xjV1DoXDGEzVjU7NaTXqUSG3vh5ptCduuZHOsyw6nxwudRkBZLhXOQpJj0oFP2CR6Nr/b7pLXWZlvlgtnG6tbyeeMIAiCAAD0ujxyilGOMYzHWR+pA2LlsDSzP0JBoiaHt9OQ4owgUgtXnFmMygtnkVI1/RM1AV8hyu7ywuZM/ER6opATNbNj8zcDgCLpuW02JxnUJ4lH3t8Dl4dh3rginDa+OOAxrjirJcWZqumyD0HFWZytmoA6fc6O+CVq+he5BwNVFc40GkE2wFMSXR0NfLCdl6VHtlGHKRVWZBt16CKfM4IgCEKCy9l1GgEm/cBTKPc467CR4ixWaqNM1AR8HmdN3Q44/XxMCELtVLfY8NiavehQiW+i3KoZRThAxMJZa2DhzGLUwSwp2lrT2DS/hSdqWmJXnOVLkzFeBnSQBUDC2Vbbgbe/aYAgAPeeO2nA49SqOTToL7hpGAKFs844WzUBYEyJ+nzOUpWoCaiscAYkz+esrl+vrE6rwYmSz9mGamrXJAiCIIAeu69NM5hnDVecdTvccHmogBMLPC0pmsJZocUAo04DxobGTDJBcJ5eewB/+vgA/rWlLtWbooheOVUzsuLMqmBMb3d55Itc7nEG+FRnLWns/cWLejwFNBYMOo3citVG7ZoJhTGGh/63GwDw3RnDMLnCOmAZKpwNDfgxRicplIbCOKErzlRNQJ2Ks1gmVxMFFc4kuL8Z90kB4OdzRgEBBEEQBNAlFc6CBQMAgV4TiVZGZwqxtGoKgkABAcSQ5JhkgN+okhQ4myN6xVm4MT0vpFtNOuRn+S4QeQtjSxorzniqZmEcijPA/72mb5FQjXy4uwkbq9tg1Glw59njgy7DL86bux3oS+O2YCI8nZLv7GgpSXIopGry42Y8rZpjS3jhTD0eZ0eocKacZBkvH20fGGs6Z1QBAGBjdRv5ChAEQRC+YIAg/maAqFbmxTNqq4mN2hhl+BVUOCOGILxFUy2pin2S4iwaj7NwhbNqyd9sVJElQOVbpIK0yUR4nAF+AQFp/F7Vhtvjxe/eFdVm1546Sj5/9Cc3Sy+f0/m1IqE++KTnhDKr/H+bNJ5TK/w9Wc2xhQMAPsVZTYtNNV0SVDiLAiWy7ljgA23/WNOplbmwGLTo7HNhT2N3Ql+PIAiCUB/c4yyU4gzwCwhQiSdROtFtd6FNUmlEOyiiZE1iKNIuHUdabOl/PPF6GXpdoirHrKBVU/Y4s4dTnImFsxF+bZqAOhRnLQlI1fR/PrVqJo5XN9fiYLMN+Vl6/Oj0MWGXraJ2TdXD6wYVeSZkG8Xxm9qTNRPRqllmNSHLoIXby1Tz/Y51cjURqK5wNpitmnqtBieOFFVn1K5JEARBdNsjx38nSxmdCfCBW4HFgJwoB4Oy4qydCmfE0KFdChpJZxN8jt3tSx22KGjVVDIZ3j8YgFMoK87Sd7/wbSuOU3FWSK2aCcXmcOPxD/YDAG4/c1zEwgP5nKkf/7bGslwTAPX7nCWiVVOjEeT21YMqCAiwOdzycXB4FHYeiYIKZxJH5XCAwA+BfM4IgiAIDg8H4DOWweDnKSqcRc+RGIIBOJWSYrx+CHiXEAQAON1euT28TQWKs14/DyieehmOXKnFqDPMsdLXqhl4TCi0pHcxyetl8mcWt+LMwhVn6fle1cbqzbVo6XFgRGEWvj9nRMTlqXCmfvyLTOVS4UztyZpcqRtPqiYAjC1Wj89ZrdQunZ+lj0tpFyuqK5zlJaFw1ut0yyejyvzAHvc5oyWfsxryOSMIgsh0eKtmODVUPm/VJI+zqInHu6IiTxwMk8cZMVTo6PMVSlp7nGAsvcehvVIwgFmvhUYzMHW4P/yCr9vhDjnG5uEAA1o1c9K7VbOzzwW39J4K4gwH4IWzVmrVTAi8GHv+tHIYdJEvhXlLWC0VzlRLl7/izMoVZ+oeK3T18Q6I+ApI3OfsgAoUZ7GkricS1RXOZMVZAmfyeVtHjkk3QO44rTIXWQYtOnpd2HuMfM4IgiAymW4eDqCoVZPUAdESS6ImZ1ie+Jz6jr60LzAQhBL8VatOj1c+/qQrvS7lwQCAb0zPmK8N3p8+p0dWhYzqXziTi0npeZzlRS6rSQejTtn+CEWB1KpJ4QCJQU47VdhCO1wunKm70JLJdPr5gXHFmZo9zpxuL/okP8l4WjUBYIycrJn+hbNU+psBai6cJXAmP1SbJkA+ZwRBEIQPfnEXNhyAWjVjJp5BUWmuEYIA2F1eamkihgT9v8fpXjixSYqzLAX+ZgBg1Glh0ouXIsECAg63icqgXLMe+f1UW+muOOMtpEVx+psB6V8kVBut8mejTAnoHw5AkzLqJEBxlit2l6nZ48z/eBluPKqEMcW+wlm6f79TmagJUOEMAHC0Y2AwgD8njabCGUEQBAA0ddmx9PmN+HjPsVRvSkpQ0qqZS62aMSO3ZcUwKDLqtLIJN7VrEkOB/qrVdDbCB0TrEwDIUpCoyQk3rq9pEY8HI4MoUHn7YkevCy6PN+ptTTatCUrUBIACFQQhqAlekFbaQluZZ4YgAH0uT9p66hHh6ZImPcXCmThOULPHGS8E5hh10Cpoiw/HyKIsaARxYri5O7nHGIfbg5qW2L3UqHAWJUoSeKLlqGQ0Nyw/eOFszigxIGBjNfmcEQSR2fxvRwM+2duM57+oSfWmpARu1J0TJhwgn1o1Y8Ll8coFr/5+RkqRAwKocEYMAdr7qVbT/aKdhwMkrHAWIlETEL0k+fViOipMuRKOhxjEA19HR58L7jQsEqoN3kar9LMx6DSokFRKFBCgPtweX8iK1axHmTWC4qy3DWjZn5DXPtDUg2v+thE7jnYmZH0cufU0zjZNQJx05IWoA0lu13zond04/Y+fYN3+5pieT4WzKJG9Y5LSqhm8cHbcsFyY9Vq097qwr4l8zgiCyFxqpeNle4YWhXirphKPs0SnPw91Gjrs8HgZDDoNSnJiu9iskJTj/LxOEGqm/3E23c3hueLMEmZioT/c2Dq44kwqnAUppGs0Agos6duuydVhRTnxK87ys/QQBNELrn8xlYgOr5fJ+zAaNWBVgXhuoYAA9dHl559oNelkj7NWmxN2l2fgE166HPjzHKDzaNyv/aeP9uPTfc14+pMDca/LH/6eElE4A/zbNZOXrMkYw/s7xW6Vj/c0Rf18r5fhqOQzSB5nCuEzU063N/iXPQbqIhTORJ+zfADAVwepXZMgiMyFK3TbbZk5eO+RC2dhWjXN4mA8U4uLscL9jIYXZClK5AvGsDyuOFNvCwZBcNpV6nFm1idacRb8Iol7VKWjEq+FG9AnQHGm02pk78x0VNepic4+FzxS9xBPwFbCcErWVC382JJt1Im/pSw9jFKaalNXv6I7Y0DjNwDzAM174npdp9uLtVKBaGN1W0L9w3yebfH5m3HkgIAkJmvWdfTJgQzbazuifv6xbjucHi90GkEufg42qiucZfv18iZqNj9cOADnpNFiu+aG6raEvCZBEIQa4cfLTB2881m+7DCKCl+qZmYWF2MlERJ8rjir66CLG0L9cGWMXiuOe9Pd46pPatWMRnHGC2ddYT3OgrduF8lpk+m3X2TFWQI8zgBfAmQ6vlc14Z92atApvwyuyvcFBBDqwj8YAAAEwVd4aejsp07vbQU80vi2uzGu1/3qUKuchNxqcyZUzeWfEpoIxhYnP1nz68Pt8u2d9V1Re1MekTxwK/PN0GlTU8JSXeFMEARYpRaZRBTO7C6PLPEOpTgDfAEBG8jnjCCIDIYXzvpcnoSpftVEj4OHA4TzOBMvlLrtbvKjiQI+KIqncFZJijNiCMF9EkdJHl8taT5hYYshHCCUd3Gf0yOrE0YF8TgDfK126diq2SKHA8SvOAN8RvaUrBkfrTF+LsMLqXCmVvixxX/cViYVzvgxRqar3nc7zsLZ+zsDn7+hOnFdazxVM2GtmiXiMTaZirPNNb7CmcPtxd7G6OyvUu1vBqiwcAYAedJFSSIKZ9yI2GLQypXoYEyrzINZr0WbzYn9SfxSEQRBpCtddlfAcTfTWhFdHi/sLrEQFq5wZvV7zN9bgwhPIhVnFA5ADAW44mys1EaT7mqjRIYD8NbtXLNeHvf3x6c4S79zkU9xlpjCWRElayaEVrmFNjolYBW1aqqWzn6KMwAol8IeBiRr+hfOemJPj/d6GT7YJT5/elUeALFdM1F09flSQhPB6CLxHFPfaYfNkZxxK1eccaXn9qMdUT2f//ZS5W8GqLRwxquriWiD8W/TFITQnioGnZ/P2SHyOSMIpdhdHmyr7SCl5hCAm3JyMq1ds9uvCBauVVOn1ciFtUwrLsbDYUlxNqIwfsVZq80pt40RhFrhHme8jSbdj7m9suIsinCAEIUzORgghNoM8Fecpd9+8SmbEtOqSYqzxMD3X0GUhTM+odPQZYfDnfpzy7EuO5r6q6WIoAQrnMmKswGFszrf7e6GmF9z29EONHU7kG3U4Y6zxgEANhxKnM9Zols18y0GuZhc3ZL4gIAehxt7GrsAABcfXwEgep8zPrk6ggpn0RHOSDRaIgUD+DNnFG/XpMIZQSjl8Q/34ZI/f4H/flMfeWEireHBAJxMCwjgwQBmvTaiv0Iyfc7abE78ee2B0FHqKoQxJs8mxqM4s5p1clGzvr93CUGoDF54HyMrztK7aNLr4B5n8SvOqiV/s1FhCulczZVurZp2l0f2NipKQDgA4AsZoMJZfHDFXrStmoUWA7IMWjCWeiuAPqcH5z25Dhes+FwuVhOh4W2NgYqzUIUz/1bN2BVna6T0yAUTS3DSqELotQIau+wJS/z2tWomJhwA8J1nDiShs27rkXZ4mVhvWTi5FACwvbYzqnUcplbN2Ehk4YxfCFYqKJzxgICvElgxJoihzq56cYYhGTMYxODS/4TflmFqKj5QCdemycmXLQUSv4/+sf4w/vD+Xvx13aGErztVtPe65AvNeGT4giCgIk8cENclaIBKEKnA62XyOJe3arb1OuVEwHSEe5yZo1CchQoHOCwlao4IEQwA+LUv2tKrcMaLW3qtkLALW2rVTAxtMbZqCoKQNgEBR9p60Wpzoqnbgfe+jc+HKxOQ1Vn+ijOrFA4QzuOsJ7Z9yxjDGsnf7OzJpTAbtDhuWB6AxHWt9Q88SARjkhgQwP3NThyRL7eu7m/qjqotlFo1Y4RHryamcKZccXbcsDyY9BryOSOIKDgmnZR4Pz6hXvoXztozbOa7RzrBKymc5SbQUqA/NdIF5YABn4rhFyJlVhNMeuVqlWBUks8ZMQTosrvAa2T8goax9G7/5h5nlhg8zvr7QfLJtlDBAICf4qw7vfaJrGqyGMPawERDgaQ4S/d23XQn1lZNwHfBnurCmb/6f/XmoyncEnUQrMjEPc4a+yvTA1o1j4kH3Sg52NyDQy02GLQanD6hGAAwW+paS5TPWVeCWzUBYEyxFBCQhMIZ9zebObIAJVYTynNN8DLg2zplqjObwy235A+Pw84jXlRZOMszSzP5CRg88HCAyrzIH4JBp8HMEaLP2QbyOSMIRXAZdLc9s9r6hiK10mBNpxEvBNL5Ai4cHi+LSTXMPc6yFQxUuJl1exIKZ/y8NZQKl1xdkggJPg8IqKPCGaFieIEk26iDSa9FvtT+nc7tmr5wgOgVZwM8zlqVeJzx9kVHWnWCJNrfzH9d6fz5qwFfq2b0n83wNAkI8J/EXH+oNeXbk+4E8zgrzRWPHU3dDrj808/9FWceB9DnS4JUyvtSm+YpYwuRI40X5cJZTYIKZ9J4NFGpmkDyWjU9XoatR3yKMwA4XlLgKQ0I4NcfeVn6hBYLo0WVhbNktGoqUZwBwEmjfO2aBEGEp8/pkQ/u3ZQuqHr4YG18aQ4AdRZuGGO46q8bMO+RtVF7g/Dir1WB4iyPn6eSUFzkSqqhpDw4IgUDJGImkVsvUOGMUDO86M79EuUiURq36vG2m2hSNa1+XSS8+NXrdONYl/g+R4Y5JvB2O5eHpZWqvTlGH61w8Peabn5uasPXqhn9ZzO8QDy38PNVqujvN/uvLaQ6C0ewBMoiixE6jQDGgOZu6TfFWGDhDIgpWdPXplkm33fiiHxoBDEEKRH+tMlo1eQhNDUtvXD7FxPjZE9jF2xOD3KMOvn64XipXVOpz5k8RkxhmyaQ4YUzh9sjn5gVF87GiIWzDdWtaTW7RRDpSKNfK1m3gxRnaocP1o4blgsAaEuCmirZbKppx/pDrTja3od9x6KbVeOtmuESNTlcHdKRgAkefzxeJg+6hlThLIGmr7xVkzzOCDXT0RvYUiYXTtL4d9/nij0cwONlsEmKNZ6wm5ell9W7wTDptciRjsctaeRzxlVhRQlVnImFni67G0534i5qM4141IB8Yqe2PdWFM/Hcxr2iXv/6KCXXh8HnceYbu2k0Akq5zxkvZNk7AZfkx5w/UvzbHZ3PWUNnH7Yf7YQgAGdNLpHvzzHpMaVCHDvHGzLIGAv6nuKlMs8Mo04Dp8ebsBADwNemOX14HrRSx8rx0nXENoXJmkfSwN8MUGnhLFR0dbQ0SKkoJr1Gca/7ccNyYdJr0NLjTEoPMEEMJfxnVUhxpm46+1zyZzhNOuGpUXH2ysYj8u2GKBVJ/P0r8jiTLvYS7XHW1G2HWxogt/c6h8wEDk9LGpEIxRn3OKNUTQLAm1vr8L8dDanejKjxKc7EY0mRKhRn0bdqmvVa6LXixRQf19dI/mYjwwQDcNKxhZF/RkUJVJzlmfWQrjlVa5OQarxeJu+7aMMBAPjCAVp7U3ru5UWNa08dhRyjDkfb+7AhQd5ZQ5FgrZpAkGRNrjYz58dcOPtgl6hQO2F4PkpyTAGPJcrnrM/lkceBiWxb1GgEjE5CQIAvGKBAvm/qsFwIgtgZoERFm4jU9USgysIZl63HWzjzBQNkKTbvNOq0OGG42J+7nto1CSIsx7qocDZU4CetomyD7CGltsF7Z58L7/hdQNdHKZf3Fc4UeJxJA7RE7yN/w3uXh8kqOLWTyLQk/v1s7LSndQIhkXxaehz48WvbsPyVbYE+NiqAT0zky62a6Vcg6g9vf4+mVVMQhAHJmjWS4ixcmyZHDghIo4Jia4zJjeHQaAR5kj+dvwPpTEefL3AjP4bPZphUOOt2uBNiFxQrXP0/riQbFxxfDgBY/XVtyrYn3QlVOCvL5YozaVzFC2fWSiBH3K/RJmuukfzNzplSOuCxRBXO+PvRaYSojrVKGJsEnzOuODtxZL58n9Wkl0NvvlHgc5bIroR4UGXhLFGtmtH6m3FOGs19zigggCDCEdCqSeEAqoZPNFTmZyGfG9+rTHH21rY6OPxaXAakKUWAf4eVtGomaoKnP3UdgcW+odCuaXd55GPFiAQMikpyjNBqBLg8zOddQmQkexu7wRjg9HjRo7LJG15058db7snUmkYtif54vUxu1YxGcQYM7CSRFWdhggE4voJi+uyXliR4nAHp/x1Id/h3JNesh14b/SWw2aBFSY74GaQqWdPmcMtq1Mp8MxbNrAIAvLujcchMpCUSr5f5/GkjKs6kRE1rBZAtFb66lXucdfa65NqAv78ZZ/ZIsXC2v6knruMV92yzmvUJS+3lJDpZs6GzD3UdfdBqBLm1mMMDArYp8Dmjwlkc+BfO4pHK+hI1YyucbTjUNmTaZAgiGfi3avaPmifUhf9EQ4F0IdemMsXZK5vEGVmuYohWccYHpUpaNfOS1KpZ36+9dCgUzo6294ExwGLQKrZNCIdOq0GZ5F1CAQGZzf5j3fJttame+cWxXDjL5ubw6fmbt7s94EPiaDzOAF+7ES+cVUuJmqMUFM644qw5jfZLSxI8zgCf391QOO6ngkQoAfmFe6oKZ/yclmsW0wVPGJ6H0cUW9Lk8+N836mtJTzY9TresMuzf1liWK6nTu/q1alorgByp8NWtfJ9+vPcY3F6GCaU5QYv++RYDJkjm+JviSNfsiiKoKlrGyK2atoSsj6vNJpXnwNJv0nl6lWj7sj2Cz5nXy1ArTd5T4SwGeOHM5fHNbsWCf6tmNHBj7JYeBxUDCCIM/q2aTrcX9jh+r0Rq4cfLqvws5FvEY7Dd5UWfUx2f6bd1ndhZ3wWDToMb548BkFyPM64460hiqyagvnbZYBxpEwdowwstCZs9lQMCqHCW0ezzazfpUpnqmR87+PG2KA2VVf5wfzMAMOmiK5z17yQ5LBXORijyOEs/77dkeJwB6V88TXfiCQbg8Av32rbUnFv6d0sJgoBFM4cBoHbNYHRKExBGnQYmfeBxKbTirNJXOIsiVfP9b8Vlzw7Spsnh7ZrxeNLx95TIRE0OL5wdaOpJiDiI+5vNHJ4/4LHjJMXZ9qMdYV+rqdsBp9sLnUaQP7NUocrCWZZhoJFoLNTJhbPoFGcmvVa+KGrqij9SliCGKo39fh9qm/EnfBz1O15mG3XyMVgtqrNXNomhAN+ZUoZJ5VYAfklKCuFy/2g8zrrs7oTGeg9UnKmrGBAMX8x4dOficFRK5/X++4vILNSsOOOqojxZcWYMuD/d4JMoWQYtNJroCuD+Hme9TreceD9KQeGsWC4mpUfhzOtl8mcUT4EmGIWW9C6epjttUotrPMrmYSlWnMm2GX7dUt+dMQwaQUwN523OhEgofzPA3+NMGgtydZm1AsjmijNlHmd2lwef7msGELxNkzNntFQ4i8MnvStE62kiGF1sgSCI+601AecarjibObJgwGMTy3Ng0GrQ0esK+3vij1Xmm6GLocU6kaiycOZvJBpPGwyv2ldGWTgDgFIpKYOf3AmCGMixzv6FM/Vf5Gcq/rOcgiCoyues1+nGf7aKEvwls6pQkcuP3/aoilr8wluJx5n/IK3L7hZjztuqo9nsoPBBM5+8aRsCXje+RM3IF8lKqciTWjUTGKlOqAvGGPYd8ynO1Hb+6ZBbNaVwgDQ3hrfJwQDRtw/5F85qWsTjQX6WHrlZkS8MfYqz9NgvnX0uOfEuEa3n/qR78TTdaZEVZ7ErAX2Ks9QWzvy7pcpyTZg3rhgA8PrXR1OyXekKLzIFK5yV+40FvV7Wr1VTUo31HAMUKK/W7W9Bn8uDilwTplZaQy7Hfc52N3bFLP7hISqJTNTkmPRaWVB0MM6AAJvDjV0NXQCAE0cMVJwZdVpMqhD31fajoX3OuAI51W2agEoLZ8BAI9FocXm8shomWsUZAJRYxYPuMVKcEURQvF6GJsmYm6uT1DbjT4gwxgYM1uTCmQoUZ//b0YhuhxvDC7Jw0uhCFGUbodMI8DLI31ElRNOqqdNq5OU6ep3Ai5cBK2YCnXWxvQkJrqCaWiFaBgwtxVniBkWVeZKPHSnOVIXD7cGf1x7A3N99jDe3xvdbae5xBIwR1Xb+CRUO0O1wp6XtQSyJmhz/Vs1o2jQBX0ExXRRn3LjfatLBGGXLaiSoVTM+2oaAx1moYLvLTxTbNf+15SilSfshF5mCFM6Ks43QCIDby9BicwS2anLFmasXcHRFfJ01O0Vl2tlTysJaTpRYTRhVZAFjwNeHY1OddfqFAySDRPmcba/tgMfLUJFrktPO+zN9WGSfs0SmrseLagtn8SZrNnba4WWAQadBkSX6mYdSyXj4WDcVzggiGC02B9xeBo3gG2io7cKFEOnsc8nG+Hywxn131DDz/arUpnnFrCpoNAI0GkE+hjdEkazpCwdQNliRfc5sdqB+G8A8QMveKLY8kG67S/bVnFopDjbUoPiLRDLSkmTFGRXOVMPavU045/HP8If396Kuoy9uv579xwJny9WkOGOM+RRn0kW+1ayDTmqBTMfjbq9fq2a0WM3iJENnnyuqYAAAKMpJL8WZLxggsf5mgK/gMxSUxqmA/27iUQLy81RdR19CbRiUcjSEzdBZk0phNenQ0GnHlwdbBn270pVwrZo6rQbF0vGjqaVV7AwARMWZIQswiuOsSMmabo8XH+6O7G/G4aqzWH3OfK2aiQ8HAAJ9zuIhXJsm53gpaTNc4SxdEjWBDC6c1fKKfZ45ai8GACiVFGdN1KpJEEE51ukzx+Uz5mq6cCF88IFacY5RNlflA890L9wcaOrBppp2aDU+A13AV1ip71A2+cEYiypVEwDyzOI+6ms9Cnil735Ps9JNHwD34cg161El+YGpxWMuFF4vkwdFIwoTqTijcAC1UNvWi+v/vhnLnt+EmtZe5Eit0Lvqu+IyJ/b3NwPUNXFjc3rglC7KeaumIAiy4ihdikT+8HCA/slpSvAf03OPppEKFWdFaabE48q3RPubieuUioRpft5NV3yfTexFzZIcIww6DTxeFrVPaiIIFWxn0mtx8fRKAMDqzdSuyQlXOAN8yZrtxw6LdxhyAKOYfOlr1wzvc7b5cDvae13Iy9LLRbFwxOtzlsxWTQAYW8IVZ/EVzjbzwtnwvJDL8ICAb+s74QpRiKbCWQLgxsudMXqcyeaKMbRpAn6KM2rVJIig8FboslyTXGhQ04UL4SNYa4CvVTO9i6GvbRZVKwsmlMjHbQAolwZLShVnvU6P3P6guHAmXfC62w777owioak/vAhUkWdGQRZXHqj7Aqq5xwGH2wutRggp5Y8Fvq5uu1t1aYqZgt3lwRMf7sNZj32KD3Ydg04j4Pp5o7D2p6dDqxHQ3usaEDATDfv6zZZ3O9Rz/uETEgadBma/JDjertmShoqjRLVq1kit2yOLlF0kWc2+sJp0KCi1JlFxVpDmPnfpTiJaNTUaAVXSWGiwfc56nW75PQS7fuWTg+/vbIwrPG8o0SW1NYYqnJVL48LeZknhbK3wPZgtFc4iBASs2SmO686cWKrIvJ4na35b1wlbDOelSMXAePG1asZeOPN6GbYcEQtnJ4YpJo4usiDHqIPd5cW+fpNdnCNSgi0VzuIgXsVZrImanJIcKpwRRDj4BU+p1ST34dMFrDrhsev+M5xq8Dhzur34l2SUu2RWVcBj5VEqzrjaTKsRAi5kw8HT8NBxxHenrUnRc4PB/boq80xy+1a6K/4icVi6SK7IM0GfwLQki1EnFy7J5yy9YIzhg13HsPDxT/HEh/vhcHtx8uhCvHvHPPz8/MkoyjZirDRw31Uf2VsmFFxxNrpYVC6pSfHM2zQLsgwBfjnprDiLr1XTl0IcreJMEAS5oJgOaZOtSVSccXVdT5qo69RGa4LSTqtS5HPGr12tJl3Qoslxw3IxvjQbDrcXb39TP6jblq50yuqs4BOePFnT1S6p9PwLZznl4t8whTPGGN6X/c0it2kC4li6Ms8Mt5dh65EORc/xJ5mpmgAwRjpn1nX0yWnJ0bKvqRvddjeyDFpMLMsJuZxGI+C4KrEl9psgAQG9TresFCWPsziIt3AWSuqqlFI5HCD1J2mCSEd4omaZlRRnaieo4syS/oqnj3YfQ6vNiZIcI06fUBzwWEWUijN+0Z1t1IU1fvWHK6N13X5eTXG0atb7Kc5kr5s0LlwqISESfMYAz8BjC2/XpMJZ+lDTYsO1qzbh+r9vRm1bH8qsJjz1vRl4+fo5GFfqG1xPlpK2Yi2c+Sdqzhwupnmp6fzDJyTy+qVKFmWnT4GoP1xxZokjVfNYp10ObFFaOAOAopz0CQhokVVNiVecpbvPXTrj8TL5dxVv2mmqAgIiXbsKgoDLZ4qThJSuKdIZJhwA8CVrCv7BABz/ZM0Q7GroQl1HH0x6DU4bVxxyuf7MGcV9zloVP4fDVXShioHxUmAxIC9LD8aAQy2xqc4214hqsxnD8yKq8I6X2jWD+Zzxiftcsz5pCrtoUG3hLN5UzVCpJErhLT9N3VKELUEQAQS2apLiTM0EM6MtkMIB0llx9s9NYsHq8hOHDThx88GSUo+SaBI1Ofyi19Tjlw4YT6tmu69wxguXnX2ulBgUJ4ojcsy48ovkAXzyO+C3JUDdloC7ebsm329Eaumyu3DZyi+xdm8z9FoBN80fg4/unI8LjqsYUIyeXC4WznbGWDjjiZoawWc+rMbCGVf2cnjBPB1aEvvDPc7MsSjOpDECb6fNz9IjN0v5RZLcwpoGSryWbu7vmnjFmSAIctGHCmfR0dHrBLdMLMhSa+FMfL1wNkMXz6iAViNg65EOHGgK3vqWSUT2OBPHgoZeSVUW0KopJWt2N4Rc//tSm+Zp44qjOvbNHhV7QECyWzUFQZBV37Ema27h/mYjInu+8XP0tiCFs3TyNwNUXDjjLTAxt2rKLS+xFc54CofLw9L6wpEgUkVjp69VkxRn6oYXzqqCtWra0rMYerS9F+v2i+quxSdWDXi8QlYjRVc4y47C+JoPanLsfoUzWzyKM3FbK/LMspqNMaBDxV4mcQ+KvF5g83NiYum+9wIe8gUEkKVCOrDtSIesAH1v+Wn42bkTQxrJy4qzhtgKZzxRc3hBlqzSUlOrJm/B5unFHG5qng7Kqv70ueIIB+hXJBupMFGTU5RG+4UXNZPhcQak93cgneGfS16WXpEPVTh4y1jtIE/KhErU9Kckx4QFksJ+NanOIrY1cr9bi0Oa1Axo1eSFs9ATnmvkNs2yqLaLF8621XZE3Xad7FZNwM/nLMZkTTkYYER+xGW54mzfsW5ZucyhwlmC4BcksVwwuD1eWWUQa6umXquRZ5OoXZMgBiIrzqw+xZmaLlwIEcZYUIWunKqZphMHqzcfBWPA3LGFGBGk5Ycrzlp6HHC4Iw9auMdZNClGvLiY5/CbreyJ3eOszs/jTKfVyOdBNfucHY43UbNhq68Y2bQ74CFK1kwvuHps9qgCeVAeCq44O9LWG5NSmfubjSvNkdtZ1DRxw0NXBijO0tjjjJtcx+Jxlm3QwT/gflQUbZqAT92VDvulNQHJjeEoJMVZTPDvRrxtmoDvIn6wwwGU2gzxkIA3ttSpWpGeCCKps/hYMM/dIt4R0KopFcNCpGoeae3FnsZuaDUCzpxYEtV2jSqyoCjbCKfbG9TbKxReL4tpPBotY0rEY/CBGAICmrrtONLWC0EQWzUjUZZrQqnVCC8Dvq0LnCzjv7F08DcDhkDhrCuGwlljlx0eL4NeK6AkJ55IYikgoJtmswmiP7LHWa5RlRcuhEh7rws2yRzUP/Uw3y/VkbH0alf3eBlWS2maV8waHnSZAosBRp14CjzWGXnyQ/Y4i7JVUwsPCjx+KrPeFsAbvdmqx8vkYjT/HIbCBVRtvLOJ+9733e5fOMsnj7N0Yme9eHEwpSI34rL5FgMqpAuaPQ3RtxvxRM3xpdl+EzfqOf90hGjV5AWidPzNxxMOoNEIAeqJYJMd4fAVFFM/kc0LNMkIB/BfbzoUCdVEq5REW5QA7zl+Ed9mcw7qhLBSm6EzJpYiP0uPpm4H1u1vGYxNS1u6IhTOSiTP8lJIXmNBWzWDK87W7BILarNHFsj2GUoRBAFzRkvtmoeU+5x1291yy7HVnByPMyA+xdnXkr/ZhNIcxcU9rjr75mhHwP1H4p1cTTCqL5zF0qrp7xOj0SgzeQ4GDwhoomRNggjA5nDLXiXUqqlu+ECtJMcIk1+aJB8kONxeuUUnXVi3vxn1nXbkZelx9uTgKUeCIMgzjfUKAgJi9TgrRTt08AAaPQABYF6gN3oz2KZuccJHpxHkSZv8NFf9RaLH4ZY9iYbHOijyL5y1HQRcvvMxeZylF7ztkrdhRsIXEKB8Np4jK85KcvzOP+pRPLdJirP+4QDplB7ZH95ikxVDOAAQeGE7sii644GvVTO1x0K7yyOPfRJRoAkGV0y12NLvO5DO8GJzIhRn2UadvB5uXj4YKGnVBACDToOLp4vKqUwOCWCMRVScGXVaVFiAQkGaoAlo1ZTGj85uwDGwgMTTNM9RmKbZHx4QsLFGuc8ZV2Cb9BoYddFPUihlbIlYOKtuscETpZc7b9M8cWTkNk1OKJ8zatVMEP6Fs2jVDkoPPJHgAQHUqkkQgXBlTLZRhxyTnlo1VUyo46XFoIVB8glJN/XDq1IowKUzKgOKff0pjyJZMzaPMwOGCZLaLK8KyCoUb8fQrslVU2W5JmilCR+uRklHo3AlHGkVB0T5WfrYWg66G4GGbeJtfZZYlGzdLz9ckedThbsyvF0l1dgcblS3iCbDU5QUzjwuTJYi7KP1OfNP1BxXmi0XzmxOT9QXAKkilOKMq41a0lDpyxVnFmNsF3P+x4BRUXqcpYvvFz8W67VC0tQgvEjYRoqzqGhJsBKwapADAnqdbvn7pcRm6PITxXbND3Ydk48nIdn0HPD4VKB5b9zbmU7YXV64POJxMpwf2KRs8TP0aE2A2a/YY8wBDJKtQL9gp5Yeh1wgWhilvxmH+5x9fbhd8RhFTglNYpsmIH7HDFoNHG5v1JOPX/PCmYJgAM50qXC23U9x5vUyKpwlCj4L5/Hr9VUK9zsZlhffh1AiF85IcUYQ/hyTgwHEAZ5Vha0yhAhXnPX3FxAEQTau7uhNn4Joc7cDH+wSBzhXzBoYCuBPuVRYURIQ4FOcReNxpkeVVDhjucOBbMkDI4ZkzbqOwDZNwC/ZVK2Fs3gHRPvXiH8rTgDKp4u3/do1iyxGGHQaMOYLKyFSw57GLjAmnhMimqZXfwb8tgTn9v4HQPTJmv6JmmOKswN+sz0qOQdxFWl/dQxXnDnd3qjHvsmGe5yZ9fErzqJt1eQtrKlWnMn+ZhbjgKTYRJHOyarpTJuNfzaJKZzx8xYfIyUbPnmWY9IpSlOcUpGLyeVWOD1e/GdbffiFt7wAdNYC37yWiE1NG3iRSasRYAnTQj7eLJ5jbMZSoP/vNltSk3UH+pyt298MxkQ/zliDBseX5CAvS49epwff1ilTVkdqPU0UWo0gT2AcjMLnzO7yyLYMSoIBOFMrRQuH2rY++Tja1O2A0+2FVuPrEEk1qi2cmfRaGCR/mmjbNZXE+SqhjBRnBBEUORhAOtD5t2qm2yw5ER7ehhBMoevvc5Yu/HvLUbi9DNOr8jCxLLyypSIKxVmPQzzPRNOqmWvWy4ozZ84wX+EshmRNPuNXGVA4k5QHaZpsGokjbaICaXiUF8kyvE1z/DlAySTxdtMu+WGNRpB9siggILXskopf3PQ/LN+8CjAvRrWtAyAmZDrdyhWD/omafKzI/QxjCRpIBTytuH+rptmglT3E0s3jKl7FGb8QLLAYor4olFVYNge8KVQVJtvfDPAVU6lwFh18nJKo0IbhBeK5eLAUZ7UKgwH84aqzFR8fCN3e7XEDTXvE23Wb49rGdMO/TTNcIXuUsQMA0KErGvignKzZEHD3un2id9xp44tj3j6NRsCskVK7ZrWyds3BSNTk8ICAaApn22s74PIwlOQYo+rsyzXrMbpYfD0elsB/W5V55riTcBNFUrfi4YcfxqxZs5CTk4OSkhJccskl2Ls3cTLQWH3OEteqKXmcZXg4gMPtwT2vf4P/bo8wo0FkDLxwxtuZebHB6fHCEcUFEJF6fGa0AwdrvHCWLh5bjDG5TXNJBLUZ4FOcNUSlOFNeONNpNRilE/3MbOZKwMIVZ7G3avL2Q8BPcZYm+z9afIqzGM7Fbgdw6BPx9riz/QpnewIWo4CA9ICrxpQEA+DIBgCAsbMaOUYdnB5vVAN3/0RNjtoCAtpDtGoCfubwaeZx5QsHiE1xxi8ER8bgd8iLSV6W2uNhs1SciKiqjANe+ElHn7t0piWBqZoAUJU/uK2aR4NMnkXiytnDMa4kGy09Dtzzrx3BJ65b9wMe6btUtwXwDp0xeiR/M84wTQcAoFkoHPignKzp6xRgjOEzKXThtHFBim1RIPucKS2c9fFEzeQFA3DG8oCAKM6//v5m0apup0sBAbxdM93aNIEkF84+/fRT3HLLLfjqq6/wwQcfwOVy4eyzz4bNZkvI+mMtnPGZ51illZxSatUEAHy0uwmvbq7Fw//bHXlhIiOQEzWl34jFoJPVz2qZ8R9KbK/twBMf7ovJ5yncRENBmqU6bqppx6EWGywGLS48viLi8lxxVq+gjS+WwhkADNeKg6tOU0VcrZq+wtnAZFO1Kg8OSx5nIwpiUJwd/gJw9ohtFOXTgyrOAN9nrNijw9YC/O07wObno98mIiS+wlkExZmtRfapE7qO4vhy8Tu+K4p2Tf9ETQ6/yEi39sZgONweuQgVtHBmSQ8j/P74wgFiU5xxdd3IGBSoeq1Gfn4qj4eDoTgbCmnKqUBWnCW4VXPwCmfKEjX9Mem1eGLJdBi0Gny4+xj+ubF24EKN3/puO7oCfELVTpfsBxZ+3FYiJWrWeYO0FsrJmr5WzT2N3WjpccCs12JmFAb4wZjtFxCgxINTaTEwEYyRAgIORJGsyf3NZkbhb8bhAQHbpYAA/tvqbxWTSpJaOHvvvfewdOlSTJkyBccffzxWrVqFI0eO4Ouvv07I+vOkL01XFIUzj5fJFyDDgn0QDduBzx8XZ7MjwCNsm7sdqjGcTQa8L7u+047ONPI6IlJH/1ZNjUaQTdXVMuM/lHjwnd144sP9kX0u+sEYkwtnVcEUZ7LiKT1+929sFdOjLjy+AhYFJv6y4kxJOICDhwNEN1iphKgua9OXxdeqGaRwxguXavU4q41nULRP8jcbtxDQaIBiqXDWcTgg/UpWnCn4jAEAO98AjqwHPvkdQG3lCcHl8WKvpAKLmKhZuyHgv3PzxIJZNAEB/omanGwVJWtyz0itRghaqOd+Xmnbqhmj4uz8aeWYNTIfS2YPj+n5crJmd+qUWK2DojgTP/9ep0cuVkbC5nDjp6u3Y+3e6NXOQwXZfy5Bnw0/bx1t6xuU9uBYu6WmVOTip+dMAAA88PaugeqhYzsC/1+XmGv0dEA20o9QZMp3i2OyGlfewAd5sqZf4WzdfnH5k0YXxJ1sObncimyjDt12N/Y0Rj7PDWqrpqw4UyZ48noZthzhwQDRFxTlwtnRTjDG5DFixijO+tPZKRZYCgqCVyEdDge6uroC/oWDV1ujMaZu6rbD5WHQaQSU5gQ5eP53OfDhr4Evnoy4rkKLEVqNAC/LbMm0v3EvHxwTmU2j5PvHVZkABQSkksOSl9SGQ61RPa/N5kSfywNB8BWZ/CnISq/CzYZDotT9bIXR4DxVs6PXhT7poi8U/II7KsWZx40ir6g4a9KUJKRVc1iQwpkalQduj1e+EBgRbWsWY8C+98Tb484R/1oKffu3xWcJwQuNR5Uqzuq3in97GoFjO6PbLiIoB5tFj7Icoy5oAT6AI+sD/nt8lvj7Uao465+oyfH32Ux3+O85z6yHRjOw1YUrztJp3On1Ml+rZoweZ1Mrc7H6plNkBUa0cCVRSwqPhy1yOEDyFGfZRp3s8ay0ePr610ex+uujePyDfUnbrnTG7fGiQyqiJKpVszzXBJ1GgNPjRdMgFGuPxuBxxvnhqaMwd2wh+lweLH9lW6BnJFecmaXf3dGh43OmVJ1lcYhjsv19QSZ2csrFvz3+hTPxvDRvXOz+ZhydViOb6Ctp1xysVE0AsudYm82paJx5qKUHHb0umPSayJNkQZhUngO9VkCbzYmj7X2Z16rpj9frxfLlyzF37lxMnTo16DIPP/wwcnNz5X9VVeE9amJp1eTtGmW5poFGc/YuX7T9lyuA3vBfYK1GQLE0c5GpAQGMsYAkECXVcmLo079VE/C/cEn/Gf+hhMtvUMe9B5TCzWhLc0xBZ9XyeDhAGnhstfQ4cKhFLBDOHK7swstq0slJS5EUST2xtGp21UELLxxMjwZPLpAtDbKiLJx1213okl6/PJjiLA32f7Q0dNrh9jIYtJqAArsiWg8A7dWARg+MWeC7X27X9NkGcEsGxR5nvHAGAAc/jm67iKDsrBPHBZMqrEELQQEc+Ur8qxcH7GM04sXKzvpORcEy/RM1OTlGPnGT/ucf/nvuHwzA8Xmcpc/vvs/lm3iItVUzXorSwPuLfybJVJwJghB1uyZXyAxWW2G60d7rAmNiYGJ+iN9VtOi0GlnRPBj7tS6GVk2ORiPgj5cfj1yzHjvqOvHEh34F1GNS4Wz696QXyrzCmaFXNP6vduYOPEfIqZqixUaf04MNUoHrtPHx+ZtxZkfhczZYqZqA6FfJx1ARfc66G5G1+kos0GzF8cPyoI/BzN+o02KSFCC0rbYjswtnt9xyC7799lu88sorIZe599570dnZKf+rrQ3Si+2HNYbCWVipa+1GgElVeEcX8OWfIq6PBwRkqs/ZsS5HwOBtdwMpzjIdj5fJBrllucEKZ+k/4z+UONZllzvOqltsUYWZRPLUSKdWQe6rML40G7kKB8aCIMiFqEgBAbLHWTStmh1HAABHWRE67B7fAMwWXeGsQSpE55r1csszAORbfC07dld4xVy6wQdEwwrM0EYqpvSHp2mOnAsYfe14KJks/g1aOLNHLrw4bUCzX7jAwY+i264hyLbaDpzx6CfyhXcs8DbLiImarj6gfpt4e8qlAIAi51HotQK67G5Fyaj9EzU5/PzTpYLzD++iCOZvBvhazVrSSHHG1WaCAJjibF2KFd7Cmsr90jIIHmf+61cSEOF0e7H+oKg27+h1qaJ4nGj8VZyJTOcbrICAPqdH/m5FVO2GoDzXjIe/Ow0AsPLTg2IHQk+z5LkqADN+IC54bKd4LB4CKGpr9LigkSYzG1khGvt73srhAOIkzsaaNjjdXpTnmgImZ+LhpNG+wlmkcQo/h1nNyQ8HAHyqs4ORfM42/RUVzetwg/YdnBiH79vxUkDAhupWNEuT/hlXOLv11lvx9ttvY+3atRg2bFjI5YxGI6xWa8C/cPDZuOgKZ6ET4nDkS2nFI8S/G56JqAwokWbKGzO0cOavNgOAvaQ4y3haekTPP61GCJh19aWaZd6gLZU09BsEbK5RrjqL5KmRn0atgptr2pAFO5YUHogqFapcKu6GU5y5PV5ZURGV4kwqnNWxInT2On2thL2tgFd5oYsrpSv6BdrkGHXQa8WiUzp8BtHgCwaIxd9MatMc/53A+0smin/9Cme8eN/n8kT24mvcIU6e6aSC/+H1gDMzFRqc/26vx6FmG/66rjrmdeysF8cJEYMB6rYAXpdoxiwpCbXtBzFW8ipT0q4ZLFETUFeqppyoGaKljBeI0uk3LwcD6LWRVYVJwpc2mcpwgOR7nAFAgUX5e91ypB02PysCxW3rQwheYExUmyanapACAuo6xPXnGHVxFUzOm1aOy2cOA2PAT17bjp7a7eIDBaOB4gniGMXrFv2+hwCKFGfdjQAYXNChFTkDxsxy4czeCbj6sG6fOIk0b1xR1KmRoZhWmQejToNWmxNPf3Iw7EToYIYDAP4+ZxEKZ/s/AABUaZpwYgzBABzuc/buDrFQaTXpFE+GDwZJLZwxxnDrrbfijTfewMcff4xRo0YldP2yx1k0rZrhEjUPS94a8+4EKmcCrl5g3WNh18cVZ02ZWjiTBsTHDxMj5vc2dg+KSSaRvvDZmuJsY4CSxEqKs5TQv0VNaeQ14JtoCGXezj3OovGZTBabD7fjp7pXce2hnwDbX1b8PJ66GE5x5p/Elx1V4ewwAOAoKxbPU1mFAASxOGNrUbwa33krsKVREARZlZJOF9FKiFmCb+/0+WCNOzvwsSCKM5Nei2LJzzRiuyZv0xy9ALAOAzwO4PCX0W3fEIO3eW+qaYsplZcxJhe8plTkhl+4VmrTHD4HKBon3m49ICvVlAQEBEvUBNRlFcAVvKFaygqjKJoMFjaHeKFnjjEYIBEUpViJ5/UyuQMj2YqzIovydt3+atHaDGzX9KWdJragyc9fyd6nvNhZmW+Ou1jzq4umYERhFuo6+vDhxx+Kd5ZNFeWiw06UXnBotGsqamvsEkOzOrRFYNAMVJwZrYBOqhl0N8r+ZqeNj9/fjGPQaXDJ9EoAwB/e34szH/0U/95yNOj1dNcgepwBwNgSBQEBPU2y1VU5WnFCZexKvOlV4jiBH9tGxJCynEySWji75ZZb8OKLL+Lll19GTk4OGhsb0djYiL6+xMx25MaQqhlSQeGy+5JERswFzvg/8fbm54DOoyHXV5ojXshkqsfZt5J3yQXHVcCg1cDm9ChqpyCGLlx9WZobeJHPZ/zV0CozlKiXCkI5Uovf5sPRFM4iKc7Ez7St16nIfyhZ9Dk9+LauEydpdol38EkQBShJ1uTFXpNeE51vg9yqWSyqnbQ6wCJ5YkTRrlkfJFGTo1afsyNSYMXwaAdFB9eKM+KFY4HCMYGPFUuKs+56oM+nrFQcEFC3RfxbeQIw9gzp9TK7XZNPCvY6PfjmaEfUzz/a3ocuuxt6rSAPwEPC/c2GnwwUSJ9tbyumF4vHlqgUZyX9FWfqmbhpj9iqqbxNb7Doc4n71RJjMEAiKJRbNVNzLGy1OeGRLnQTrWzqD1+/Ej83fqFvlAIFajNQccYnlhId2jB8kBRnsSZqBiPbqMPjV0yHViPA0yglapaKLZyonCn+HSI+Z4rUWV11AIAeo9gRMEBxJghysmbbsVrsPdYNQQDmjkmMvxnnwUun4veXTUOp1Yi6jj785LXtOH/F5/h0X3PA+HowUzUBn+Js65F23PfGDtz68hZc/beNuOTPX+CMRz/Bib/9EHf//nF5ea3AkOs6FvPrjS7KDrAkSac2TSDJhbOVK1eis7MTp59+OsrLy+V/r776akLWH0s4QMhUkvot4uyypUQcjI9eAIw4FfA4gU8fCbk+bmp8LJRv0BCPs+ctGMdX5cmD4t1RxMYTQw/u91dmDZzZkz1movi9EvHDC0JnTxHl5rvquxSrLvgsaqgUJ35h53R7ZY+bVLD9aAc0HgfGacQBEJqUpyFyxVl9/8GSH/xiOzsafzNALpzVsmKxVROIKVkzXOEs4xRn3N+sf5smAJisolIMAJp8XmXDlAYEcMVZxQxgzJni7QwPCGj2uzD/8kB0qbyAL3V7fGmOnAQYFK8XqN0g3q6aAxiz5TSz6WbxdSMpzkIlagL+qc7pf/7xhQOEL5y1+RVqUg1XnGVlsOJsf5NYtK0qMAcN00kkcltqhON+m82JHZKlyvnTxN8TV5JnErzAmGgl4GArzmJJ1AzGCcPzcdsZYzFZEMcozRZJ4Ssrzr5OyOukmq4+yQ8snDpLUpw5s8QxcmNXkHFCtvjY3gP7AQDHVeaGbKWPFZ1WgytmDccndy3A3d+ZgByTDrsbunDN3zbi+3/dgB1Hxd/xYLdqjivNhiCIEzovbziCt79pwGf7mrGttgOHmm1o6XFgLrYFPknqtogFjUbAtEqfOj1Ux0uqSHqrZrB/S5cuTcj6oy2ceb1MVkMNqNrzdowRJ4vVZUEAzvyFeN/WF4HWg0HXWSKHAwQ5Ue99D3ioAnhyOvDWbcCO1+VUjqFAS49DrsxPrrBiYrk4w7u3kQICMpnGIImagLo8ZoYSvFgwY3geqgrM8DJgy5GOiM9jjEWc5cwyaOWL4VQWbr4+3I4JQi10kFrJmnYr9hCTFWdhiir8YtsaTZsmEKA4ky0FeLKmTbnZOlcNBrMYKEgjnzmlMMZ8HmeFUQyKvF7ggOijMaBNk8OTNZt97ZoV0mccVg1t7wJa90tPmAGMng8IGjEsIIzqfKjT7De2+fJg9IWzXUr9zZr3iG24egtQdpx4X+FYAMAYreh1crS9D51h2sJDJWoC6lKc8db3AkvwCyNeLPcyoCNNlKayx1mKEjUBn/dbqlpYeTDFhH7+esmgUOF7/fxACxgDJpblYMYI0bC7ti3zFGe8wMi94RJFVYF4Tm7qdqAviZOHkYKaYuHW04ZjrEYsGv1ygyAW4StOACAAnUeiTv9OR5R5nImJmsxaASCI4gyQfc7qakWvz3njEtem2R+zQYubTx+Lz366ANedOgoGrQZfHmzFhU99jlte3gK7SxznDlarZlG2EY8vno5r547Cj88aj19dOBmPXn48/t/VJ+LVG07Cu7edggst4niLZRWKT2qPvXAG+HzOgAxTnCWbaMMBWnoccLq90AiBaX8AfJ4pw0/x3Tf8JGDsQoB5gE9+F3SdXHE2wOOsbgvw+jLRJ629Gtjyd+BfPwQeHQ88NRt45y5g11tAr/K2qXSDzySPLrIg26jDxDJxsLCHCmcZTehWTfV4zAwleNGlIs+EWSNFw85NCnzOWnqccLi9EAQxjSkYgiCkhc/Zppo2TNXU+O5w24E2ZWbm/L0FHSxJcI+zqIIBPC65BeAoK/btH56s2aN8EqVOSaumigpnL204gm67G1qNEF1CWP1WseBoyBHb+YLBC2dBkzXDXDByM+Tc4WI7rTnf17ZycK3ybRxC9Dk96Pbz9/v6SHvU6a2KEzX5GGzYiWJLMyAaVgPI6q6RLxjDqc5CJWoC6pq4kRMAQyjO9FqNPP5V4nE1GHDFcSoLZ1yF1efyyIW8wWRfiGCKZFCocMKEG5mfNr4YVfm8ZT3zFGd8PxUlWHGWa9bL44Jk7tdEtmpydG37oYcbncyCd2u1+MunB0XVdvEE6UXV364ZTaumLk9Uqw/wOAPkwllXsziJNm9cYts0g5FvMeD/LpiMj+6cj0tnVEIQgHe+aZAfj8pvN04umVGJX144GXecNQ7L5o7CZTOHYeHkUswZXYhJ3gPQ2NsBYy6EiReIT4hDcQb4fM4AKpwlFKuf4kyJIf1RadBcZjUF+tR4PcARqUVgxCmBTzrj5+LfHasDBuIcXjhrtTnhdEtqh/Ya4OXFYtFszJnA914DTr4VKD8egAC07AU2/T/gtR8Aj4wG/nIq8PGDgDs9BkBK4YmaUyRJ5cQycWC8m5I1Mxpfq2aowln6X7gMJXirZnmuGbN54awmcuGMDwLLraawLVZysmaKlA9eL8PXh9sxVehXKDv2raLnczVSj8Mte0f0R27VjGag0nkUYF4wnQnNyEWX3SXO6FqkmUqFs7keL5OL0cEUZ6ne/9Hy2qZa/N+b4mfzo/ljYI7mQpunaY49A9CFuAAKUjjjBcewijO5TXO6774xme1zxqPgjToNSq1GON1ebDmiPJUX8E2wTfFrvQgKb9McfpLvPklxpjQgIFSiJuD77foHfaQrXEUWyuMM8BVOUtWW2B+e2mhJYaumxaCFSS+eq1q6B/94yAu3/YMpkoEvQTT0588Yk/3N5o0rktv8jrb3pdSTNBVwZV6ivecEQRgUn7NEt2oCABrF87CzaDIAAY9/sA97GruASqldU+U+Z063Lw1dSThAVlEVAN/kfwDShKfV3QqLQYsZw/MTu7FhqCrIwuNXTMfbt50qBxJUFZgDwtdSCu8CGHO6z3eWFGfpCf8hMIaAWdFQhDzwNO4AnN1ickbplMDHKmYAky4EwIC1Dw5YZ36WHnqt+OVt7nGIhsQvXS7OipdOAxa/AIw/BzjnQeDGz4C7DwFXvAjMvgEoniSut3EH8NkjwBdPRr0PUgn3N5sqtWBwxVlNiy3qWWli6BCqVVP2mHGQ4myw6HN6ZKPpijwzZo0SC2fbajvgcIf/jSodqPHkt1QpnvY1daPb7sZUrXSiNksx2E27FD0/y6CTzyWhkjW5SjInGo8zqU0TucMBCGBM8vfLljzOFLZqHuuyw+Nl0GkEOR3SnwJp/6uhVfONrUdxz7+/AQAsmzsSd549ProV7Jf8zcadE3qZMIWzsIozf38zjuxztlZx6+9Qoknybi2xGnGKZIS8Pop2zTabU1ZyTlKqOAtVOJPGGeECAkIlagJ+HpsqUDz7wgFCH298hZP0+N33OlLfqikIgpw42jLIwQmMMexrCh5MkQwK/VI1QxXBDjT1oLHLDqNOg1kjC2S1Uo/DnRZJ2IMJD9JIRmhDsgtndpdHLpAnUnHGJxeLxpyA0ycUw+1l+N+ORmCYpLRWueLM/1gfdtJTKpzllo4AIHZPDGi7lfw2S9COk8cUhffrTBJTKnLx92tn47+3noqXrzsp8hMGiwNSMuvYhUCeuA/jVZyVWU343pzhuHRGpdwOnS6ounBm1Plml5QYjofsEecDtqo5gCbISX/BzwEIwO7/+gbXEoIgoERK1mxq7wReuQpo2QdYK4HvvwYY+51AswrEQtx5fwBu+Qq4cx9w+r3iY5v+qirVGU/UnCrNJBfnGFFgMcDLfDNvmQhjDDuOdsLl8aZ6U1ICL5yFbtVM/xn/oUK9pDazGLSwmnQYXWRBocUAh9srK0ZDUavQUyM/xR5bm2vaoYMbEyWTW0y7XPx7THlAQLn0Xa0PkazJJ2aiUpxJhTMhf7icaNrR54q6VZMXe8pyTUFnGFO9/5Xy9jf1uPO17WAMuOqk4fjlBZMhCFHMmHY1SO2UAjBuYejliiaIy/S2AD1icZJ/h1t6nKEndeqlRE3/wlnlTMCYC9g7gPptyrd1iMAVZ8XZRpw8WvQuicbnjBe5RhZmBaRkDaCrXvy9CBpg2Czf/XLh7CAmSxNzihRnQQoXOX6KMyUdCqnC7fHKF3zhzKd9fl7poTiTWzVTmKoJAEXS5EJL9+Dul+ZuBzp6RX+9iOmxCYB7nDncXlnt159PpTbNOaMLYdJrYdJr5cmXiAnDQ4xWuVUzsR5ngH9AQHL2Kf+sso26xBrCS4maQtlUnDVJHJdsrmnzWRTUbxV9RVUKb9PMMelCq7O8HtnjLKuoChap8D9AdSalapYIHThtfPLbNMMxbVhu+hjm21p8aeRjzwLypcJZnIozQRDw0KXT8PgV06MbJw4Cqi6cAUCeWTx5KPE5q5MOPpUDggG+EP/2b9PklEwCjlss3v74twMeLss1QYAXpR/fCRz+XFSufX81IBkNhiWnFDj1J+LFVE8jsPutyM9JAzp7XfLsCjf9FQTBz+csc9s1/7ejERc+9Tl+9ZbyC/ehQrfdJQ/iBijOzOrxmBkqcAVVeZ4ZgiBAEAScOFKUmG+sDt9ypdRTg3uctaeoVXBzTRvGCvUwwCUeeyeeJz4QReGMK5JCK85i8DjjirO84ciVlCMdvU6/Vk1lirNw/mYAZIVFuy19FQTvfduIO17ZBi8DrjixCvdfNDX6wdD+NeLfyhN8qr1gGLKA/JHibUl1mGvWy0qYoKqz3jbRYgEIbNXU6oDRp4m3M7Bds0kqPpTkmHDyGLFwtr22AzaF7Y475WCACG2aR74S/5ZODZxszB8pFtNcNkzNFT+3A03dPlsMP8IlagI+xTNjgC0F/ldK6exzyWHseWEukvnvPn08zsR9mspWTQAo8lNiDSb8uzei0DLAXy8ZZBl0snAgVPGUt2me5ufHxH3OajPI58zt8foFbiRecVaVZMUZHwNUSuO4hMCYz86idKrsf7uttgOuokmAzgw4ukQhiEpR5G9mawa8bkDQQMguk/3PG/pNovYZxXFbidCe1GAA1XHwYwBM7LCzlvsUZ7YmwDk0jzGqL5zxH4QS2XHQC0HGgMOS4ixU4QwATv8ZoNGJkkS+vESp1Yg7datRUfu2uMzivw9s+QyHzgCc+EPx9oa/KH9eCtnZIA6Ih+WbAwxsJ1BAAL6VLhZe33w0bfxHBgvub5Zj0sHST2HgHw6Qaf4aqYIrqPyLLnyAtDmCz5l8vIwws8VVESkrnB1ux1SN5G9Wdpx48Q2IoSwOZcrX8hCDJU6PXDiLplVTmnHLGy4beXf0+rdqKvM4C5eoCQD5UvJeunqcfbT7GG775xZ4vAzfnVGJh747DZpYvDl44SxcmyanZLL4t3kPAHFSxxcQEKQ42rBN/FswWgwF8Edu1/w4yg1WP/6tmlUFWagqMMPtZYo8EgGfv9nkSImavHA2vF/7ic4gD8TL3UeRa9bD5WGyCbs/4RI1AdGnjdtqpPPkDW/TzDHpoNOGHqJzxVFLmrRq8gmzqDwLkwBXFA224kwOBhgEtRknXPHU7vJgQ7WoDvW/0K+S1VFD86I2GPzcKAjhfQNjhe/T/U3dSVGAJiNRE92NQG+rODFRMgnjSrJhNenQ6/Rg97Fe3wSSin3OuqIIBkB2GaDVyWFR/QMCNreKv7UCoQcjc1N7jEsr9kv+ZmOlcZI5X5zABnyTx0OMIVM4U6I48x18/C4EWw+ILR1aY2CLRn8KRgMzrhJvf/wA4Hfhf67jPdyq+4/4nwv/BIxZEN2bAIATlwFaA3B0E3D06+ifP8js5G2a/WaSJ0kBAZmsOOPtLU6PF69sHJoHjlA0dorvvb/aDPAVHVweJscpE8mFK6gq/NpmZ0s+Z5sPt4dtWVI6WCuQPc4GX/HU0NmHo+19mCLUiHeUHy8mIvJ2SKlwEomKcEUV+HucxaY448rojj4nYOGFsxbAE/kCvt5vtjkY/qma6VaQ/mxfM3704ha4PAwXHFeORxYdF5uhrdvhS7Ycr6Rwxn3OfD53voCAIBeMwfzNODwgoHYjYA/f3jzU8G/VBCC3ayr1OZMTNSMVzmpDFM4A2WxYaDsUNiAgXKImIBZP1ZCsqSQYAFBmDj+Y9KVBOADgKygOtuJsv+RvNn4QEjU5vnbdge/168PtsLu8KLUaAzz/hsnJmpnTqsltDPKzDEkxVB9dZAEAHG7txawHP8QVz6zH819Uh/fUjIJkJGrKarPCcYDeDI1GwMwR4qTR5pp2X7tmXfpfj4aC1wWs4SY8JX8z3iHmU5wFjgU/qnHCwcT1CAonPYc8Xq9Pic/tMwQhYT5n6YrqC2dWhYUzxliA3FXm8Jfi32EnAroIve+n3S0W2A5/ARySBvH7P8D5Rx4FALxftBSY8f2o3wMAUYUw9TLx9sZnYlvHIMJVVVMrAwfEXHG2N4MVZ81+M50vfnUko7zOuC9AWe7AwpnFoAUfs3SrwKB5KMAHbnwWDQAml1uRZdCis88lmxn3x+tl8mCtKlI4QAo9tjbXiO2ms0y14h3lx4t/ueJXYbJmRMWZI55WzZGBijNLkTjLCybO+EagPkKrJr/AdnsZutKoIPDlgRZc//fNcHq8+M6UMjx+xfSwCpqw1HwOuGzirDD/jMMRJCCAWzTUBSuOhiuc5Y8QvbaYB6heF+2Wqxq5VdMqjo14QIASn7M+pweHmsVi1pRwhTNHt+y1g6pghTNlAQH7wiRqcvxVz+mKHAwQoaWsKM28DXn7bso9zqSCYvMgFxT5mDdYm3CyKJC/AwPf62eSv9m8ccUB7X38fJ5JrZptUmGxMAltmoCoOHvg4imYWmmFlwEbqtvwm//uwim/+xgXPfU5/rz2AA42x+77nJxETemYWzZVvutE3o1wuE28JgZUHRCgTHHWr3AmTfr3V5ytO9CCZkhCkW5l/rRDnoat4hjWaBU94jnc54wUZ+mJUsVZq80Ju8sLQQDK8/wu6nnhLFybpvxilcAsqaXyowdEo+LVS6GBB697TsOLpitjeQs+5two/v3232n/w+TG4v0j5seX5kAQxPaB5kGWyqcLTX7vu7HLjjU70/uzTCS8VbM0iOJMEATZIDqdLvCHMrxV0/+Yp9NqcIIUpb2pOnjLVUuPA063FxoheBHUn/wUepx9fbgdArwY75VaNcuPE//yVj2FPme8sNh/lpHDv6+KwwHcTt+ArH+rpkYLZInKHSXtmj6Ps+Cfg0mvlQ1tU5Vs2p+N1W344Qub4XB7cdakEvzpyhnQx1o0A/zaNBeKM5qRkAtne2R1OJ8wqwumtODG/6FU53K7Zmb5nDX7eZwBkH3OdtZ3ojOCPcbuxi54mRgaxJ8flKObAeYV02dzKwc+7h8QEE5xFipRkzHg3Z8BH/5GFQE17bI6JnxbuKw4S5PfvBwOkOJWzcIUhCYwxrD/WA8EeHH6rl8Cb/8koCslWfDvQLB23c8kf7N5fv5mQGa2arZIv5Fk+JtxfnDySLx92zysu3sBfnHBZMweWQBBAL452ok/vL8XZz76KRY+9ikeXbM36u9mUlo1/fzNOCf6Kc4YV5wd26larypFHme8VdMqnnuCKc7qOvpwsNmGJpYn3iGFCWQ8+6U0zdHzAa3fPuaKM+4bO8RQfeGMX5BEKpzxin1pjglGnd+J/YhUOBt+srIXPPXHgD5LTOB6/jzA2YOOspNxr+s6NHbFeaKumCFWbb0uYPPf4ltXErE53DjUYgMwsFXTbNBiZKEoW85U1Rm/2DhrktiSterL6lRuzqDCZ2mCtWoC8GuVSd8Z/6EEP/n3b/PjPmebaoIHBNS2+5RqkQoeBSn0ONtU04ZRQiMM3j7RzLZwnPgAHwwe2xX6yX7wolRDZ1/QdsfuaD3OOmsBMHGbLEW+Vk2+j3i7poJkzaBK6X7Iqr808DnbVtuBZc9vRJ/Lg9PGF+PP3z8hvuh2xoB974m3x39H2XMKx4l+o45OuYDJP+MB7TM9zdLnJYgeecHg7ZoHPhqUC+J0gU8C8SS+UqsJY4otkqoivOpM9jcrj9HfjCO1avorznbXdw34nYZM1GzZB2xYCXz+GEZqxeNdVxqff9oVt2pyj7P0mKDk4QBZqQ4HkFtYB+9Y2NhlR7fDjVnaA8jd9zqw+TnRYzPJcAVV//fa1G3H7oYuCAJw6tjAwpl/q2a6tfYnizbpN8J/M8mkqiALPzx1FF676WRsvO8sPHTpNJw2vhh6rYD9TT1Y8fEB/Pad3ZFX5EdyFGdS4axsmnzX8VV50GsFNHU7UOsuFC0vmEdKs1YffMLTao6Q6AzIijPefdDY5RsnfL5fVG86zMrHbRnBAe5vdlbg/fnUqpnW+BRn4U+Se6QZyoBEzc6jvgj0qtnKXjC7BJhzk3jb2QMUT0Lb+X+FCzpZbRMXXHW2+W+ir0sasruhC4yJoQh8QO1PJidrerxMls0vP2s8dBoBm2ra5XSxoQ5v1SwNoVJSw4z/UIExhga5VTPw85glJWtuqmkLOniOZoZTDgewDW7oQ4/Djd0NXT5/s7KpYgoiAJRyxdm3igodfJbR7vIGDZrpcYj3ZSv1OPPzN4Mg+BRnfIKHBwRESNbssrvk30p5mMKZ3LKTBkbhv/nvTticHpwyphDP/mBm4ERVLLTsF2cutQZg9OnKnqMzAAVSwUVq16zMEy866voXznibZtE4wBSiyDPyVECjFweCbYei236V4vEyWRlR4nee56qzSO2avJ0ybJsmAByRwpaGzwn+OFectVVjbJEJBq0G3Q53gEdT2ETNo5vkmzOYqECN6/zTdgj48inAk5ziG2/VzIugOCuSjOG77W443J6kbEs09KaJx5kcDjCIBUX+3VuUtc13Z/VnSX9dXgjq36r5xQFRbTa1IldWpXHKc83QCIDD7R30dtZUwVWZPExhsCjOMeJ7c4bj79fOxub/W4hfXiCOSz7cdSxoMnAw7C6PPBmfMMWZqw9o3S/e9lOcmfRaTJW6iDYfaQcqpXZNlQYEcFV0VK2avHDW6fttcPWmOV9SRHc3JnhLVUhvm8//buzCwMdkxRkVztKScK2aHi/DB7uO4cpnv8LP/i32c3M1FABfOmb58YER6JGYezuQUw5YhwHfX42iYtGIusvulg1SY2bSReK6bU3AzjfjW1eS4G2a/dVmnIlSQMDuhsxTnLX2OOBlgEYAJpVb8Z2pZQCAF76sSe2GDRK8eBxKcWZVgTnzUKGrzy0nnfl7nAHAjOH50GkENHTag5oERzPDyVuKnB6v/HqDwdYj7fAy4KSso+Id/t5XRRMAQQvYOxTJ6o06rWy0XB/E54x/X61KWzV54UyaeePJw3JRTmGyJg93yDXrwxbtuDol1Yqzzj4Xttd2AAAeXXx8UJP2qOFqs5GnAsYo/IN4u2azWDjzVxUGhGKE8zfjGLN9iqgMSddstYnnMkEIbHHiPmeRAgJ2SZNFYYMBPG6fh04o1b91mOgt63VB330U48vE78BOP5+zsImafoWzyS5RZcE9C2Pi7Z8Aa34ObH0x9nWEgatSCyIozqxmHXSSaWg6+Jz1pkmqJi8mtfe64B4kf9l9jd0AGBawDb47B6NwZjECYPjB4XuBv31HTpH+bF/wNk0AMOg08vgsUwICWgehVTMSuWY9lp4yEsU5RnQ73Fh/SFnACp/osRi0EYvpimnaLbbHZxUCOWUBD/F2zU017cAwqV1TpT5nsbRq8rEytyvxeJlciC6uGC4u20OFMxz8WPwOlUweaLFAirP0JljhrMfhxqovqnHGo5/g+r9vxvpDrdBqBFxwXDl+vHCc78lym6YCfzN/zPnAbVuAWzcBeVXIMepgli4QeHx7zGj1Ph+1DSvTsi3kWz6TXBm8cCYHBBzLPMUZb20pzDZCqxGwbO5IAMB/ttWnjf9QMoncqpn+5sxDBV4Ays/SD7iYMRt8M4ubagb6nEWjODPrtTBKrXiD+R3nwQAnGqQilX+bnd7kU6pE63PWzzyeMYaeaFs1/RVnAPLM/RRnlmLxb0/4wlmkYABOoV+yZir56lArvAwYXWwZUKyNGdnfTEGapj/c505SnJVZTdAIYqpvgBpFLpydEH59vF0zQwpnTZL1RKHFGBDqcJKUrLn3WHdIVY/b48UeyaphSogJNgDAsR1i6IMxFyieFHwZjUZMNQeAVr9kTT8Vd9hETb+LvnF93wCI4/zjsvt8cZN0McmLYHkRLvIFQZALAYPZlhgK3qppSXE4QH6WQQ4hGqyC4r5j3Zgo1KLY7TdJU/1Z0sfvBdkGVKIFM/vWi8rND34Jr5dhnexvVhz0ecMyzOeMK7GLBqFVMxwajYCFk0WhxZqdyoov3JOzMt8cEPIQF/7+Zv3WyQMCvj7c5qc4U2eyppyqGapwxhjQJf1mJcVZfpZetpY41mXHjrpOdPS6kGPUoaxylLgsKc6AA5K/Wf82TUAe98LeCfR1DNomDRbqL5z5eZzVtvXigbd34eSHPsKv/7sLh1t7kWvW46b5Y7Du7gV46nsnBCoouOJshEJ/M38MWeI/iAOYUil16li8PmcAMHOZOMNavzUtK/18pndqiJnkSeVi4WzfsZ5Bm/FLF7j0vViSx58wPB9TK61wuL14ZVNtKjct6bg9XvlCqjQ3uCSen8BIcZZ8eEJkqKLL7FGhfc6iiT/3v4AbTJ+zzYfbADCMdB0U7+iftignayotnAVP1rS7vHBLCiXF4QD9C2dyOIC0f7LFwXOkwpkSfzMgfTzOvpRmZueOGah0iIm+Dl8r3/izo3tuyUTxb5Poc6fTamST+oAQCCWKMwAYKwUEVH8mhj8McXzBAIHH8gKLAZOk4tVXIVQTh1pscLi9sBi0GFEQRrV6RFLoVM0WC2Sh8Pc5CxIQEDJR09Etf/4AUOQ4gmJ0xH7+OboR8EhjPP69STBclRopHADwN4dPfcudzZEerZpaje98FMw0Pxnsa+rBORpJ2Tj2LNEH2dYckOqbDIosRkzT+HmpbX4OtZv/h5YeB7IMWsyU1EP94cmamaM4E38fBYPcqhmMc6aICq8Pdh0LVD6HYLD8zTj8O7PvWA868qcCEEQP0DQPrAsG97IMWTjrbfMdz3PKAYjjWZ/PmR3rpHTaU8YWQmsVl1HjvkgoXq+vcDZu4cDHDRYgSxoDDkHVmfoLZ9IPYk9DN+b/YS2e+7wa3Q43Rhdb8MAlU7H+3jPws3MnDrx47G2TWzgUBwOEoURS2CTE58xSBEy7XLy94S/xry+B2F0e2YR3agjFWVV+FrIMWjjdXtS0ZsaMFqe5K9BMWRAEXHPySADAi18dTnkh8csDLbj15S1JUaY0S22qOo0g+6/0hyvO0tmceahQLymnQil/fJL8YIqz6AZrcqvgIM3wuz1ebD3SgUq0wOjqFP2nSvopVqIsnPFzRH2/ZE2uThEEyOmVEeGDhQGFs+haNevlwln4ZNN08Tj7nBfOxiaocLbnHcDrBorG+1RHSuGKs+a94kAPQRKzuhrEtgtBE/QiIoDSaeJg0NkjFlCGOM39ggH8OXl0eJ8z7uk5qdwKjSaMSkL2NwsRDMCRkzUPYLKkYNvl16oZMlGzfquU2Fklfn4AZmn2xF4482+/a96dlLQ5peEAgE9Bk2rFmdfL0OdKj1ZNYHB9zrxehgPHunGOVprknnKp75oiye2aBdkGHK8RJ46YTjx/FXz0E2SjFyePLgwZyuILCMiM8Xk6tGpyTh5diByjDk3dDmw/2hFx+cFK1OQUZRsxuki0NNpyzA0USxNQKfQ5+/VbO3HdC5vgivL6KWKrJm/TtJSIvqgSvGOmodMuqzdPG18M5PAJzwxXnDVuFycGDNlAVYhzN2/XHII+Z6ovnPHBhdvL4GViT//zy2bhwx/Pxw9OGhE64YcP2IomiIWqOClNZOEMAObcIP7d9aZPSpoG7DvWDbeXocBiGGA4ztFoBIwvzcyAgOYgZsoXHl+BAosBdR19+HB3amcqnvhwP97+pgEvbzyS8HXzNs2SHGPIiyUKBxg8fG1+wX+nPFnzQFNPQMHL62Vye0BVgbLB2mArznY3dKPX6cGJJknFWTIR0PW7wOeFMz/FSThkxVk/8/huyQ8p26hT3ioxQHEm7p8uuwseL0t4qyY/D6Yi2ZTT2GnHwWYbNIKvsBIXbgfw6e/E28dfGf3z80eJym1Xr1zI5J+xfJ7mqqHiSbKCPCQaTUa1a3Lbif6KMwA4RQoICOVztrNOQTAAY5ETNTl+hbOJkqK9vtMuTwCFTNTk/mbDTgRGiJYcczS7Y2/VPPSp3/Z7gcYdsa0nDO2y4izyRb6cqmhLreKMF82A1CvOAJ/P2WDsl7qOPuS7GjBZcxhM0ADjzwVGnSY+WP1p+CfHSaHFgGmCGFZiP+3nQP5I5DgacZ/upaD+ZpwquVUzQxRnadKqCYgec6dPFCfO1uyKfD0QjfpfEYz5Kc4GFs4An+pscxr4nB1p7cWqL2vw4e6mgMkSJUQunPFggPKAu/k44cCxbmw5InZknDauWFalwdactHAYVcDVZqPmBxQcA8gbuj5nqi+cjSzMwg9OGoEfnDQCa358Gv7xwzlYMKEk/Cwn4POpiKVNMwil0uCSe1zFTfnxovea1y1GW6cJ3/oNiMNdRMrJmhkWEBBslt6k12LJrCoAwKoUhgQwxrBbKmRuDqIyipdjERI1AZ9HFCnOkg9X1YRSnOVbDBhXIio0/FVnzT0OOD1eaDVCSK+6/nBFVZttcD5Xvr1n5kqTCv3bNAFf4ax5r6JBTnlIxRkPBlDob+Z2+AIJ8kYC8A3cGJMUbFG2akYqnMmKsxR6nH15UEpyq8yVLRTiYvPfxAJkTrkvyToatDqgeLx4m/uc9Vec1W8R/0Zq0+TwwtmBj6LfHpUht2paBxbOZo8ugEYAqltsA1qbAV8bZVh/s47D4sy9Rh/ZX04unB2E1aTHcOnCX0z4DpeoKV3sDZsFjJwrbrtmD7pimbhxdPu8fiT1mvz9SRCMMbmdO9+ivFUz1Yozm+RvJgiASZ/6y4qiQdwv+5u65TZNYcRcwFLoK5zVfC4GYCQJk1bAcVKrZmvRLDjOfwpeJuB7urU42/htyOdVSUWY2gxQnLk8XrmAkg6KMwA4W/I5e1+Bz5lPcZagVs3OWsAhqfSLJgRdhE+qbq5JfbLmezt9wpGaVpvi53m8TB67RVScWQPN7cukMfOb2+rh9jKMLMwSi83mAkAjTQxEGLsNafbzNs0g/mYcUpylL4Ig4IFLpuKBS6bKKidFyC0CUQYDhCDhijMAmHOj+Hfz86IpbRrwrdSCEapNkyMXzhozq3DGZ+n7t7dcddIIaDUCvjrUljIV3tH2PvlEsvlwuyJ/hWiIFAwAkOJsMImkOAOAWaP4AMlXOOOGweW5pgBT8HAUDLI5/deHxVnA47TSSbl8+sCFcqsAoxXwuoCW/RHXWRHC48wXDKBQSdEppXzqLUCWuH/1Wo2citne6/K1ava2hr2w4u22SgtnXK2SChLapmnvBD595P+zd9ZhclX3G//csXW3ZJONu3uChODuUKS4tIVChZYW2tJCKW1/pd4CLcVb3CVo0ACBuLtns7vJuuvM3N8f33vuzO6O3JFNNsm+z5NnJjt3ZGdnzj3nPa/I9eN/Fl4NFgwqcN5QHZrZJepvbOabTbH2eIo4K1sNTZXRvaZDBGoTUOV1+iM90cnEgZlAd9WZrutmDmrIRk2lNus/OfzfVxFndcXQ0Woq2TaU1Qdv1NR1P8XZTHOuN9ZWLFEdkWL3V6B7IGsIjDtXfhbnnLOGNreZp2hJcZZ6YLO8gkG1ySc77fELMI8BOUZURMUBsGpu2d/os2mOOVsu+0+GxAxoqxdbU0+hZifpWjOtupP9iUP5yjOaJzyny0v47KdBg7lVOUBpbYsooA9jqDmJTfMpvw82jh+dh9OusaOiiW2GzTwY4q44U2qzvNFB1ULTh4jibPXeWtr7G5saJSvBe+Ba0xXeWesjF3dWWifOGv3WGEE3PU3FWWGnH/czNov2GHNhs2TDZvPb9DxC7ZotNb6oikDFAAp9irPDDG2NULpKrg+OD3GWb5YDxJHgGnO2MOHNlbD+1fg9bgxYXyLEWUgLBjDGCPA94qyaZqByZ7KiMDOJ08bLgPvUooMzkGz0C1NuaHWzpTy+pOY+I9+tICRxpsoB+hRnPY3SMOUAADONCdISv4KAaCZqB9IqqOu6qTgrbNkiPwykONM0X86VhZwzpTjbV9faiVRWn1VFfIVFzS65zBzUqbFKFchsKK2XGnjNBugyvgeA2+Nln3E+CVcOkG2oU6oOUki4russ2iYESlyKAb78B7RUS7bZlCuifxyVe1exCfDtJJfVtQqxooiPAWEUTwppBYbaSIcdn0b/ug4BlJuKs8DjebCcs5LaFupaOnDYtO4KMH9YtWmCxGkkZAA61Ow0CwLWl9YHb9Ss3S2WGptTGndT82jJFAJumNGuGRGU7W7ocT6FYpyJs1pDsZvotHVvBw0AlSVafZCtmqoYINnqGNnDyDmA2W+lJbuZoRnnoTFnyaXNDkPmyvUdPWjXND5/G/TBVDRLm+Yf3ZdQ6RqI1lAK7/884N36pSfisGl0ePT4rll6IVS+WVayC3s4J9IBQlqik6ON8+QHG4ITMK0dHnMcjpviTM2FAuSbKQzLTSE7xUWb28va9kIpu2hvgMot8XkNFlFa28Kq4lrz/5EQZ0plmOS0B836C0qcdXFpdLI9K+LsSG3W3P6JxBTkjva1ZwZCn+LsMMPepbJzmFEEmUVxeUhFFpTHo1VTwe6AmTfK9a//1ePV1uHQ4fGy0VCQTQhlwcCnOBOV05FDkoQKVFYlAa+vLKHuIChDNnaxzQZqU4wFagLWL6RVs09xdiDg9eqmAjBYFiH4JPnrS+poNuw2yhpQFMFE7UBmnO2taaG8oY1Cey2ulnJA89kyu6LAIM7KwxNnBWkJ2DTo8OhU+i1EVcaZZcVZl3wzhVPGSZvWm6tLZGGlWoeCSP7LG9rweHUcNi3geOKPLDNDzR1xgG48sL2iiX31rbgcNmYMCdzkZhn1ZfDVg3L9pLvlPBgtFHFqWDX927KoKxbFn80ZchHRDcNPkMvD3K4Z6lwGnXPOdL+5icqhGVmQRoIjBPkTCXGmaZBjlENUbTOVbBtK64M3aiqbZv9J4JS/e3uhPNf49iiyyUzibJ5P4Vq5FVrjtzmoxs9si8oYX5bXwVWcqXOH5fKUHkbeASwHyC35GJumU5c1vvN6wsw568GCgBKxCq/xDqO6qZ2FWypoJYEtR98PaLDqGdj8Xre72W2auaF2uDdrqviCnF6Qb+aPU42N9A/WB885U66BZJfdUsuuJew3xr4g+WYgTi6Vc7a8uN63UXCAc87eWyfklNMuhOeuKIizoDZNCGrV9J8z220aRw33y2xVOWdHKnGm5j2B2jT9YSrO9hx07iLeODKJM9OmGZ98M/DZ0+K+ezP9WnAkwr41ULw4bg+r67opr7eKbeWNtLu9pCU4zIyRYMhMdpnviZrYHgkoD7HYmDU0mzH90mjp8PDisuID/dJMxZkiOeKdc2bFqpneR5wdEFQ2tdHh0dG00ArAgVnJFGYk4vbqrNxTC0RXf551ADO2lNrsjFypCSd3lNRfB0IEzZoOu81UipbV+sZx9VlNtZpxpogzteNm4Pypsqv5yaYKmdSFadZUk+b+mYlhd8ozk12muK32IJDyKt9sxuAsS0qZkPjs/8DdAkWzfQqOaJFvNIJVbgGPu1Nblm4sOikY171YIhRGnCSX2z8+7CaECrquhywHAJgxJAunXaOktqVTyLhp0+wfQpXeUuNrNQ/WytUVnZo15bG3VTSauavdGjX9bZoKRs7ZFO+GTmRfWDRX+4oAhh4HqXmy8Youc7M4odogzqxaynpLxllzu2rUPLIUZ16vzqTGLwDwjOoyVg2dJ5d7vpbcy56AoThb6x3GutI6tpY3YtNg3KxT4Ohb5Zi3fhDQmqyKf1Q0w+EKRZ72lnwzhVPGFaBpsKq4Nui6scRs1U6KnwVaWTXDbBb5WtdrYIBREHCAc87eXSf5ZhdOHQiI4szquG2NOAusOPMnzqYNyjSdMoBfs+bBLXqzhHjPT3TdVwwQyqYJxvlRk7ncYZYHd2QSZ3EuBgCfVbOp3UNjWxxJgeRsmHSJXF/877g97EOfbmf83e/x3jrrjZ3rDJvmuMIwFfMGRhuqs65Kp8MVTW1ucwIZaLGhaRrXHj0EgKe+2nXAsyVUMcClRlHBsh5SnIUiatL7rJoHBIr4KUhLxBkmp0zlnClCKjqrpvxdaw5AOcAyI99sbqox6Qlk01TIV8SZxWbNzO45Z+qzGqvibEy/dEYXpNHu8cq4G6ZZ0ywGCFLu4A+7TSPTmCAejGbNL+OVb1axBVb8T66fcm8nq2tUyBgkWXOedqjeYY5N7W4vrXuMoHerxQAKRXPAkSQZJxYbWw81NLS5ae0Q5WIwxVmyy8HUIllcKeIUfMRZyDiHYiMjJWeEkFBW4Eec9UtPJCvZicers8CwOgVv1PQRZ65hQpyN03bR3BDB+W/X53KZN9ZHeKtcvDjaNSMpBgBfq2ZlY1tkRGCc0dsUZ7kHSHG2d/9+jkII1YxpF3a+MW80pOTLwlF9FuMJr0eyFoHV+jDeWStz+UkDM4V4PeEXsqnUuA/evaPb3ZWi/HAvCDAVZykRbI4cAOSnJTK1KBOABUHaNeOeb9beBNXSwkq/iSEPnWG4EZbvrkFXxNne5fF5HRZQXt9qzvVuneRlsraN+la35RxXVUCWnhRk3qbrfsRZZ8VZTmoCDmONe9zILuenVHEO9HrF2fZP4L4CeOocX6lNrNi3VsYTZ3L4mCuHy/e+HmY5Z0ceceZu953EBh8Tt4dNdjnMhVXcVWezjJKADW9CXUnMD1fX3MFDn2zDq8Nv5m+ktcOa8kxNiMMVAyio2vjNB7MgYM/X8MBMWP96jz+VsrYku+ykBMn6OG/KADKSnOytaeHjTQeOhW9qc7O7SiZI35w1CLtNlAJK1RIrdF0385hCWzUVceY+qBP9wx3+aqVwUBMkRZwVmy1OvTPjTCklxyJtYiGJM2XVrN8rKpcwUDuNpX6KM7McwGp+TxDiDODcKbKz+caq0rDNmuo1hMs3U1CqvwOtPvF4dTMgPmbi7KNfS4zC6LOsWfjCwWbzqc7KN+By2Mg11CievVESZ85EGHKsXN/+ceyvsRdCnctSExwkh1ARzRnePedsY5kF4kyp/q2qzaBTs6amaWZjp2rI7JSn1tEKZYYSbOAM88eJOYPYredj13Tad35l/bmV3U7Z78D3uVHKxThAbTxYV5zJcW1uL00ROgjiid6ccdaT84za1e+QoLnZaxuAXY0zCprWs3bNyi3Q0USHPYkdeqGpND5ulLHQdybB+f+SLM21L8LGtzrdXZ3fD3erpjof9jarJsCp44WECdauGfdGzf0bAF3mHimhz9UTBqTjctiobmpnd5JfyU67dbtkLHh//T50HWYNTKLo9Qt5JeEehmsl7KwMXaagEFZx1loHHcbvouyXBuw2jRH5qWganDAmv/P90g4R4uzzP4OnTcaeR06EF6+Bqu2xPea2BXI59DhrKv3DNOfsyCPOylaBu1XCmXNHxfWhe6RZE8SLPmSuLCiWPhrzwz29eLc5ySqpbeHpr619qJXibMKA0MUACr5mzYNYELDkPzLBeP27sQ8aYRDKpqmQ5LJz2SxRfD21aFePvh5/qHbT/LQEirKTTRuN2tGJFQ1+ajsrrZpur06LRcK2D5Gj1LDNWlErzTKIsxW7a2lze0zSbWAYO7Y//DPOenSh0tzOFiMMPLdBAt/pPyn4HRIzDMk4Zs5VKPQ3w+P9FWeRZpwZ42kg4myyEGdf7aiiySnvO00VAR+mpFYmzeEaNRWyDyB56Y91JXXUt7pJS3Qw0eKmSkAUL4FN82Whd9Kv4vcCzWZN+fsLsa+TUG4QK5ESZ+Czax6MnLMDsOGgslqD2TQVzJyzHZJzVtPUbiolx4YkzozYiUjI0Zzhclm1Dejc2NmtUXPfGmnTTcnzZa0gqu+VmqFC3fWl9ecOSJwZhRI9oDizmnGW7HKQZFijD1YxCEBzh69VszdAKc7aPV6TWO0JJG1/F4BNmccFVscOM+yaPUGcGYRtXeZ4vH5LueP8g8wHzoBjfiDX598GTT6Cu8g4vx/uVk2V/9fbrJoAp46TzbOvtleZRI8/4q44U/lmFjI9Exx2phjNyUsqk0RppftUjj0N1aZ5U/56aK7CgZdL7J+ys9La51W9n+nBiDOlNkvKCtjq/NAV03jmxtndhSKKOOvNrZoVW0QlrdlgwkWABhtehwdnwfwfQUOUNlM13wln01Qwc852Rfd8vRRHHnGmbJqDjordBtIFBT3RrKkw21CdLXvcJ7WNAq0dHp74UpQa84ydqQc+2WbKWoPB49XZYOwkhysGUBjTTzVrNhwcdZHX62s+62iCV78Nnp6zkvkaNUMvNq6aMxibBl9sq2RbnJstg0GpAMYahJkK8I5XzpnKN8tIcpIUwq6R7LKbeU19OWc9hzJl87OgOBuZn0pGkpOWDg+fbCqnwyOB9KEI0K5QirMOjx5fq3oXrNgjRO/kHC/2ekPZ1S8EcQYR5ZyZirM6P8WZWQ5gwT7V0eLLvvBbsCsUZSczY3AWug7r6oxxIkhWhlKcWSbOejpnbtuHcP8w+LpzZMCXhk1vzrCc6FvLdB0WGGTZlCt8KrF4wGzWNIiz9CQGa/txdjSAPcFXIBAJhp8ol7sXyd/8QGHNS/B/g2Dhn3qUQKtoDL8JBDB1UCYJDhsVDW1sr2g05wiDspNNW343uNt81pFIiLNsgzhrqoDWuk4Zat0aNZUVdODMbvO89U5ZNDpLLCrO6ktl802z+ZSG4LNq1uy0pGa1ApVxFkkQuFLSVB7EnLNmY4xMTugdxFmi0262IPcYoehuo6hK8s1qB58W+BhFtO5dCm3WlDKWYRC2rXm+819agoPJhv3PxPE/k82Dpgp453bzx0eK4kw1zqo8wN6EYXmpjMhPxe3V+XRzd+V5NHmzIaHyzUIUA/hjurFOWLq7xqfctVAQsK28kWP+72P+8sHmqF5mVWMbi3cKyXt0/bvmzy+0f86e8jpLjxFWcRbEpqkwLC/VbD7tBLNVsxdnnC1/Qi5HnQ4XPw43fwkjTwOvG5Y9Bv+YAh//NrJim9Y6X6FPuGIAhT7F2WECM98sjD83ChSkKcVZD5yoR58peT2ttfDk2VGrp15avpfKxnYGZCbx8FXTGZ6XQm1zBw9/FvrxdlY20dzuIdFpY5j/zm4IDM9LxWHTaGh1d1qIHjDsXyutac5kqbIvWQYL/9hjT1dhhCmHW2wMzErm5LEy+D616MAMKF2Js5mmPS8+E34rxQAgO/5qQtuXc9ZzKDMbNcOTLjabxkxjgvTaSrGCF2YmRUSCJLnsJDrldNKTOWfq82oWA2QNgaTM0HdSxMj+dWEfX5FUZX4WZrWpkGrFhlS3Vy5dabKTGQDnGXbNL/YZp9+gVk3r5Cf4qf56gjhrqoLXbpbx9IO7oHyTeZPKNzs2FpvmlvfEvudIhBN+Huur7Yz8zoqz/hmJTNL8cl7sUbSV5Y6C9IFihdj1RZxeqAV8+Tdoq4ePfwOvfkssiT2A8npr57IEh93chFm0vcps1Axp0yxbLe9bco7PfmkFiemSGQVQtb2T4qx7o6bKN5tBV2xNEmt3csUaaLegXthp5Jv1n9x5rEnKgqyhcr10lYVfIDxUfo9Vqyb4FwQcPMWZcjCk9JJyAMC0ZPdY4+iOz0j0NrNPzyJjRBACOGuIKI+9bt+iM14oFcWZrpSPwFHDc7pnmjoS4IJ/gWaH9a/C+tcAX8ZZWV3LQWliPlAwrZq9UHEGPtXZBwFyzvZGEZsREmoOVBA630xBzQuX746sIOD+9zZRUtvCQ59uj0rR+MGG/Xh1OLlfE4l7vwQ0Wh3p5Gn1pOyxpvKuV4qzYBs4ZqNmYeDbg0EpzprKJWewt6GjBVY9K9enXyeXBePhihfh2ndkM6mjGRbeLwTa1/+yVl6y41NRHOaMlHHNCkzFWR9xdujC64ViVYEev2IAhfyesmoC2Oxw1asyYa8vEfKscltED+H2eHlkoSwYvjV3KIlOOz89XXb2H/tiZ8jXvb7UKAbon255Qe1y2Ez7xKayg2DX3P6JXA6ZC2f/Ra4v/KPPJhJnlJuKs/ALXVUS8MqKvWHVfvGAjziTBYZqzNm0rz4uz6/yzQpC5JspKMtbT1oojnSUREi6qJwzlbsXzURN2Yuqe9AquNwgzo5KMgiqUPlmCqbiLHyQu1KclfkR/RFZNf1tmkEUzWdNKsRh01hZbUzkg1o1fY1aVmBmnPXEQvGdH/vaP70d8Ob3wOuhtcNjlowcMyInxAOEgNcDH94j1+fcHPlENhwUcVa1Hdxt9MtIZKLNyMeLxqYJ8rcdZahMPv2/AzOB3rdOFj42h/xb+xI8eVaP7HxXRHAuU7vyi7ZVdZonBIV/q3mkqn+/nLNhuSm4HDKF7d6oaSzu/Bs1DTQnD6BUz8amu62FtgeyaSqoz0+c7JqRlgMA5Pbk994iWoxygOReUg4APkKxsqFnCEWvkRm2wDOdUf1CfN7NnLPP4vfk7nZTPZQ42EcOm/lmXVE4Feb+WK5/8jvQdfLSEkhw2PDqnVukDzf4ygF6J3F2mpFz9ummctrcvvNIm9tjijDiQpx5vT7VvUXF2bRBsk7YUdlEXY4x1wpTELBmb61JArq9Ov8KI8oIhHfXGTbNdGO9PvwE9g2XkrzJlW8Fu1snhFWcNRjFeJHON1LyRH2se4PO3Q4q1r8uApuMQb5ICYUhx8ANC+DSp4UAa66C9+6Ev06QEoHXboaP74PlT8LWD2WDtM1wRW018s2s2jTBpzhTub+HCY4s4qx8g8gNXanh7T1RQFk1y3tCcQbCdF/7NuSNgYZSmTRXbLF893fX7WNPdTNZyU4uMZoVTx1XwLRBmbR2ePnbh1uD3teXbxZZho0qCNh0MAoCdhjE2fATYOLFMPESGexe/VZkElWLqLCQcaZw1PAcRhWk0tzuYf5q682m0cDr1c33Xy1o8tMTGZSdjK7DijjknO03FWfhf3f/goA+9AxURpcVxRn4FIjDvLsZppVGNVHL8ss56wm0uT2s2lsLwDCPMRmzMo4r4qx8g0weQ0ApzvbXt+I2duGVVTPVCnFW40ecBUF2iou5I3Op1I2xNIBVs761w/x+HPSMs3WviEpBs8Olz4iabu8SWPIIK3bX0Ob2kp+W0DljKhKsehYqNomC55gfxvWlAxL8m5ghu6WVW0VxZjMUZ9ESZwDH3Q4J6bIDv/SxmF7i/vpWLnzoS/4e4hzMmuflcvQZcOWrkJgpz/3IidJ2FUeYxJmF8fwoI+fs651VrDXmCeND5aAq5U3R7MhfmF/OmcNuM5VtY/yJi/pSKQPRbL4cMj+kJzlZ7DXI1N1hcs503Ud4HADiLNJyAPAPwj/4irNQRRIHGmbjaE8Qil4P+qa3AfhEm2WqtwJi6PFyGU/irGKjqDYTM8goHGUSyN0aAP1x9PdE0Vu5BcpWo2kaA0y75uGbc6aaVXtjOQDAxAEZ9EtPpKndw6Jtvgw6FdWQ5LTHJ5+tdhe0N0o8Qc5IS3fJTHaZmxJL2wcDmoytIYLx//SBrElV3ulLy4ojKiGrbW5n0bZKbHiZUiXfMaZehTbtKgBmtC9Drw+/Zgpv1VSKs8BWzaCw2X3K595YEKBsmtOvltfaFZoGY8+B734N5/xdsuuaymWDaPWzIi556wfwzEXw0Gz4/UD4/SBY86Lcf2QExJlSnNXt7Z3qvChxZBFnZpPTLLDH/wTfY+UA/kjNh2vmi/2ocZ9BnoX3keu6zr8N5v+ao4eYExxN07jzDJlEvrismG3lgXMY1pVElm+mMLrfQSLOOlpgt/H3HnaCXJ71J2Hha3cHrOeOFSoXZkz7eskCCrGY0jSNC6YOBODttaVxfy3+2FPdTHO7B5fDxtDcFPPnM/xl2DHCbNS0kIullDt9Vs2eQYfHa6ofrZIuEwdkcI3rY95x/YyXXfdQlBn5RK1HrYLIGNTu9pKd4iK12tg57T8l/B1zRoDdJZPGutA7X7lGDblX9ylI1ec0qOTfHyEaNf1x/tQBJnGmN1eDpzOJrBQAmcnOoA29XdEjGWcN++BtQ6lw3O0w9mw45R75/0f3smadBOwfOyIXLZrM0I4WUUAAzL09vO02Gmiaz65bvpF+aU4maDEqzkB2qlWJwUf3xtR4fe9bG1ixp5Z/frzVtL13gtcj+WYAky6T0PEbP5LPdv1eeOw02PRO1M/fFWbRjYVcoEkDMkhNcFDb3MH2CmkpGx9snqDrPuIsGtW/qTgTtf1vzpvAT08fzZkT/VrRlNosfzwkdCdz0xKdLPEaGXoquiMYanZCXTHYnIFf74D4FgTURFgOAH7Kql6QcZbSSzLOAHLTelBxVrwYe0sVdXoy1XmzsYVyYQydK5dla6A5PpmyZpNr4VRcTjv/vHwqf79sCoNyQhB4iemSeQSiVsVn1yw+TImzdrevHCI7pfdlnIFEZZxi2jV9REyJkW82ICspunNrV6h8s/wxEa1/pw+WTdXFJe0+9XaQnLMlO6tZuKUCh03jwW9OY86wbDo8vrWnFSzYsB+3V+eKnK04mvZBUjaMOYv+wyexzDsKh+alaekzYR+n3mrGWZdGTUtIUzlnvYw4278eiheLIn3qVaGPtTtg+rXwg1Vi4bzgP3DiL2HG9ZKHlj9eNhwB2uqEqE/KhsHHWH89af3k3Ol1+4jKwwBHFnGmdhcHxT/fDPzKARp6WPacmifkWcEEYYqfPCtsY9znWytZX1pPktPONUcN6XTbrKHZnDw2H49X50/vdyfhdF1nXamFneQAGGvsBG8+0M2ae76WL3paf8gbLT9LzIALH5ad6NXPmlkP8YJSGk7Z/ZhIYBf8ChqDS3nPniQD9lfbq8wd/p6AsmmOKkjF4Zd/4cs5i30ytz8Cq2a6SZz1Kc56AvvrW9F1cNlt1uwJuo5r4e/4te1R7JpOttbIiOTIJ9KqIKCnwulVkcUxRYloxsI5ZKOmgt3pGwPCFATYbZq5AaJUe40RWTUN4kxJ1IPg5LEFtDgz8egaGjo0V3a63cw3s6gYhM7NpnGBrsvOY0uNKPvmGsHS06+Xc2hHE7PX/wbQOTrafLPF/xb1dEYRzLwxPq87EPIMoqR8A4P0MlK1Vpr1BPRcazvvQTHjBhg4C9ob4N2fRvUQC7dU8PZa2UF3e3We+mpX94N2fCobZUlZMPJU+VnuCLjxQxg6T8pvnv8mfPG3uJQGlBtzGCuKM4fdZmbhgCh9ghbklK2ClmpRvlixWXdFF+JswoAMvnv8iM7xESHyzUC+x6bibO/S0PkuyqY5cCa4Urrf3m8SoAm51uVcv2JPDYt3VHW/TwjUmOUAERBnPV0KYgGqUTtUMdCBhs/C2gNzK0Nt9pF3GsP6ZYY+Nq0f5I4G9PAKR6tQRK1B/J82vh/nTbGgnJkkdjfWvQJeD0XZcn4prj48CwLU98mmQWYwAiVuT7Y7amL01PFCxCzYsB+PV8bvg51vpqDG9mVhcs50XedPRhnAJTOLGJSTzPdPkvPr80uLLQtK3jNsmtckGmPvpEvBkYDLYeOjRAmlt69+Oux5ThGmYVs1o4mGUGRbb2vWXGaozUaf6ctiCwdnklg4J18qm6Nn/1Xy0L67CO7cAz/bC99dDFe+At/+RI63CpsdMo1W+8OoIODIIc503adAGhz/fDPw5YHsr2/r+RbJlBy45i0JN26qkMyzEItCxfhfNqvItFT54yenjcGmwXvr95nNdQrF1S00tLpx2W2MzE/rdt9QUIqz7RVNnfz7PQ5l0xx2QucclcFHw7G3yfW3fhiTSqArKhrb6E8V2WVGmHB7I3z2h6DHF2UnM3lgBl5d3veewkZD7Te2Sw6HOiGuKq6l3R1bOGwkirN006rZpzjrCSiJf7+MxNA74SAts2/eapZmdOiy8BnsrI34eVUTXE9ZNVUxwMnZ5YAOaYWiwLWCfOs5ZyoXrrS2FY9XN21IlsoBLCrOUhIcnDSuP9UY38kuBQF7zYw665MUNa5Xx0t5suoZCe23u+CCh8FhnDdsNjj3n+j2BKZ2rOBC2+fR5Zs1V8Pnf5XrJ94FTustrhFDKc4qNpHfIJ+BdfoQ6mN9q2w2sTvYHLBpPmy0lr+i0Ob2cPebct6eYGxKPbt4Dy3tXc6Va16QywkX+f4OIETala8YpKMOH94Nb9xiLew3BDrFDjRWSCFEbXHQ4/3bx8YVpgdXSKx6Ti5Hn9n597AKRZxV7wi+cAqRbwZCnO3Q+9PoyAJ3q0+9Ewih8s1AVDyKfC1bZf643e3lmseWcNVjS0yrWDi0dnho7ZDzcGYkGWeqHKAnCCKLaO6N5QCm4izO5yNdN7/n73tmMKprMUUgDJsnlzviZNcsVYqz7lbkkBhxili8G8pg1xdmW+NhZdX0euGz+2HjfLMYIDvFFX4uFC32LIZnL4W/T4KHjgILNsKumD00h7REB5WN7awqlnmOr1EzTsRZhI2aCjMMxdm6kjo6+huftwCKsy+3VbFkZzUuh43vnSjj9FHDcpg5JIt2t5eHP9sR9rnqWzv4fGslOdQxvMZYR03zKae2559Kk55AUv1OUVaFQI9ZNaF3Nmu2N/nmCTOuj9/jJqSJSnHEydZLAfxxGBYEHDnEWdU2YYdtTh9rHmeo3dl2t9f80lpBfWsHi3dU4fVGSLYlZ8PVb8rObXOlhPsFyDpZs7eWRdurcNg0bpw7LOBDje6XxkXTxDr4f+9u6kT8KbXZ6H5pZpaCVfTPSCQ90YHHqwe1gfYIVDHAsOO733b8z2SnrrUWXr8pbO6RFXi8OlWNbXzD/hma7pXGNRC/eYgG1LMnyW7H/NU9Z9fs2qipMDwvlaxkJ60dXjPUOVrsq5NJe0EEVs36lj7FWU/Al28W5m/RbqhUVj4Nmo0ts+5jrS4tcf21yO27voyz+BOiuq6zfLfs5k5zGeSUFbWZglkQEL5ZU+XCldW1mPlmYDHjzCJxBnD+1ELTrump70ycl5rFANbJpLiWM9TugXfvlOsn/AIKxnW+PXcEW8fdCsA9rqfpb4/Civ/5n8UCUDABJn4jxhccBmaz5gZc5asBWOsdFtgWGQF0XZf35pgfyA/e+UlE+Zn/+WwHOyubyEtL4Jkb5jAoO5m6lg5eWbHXd1Bbo4+Qm3RZ9wexO+GsP8OZf5IculXPwH/Pg6bK7sdaQLvba36H89MS4dPfw6J/wju3B72PyjmDEDZNdxusNXJSplwR1WuTibsmzaKBgpk9HT41TlDizAlobEsyxo/dQVpRdT08cQYBc8721bXS0Oam3eO1nCGqNhwcNo00i/Zs8M84O3iKs6beWA6Q0kOE4v51ULubNlws9E7qXkwRCGZBwMLYn7+jxecwidRq7nDB+PPl+toX/ayah5HibPtH8Mlv4dVvU1sn89qceNs0dR22fQhPnAmPnyobTCBrzJeulXEoArgcNk4cI5uAH6wXMsanOAthv40E+421YUFkxFlRdhL5aQl0eHQ22kfJD0tXdvod/dVmV8weZM6hNE3jeyfKxsIzi3eHddZ8vLGcdo+XGzOWonndQgyruRvQPy+Xtz1Gg+3K/wV9HF3XQxNnbY2Sdw5RKs4MNVdvUpyte0XOi9nDRIXeW6DcF32Ks16Gym2w+V1Y/hR89keZvL54DTx+BvxzugTbPWDI9gdMj0xqGAESHHZTdbE/goKAX76+jkv/8zUfbSoPf3BXJGfD1W/ICbS5SsizsjWdDlFqs3MnF4ZsaLvtFAkZXbKzmk83+yalvmKAyGyaIAPnmP7KrnmAcs6aKmGf8R4EIs7sTrjwUXAmy0TmqwdifsqqpjbQvVzq+FR+cPLdYqnxuiX/JgjOmCgD8JJd1ZT3UDZeMOJM0zSmG+2aqhkvGnR4vObktJ+lVs0+xVk4tHZ4uOw/X/GTl1ZHfF+lOAvZxthUKSrVrR+AIwkue5YBJ91MtV3ChTM6Im8L6smMs+0VTdQ0d5DgsFHYYgSoR2L1UsRPuYVmTT/FmfqMuhw2EhxhFoXtzb7mSQvE2dyRedTY5Pu3bdfOTreVRqE4yzYW0K0d3u6KpUjg9Ypqqb1BbIhHfy/gYc/Zz2W9dzDpNEZmU/R6xVL49b/k/yf/OnCIbTyhiLOaXbBL7FJrvENNkjkavLB0D1PuXcAbq0rguJ/IhLWhLOR474/i6mYe+EQsh3edNZaMZKfZtvzElzt9G2mb5kt9fPbwoPZDAGZ9C654CRIyJM/10ZOiKsFRCimnXSMz0W7a0tj6QVDV2bj+6eYCZVxhkHnClvfE9pvWXwp7ooEz0Wf9UHZtf+xfD+4WiWVQ6rQuUMrRDS5FnAXJOSvfKOScIyn0+x6AOPNX8KzYUxv8vn5QVsvMZFdEmUaKFDiYGWctvbAcIDfVxQAq6GiIjkAOio3zAVjonUQLidYUZ4OPATSo3Bx7LtK+dTKvTMmDjIGR319tUmx4k6I0+ZwVVx9GirPNRtZjRxPOHR8AxCdcHyRrcv1r8PBx8PRFYr21OSVP6spXpCym+Gv44JcRP/Sp42Qt8P76fei6Hl/FWWudb1MvQsWZpmlmHvIXdXnyuWtvhCWPmMd8vKmcVcW1JDnt3Hz88E73nzsylylFmbS5vTz6eWjV2bvrygCdb9gM4YOf2gxgaG4KL3oMUmjda77Gxy5oaveYlteAxJlq1HSliWo4UijirDdlnC17XC6nXytK+N6CPsVZL0LNLvj8L/CvY+CB6fDcZfDW9+GT+2DJf2DD67BnkUyu2gxm2ZkSXwljAERaENDh8fLRRlls7Yn25JWUBVe9LqRgS41BnsmCe0dFo1nt+515w0M8iCzSrjMm7n94b5M58Kwvlcl30J3kMBhzoAsCdnwql/njfSGOXZE7Ak7/vVz/6N5uZGOkqGhoY65tLQO0SpHCjz0XTrob0OSzGKTCeWBWMlMHZaLrvgrmeKK+tcM8AY/r3/0EMSMOOWflDW3ouiy0rIQap/VlnIXFij01fL2jmpeW7404u0aRLv2DqZWqd8Bjp4jdIykbrnkTRp9BSoKDY6ZK/oWtMXK7QU9mnCnyd3xhOnZFikdEnBmTxaptsmMfAoV+ijP1GU23ojarM0iFhAwZk8PAabeRlCUTsK3bO08ooyHOUlx2XEaGYUyqs2WPyYaCIwku+HdQUmvh9lp+2vFtvJpdFhOKYAmF5mp47lKxFOoemHZ198r0nkBKrkz4wdx5X6vHpjh7Z+0+6lo6uP2l1Sza0yTZIABLH4XipWHvf8+b62lzezlqWA7nTpZd70tmFpGW4GB7RROfbTXI69VGm+akSzvHDgTCiJMk9yytUOZIG9+M+PdSxQC5qQnYylb6dtV1L6z4b8D72GwaPz19NKeMK+DksUHs06uelcvJl8VGlHbJOesElW82YEbQxYM6/6y2GWT6nsXdyjkAnzpo8FHgCKFYCUSc+bXIdY2+CIZaQ+WnNl+tIjdVjbttkbsW4gRTcdZbygF0neHbnmRhwg95rPEWqN4Z/j5WsUmIs/fcM0hx2UNvUCkkZ/vOV7GqzvzzzaIJjR90tDgi2uoZWiukcXlDG60dh0HrndcrIgoDubuFRMuOtVHT3S5j34OzRFG2b41svM+5BX6wGs57QKxsF/xbjl/8L1j7ckRPMW90Hi6HjV1VzWwtb/QjzuKgOFMxPukDLc1NukLZNZfurhMFOogSubECr1fnz0aT5jVHDzEjixQ0TeMHRtbZf7/aHbT9t6nNzaebK5iqbSO3ZafMPyZc1OmYIbkpLNNHU2wbILme618P+FiqGMBp10h0BjgPmDbNKNRmIE2U0HuIs9KV8s/uil7N3VPoU5wdZDTsg6//DY+eDH+fDB/9WmTTNqe0q408TZj/uT+GM+6Hi5+Qtohbl8Edu+HnJRKA14PIj5A4W7G7xrQD1Udg7+yGpEy46jWxJ7TWwnzJ8Xrk8x3oOpw0Jt/MGwuFm48fTnqig037Gnh9ZYkUA5iKs2iJMyFsDjhxFm5Xe9o1MPos8HbAKzeGXVCHQkVDG5fajV2SSZfKzni/CTD5cvnZgl8FzWQx7Zpr4m/X3FQm73lhRiIZASbkM/2aNaPN5VOLz/w0C5la+BRn9X3EWVCs9FMpWLX6KPismgEm9KUr4bFThTzLGAQ3fCAtwwaScgw1R33kn0VFnPVExplSwRSl2aHCsKn0i8CqmVogJKHuDdtCrCyuZXWt5tgcz3wzf/QrlGOr9hd3Wrgo1WAkxJmmaWQZ2UhR55xVbfftlp9yL+QE3mzZV9fK9oomNjCU9lli2eTtH0NLbfDH3rMY/n2sKJfsCZINds4/olv8RQOlOgNabcns1PtRFgNxtrtKGiQ7PDrf+d9ytqRMh8nfBHTZxAth11mwYT8fbSrHadf4zfnjTYVRaoKDS2bKd/DxL3bK91Cdz1SwdzjkjfJtEAZZWISCUj7npyWYJIFJOq74b9Df64rZg3nk6hmBVUcN+2HrArke68Q+JHEWOt8MfBmbGzwDZJOro8ncaOwEKzZNkHFIs4mKwcg3KvGzvq3ZW4vbEz4OIppiAPBZ5L061MYyh4wBzW29KOOsvRle/Ta5i+7FrunkaPV4n73UZ82KBdU7Yf86vJqdD73TGFGQZl0daNo1Y8w5M4mzCPPNFGw2mCiEROqWV0kx7LUltdHPf3sNylbJ99Amn8OBFZ+TQotZFBEVtrwv6803vydjTmImzLsDfrgOTv8dZPhlZI05S9afIMeHKW3zR2qCg2ONkp35q0vNkrm4KM6izDdTmOG3TvBOuUpI4LZ6+Oge3lu/jw1l9aQmOPjOcYGjgI4fncfEARm0dHh47IvAJPanmytoc3u5IcWwzo8/39fqaGBobgqg8UKH8V1a+XTAx/K3aQb8fsZSDAA+QUZjL8k4U6UAY8+VTcLehMwhctmnODvAWPmsqKj+Mhbeu8PYVdTkRHTOP+D2LfCdz6QJ4rwHpCJ+9ndgwoXSFpE7UoilAzBB72fknJVbbEn8bIvPEhWzAicxAy59BtCgZDmVe7fxynJh1m86PrTaTCEz2cV3T5CJ6V8WbGFPdTNVTe3YbZqpHIsUirDbVHYAmjV13bfQGBaGONM0OPefsqiu3CzkVpSoqyzhFJuhKpt+je+GE34ui8TdX8iCMQDONOyaS3fVxJy50xXBbJoKEwZk4HLYqGpqZ2dlU1TPoUhiKzZN8Fec9Vk1g6ETcWZRsaDgI126/D22fQhPnCX2o34T4cYFvmBrBTWRiCLg1iRtmuL/d1XE2VhHsdhUkrIjs6loml/OWehmTUVW+Vs1FdkbEmpiEAFxVmAQZxneGj42rPpuj9cs24h00pwVS86Z1wOv3SRWt6HHhWy5XLRd7E8TB2SQePLPxEbYUBZ4DPV64cu/wxNnyE5vzgj41kdiKThQpBlAno84q0wbi47N8gZXV3R4vGYu0Jh+aTS0urnuiaVUHH2XfDbLN8CifwS8b0u7h3uMQoAb5w5jRJfCnWuPHoJNkybsikVPAzoMOgqyh1p/gSrHaMenokKPABWNqhgg0aciPOVeIc8a93VSdFjGmhdEYThwVvcxJ1KYxFmA7FCzUTM4cWZmbLZ5pSwIurcdej2wy1jAhSPOXMm+z5ZBaviTEK0dXkubhipXLjNCxZnTbjPtSMHUHD2NZtOqeZAVZ7V74PHTYO2L6Jqdf3gvYZ+eha1yM7x8fWBlYSQwiOS96VOpI5VR+RbyzRRU7lDMijNVDBBhvpk/JgoJr215n9GZQuoeFnZNZdMcfSZkD8ept3GSbQXZ0WacdbTCa9+R5ufUfnDqfXDbOpnXpwQpxDnhFxIR09EML1wZkV3+1HFCyDy7ZA+6DolOi83o4RBlvpnC2P7pJDnt1Le62VrZInmaACuf5u335Dtxw7FDAxbPgco6k3H7qUW7qA0wP3lnXRnJtHKK1xiLp17Z7ZgBmUk47RovdByLrtnFFluxpdtxijgL3qgZQzEA+BRnjfvjkpEdE1rrferGHnbURQWlOGsok+/TYYBDgzh776dystG9MiE6/Q/w403SKjn9GpFB9xJEatX0J87q40EkpBXIJBtYueAZ2j1epg/OYuYQ6+/RtUcPoV96IiW1LfzsVRlwR+ankuiMblKkiLPyhraer0yv2i6WKbvLNykOhZQcOP8hub7kP77JcoTI2/4aTs3D7qRxncIsySwSEhfgw3tkQt4F/TOSTOXX22sjJyxCIRxxluCwM2VgJhB9zpki+6w0akKfVTMcdF1nVXGt+f/lUSrOCjOT5KS+d7kQGs9eKuqKofNEiRuortokziJvm1U5IrXN7XFvFVbNaCM9xm5l/8mRky7qexkm50wpziob28zA7bQ4FwMo2Ix2plzqeH2lvOf7G9rweHWcdo281Mgm/CooPKqcuUX/hL1LJPfjvAdD5mR8sU2Is6OH50pm6Ln/lBtWPNV5YdhcLTEKC34lxMmEi+Hbnwpxe6DhpzhrzBG1YrSKs5KaFjxenUSnjWe/NYehuSmU1LZw7Qs7aDvpPjnos/sDkjsPfLKVktoWBmQmmYsJfxRlJ5t5N27VQjkpQqV87kiJKvB2wKZ3IrpruZHPOs65Dyq3iKJ/zFmi5gdflopV6LrPpjnlm5HdNxCUCrLre9tcDdXGzwYEV+P4MjbdRvYU3YmzstUS8ZGQAf0sWMK72DVVxpkSYFvZ/FDf2WjymNT3/mDknHm8Oi0dvYA427kQ/nO82OiSc9CufoNX0r7Jje0/xmNPlI2jD34R23MY+WaLnDLHtuLiMDH4KFFC1e6J3jra1uhTTMdCnPWbIE3DnnbOdYlKc+/hUBCgSP0xZ4lwAjjH/rX5/YgYm+bLxkP6ALFkHv09aRkMBZsdLnpMbJFV2+D1m4M3AHfBSWML0DTf93hAZlJEeYdBEaPizGm3MXVQJmDEuhTNMt0032p4iMxEOzfMDb2xc8q4Asb2T6ep3cPjX+7qdFtrh4dPNpVzlv1rErzNkheqxmY/OOw2irKTqSCL6sLj5YeruqvOwjdqxqg4S80HNNnEba6K7jHihbUvyrw+d7S1Ne+BRnKOxGSBL87kEMehQZzljZW8qB+slvyOOTcFXvT1AkRi1SxvaDXzwyCOCpyx5wCQuUuaXm4Kk23WFYlOOz86RdpTFm2XQSHafDMQCXJRtignNu3rYdXZDsMuWTRbdoKtYMTJPqb+3TsDklshoeuMKnkNgA39z+9++9wfiby7fAOsfi7gQ5w1sT8Ab8fZrqmIszH9g5/slQw72pwz9Vm30qgJfguXtj7FWSDsrWkxFVYAa/bW0WHB6gOiZmlubuJ420qGfvULUek+eqIofrxuCQa+4uXggahp8jmkoczyZE9BqZ3cXp2GtviSoqp8YlBbFMUAChabNbNTXCQY7cHbKqQJ2JJVU2U4qB02K0gVC1yeVsenmyuoa+4w8836ZVizPvsj6py5/RukiQwk+zEE+afrOou2yXlBWUsYcoxvDH3z+2KXKl4C/54LW98X1e3Zf4OLHg2/8Ogp5PuaQfXCKQBRK3x3GjbNITkpZKe4ePK6meSkuFhfWs9Na0bgHToP3K0SmeD3Pdpe0ch/Fkqe3a/OGRc0TP2GuUMZq+2mf+sOdLtfE14kGHeeXG54I6K7KbX8zLav5AdD54qaffo1gCbn2BBN0d1QulLs1Y5EczEbE7KN+Uz1js7namXTzBkZcjPVX/Gsm4qzrzo/lrLTDTkG7Ba++8bnqavi7Ojh8v2wYrdXVs3MCK2aALk91SBpAS1+FvOUCNpA4wZdl6KR/54vi9h+k4ScHzqXgrRE1unDWDXj/+TYxf+GpY9F9zyN5VC8GIDXWqYAMNJKMYCCK8WnhIxWdVa2GtCFyAmW32sVEy8G4Li2TwEorjnEFWc1u+XcrtmlmGu8jDXH2VZT4IxS6bL8SbmcepXEr1hFSi5c8l/ZwN80X+ZfFpCXlsD0Qb4Msrjkm3k9PstoQfQbVjMG++yaAB0n/Iomkphi28FfR683LfDBoGka3zc2ip74cqdJboEISJrbPVzpMr4XU68MujE6NEdImLX5ss5l1XPd4gNU7FHQ1xQrcWZ3+iyRB7NZU9d9Ns0Z1x1YBb9VaNphl3N2aBBnNy4Q8iFryMF+JWFRkCYTmH0WWjU/39K57SduCpyxZwMwjY3MzHVz0pggYb0hcOG0AYz0k6GPD9aUZRFmzllZD+ecbTeIs0BtmqFwwl2yONi/NmTNcUDs/pLctj006olUDj67++1JWb7cg09+FzBL7YyJ/dE0aeCKV9aEx6uzeb+838EUZ+AjzpZFqGxS2GdaNa2pY9L7FGchsdJQm00ckEF6ooOWDk/4701TFax6Ds/zV7Ii4Ts86fojCav/Kyd1VyqMOx8ufhwu+I9U0geDIs7crRFbvBKddlNxEO9mzQpjBzavaZP8oH8E+WYK+Yo4C6040zTNVJ1tMSxW1qyakSvOMBRnBfZ62j1e3ltf5isGCJRRFwZKrRIRceb1wOs3gafdyAntbpHwx47KJvbVt+Jy2MyxA5B2zPQBULMTnr7QsGbuFaLjxg8P/sQufwwgz580WFoSo23V3G3Y2gfnJBuXKTx6zQwSnTY+2VLJX1w3ozsShYBZ8wIghOPdb6ynw6Nzwug805YTCDMGZ/HtzCUAbM88NqpAZ5Ns2/5x6Oy5LqgwiLMxdcYiZsxZcpk1RDaZwLegtIJVz8jl2HO6ZdZEhcxBooLztEHdXt/PLdg0wUecdXh02nLHi8Kyra6zEtXMN5tn7TWpvKnSlXg8XsoMu/w5k2U8XemnIA6GaMsBwKc4q4qj4uzdtWXM/t2HfBKm7b3ZKAbQNMwNhwOGjhZR9Lx3pyhaJ10quZ3GGJxvRKesSjseTrxL7vPOT3zzxEiw6W1Ax1s4jWU18r0fVRCBVRP8cs6iJM78iwFihdGuObRhBQVUH/qKM6U2G3SUEOcF49hlKyJBczO8OopcuartsOtzQAt7TgyIgdPhjD/I9Y9+DTusvYZTx+UzSdvOGbbFFGXGwaZZtV3iF5zJkdn9u6BrkdjLW9z8reMCAI4vfsjSOea08f0YVZBKQ6ubpxbtMn/+7toyhmslTNY3SV7k5ODK5CG5Qpx9qU2X+ICmclGT+iG84ixGqyb0joKAvcuELHYkSulOb4XZrLnroL6MeOHQIM4OISjVTbkFxZmyaSpSKi5WTaA1ZQAbGYZd07lj2M6IVQsgktifnj7G/H+0xQAKYw1J++aeLAjwuI0THZHX3afkwLw75fpHv4ksSNZoGnvTcxRZWUEWOLO+DRlFMmAv/ne3mwvSE5llnJjeWRMfu+auqiZaO7wkOm0MMXZpAmH6IHnenZVN5qIpEijVhlXFmcodaGh1x93SdzhglZFvNm1QJlMHqV2+AGpAXZfJ/BNnwZ9GwOs3kbrjHVK0Niq0HJhxg1Sk/3QHXPKUNBSFq6l2Joq0GmIqCIi3JbuyoQ07HtLrDJtK/ymRP4giTprKobEi5KH9M5Jw0cHkkueYqm3tMasmKbKpkaE34MDN6ytLTeLcUltbF0SVcbb5XVEyJGbAueHD+r80bJrTB2V1tu8npsNZf5Hre74SheP4C0X9EQ3RGW8kZsCZf4RT7iV3kJzb6lvdNEWhjtxVJeoMNYkHmDooi39cNhVNgwdWe1lcdIPc8N7PoKmK+WvK+GJbJS6HjXvOHR/SgqN5PZzhlXPZv2pn0eaOTAX98ab9PLLRiZ43VuyaEeSSVTS0kkcNebVGe+3oM303KlXhyqfBbeFc0dHqy1+Jh00TxAqVbYRQ+xcEmMTZjJB3T3E5zI94fbsOg2bLf3YZdk13uyjQIHy+mUK/CULmNVdSWbodt1fHYdNMy+3uquZOKuJAiLYcAPyJs/goztrdXn4zfwP769v4+WtrTXIsEPyLAeJiK7OK2mJ4/HRR8Wt2OO33cMHDYh030Gk+Pvd2IdZ0D7x0DVRutfY8Xq983j/5HQBVA0/G49VJS3BYjqcw4U+cRTP3iUe+mULmIBh0FBo659i/Yu+hnnFm5pudYf7oba9YaguKI7OrAxI7ADDyFIlciQbTr5MyFN0rGXt1ISIw6kvh879w7apLeTPhl/zL9Xe+WfG36D4n/lj/qlzmj4upzXjqoExsmjgiiqub+cdHW3nSczq1yUPQmivhsz+EfQybTePWEyXj8rEvdtLY5qbN7eGjjeV8w24QiyNPhfT+QR9jqHHO3VHd5oswWNFZ7FAfljgz1ljRKs7A53o7mMSZik0Yf2F0m2sHCn2Ksz6EgnmibghdDe7x6nxu1M2fNUkGiXgpcF5bWcL8Dpk8TmuOLrML4OSx+Vw8fSDHjshlclFsxNlos1mzB62apSuk6SUxM7qF9axvic2juRIW/tHafVpqTCvMC54TgmcSORN9Nc6f/1XyWLrgbONzMD9OOWfKpjm6Xzr2EORpRrKT0YblINI8LfArB4gw48zj1c1Q4T74sLJY/gZTB2Ux3ZDHr/ArC0DXYfN7kufy/DeleEL3QsFE1o+8ibPb7uPHA5+Ds/8iChFHhMG4Zs5ZFMSZURCg1BPxgK7rVDW1MVwrxeZpE4VIVhQ7p64U345reZiCgAwXf3b+ix+6H+dZ128Z5tkR+rHbm2TcACHIrSI5GzQbGjrZNPD1zipW7K6V1xAFcRZVxtnSR+Ry+nWWIhAUcXbsyADtTaNPl02ChAwh0S5+PLgt+GBg1rfgmB+QmuAgzbCV7YuiIGCXn1XTH6eO78fdZ4sl9MqNs6lPHwkt1XS8+zN+M18UTbccP4LBITYyANj5KYltldSSxptN43g7gs2UF5cWc8NTy/jtOxvZN+BU+WEEds2KhjZOsRsL9AHTOy8uRp4qu/Qt1bDhzfAPtvkdaflOH2hdvWUFXQsCvF4oMcp5wijObDbNtF5LzlmXgoCSZaLQSM7tlIsXEo4EKJC/e8MOIfD6ZSSSleIylfv+hS8m3G3w+V+gZIX5nQ0WsB0KOYZVszJOGxavrNhLqbEhVlbXyr8/Cz7+NRmkWo/mm3m9skDdu1w+d4sekPNf2Sop47jqNTjqu91I/3zDAbK/vtVXBlU0WzZGn70k4DysE3Z9Af+ZB2/cIhsuOSNYliMWsVH9ImjUVBg4ExxJ8lgVmyK7L8RXcQam6ux8+5dm2YlltDVIW25vQEut7/s7Roj+dreXV9qkMTx57+fh/9b+cLf7chmnXRP62FDQNDjrz5Lp2VwphK3b7zva3gxrXoL/XQB/HQ8f/RpXzTbacOHRNcaVvQYf3BU9ebbkEfj093J9yuXR/x6I6l45h37y8mrK6lrJSU8l+TyjKGDxw5ZaRM+a2J9heSnUtXTw36928eW2SlraWvmGw1irqizNIFDE2c7KJt+xW97r9Fn0lQME2PDsaPXN1WIizlSzpgXirLYY3r1D4gXihZYaHynaG0sB/GEqzvqIsz4EQG6qC00TUqAqxCRmbUkdNc0dpCU4mDdKcm7q41Al7vHqPPzZdt7zyuTRtvOzqGu4NU3jT9+YzNM3zibBEdukSGVsbd7fgCcEoRgTTJvmvOh2VuxOOE12Ffn639ZyXNa8CO5WNuuDWK0PNzPuAmLSJdJq01YHn/+5282nT+iPTYPVxbVxaThSxNm4EPlmCqZdM8KcM13X/aya1oizJKfdJPL67Jqd0eb2sL5E/m5TijKZZirOamTytHUBPHIiPHepLBqcKXDsj+AHa+DmL1hQcAPr9GFRkS4m0ozJREPvUJw1tXto7fAyQVPFAJPCK+eCwUqzpq5zRc1DnGP/GoAkrZ3zN98ReuKt1GaJGdLgbBU2u9gNgHmFXnQdPtwoE8Bo/oYRv/+VW40WYs3S5Mvj1fnKyL08eniQVrEz/wh37IKZN/TOzA0DaryKJudst6E4U1ZNf1x7zFBuPHYobhzcUH01OhrOdS9wTvNrDM5J5jvzhoV/gtVi79xTeAYdOHjsi52W1LkvLi3mjlfXmOusZSkGWbX9I0vzAF3XqWhs41SbkRembJoKdodvIWmlJEAtPidfFpPaoRtUQYAqA6jcIptmzuROWXbBkN6pIOBY+eHuRUYrt6F8GHpcZJ9fg8zw7hUCTzXiqjF8ZaCCgM//Ijau5y6npUnU+NFYNXMNwrw6DlbNDo+XBz8RJd9cgxx/+LPtQSMkWuLZqNnRAsufgg9+KQqdx0+Hv06E+/Lgz6Mlr/PFqyTkv7lSCIlvfypzvgDw38gGhOC89BlRW1XvgBeu6kxkKFRth+evgCfPkrKBhHQ45Tdw8yLW1woZF7FNUz3/oDlyPVK7ZkuNb+EdL+Js3PnoNgcTbLvIat5pXX3bWAH/Ohr+PAoePRm+eiiqjba4YduHonDOG2OqUaub2tmhF7LBOxjN64aNFoh+hc3vSPt4agGMOi221+ZMgkv+J3ODvUvh/Z+JovWNW+FPo+DVG8VOr3vFZnrOP9h93Uq+GHe33P+rB6xv5Ptjxf/gndvl+twfh2zJtgq1Tvh6h8yFvnfSCFyjT4ExZ4uS892fhiX57DZfw+ajn+/kleUlnGBbRQ61osAP834rlfee6mbcOaOEjNY9ZiQCiJIcgijOGoxNKEdibCot06oZhjx2t8Hzl4vT6P27on++rlj9vESqFEwIq7I+6OhTnPUhFBx2G7mpfrtcQbDQsGkeMyLXzKWJh3Xt6x1V7KpqpjJxCN6ckZJbs3VBTI8ZDwzJSSHBYaO1w8uenpKEq2KAYRHaNP0x6lRR6Xg7ZKcnFHRdJnnAM+4TAI28tBDqHptdcoBAGjzVYttAXloCc4bJYjQe7Zoby8Lnmymo1tWlESrO6lvctHZIcL1Vq6amaZ0Cmvvgw8ayBto9XrKSnQzOSWZyUQY2TWdY/WLaHz4RnrlYlJXOZDjmB/DDNXDy3eaJSWXr9I8iH8tEDIozNZbVRGIVDINKY9EzxWGcdPvFYPvLt0Ccff4npu17Ca+u8YuO69ntzSe9tQReuTF4cYhp04ygGEDBsGuePrTzwnNA1gHIOFv6qFyOOt1SqcG6kjrqW92kJTqYGMq+Hy2xeQChiLNImzXdHq+5sTE0N7By7OdnjuWMCf1Y6h7OA1wCwC+dT/PI2FXh26nbGiVQGhhywvUkOm2sL61nyc7QmxovLvORZmoOsrS5QNq2PO2iUg2DmuYOEjxNHG0zCjTGnNP9oGlXiTVuz6LQCoP6MiHsIH42TQVTcWZYNZVNs3CapTD/TuefwqmiAmquFALOzDezaNNUMMiMpAppIh+QKaSqaqPr1qzZsA8W/UOuN+7j3BZRD0RTDpCTGr9ygNdXlrC3poXcVBf/uWoGs4dm0+b28vt3Av+tm0ziLMZiAE+HKKjf+r68L+teEct33R4hRTSbqB0HzpTMzhPugus/CDluqYyzTnPx1Dy4/AVRLu/+At7+kW+x31IL7/8CHpwt30HNJpEH318Jx3wfHAlsMXJjR+ZHWXKiPlcWM69MlK6Sy6whIcsvIkJKDpqRW3ie/UtrOWfudnjxat85T5FBfxkHT5wpKqcwUQhxRwCbpvoufOQwiPF1r1p/PGXTnHqlbKjHiuyhcKFxrl36KDxxumQptzcIiTvvDvmMXf8eTL+GUYMHMu/S2+B0o9Tik99KAYZVrH0Z3vyeXJ/zXTjxl7H/DvhyzgCKspP4xnRDXX/ab4WI2rnQkrr5nEmFDMlJprqpnbfXlnGJ/VO5YfJlYd/v/umJJDhsuL26kPkqf27l/8zvcciMM/9igFg29kyrZpi12oe/hn1yTmDr+9BUGfp4KzgUSgH80ac460M4FBgn6/KG4BNylW82b3Seufvp9qv1jhYqWHpKUSa2cefKDyPZaekh2G0aoww74KayHrBrtjX4Js+R5pt1xWm/k4XB5ndCh8iWrIDy9XjtibzuOYYkp52UcLuuI06SiZOnHT7+bbeblW13fhzaNZXizApxpnaS1pfUhcwz6QqlNstKdoZfEPpBLVzq+xRnnaBUCVMHZaEBaaVf8lbyffzP9X+49q2QBd7R3xOF2Sn3+pp9DJQaYeeFmRFmr/gjFqtmDyjO1AR4kiLOomnUVAinOFv+JHx8HwC/dl/NM56TuanjNjz2RCEBlO2hK6LJN1MwmjVn57tx+FmqB0TxN1TvvyXisq3RpwiaZW03+svtMumbMywHh/3Qnj4oa/m+CAsCSmpbcHt1Ehw2CtIC/41sNo2/XjqFaYMy+XPruTzklnPxqGX3dMtj6YaNb0FHM2QPJ33EHC6cNhCQTJhgeGlZMXe8IqTZNUcN5mdnSIbbpn0NvpKADa+H/d0qGto43rYal+aR2IK8Ud0PSi/0LVDV5D0Q1jzvU1EohVi8oB6vK3FmceddWTUbW91SllJk2Du3LvA9VhAVU1AYxFluw3pAN4nvaYbdfnVxHW7/duRPfid/ZyNT8jr9DfKoja4cICU+5QBuP7XZt48bRpLLzq/OGYdNg/lrygKSt82GSiklIQbFma4bof0fy6bQ7Jvh1Pvg4ifghgVw23q4qwJ+tEGKRi55Cub9JGxzui/jrAuhWDBObOSaTRbcX/5NCJ9/TBWFj7cDhp8ENy+SyAO/8+zWcmlaHhVJo6Y/1Odq1xeRNbibNs1p0T1vMBh2zfNsiyg2LOgh8d4dQponpMO178AZ90PRHEAXu+Q7t4sS7alzZWM5EotkNHD7iQNG+xSyag6yPOV4+cGuz6UZNRxqdvnm/WFsgxFh1Klw/M/kuisVplwJ174N318NJ/zcl9vojzk3w/E/l+vv3SlZe+Gw4U149duALiry034XN2JFNWsC/OCkUbhUGUjWENnIBREctIcWRzjsNr57gmx+5FHDCfZVcoOF99tm08yIhB2VTZLv5UyWTQ9j7LZGnMVQDAA+4qwxhOJs64fw9YNyPSVPNgBU5mcs2L0IKjeL42TiJbE/Xk9DzYtbaqC1B+OaDhAO7ZlvL4WaTO8P0qxZ19xhLpCPG5VHsit+1jVFRKQnOUU+C/LlDdDkeKAx1rAM/urN9by4rDhkBlzE2PWFDEpZQ2JvX80bLVk4IMHOniB/E2NXqnrw6dSTSn56QvjMC00TwgNEWqx2IgycPr4fdpvGupJ6dlVamMQEQW1zu6mkGN0v/ARvQGYS/dITcXt1VlloAFNQxJlVtZlCWoKyyvQpzvyhcnCmD0iBZy+F/57HeM9GWnUniwsugx+slgWFQbZ0hfqbx2TVjANxVhPHjLOKhnY0vIzSlVUzDsRZxabui5aN82H+bQBUTr2VpzxiGdioD2bzLCHTWPhHo12tC9ROWjSKM6NZM7WjmuNG+f6u0agGzYyz5o7w4+uaF8Telj0Mhp1o6fFVvtkxwWyahxD6R6k421npyzcLVbyT6LTz6DUzGZmfxqOuq2icYpxT3vye5NoEw+rn5HLy5aBpXH/MEAAWbNzPnqruC5KXl+/lpwZpdvVRg7nn3PHmmL95XwP6WGMDbdtHYSet5Q2tnGoPYtP0h7L1rn4+8CJJ132kbLzVZuBTnNXuESvMXuM1h8k3U0jr2uw8+Bi5VKRJRlHkOYr548CeQJKnkUFaOQONMXhEXippqh1ZlSOVb/S1d1/6DB39ppGitfFD5yvBA61DQCnOwhUQhMNba0rZVdVMdoqLK2bLWDa+MINLZ8rC59dvre8WtaFySpNiUZx99SAsfwLQ4KJH4Yz/kw2iCRdC0SzIGGhJSdgVKuOsoc3dfUNw1Km+aI4P7xHCp6VaFJpXvAJXvdot4661w2PmG47qF4VVE6DfZMmAbKuTUhariGcxgD9Gn0mrlshgWzltu74OfezSxwyLtgYXPgJDjoHZ34Eb3hdy89T7hNjTvdIo/Nb34U8j4bWbe06FtvtLOY+l5EsmowFFIrenD/K9JitZjyv+B+gw7PiYWigDYt4dQsbevgXOfxCGHBtenT3vpzDnFrn+5vdC/w5bPhCLs+6RZsoz/xxXNVJhZhLXHzOUi6YN5PwpXfLBjvmhjJt1xUJEh8EFUwcwMCuJi+2f48Ar2YOBNmoCYEiuEOa7KpskQ3Xc+XKDMaaq2KP0rm3obY2SYQmx5ZtBeKtmY7m0lYPkvh73E7m++tnYnhd8MQkTL+5dGbLBkJjus8UeBqqzPuKsB6ByroJZNb/YVolXh5H5qQzITOpkXYs158zHtDvkBJs+EDqaoqvfjjNuPn4EQ3KSqWho46cvr+G8B780q41jxo5P5TIWm6Y/5t0hX/SKjcaErgvaGsVKAGwbeCFA8GKAriicKg2H6LDg7k435aQmmNlBsdg1Nxhqs4FZSd1PHgGgaZpfzpl1u+b+usjyzRS6LVz6AGCSlid7vxBZt93FtqFXMrftb/xBv9oXSBoAuq6bitP+Ef49OiHNaDQKJ0EPgGyjHCCicPowqGxsY7C2n2S9RewAudYmVwGRNUR2J92tnYNad31pTDi9MO1qnKd0/l62jLlIVBAAr36neyNbLIozI+OMxgrOMyajmclOUhIiXyhmGmoVj1cP/d3SdZ9Nc+aNlqyVrR0ec2wIWAxwiKGfQUxGmnEWKt+sK7JTXLz9/bl8eedJpJ73R4Nw0uG17wReANWV+KyCk2QneUR+GvNG5aHr8MSizqqzl5fv5Scvr0bX4ao5g/m10dY5Ij8Vu02jrqWD/YnDRT3maYMt74d8vZU1DZxgWyX/URtvgTDsBPkutdX5Aor9UbJcFADOZBh/QcjnjAqpBaLa0L2wbx2US/GCVcVZmnFONJvMFXGmxrxI881ALEb9JgIwSdthZpzZbBpTijIBWKk2pRb8Sl77mLNh8FHsmy3FQZfaP8FRbbHt0Q8q46y+1U272xvm6MDweHX++bGozW44dmin8ef2U0eRluhgfWk9Ly8v7nQ/RUiFVdsHw6a3fbEYp94XmrCNEKkJDjN7rZvqDGD2TT4SOCkbzvyTEBsjTw74eNvKG9F1GWctz/e6wu4QwgmEXLIKZdWMN3HmSmZr1vEA5O8K4U7ZvUgyrABO+qUUwfgjY6CQnd/+BL6/Ck76FRRMlA3t1c/CAzNEgeaN7vMZFKoxePTpnc5jKmM6JzVBCFiA9a+FfiyP26fqmn5tfF8nyJhSMF6KiiK5z2m/FTWW7oWXb5BMt67Y8Sm8cKUQ/+MvhPMe6JHIhF+dM44/XzK5u+LclSzfX4Av/ibKvRBw2m3cf+FErk6S9uhI1H0q58wUFyi75rpXoa3RXAdn6bVynn33Tnh4HvzfIMkag8hKnALBvxyga8SS1wuv3SQ5efnjJR9xwsXSvFy2GvZviP55Gyt8LrIZ10X/OAcapl1zT+jjDgH0EWc9gAIzVyHw7t9nW0QuPM9PXRAv61onpl3TYKyRUbLxrZgeNx4YmpvC+7cdx8/PHENagoO1JXV8499fccuzK9hbE2PumSIGY7VpKiRn+1owP/mdSEz9se4VaG+EnBFsTpDMpZD5Zl1x4i9lEN3+ke/Eb8Bs14ygSa0rIsk3U1A5Z8siyDlTao1Ia9nT/MOZ+wAIQbSnuhlN0xmx7Un54fF34jjrfirIYl1JPW3u4NaO+ha3ufsfW8aZIWGvD1GdHgSqEa46jhlnVY3tvsV8wYSolAcmbHafimC/keO0bx08d7kQC6PPgrP+SnqSs9NCMDXBCaf+RhbY7Q0SHN3W4HtcFXpqISesG1Il44zG/Zw+oR+XzxrEHaePieKXgwSH3bShhcw72r1IyAZHkmVF0Icb99Pm9pKflsDwvCjVFr0I0SrOzEbNIPlmXeFy2Ehy2eV8fOafYcoVogh4+fruuWNrXwJ0GHR0p8/S9ceK8uHFpcUm2fNKF9Ls3vPGm4rnRKedIQaxt7m80bJd07n3S9K0Furt2Z3UG91gs0kLKwQuCVCLz7HnQkKUlrZQ0DSfXXPti4AOGYMstcJCgI2bgTPkfKwQab6ZAd0gNSbadnTKKJyqCgJ210i21dYPwOYwM0/LMqfxgWe6KC+6bKZZQXqi03QtRGuTf2dtGTsqmshIcnL1UZ3HsZzUBH5w0kgA/vj+5k5K8ZgyzkpXSnakspUddUtUrz0YNE0z1fABN7LVd/LadyRjata3Qp5ftpbLmD8qP4pGTX8MO14ulz0uuWrh0FghSh602BTXQbBviKhSR1d9JFlzXVFbLEUKXreQMsf+KPQDZg+VQPqbv4AbPhRCubVWFGhPntktG7G4uplfvbEuZLxNQOi6X77ZmZ1uqjLUlzkpLh95v3tRaCX91veFCEnO7WT7POjQNDjn7/J7eDvg+SulYEBh96LOc5gL/xPfMharGHeeEUXTJlmBgaDrsp6q2MLRDe/R310imyARbLAMU82aSoE9+GhRzrc3wge/4Kdt/+Rj148Y+8x0yeNb/C8p09I9cp6Y/E0pL4oFhlMAT3v39eHXD8razpEolnBnIqTk+IoPYlGdLX1UnnPA9PiT6D2Jw6ggoI846wH4chW6nwR0XTfzzfxtOb6Wp9gUZ/Vdvd2KONv8TuAT4gFGgsPOt48bzic/OZ7LZxWhafD2mjJO+vNn/PmDzdZbffxRVyJ+b80W9YQ3IKZfB3ljRb7/6R8637biv3I57WrKjRN0fiTEWfZQyS8AkV/7ydhPHdcPh01jY1k92ysao3rpmyLIN1NQirMVu2ssN59Ga9VUNdE9ZtVsaxCrUC+wKFvFKsOm+Y2sHdgr1otaY/p1DM5JJifFRbvHy7qS4FYrlW+WneKShXq0SDcUZ6110B6ZXThbWTXjqDirqW/kWw7DHjn1itgfULXu7d8gu6JPXyjKmUFHw8WPgd2Bpmn097O7piU6RFHyjSdFkVe5GV7/rm+nMaaMM2MC1lROgsPO7y+cyOWzongcA1lK9ReKvFz6iFxOuiRss9T++lZ+9MIqbn1WMnZOGpsf26Kxl8Bs1QxR4hMIu/ysmhHDZoNz/ymKY69bGgK3GQH6uu5rBpt8aae7HTcyl5H5qTS1e3hxaTGvLN/L7QZpduWcQZ1IDfsrlwAAkepJREFUM4Ux/WTs37yvXhY0IFlA/oRvF/QrldeyLXteeLXC1CuFbCpZ7lPDgIy5Koi7J2yaCsquqTJjImgW67Zx40zqTBRGOY9ozBHF2WTbjk6bF9OMgoCVu6t86qoZ10Ou/A41ze38n/tyPNhgy7uw8/OIntdm08xikGjsml6vzj8/FqXbDccONd8ff1x91BCG5aZQ2djOA4YyDXxWzYhbNetK4NnLJOdt+ImSldUD44ra0NzfEOR9sdlEAWahDXnLfpmPjYymUdMfky+Tc0XtHnjjlrBNhGa+We7IHrFmOUYcT4WeTrq31ufeUGhvhheukPKMgomiZIrk71Q0E771KZz6W8lk2vMV/PtYCU03bN7//Hgr//1qN499HjzHMSD2rxNC0ZEEQztnEioCOTvFJWq4otmADutfD/54RtkXUy6X7MPeBJsdLvgPjDgF3C3w7CUy7u5dDs9cYnyPToJvPBGfQoNooGnG99gu5Rrv/ATe+oGQeo+cCH+dAPflwx+GwIMz4c1b5X7jL4AE698pde7dWdnoe16lOlv+JBfbPmWYbR86mmy2zrwRLnpM7MS3rYUL/hW7VdORICpVkKIXhdKV8tkGsYLn+22CTr5cLte8GDwCKBQ6Wnxzt6Nujfz+BxOHUUFAH3HWAzAVZwF2Tzbvb2B/fRuJThuzhvoaSuKmODOIiHRFnA2aI7snrbWSA9ZLkJuawO8vnMT87x1rtjb98+NtnPjnT3ll+V68Xh2vV6e8vpVVxbW8t66Mx7/YyW/f3sCtz67gon8t4pj/+5jpv1nAPX+T8MW1+jCm/nEpU+/9gKn3fsAU499Rv//IbDGNCHYHnG5kYCx9BCq2yPX968Unb3PA5MupMCZkESnOQBRt+eNEzvvW983JU1aKi2NGiBXq7ShVZxv3CcEyrr/13f4x/dJJTXDQ2OZm0z5rAY5qFzdSq2Z6V6tMvPH27fD6zb4T2CEAZdO8ziaNeky5ApKz0TTNVCysCKEGjItNEyT012VMYuoj+/xlRhJObxHD982nUKum2ZUnO4WxomCCXO76Av53oYS75o+Hy5+TBbQB//dRjc+k5ku1vM0pcvkv/y5ERIthOY9G/u9n1YwHslNkHKpuCvLdatjnUyCrLMcAaHN7+Nen2znxT5/y6kpRH35j+kDuPGNs0PscSlB/3+qmdlojKOVRVs0hFqyaAWGzwwUPy6aWp13Ui7u+kLzL8g1gT/BlthjQNM1Unf3z420maXbF7EHce+6EgESmyjnbtK9BPvPZw0PbNb1eRtaITbR8wEnhf4+UXB8h5x9nsOltIaIzBsGQueEfJ1oo4qzZaCkrmmX5rgFbnZV9Lmdk1Iuq0iRZJE207cTlN7ueWiTj9+TaD2HfGhlj591h3l7T1M4OvZDP0gx77Ad3RWxpMwsCoti0eH/9PrbsbyQt0cE1Rw8JeIzLYeOXZ8umw+Nf7jSz/lQ5QHIk5QBtDZLh2bhPNie/8WSPLfZDbWRHii1GRp2V3NiQSMyAbzwFdpcQDOEaE3uqGMDAgJx05nuOkv+sedF3g67Lxm7ZaimxuOyZyGyGCnYHHH0r3LJYFFFeN3zxF3hoDmz9kLXGhuC28gg3ijcZarPhJ3YriqhsVFZNgwAbr+yaQdo16/bCNqNkYNq1kb2OAwWHCy75r2zytdXLpt/TF4gKfshcuPRpIXQOJvLHSu4dwJL/SOHS5ndkg6WuWM55IN+B3FFCBM79cURPodqsS2pafNb0addC0RzaB8zmQfe5XNfxE/Sf7ISbv4Sz/ix5YBkD4/M7KpgFAQZx1tYoVlpvh9jwlQ1cYeSpQrY17ocdUcQnrX4emqvk3KqySw8V9CnO+hAK+SHKAT7bLIujOcNyOrUQxktx1q1NxGaHMYaE2ai4700YX5jB89+ew7+vnEZRdhL769v48UurmfHbDxl117vM+t1HnP/gl9z09Arunb+BRz7fyfw1ZSzfXUNJbQtVTe1Mccuk4lP3BGqaO8x/tca/srpWXl8Vue0MkBPyqDPkRP++0W6jdqVGnwmp+SZxlh+kYS0onIkSsGp3yYlFVWDjs2tGQ5y5PV5zZzQSxZndpjHV2Bm3mnO2L2qrZg9mnNUWG5YnxDJ0iLS4rCyuYYS2l7GNiwHNp0gEphttRiv2hCDOjL9FTDZNkN07M+cssoIApXqoae5AD7eLbgVeDydXiax95+jr5TsTKwoMxdmeRVC9XSYhV77STXFQaLyPmgYp/jakoplw5v1y/aNf+1oSk7KiUwP4WTXjgezkMDlzy5+U8axojpnJ5A9d1/lo435O++tC/vDeJpraPUwdlMkbtxzDH78xOarw8t6IjCQniU6ZAgXLI+0Kt8fLnmqDOLNo1QwIuxMuehxGnibqgWcukYBykMbKAOqXC6YOICvZSV1LB7oO35w9iN+cNyFoQYFq/du8r0E+xOHsmqUryPBU0aAn0VF0rLXfQy0M1rzkG2dXPSOXUy7vkYwdE9ldmjotFgMApAc6/0y5Qsi4GOyC2/VCmvUEUmj1NX4CGclOxuU5ud1pkBLH/rBTU6MqU/m0//XgShNbkZGhahW5RuZWVYSKM13X+YehILvu6CEhv98njMnn+NF5dHh0fvu25PQoq2aKVaum1yOLy/1rZdPgmy/IIrqHUJCmWu5jK04A2GJYNUfmx8F+PGCaqLAAFvwSipcGP7anigEMDMxK4g2PEMf6prd9SvMv/w7rXpZN4kv+G10UgT8yi+DyZ+HSZyQSonY3PHMRt1T+ljxqpCUxEpg2zTO63VTd5GfVBIPk16R5MVDO0sqnJUNs8LGmErRXwpUs35n+U4REaa0TNd3lz4dtmT1gOOEXRn7gDdIKevbf4LLn4MaP4Yfr4Bf74c49cOtSuPLliEsY8tISSHHZ8eqY52NScuCG99lz3iv80X0ZK1yzsKWEVtPHDEWcKcXZu3fInDKtUJTlXTe0HC6zxdYsz7EKr1dKVEDWBrFElhwMZA6Ryz7FWR8CQe1wVTa2da4fBxZuFeLMP98M/MJqW2LNODNaNf2l9oqZ3jg//sGccYCmaZw+oT8LbpvHT08fTYrLTnVTO26vjk0TZcDUQZmcNbE/Nx47lLvOGstDV0zj1e8ezQc/PJazU0UJdsGF32TBbcex4Lbj+PBH8u/nZ8oOcFltDLuNp/1WFCbbFohSY83z8vPp1wC+CVnEijOAfhMkRBWkwbNqOyB2TaddY/P+BrbuD26tCYQdlU20u72kuOwUZUV2IlU5Z1ZLG/ZH26rZk8TZ1/+SLAOQnTjVUteL4fHqrC6u4wa7kXc35ixfhg8+4mz57pqghFSZoTgrzIwDuRRls6Z/OH2s6lkANrxOf08pNXoqTROujP3xQNRlCsk5cNVrPnuqH/ob72Oqy9GdnJh+nVgDdC+8b1TMR2PTBGkDA1GtxcFOnxVKeeLpgGWGOiiA2mx7RSPXPrGUG55axq6qZvLSEvjzNybzyk1HM9kIOD9coGmaSTJbzTkrrW3F7dVJcNgi3izoBqUeGHa8UeBjWDYnXxbw8ESnnRvnDgNEaXZfCNIMYIyhitla3ijzkE52zQDKDmNj7VPvZHIzLRLAg4+WFsKOJskaqyvx5Y0qW0pPIcdvcWt3BSSBg8G0arb5fd9yhsP3lscUuLy3vp31ukEuKJWQgVuSPmSgVkm9Kx/mfLfTbbWGQteZXiCkGggp32F93qKUNapNMCQay83H/nBjORvL6klx2U1VYyjcddY4HDaNDzeWs3BLBS1GOYBlq+b7P5csKUeiLPZjJWPCIGTGWQRobndTXC3n2FGxWjUVZn1L1KVeN7x8HTQHmHfpuu+zNKBnFGfJLgd7k8eyy1uA1tEkubtbF/jI/NP/Txog44WxZ4v6bM4t6JqNs+1f8VHC7QysWUyHx+Iapa5ECGY0GHV6t5ur/csBQM7xqgSka0mA1+PbADPm9b0aielw5auiMht5KlzxUkRWxx5HQiqc8Qc4+y9w/B0ypo45EwZOF/I0xg1QTdPMjaudXcjWbuKRnkSqH3G27hVY9TTSDPyI5GQHwhTjvLjpbWv5hgpbP4CqrdLIO816kUKvgb/iLB6b6gcRfcRZDyAnxYXDpqHrPrkwQFObm6U7RTHSnTiLT+ZTwEFj6HFiDWjc56vi7YVIdNr57vEj+PLOE3ntu0ez6M4T2XLfGXz1s5N47bvH8OAV07jr7HHcOHcYZ07sz7RBWYyiGEdLJTiTGTjpeEYWpDGyII0R+fJv0sBMAMrqYsi6yhnukx6/cqPs8GQUmQ2eUVs1FebcIifAjmZ49Vvg6SAj2clxI+UzEmlJwEYj32xM//SQC6tA8G/WDKcYaqvbx6/b/8gZtsVRtGrGR2HZFXU1FXQskbDq9zyGAmHxw72SMPbH9opGEtuquNBu2Km75BdMGpiBw6ZR3tBGSW3gz7Ja/Bdmxqg4g6iJs0Sn3QzVjznnTNfh878A8IT7dLKz4rR7mJIjlpeEDJlwBtldVoqz1MQAO3sqVNpfAZAZ5QIwOVsyQQCaKqN7DD9kh7LLbpov54GU/E5S//rWDn779gZO++tCPttSgdOucdO84Xxy+/FcNH1gxOPIoQJFfllt1txpFAMMzkmOz3viTJSdeLWgS86BEYEb/QBunjecRXeeyG8vmBj2+QdlJ5PktNPu9rK7uhn6TYKsodIou/WD7nfYJDmCH3hmkJ9u8VymaT6iaenjxiaFLqqNCFUEESNnmO96/8kRWZR6auOmpKaFNV5jw8OfOGuq4pRqUeI9nXx1J0s4+Bb5WclOIdXSCsXWtORhy8+dY1i0K0OVggDsWQx/HQ8vXClqs48k2+yao4eYVvtQGJGfytVHDQHgN/M3mHNOS+UAi//ja7W74OGIcumiRb5Z1hUbcaZshDkpLh8ZEys0TZQp2cPk7/3aTd3nKvWlokbW7L6YgR7AgOwU3vAeLf/56gFRBaLDtKslIyreSEiD03/H+0c/zyrvMNK1Fh50/I2yHWut3X+LsclYNAtS87rdrAhkpYIHYIIRQK8yGBW2fwz1eyEx89CxwKXkwLXzZQ7Tg4rN3opuzZoGDihxppo19y6Ft34o14+7PTTJ3H+K2NM9beFbXv3x1QNyOf2aninc6WmoGJOOJlFKHsLoI856ADabZgbF+5+sv95RRbvHS1F2kunRVlCZZLFmPvkyzvwmMY4E2ZUAX41tL0Zmsoupg7IozEzqXnncFconPviYgBPnAZk+RUFM1rF5P5WsOLfx95x6FdjseLy6qeyIqBzAHzYbXPBvOfmVLIeFfwLgLGXXXFsW0WvfYBYDRD64TinKxGHT2FffGpSgUeh4/27Oti/mDucLMuGPAPHK9FMor2/l9+9u5Mm/3YXT28IG72B+3HETjSSLdHr7x3F5np7Cyj01XOlYQILWISHVg+Z0uj3RaWd8oahAlgfJOSuJV8YZRE2cgS/nLOZmza0fwP51NOqJPOU51bQixQU3fAA/Wh+yOXCwkWEV9HmdiZJ3lpwj/49WcWaz+2xbcbBrZhvKk4DtekuMYNnp15jhx01tbs795xc88vlO3F6dk8bk88Ft87jzjDFmQ+fhikibNXebxFkMNs2uUNabo78H5/8rZNaTzaZZJsZtNs1UxoS1a1ZsgcottOt2PvVOiWwTaPJloh4qXw9f/kN+1pOlAApJWXJOhohsmtBzrc4ltS2s8RqEoT9xtvB+XO5G1nsH82D19G5OBGXVzEpxyefhRKNAYOGfA6uQAkApzqpDKc68Hnjnx5IztG0BXy9fwdqSOpJdPjWjFfzgpJFkp7jYWt7Iwq1C9qeEyzjb8gG8Z+S6nXS377PYw1ARGrFaNTcb+WYxFwN0RWK6kXeWIEq8Rf/ofLv6HOWP61ErXpGfXZPSlZJTWDQbzvxTj5Q2KHzRVMgl7Xez1DuKdK2ZnDevsabEUW30AWyabW4PDUb2Xo4/cTb2PCkRK1tlujsAiS8AUcnGIw6iDz2OoaogoKozcWa6rpIOwNxFRZpsfkcy5wbOgnl3hr6PpvnOj1bdMKWrYNfnYpmefVPUL/egwpnoe78O8ZyzPuKsh5CvdrL9iDPVpjlvVF63MN+AmRsRosPjNRuOurHtql1z4/xDXibZCcoWMvyEgDcXpCeiadDm9kZd0w4IqaUms5rNbPerbmrH49XRtC47W5EiYyCcJeoaFv4Ripdw8rgCXHYb28ob2RyBXXNjmRw7pl+6ZFUUL5Xa87d/DI+dBg8dLY2CAZDscjB+gOxeBcs503WdfZuXkrJBGuCGaPvQmiILNg+6cPFaD+kG2W362atrOfYPn/DkZ5v4JjKZqp92M7hSecFtNC2pXe5eirW79nOV3QimPeqWgBNVVRCw0mjf7AqlqoyL4szMOIs8Y099D2pjIc503SSQn/acTJMtLb47iHZn2F27mUOy+eXZ47j3vPHBD8osgstfEBvc9OgtXqZdM8LvUSAEbTbdvx52fynKBb/XunBLBbuqmslJcfHEdTN57NqZ3TZ2DleYzZoWFcm7KmMsBgiGhDQ49T5fXX2c0KkgAHx2zS0fdG7M3Sxqs6+84+lwppIWCWGalCUtoSCLbWeK73l6GsqeOfjoiO6mCOF4K5731rSwVjcIqLLV0pxWtR2WPgrA37SraGrXzQxSBTVWZinF1+TLRF3UVgef3W/puXOVVTPUPGf5E1JCYWDbJ5KreuWcwRHNXzKSnfz41FEAZgN3kjMEcVa9U6yIulcs7sfeZvm5YoUq6yoPkDkcCbYairPRBT2g9ug/yS83817Yvch3m5lvNiX+z+uHgVnJ7NALKUkaLT9IK5SNoR4Om19fWk87Tm7Tf0yJnkNKw0545YbQc8G2BtgpRSaMPqvbzWqu77BpnWNrUvN8jblK7dOwz0fCHQo2zT4AvoKAg6o4U43oIK6uix61lj026RJZRxYv7kzgBoNSm42/EDIGRPdaewPMZs1dB/VlxIo+4qyH4DtZByLO8rsdb7YMtkQ/kfO/b7c68REny65wzU5ZQB0O6Gj1TTCGBSbOXA6bqRgpjSXnDESyfuxtsgNntLMom2ZOiiu8Oi4cJl4MEy+RfK5Xv0261sa80SJBt1QSUF8Km97h6L2P8ZDzb1y86Dz43QB47GSYf5tM3ou/FmXAG98NOjGZaeRpqZwzj1dnfWkdTy3axa3PrmDO7z5k69M/RMOPgN3zdUS/akBr8v8uhH9MsdTkuK6kjlufXcGJf/6U55bsod3j5Yd5K8jT6tDTBzLnnBs5Y2J//us5BS+a5NNZOUEdJOTueJ0crYGW5AGyKxoA/jlnXeH16qbdLD6KM+PkXB95qYbK2Ara6mgFu76AvUvw2hN4zH0mOamugM2BPQmbTeOGY4eahGVQFM2UrKpYAoXNgoBya8dv/xj+NBo++V2373HQjDNj8c6YszpNvj7eJM953pQBnDC6+7npcEakirNdxu52TMUABxC+ggAjuL//FJm8uls62zWVTdM7g/y0xMi/a/7tYePPP3B5O2f/VQp2xpwd0d160qq5U++H15kq73HlZsmJ8rphxCm0FMmivWvJi7JVq4xIbHY49TdyfemjUL0j7HMrq2bQcoDmavj4PrleJIrmmQ0fk+Cw8a0I1GYKl80cZOboAaQEI1t1Heb/ENobYdBRcNZfe1TB1BVqE7uxzU1jW/R/7y37leKsh2xS067xzf9evt7Xsmw2avZMMYBCUbZsuD2Xfr3kLn7zeZ8VrYfg8epmtMiUsaP4dvuPadcSYNuHvny1QNj2kagms4dD7shuNyubZlaKq7ul3WzXNIizVc/Ie140Wxoh+3BIoFdknKkNZpBzkdW8xrR+MNxorg6nOqvb67MWx1Bc0ytwmDRr9hFnPQRfIKlMYnZVNrG7qhmHTeOo4Tndjo/HRE7Z3tISHNi7niwSUn1f1I1vRf0cvQrFi2VymloQ8oRXaCyOSmPJOQOZzJ58D8y8wfxRRaPKN4uTvPvMP4oXvGYnvP8zs13zzdWlvtrlrihdBc9fAX8ZC89fzk3e5znTvoTE+p2ALu/P8JPg6O/DeQ9KtlPpSt9CugtUztmCDfu5+vElTP71B5z1jy+4+831zF9Txtimxcy1r6MDB9szDEth8eKIfs1uCsu6vRKOXbtHSL4gqsiWdg83PLmUs//5BfPXlOHV4cQx+bz0ndnc7JKGJe2oW8Du5KJpA9mt92Ohbkw4l/wnotfYCU2V0N4c/f1DoLG1nbOb5MTonvntoDtWijjbUFZPc3vncaKyqY0Oj5RpRFrUEBAqLN8CidkVYVsdreDzPwNQOvQiKsiMr02zNyLSZs0v/y5ZZZ/9Af53QSfCzdds6vf+t9bBalGI+pcCeL06n2yW+5409sgizQD6GTl2VvOPTOIsnlbNHsSYfmLvVjazznbNN+SyYZ9ktAALPNOjy+ocMF1sKpotNuVlpMgeauzeR0bEqI3KNrc3+Hk1QtS1dNDQ5kbHht5/ivxw8b8lHkOzwSn3Ms1ore5OnBlWTf+MseEnynnb2wEf/jrs8yurZmUwq+bH90FLDeSPR7/sGTpwMMZWzG2TOqL6m9ttGr86Z5z5/6DlAKufhx2fysbteQ+aFvEDhdQEh5m7WR5DztmeKjn/D+sp0lzTZPGdO0qU3q99WzZFergYQEEVSX3QOhaufkNyA3sYOyoaae3wkuyyc+KYfNbrQ3gw/cdy46J/yGcnEJRCbMyZAb/7ZjFAIBXl2HPE8rZ/HZRvhOVGm/20PrXZoQSlOCura6Wl3bd5qIiz9ANBnA2YBuMvEDfSxIsju68qCVj9fOgM5sX/FmJ3yNweV532OEzFWR9x1ocA6Nrko9RmM4ZkBcyNUV/yWIizsAPGWGNX9nAhzlS+2bDjQ06czea0MJld0UBNxKIuBuiKpEzJO0ODFf/lVPsy0hMd7K5q5tdvdVEK7l0Oz14K/5lnNKJpNGWO4RXPsTzkulbaAm/fBrdvgatelR3sqVfCyXfL/T/6jTQTdcH0wdIGU97QxsItFTS2uUlNcHDcqDxuP3kYD+W9DoDz6JsZfpJBIu75KqJfM92vHEDXddj1pe/GLe/C2pcD3u+rHZV8tKkcmwbnTSnk3R/M5fFrZzKz9Wuo2ibhrtOuBmD20GwGZCbxWIeR77fyGZH4R4qSFfDXCfC/8yO/rwUUf/0GI2ylNJJM2lHXBz2uMDOJfumJeLw6a/bWdbpNqSnz0xJxxqp8BJ/irHF/xE2PpuIsWqtmyXL5bmt2Vg2SyexhT5ylGOHGVqya9WU+m4ozGXZ+Bv+ea36Hsk3Fn9/7v/p5CWXNGyMTMANrS+qobGwnNcFhNuoeSYhEceb2eCmuNqyah4jiTFk1d1c3+xYXpl3zfdkM2CwbDhUZEyknK7qsTk2DK16EmxeJArOXw7/wI152zZIamV9kp7iwDzRIjhX/lcspV0DBOKYO7m6393p106rZzS55yr2AJpl0xUtCPr8aI6ua2rpnopatEZsmwJn389U++MgjG0pXpYR+3FA4engut54wgnmj8hhfGCCgvLHC1zo8745OTdEHEmo+Hm3Omders9f4+xZl91zOGAmpknfmSBJV8VvfF7LT7urcBt0DGJgl8+Ti6pbY8oAjwLpSmceM65/OiHxRqT7TNB2O+4kc8Ob3YW+XQjOPW7LgAEafGfBxq4yCDEUmd0JytpDSIPEltbtlM3n8BbH9Mn04oMhKdpqqst3VPtWZcl6ld3Vd9QTsTvjGk77PayQYfZZ87uqKYfcXgY9prfcRu10Kww5J9CnO+hAKZjmAcaIOZdME/7D02K2aaYFa4EAqmzW7WPV6sW3NMnZ8KpdBbJoKhX4FAfGGqTiL58J+yLFwzPcBSHrnhzx0XiGaBs8s3sOzi/fIBPrpi+DRE2HLe7KbPfESuGUxz057jh93fJe1g66WyUGAtiGmXydhyu0N8O5Pu92cl5bAL84cy7mTC7nnnHHM/96xrL77VP57/SxuzfyK5LqtkJQNc2/3hdiXre6cmRMGykrs1aGp3SPBl+Crd373JwFtaypj6LTx/fj7ZVMZ2z9d1Glf/k0OmHmDaROy2TQumjaAz70TKXUUye+7ymIYp0JHK7x+sygbixfLDmWckbZKmtO+zjpbgoJDIJhdU5HC/TPjpHxMzgWbE9AjDqzPCpaxZRVGkyaTLmGPV8K/A06ADyeorAwrVs11r0hWUNFs+PanQoY17oOnzoEv/kp2kk/N2eHxyvdDqUtn3thpk0HZNI8dkYvLceRNB1TGWUVjm7xXIVBW10qHR8flsNE/HqrOA4C8tARyUlzoOmwtNzYNCqdJkUVHs1jYDZvmhgwhVKMuuUnKOmSsTnabZqqQ4mXX3Fsj56YBmUmdbXXOZDjhFwBMK5Lxe2dlkzk+NrS6MWLCfFZNhX4ThHQD+OCukPm0aoxs7fDy+Je7eGbxbl5cWsyry4upevmHoHvZV3Qmn7WP5i8fbOENj+TCpWx5I6bW6dtPG81T188KPH68/zMhfgomSvnFQUKszZrlDW20e7zYbVp8ohBCoWAcnG2cA1c+bfxsQo8r9QZkJaFp0NLhiS0POAKsLxGb5vjCdFNBVNnYRv1RPxFiwdMmbgr/kqLir+UzlZQtKtcAUFZNZV/uBmXX3G1s2E76Ro8WL/Qh/tA0zWfXrPCtPQ6oVTMWOBN9La/B1iUr/yelAzkjfQV/hzL6FGfhsXDhQs455xwKCwvRNI3XX3+9J5+uV8Hc4apvpc3t4avtUr86b1QAIgN/BU7sirOgA0ZyNgw11Aab5kf9PL0CzdViUQRRnIVAoUEmhGuJjAYq40xNzOKGE34hwcct1Ry7/tfcfsooZmqbGPz25fDYKZIBodlh8jfhlqVw0SOQN9rMixjbPwQBY7PBOX8Xufqm+ebCyR/fOm4Y/7h8KtceM5QJAzLE+ttaL5lKAMffKeq4jCIJkfW6RSlkEYlOGw7DTtzQ2iGZViBWhX4TZWL09o+73W+Pofjo1Gq352uxGtkTYNZ3Oh1/4bSBgMa/W06WHyx5OLJFwqe/g4pNvv9HUh9tBWVrGFi7FLduo2LctWEPn2pYfVZ2sfqUGqRwYUYcigFAPiMqvyHCZs2sQFZBqyjfaKonOfY2KhvkMeJKTPdGRGLVXGNYLiddAnmj4Vsfw6TLRM7/4T1kvnE1WZoEWdc0tYsirXILuFJh0qWdHkoRZycegTZNkCIFl92GrodXo6gslcHZyd1zc3oxuhUEaJpPdbbyadjxGQCLXUcBcVRP93LEu1lTzS8GZnUhzo7+nml9z0h2MjxPzl0ri2UMV+NksstOgiOA3fHEX4gCqXixrxU3AJJdDnPT9DfzN/CL19bx01fW8NkrD5FTtZxmPYELtp7BNY8vYdnuGj7XpuF1pULdHtgbveosKLYugLUvycbeuf8I2Rbb0zCbNaMsCCg2SNH+GYmxZ9lawZRvwpQrff/v4XwzgASHnQLjfSquif9cORCU4mx8YQZpiU5z7NlR2QIXPgx5Y2VT6PkroMN4TZtEIcuo04PGWqh8z6CFF2POFBWfQp9N85DEUKOkx79Z85AhzkDWbyCxCW2dC2PwuOFro9TsqFtkTn6oQynOaosjLoLrTejRv0RTUxOTJ0/mwQcf7Mmn6ZXwt2ou21VDS4eHvLQExvYPHCyqJjyNbW6zpShSKLVaSG+32a55iNs1S5YDujDxKo8pCEyrZg8oztRiK+4Le0cCXPio5IJsW8B3N1zBSwn3coxtHW7sNE/4JnxvGVzwr06h5BusEGcABeN90t93fmLNwvjl38RKlj3cl2OjaT7VWQQFAZqmmZ/5lso9kumm2UVtd95DQuptfLMbUbXbOEEO9m+1U/Xtky/rFmY7JDeFGYOzeNkzlzZ7qtg5t39s7UUWL4FF/5TrqjVu/WtxbaXVjbacd7yzGTVqXJijfYqzFXtqO9kplOKsMF6KM/DLOYuMOPO1Okahnv3ir3I59mzIG21aLvqsmgbKN8G+NfL9ULvmrhSxd5/zd7AnoG19n7cTfsFkbZvYZdVie/JlnRSN5fWtrC2RhcvxowNv6BzusNk0CjLksxWuWdM39hwaNk0FX0GA3xg/ztjp3vqBZGjljGRDh6h98+OV19nLEbCgJgYoq+aAzCTIGiKW6Pzx3ZRWqmxkxe5awGdp75Rv5o/0Qjjudrn+7k/gq4eCvoY/XDSJ86YUctbE/pwyroAzRqZwT6LkRL2eein5A4cxrn86owvSuO2MydjGnit3XPtSFL9xCLQ1SlYpwOybezyfKxzMsq6G6OaAyqKtcsAOCM78I+Qbc4IhxxyQp/TZNXsmz9Ufuq6zodRQnA2Q89IwM/C9UZqGL39OlKylK+CtH8jcy7CWM/qMoI9dbSrOgnynEjNgxClyvXCatJr24ZDDkADNmocUcVY0S9ZTHU3d1+Qb35BNjeRcmbsdDkgrlHWet0NyHA9RRNA5HjnOOOMMzjgj+OBmGU1NYA+wE2e3Q2Ji5+OCwWaDpKTojm1uDr5Y1jRITu52bIHdTVJ7K63trXy6YidJ7a2cPDinc1tVS4upfknzeElql5N6Y1UdGclOSEkJeGxApKSYA0aO3Rv89ys6EdBEoVNfCq5s8IRgfpOTfdaetjZwh9idjeTYpCQfg97eDh0hJq+Bjt2xBNp1yB7f+XdNTPR9VoxjB7g8JLW3UlNeHfzYjg45PhgSEsDh6HZsfWUtSe2t9HN4fI/tf6zbLe9FMLhc4HQGPjalCI79BXxwF1rpJnSnk3cSTub3DWeQVzaM52y5JPr9Pu1uL6UllSR5dMbm+BENHg+0BpgwzrgVVrwCNXvgk9/D6b+Tz1hLgAVkXQl89oB8D065V2wD6ti8adD+Cmz9Amb4tb44HPJegNyvufNkLM/mprW9Fdumj8Ctw+ApsrDvNxGm3yJE3Ws/grzpkCKFGvvLqkhwtzNY5YxUbIa1bwMaTL6h++febuei6QNZtruG+fYTuajlDVj4IBQe1f139P/etzfD89+CNg9MuBhO+C2sfgtKN8POZdB/QsxjBPVlsOJl8Oo86z6ZJzPscpv/sV2+9+MzHGR422mpaWX3ngqGDBalUGldCwkdbRS59ODfff/xpLU19Pc+JUUWbAAVu0OPl12+9zlaO0ntrTTX1HW/X6gxonoXLH9J3pvp3wWvl0plhU4k9GuIZDwJMEZYOjbKMSLssW43aGkynlXv6/57+o8Rq56T40acAHpC52PHfAPyJsBrN1JYs5OXHPdQ/nEprH9b3tNx3+x0/MJ1+wCYNDCD/GRn6PfX6ZTXAcHHiGiODTNGRH1sBHODQUk2ivHbWAlybElJJQkdbQzxJ+17eB5h6dgwcwPVfLh5X4Pv2MzRkDgA6vfKQYNPoW5TLeCnOLMyRiiEO7YXziNytQ72trfSVF0PTV2UulGMESW1LTg8bgYnGp/Nb7wgf0O3Bm7f3GDaoCxeXr6XNTsroGkg9ZU1xhyiy3fQf4w46gdQWwFf/wveuhPqa+DYH/qONcaIMyf258yxeb55xEf3wfYqyBzMN791D990JnYeTzZfAEufgZWvwNxfdleF+X+Xg80jAh370X1QsUcU6bN/2P17coDHiAFOrzEHrPW9lgjGiNJ9tYCvefKArTW+8SIUL4XBp3SfG8RxjFDf5aLsZNZu28e+0ioYESCzzu9YIKYxoqS6mY76RtLtGiNTbKDrDMtLZfHOanaX1MCoLEjIh7Mfhmcvg2XPQ4cG+3dAYoIvpyzAGNFQLfPyfLtHfu9AY8SMW6CyGI650/c3OtTnEdGuNUIdG8n3PpJj4zCPGJGikdTeyt6yWvNnDS0dJLW3kqm3B/7u9dA8Iio+QtNg8uXw/m9gyX9h5Lm+1/XJ32WuN+cacB78eUSkfISJrmNEYqEQgiWbwJEVn3lEqPe6J6AfIAD6a6+9FvKY1tZWva6uzvxXXFysA3qd/Om7/zvzzM4PkJwc+DjQ9XnzOh+bmxv82BkzOh87eHDwY8eN63zsuHFBj23qP7DzsTNmBH/c3NzOx86bF/zY5GRd13X99+9s1AffMV/fMuO44MeCrj9ysq7fna7ri/+j6xdfHPrYxkbfa7jmmtDHrlvoO/a73w197M6dvmNvvz3M467zHXv33aGPXbLEd+z994c+9pNPfMc+8EDoY+fP9x37xBOhj33xRd+xL74Y+tgnnvAdO39+6GP/+Bt9d2WTPume9/VLL/9dyGO9f/iD73GXLAn9uPNcun5Ppq6XrJT3OtSxpw/Vda9XHnfnztDHfve7vtdQXh762MlOXf/gl3JsY2PIY+ePPkYvrm6SY18P8zk780y9rqVdH/WLd/Tj7nxU9zpDvQ/zfK/33Tt1PVkLfmwPjRH64MGdjw0xRrRmZpuHnffAF/pXRROCP64xRpg488zQ75uu6/q7P5NxYu6Y0MdGMkaUl/uOtTBGnPqXz/TBd8zX91wf5tgjYYzweHT9xhCfM5DX2FKrf/27M3T9mhDnQ9BfvvT7+uA75ut/XbA5/Bhx992+1xtujLj9dt+x8RwjrrnGd2yYMUK/+OLOn/cQx66bcqw++I75+iMLt8uxIeYRXxVN0P/31S7f4x6EeUQkY4Sem6uv2F2tD75jvj7jvgUh5xHNzkR98B3z9bV7a+VxrYwRCvGcR0Q4Rpg4yPOIs//xuX7XKTeFPnb+fH1jWZ0++I75+s/P/VHoY3tqHvHAA75jP/ww9LH33+871uoYUbxM129ODX3sITZGbJgqY8Q/Ptwix/bytUakY4TCn97fFP95hIKFMeI/n23XB98xX/9q7tmhj33oHN/jHkJjhK7rB38eoeuRjRGffBL62GjGCF2P6zzihVm+z8OxP34+9OP20BgRNR9Rszv0WmPalM6Pe5DHCF3XLfERJg7APKIOdECvq6vTDwR6lWn297//PRkZGea/oqKig/2S4ooEZ5C67jhBKc4c4fJXesqu+dK14D4woaJHJJKyGJSTzAPfnEq4hB0tRMtoN+SPA90rUnhPmLyXwceGbDCNCX5tf6Fg0wz7bX0ZrHkx7PHpiU5OG9+P3Xo/dM3Cd3DXl7Kz38vR4WfpLgtjM4sKSnHWEX+Ls1Uoq2aSq2fHzkMCxYuhyUJ5QGIGjw/4NU+5Q4fJqsyuE8ccmflmCglGqLlVK/+QQ9SqWdHQRodHD3qcjtwW97zOIwRWM1RH5qeRmuCgzR19IH/cEMjJEQs8HfDm94Dgn7NDES0dooLo0UbNXoADakUNgGFG/l/Y3MERJx2AV9OHQwWtHV4aWjtwe7xSNnYoIXOQUcQVBLYeNQb2IQpouq4fkDOcpmm89tprnH/++UGPaWtro81PPlpfX09RURF1paWkpwfIbOrFVk2AKx75mhVG7fikgRm8cNPRIaWRZ/19ITsqm3nyupnMHpYTsTTylmdX8PaaMu49dThXzw5BOrbth39MFa/x99ZJJW4wWLFNrH0F3rwVnMCF/xE/dk9aNevL4S9G9sOPNkgGgkIQ+fRJf/6U0tpWnv3WLKYOyu5+bBTy6eZ2N9N/8yEAS35xkhk2fCDk049+spU/v7UGu03jsWtmMHtYDve/t5EnvtzNFbOLuOuCKdbl063V8Mgx0FoHp/4OJl/ru03X4ZmLYfciyVT6xn8Cy6efu0xCpk/9Lcy8Xn4WRhJ9y7Mr2LBxE58k/lj+Dr/YLVZN/2M/ug++fhBS81l6ymtc/dwWBuWn8f6dp8KCu8XOWTATrn4j8O9mjBGfbangmseXcJ59FX/X/yBB6d9fITkaCjYb2Dzw72OgZheMvczXbgWSA/fXidL09K2PYOhM322RjhFLHoUP7qLM3p+Tmu7jDxdP4ZzJhZbk0wvW7+f7z69kVEEqb9xxGh0eL6PuehdXextf/OT44OHekVos1r0CL18P/WfDla8FP7bLGNHW2saUXy8A4OufnSS28yDHmmPEh/fA4oel7fXqN0DT8CQkMvKX7+HVYclP5pKfGGKRdzhYLP4+RcoBrn+/c+aK+t6/9UNY+jiMuxTO+VvgxzWO/dmra3nh6538drqHy0fqMPq0Toct2lbJNU+vJCMjlSU/Pwmb7j2gFgsTvcCq+dTXxdy9YDtnTezPg1dMC3isx6sz7d4FtHp1PrrrdAaqBeYhYNUkJYXj7v+EPdXNPH/VJOYMyfbdtnMhpBVS7hrIvD9+SltCIlt/e6ZRBnN4WzV/9fIKXlpWwq0njOCWE0d0PjbCMaLZozPuV+/j8LhZfse84Pk6xvf+ike/ZvHm/dx31ij21bXw8Gc7+ebsIn559vhuxwLd5wbLnoD3fy7Xp1wB5/0VEhJ9x66dDy9dLQuyb30CucN99+1qw9r2JTx1trR//nBt53bBSG1Yi/8JH90LCVlww2eQkhv82AM4RuyqbOKMv39OisvOsl8a2VYRjBEn/OVzdjZ5eOXmo5g+OLvXrTXCHmvRWrVoeyXXPbSQ4TlJvPOD40IeC8Q0Rnz7f8v4fEslvzp7LJfPHgzJyeysauaEP31KmuZh9c9P7FzC4m6X+UjFZrh1IaQan60AY8TM+z6ksc3NO98/lqGD8mKLhQmG3jqPCIbD0KoJcOwfPqK82curt51AYWYS0+79gKSONtbec2rgIo/eZNVU+Opxmd9lDYVL/gcPzwV0+PZCKBjdq8aIiI/tOkZ88Tf47A8w8RtSGhOHeUR9fT0ZhYXU1dUF5orijF5FZSYkJJCQEGDRl5LS+c0NBivHRHOs/4crgmMz87Jo2SeDyJyJg7o/jv+XAXBmpNNS76XO5ur++rocGwj1huIsNTM19O+XMkzqwfevheKF1oMHExJ8A44/vPXgMj7MXz0gzW3Bjg0El8s3QFo5tn67PF/mYMgdaOlxs/Oz2N5cw952O1MDvTdOp+9EEQ7GsRWtTbS4Ekly2knNzgisxHI4fCe2cIjg2BuOH8G6/Y28vqqUm1/fzJu3HsOaGg8trkRGDO3X+f2028N8HlLg5F/D/B9Ki+T48yDDeF83vQNlX0FyEpz1m86Pa7P5HnfkXNi7ECpWQEqA2nlN6/YaEjPSmZy4Q/6WA6b6gsv9jz3jbti9AKq2krPqflpcl1FYkCkNn8uekGNO/HHY7/OxI3IpSE/gjfrJ/DZvOKkNO2DrmzD7250PfPvHQpplFMF5f4REv8dNSYHxp0rr4453OxNnkYwRiQmw+jFwaTzsOZNmVzKTRhcG/h0CfO8njy2kxbWRNbVu6ls7qGvuEL1yYhI5+VkiyQv7GiwEgKcPkMuWfdbHS2MMt6el4myrpm3LW1BQKO9nxsDO3xE1RjRXw7pn5HNw8h2QmgpAdUMbXl3ukp2ZClbbzCIdT6weG8UYYQnqe59dAO3loDd2f7/d7VJMYdNg1hVh/x7ZKU68Njubk4bDtPHdbl+wZxcddicnjskzFidhxgh/+H/v43lsgDEiLsdCyGPz82XjyFRtBji2tLqZOrsLl8tmls2Ee9xuiHIeERYW5gajCtLYU93Mxlo3c/xf8wTJoC0vqaPFlUheaoKQZmBtjFCI5NhI5gY9OI9IzMygxVVFrc0Z+u9o4XFLq6R4ISk5kYzczLBPP21QFl9uq2JZRTsuh5MWVyKp2ZnBX0fXucG8WyE9SzYsNzwLdjec/y9pGdTdsPAeGU+PuQUGhwg+t9th1FzIHwK1u6Fkoa8IJ9Cxod6nym3w6R/k+pn/B/mDgx/rjwMwRuQ5EmhxJdICNDoSSE0IMM8K8rgdHi+7mw3FmSLMe9laIywsjBEgv1+bM4FtTeBNstAeHMMYsbKqgxZXIqOG9zffo4FZSThsGg1eO2UeOwPS/F93Clz/qlwNNI8w0NrhoUJ3gMtBdkF25zbCnpob9KZ5RLyPDfe9j/bYOM0j+vXPZe/uGnZUNsn3WtOwpabgSA9cxNcJcZxHxHTstEvg47ugaRcs+BG4gJGnw5Ap3Y89yGNExMd2HSP6j5JzU0tp9/co2nlEKLKtB9CrrJqHG/wtD/MstJapNsxo69EVcZaeaGGgLZoll1Xbo3quTmjc77u+by3s+jz2xwyFfWvksv9ky3fxNWvGz9JWoRo10xIis0bGAZqm8X8XTWLCgHSqm9r5zv+WW2/UDIRp10DRbGhvhHfvkJ95OmDBL+X6nO9CZggVo3+zpkURa1qigzm2DfKfIccGPsiZCOc9CGgMK3mT422rpNVuxVPQVge5o2DkaYHv6we7TeP8qQMAjTdcZ8kPlzzceddkx6ew9FG5fu4/OzUQmhhvtNHF0q656W2o2YU7IZMXOo4lO8XFoAgsIPlpiRRlJ6HrsLq41rSY9ctIDD/RjQRpRqtmQ1nEv2tWipNfOf9H/oJb4ekL4cGZ8Lv+cP9weHgevHAlvPczaYj74C5pFeo3EUaeYj6GsmlmJbsC7xwebkgxLJP+46nCtgXQWgup/SxZmlVDX3VT4N3qTzaJ5fNIt2mCfG8A9oWwau6uMlr1spN8xNIhhE4FAQGgzmX5wdSqhyHSElSrZnTzLX8Uq0bNLGsLimmqWXNPDbVmq2aELXBTr4CLHhUrz9oX4eVrhWD/6gFpqU7tB8f9JPzjaJrs/gOsfTmy16Cg67Lx5mmT0PZJl0b3OD2ElASH+ffeXx9Z9EBpbQteXSzdQdXchwn6ZyRit2m0e7xUNIZQJMWI8vpWKhra0DQY299HcDjtNgYZ5Ss7KwIodjQtbFSIOuc57Rrpib1KG9KHHoB/s+Yh1ajpj4RUGGcUA+xdKpdH33rwXk9PIsvYUKndc3BfRwzo0dVIY2Mjq1atYtWqVQDs3LmTVatWsWfPofuGRYKCdJmQZyQ5mTwwM+zxqh69Psp6dHPQsDIBS5Pq+YCLtEjRVCGXTmPxv+iB2B8zFMpWy2UEFdKFmTKhLa2NX16TP3F2MJDotPPwVTPISXGxvrSe6qZ2bBqM7mdhp6UrbDY4+28yCd80HzbOF0VX1TapQz72ttD3HzBd7ttQCnXFlp4yPdHBHNtG+U8oMmDQbCHugN87H2VkapsQLgBHf7/zjmIIXDxNVHT3l03F60qT323Hx3Jjaz28YZyoZtwAw08I/CCjTgdHIlTv8BG4kUDXYdE/AFhfeBEtJDKlKDNi4nW6sfBavrvGJIMLMyPYrbECRZx52qG5KqK7ZiW7mKFtkf9kDhZrLEBzJZStknzFrx+C938Gq56R2+b+uNOkuLJBJsC5qRZ3cg91pBbIZWOAHLM1L8jlxIvBFj6XKDslOHG2o6KRXVXNOO0ax44Mv6FzuENtquxvaMPjDUwQ76ySRdzQ3EMr30xBnRM27w9MnJU3yHnxcCcG/KHmW/EgzkoM4mygReJsSlEmADsqmthZKaRsVkoU49yEi8TaY3fJmPrMxfD5n+W2U+7tHEUQCoo427pAFMCRYuX/ZMPUmQxn/7XnclBjQJ6xkR0pcVZc7fvbHugN0gMNh91Gf2Mjobg6hIUtRqwvlU3e4XmpJLs6k1vDcmWusKOyMarH3mf8fbNTXIf936sPvnOyP3GWfqgRZyDtmgr9JlnOfD7kkGkQZ/Ulh2wmeo8SZ8uWLWPq1KlMnToVgB/96EdMnTqVX/3qVz35tL0G0wfL4vb8KYWWdqmVUixqxZlxP0uKsxRjwRRokRYp1GPMuRnQYOv7ULEl9scNBpM4m2L5LopUKLUY4GsF5b1gl35AZhIPXjHNLIQYmptCYrQlFAXjhIgCeOcn8Onv5foJPwusvvKHK8WnANzztaWn60cVQ2z78WATtVsonHgXpbb+9NeqOX/l9ULQpfaDSZdYei6AkQVpTBqYQZ03kQ0Fxu7O4ofl8oNfCOGXNUQWHMGQkAojjdD19SFyv4Jh6wLZUXIk8aLtTACmGouoSKDGlhV7as1Q6sKMCOTTVuBw+caJ+tKI7lqY2EGRzSDUv/MZ/Gwv/HQnfOdzuOxZOON+OOpWGHceFE6TScPYczs9RqWx452TcoQs5lON91ptRCi01sHm9+S6RSVHKOLsY0NtNntoTmDL0hGGvDSxJ3q8uvmZ64rdRpHC4EOsGEBBKc627GvAG4AcPCIVZ8Y8KdqNSn+oMXhAprUxOCvFxTBjwbfRUIpnJke5QTDmTLj8eXAkwc7PoKMZiuZEdG4kf4zEd3g7YOObkT1/w35RDQOc8As5h/ZCFKTJHFB91q2iuEapTQ/vYgAFRf6q37snsL60DoDxhd3nlaogYEcgxZkFrCmuBWBcNM6LPhxyUMTZzqpDnDgbMleKAgCO/l6v3HyIC1Lz5VyFbllk0dvQo8TZ8ccfj67r3f49+eSTPfm0vQYzh2Tz5Z0n8ouzxlk6XsmKleUyEui6HplM1VQ3xEFxpoizQUfBaCED+Pqh2B83ENoaoXKrXI/Kqnn4KM4U5gzL4e5zJcdobqwKknk/lYlvQym0VIsVctq11u5bpOyaX1k6fGjTSgB2u0aFJeZ0ZxI/93wHgJSGnfLDOTeBI7L3/iJDdfa3+nkIyfuBkGcr/isHnPeQkGOhEK1dU9fhk/vk+qwbWVgmw+/UQVkh7hQY6j4rd9eYaof+8Vacga9ZM0LibJxdToiNCf2kvEPTIDlbVKJjzoLZ34HTfguX/Be+/Qlc8O9uSipFYuQeKYv5YFbNDW+KBSpvjNhZLUARZzXNwYmzE/psmoDYuBVhFOz8sMtQnA05RBVnQ3JTcNltNLV7ArY/lveSc9mBRE8ozqxaNaH7uJ8dLXEG0jJ45Sui7LW74Mz7I194TbxYLiOxa3o9YtFsrZONzNk3RfacBxAFUSvODOLsIDdOHiiMyJf5z5fbIlOZR4J1JUIWTyjsXkymCOUdldERZ6sM4mxKUeTzqj4celAt1zsrm8xNkEPOqgninLnsOVmDKAXw4QhN8xGEtbsP7muJEkdAcMzBxYDMJFwOa29zLBlnze0e02aSnmRBRaCIs67qhmjQZBBnKXlw1C1yffVz0NQDJ9796wFd1Eap1hd+Sn7eIxlnqQd/sXHVnMF89bMTueussbE9kDMJzvJrkjzlNxI4bAX+OWcWMKB2BQBrneHJgOqmdj5tG8V/PUYGlisNpl9n7XX54dzJhTjtGh/uT6Vx0Inyw3d/Kpezb4Yhx4R/kFGnyY5JzS6xHVrFpvmilnSlUjXlZoqrW9A0mFQUotU2CMb0SyPZZaehzc3nWysBOoeWxwtpBnHWEBlxNsIrJ8R9ScPDHBkclY1HmlVTEWddVMDKpjnpEsuLYf+MM//i7IbWDpbsFCtWX76ZD76cs8Dnh11GxtmQnENz8ey020wlx6YAOWc+xVkPkO+9FGmmwj+eijPrn49pgzM7/T8z0oyzrhhyDHx/FXz364g2FU2oUoBdX0BdSfjjdR3e+gFsfkfaO8/9p/W5wkFAvhGdsr8+UsWZ/G2Lsnvg/NoLccFU2Vx8a3Wpmb8Xb6wvC6U4M6yaFdFZNU3ibFBmVPfvw6GFIbky5tY2d7DHOE8fksQZQL8Jkl15uKrNFLKHyWXx0oP7OqJEH3HWixBLxplSmzntGklWrHqpfuqGaEPOQcLVmyp9jzn4aNl5dLfCssejf9xgMG2akU0MlYWisrGd1o74NHCoXBj/EoiDif4ZSfEJUR9xkpBnp/1OSCKrUMRZ+UZoqQl7eF7VEgCWEl6RudvY9X0y6TqY9R04/0FIyrT+2gxkpbhMwuDNxHN8N2QPh5MCW8jb3B5eXFpsTshwpfjeF6t2Ta8HPv6tXJ9zMysr5bs+Ii/VmrW6Cxx2m5mbuMd4b6zahCJClIqzQR1SOrLHOSzqpzYVZ72AmD4gUGOy/2ZGXYksZCGiXUilOGtze2lu9413X2ytxO3VGZabcsjmdfUEfBsr3dUoHq9uTsiHHKJWTfCzawbIOesNsQMHGvFUnO01bG2RKM6mdVGcRZVx1hWpeZAT5WZFZhEMOhrQYd0roY/VdXj/55JtptmkpCCCzNmDAfXZLo/UqnmEKc6mDcpkTL802txeXllhgUCNEHXNHWZu3PgAijN1XiqpbYl4rl7T1G5uckyxkCvdh0MfyS4H/QxSXM3RD1ni7EiBcu0se1xK6A4x9BFnvQixTOQU2Zae6LQWiKkWaZ52aWuLFi3VoBsnt5Q8YcqPMkLWl/wH3HFu5omSOMtMdpLolI97qPa0SKBahw5Le8vMG0Q9GMnOR2q+EFDo4XcS6vaS1LgHt25jsXtU2IfebVil8nOzxYYy7jzrr6sLlF3zL9sHovebLNaW8/8Fru4T4xV7ajj7H1/w01fWcNWji307sJHaNde/BhUbITEDjrqVlcVCLE6NYVdU5Zwp9IxV0ygIqC+L6G4FLdsA2KYNjvqpfcTZEaI4C2TVXPcyoMuCVsnbLSDZZSfBUDr755x91GfTDIh+6UJ4BDo3lNW10O7x4rRrZsnMoYjR/UTdEUhxdiSWA8SaKavQ7vaaZIzVcgCAUQVppLhkk9Np18zrBxWmXfOl0Md9+n++OI5zH4Dx5/foy4oHCkzFWWTzv71HWMaZpmlcOUfO288s3t1JsRwPKLXZwKykgEVmuaku0hId6LqvzdgqFHEyLDfFWklaHw4LKNXZ2hL5bEWzGd2HA4jxF4jrrXEfbHjjYL+aiNFHnPUipMcQVlvXHKG325Egi3iIrSBALfKSssFuPPf488Xi1VQefb15MOyLvFETZDKgwtNL42TXPBLtLWEx6Ci5DJdztutLANbpQ9nfFv4zqyZQg7NjV3ycMCafnBQXlU3tfH7ME2JvGdS5nKCl3cNv5m/gon8tYmu5WAYa2tw89oWRrzbyVGkQq90DpStCP6HH7StaOOp7kJQZlxyObsRZT1g10wfIZX0EO89eL1mNQpyt91one7qiyrRqHiGLebWZ0VLj24Vb86JcRhL0jYx3XXPOvF6dTzfLWN9n0+yMUIozNfYUZSdbKvnprVCKs8376jv9XNf1I/JcpjYqWzo8dHi8UT9OWV0Lug6JThs5EajG7DaNyUYxTFZyL2kAHHe+tGPvWwMVmwMfs+if8Nn/yfUz7hdr0SEARZyVR0CcNbe7zciAI0VxBnD+1AGkuOzsqGjiq+3xjVxZHyLfDOTcFa1dc6U5r8qM+vX14dCDUikqdX2GlbiiPhw8OFww43q5vvjfB/e1RIE+4qwXIS2GHVDVqJkWiUQ1HgUBinTzzxuzOyX8G+CrB2OzgvrD3SY2QIgqw0MpcspqY1ecSQObTKiOpF36sFAEVLics12fA/C1dxwNbe6ATW/+UFapQXHIGHLabZw7RSyIL6ytg4wBnW5ftL2S0/62kMe+2Imuw4XTBvCHiySH7Ykvd4nqzJUMo06XO4Sza655Aaq2Cbk85yY8Xp3VxbIzFovizP++KS67WS4SV6QZirOGCBRnNTtxeFpo1Z1saM2N+qnNVs0jhThLygbNUJ00VUie4/51kh8UhcLSP+cMZDe2srGd1AQHM4dkx+1lHw7wZZx1PzfsNEKqhx7CNk2AUQZxtqOiiXa3jyhqaHPT2iH/P5LOZal+42VjDKozVQxQmJkUMfml7JpZsRQDxBMpOTD8JLkeaNNz2RO+Bs0Tf+mb5x0CUFbN/fVtllVUe42/bVqi44hSMKUmOLhgmsyLnl4c3wDvUI2aCtEWBKgNyVjmVX049NA1QuFI+q4esph+ncxt9y6FvcsP9quJCH3EWS+CCvWPJqw2okZNBZM4i0FxpvJ4ugb1T78WnClQvh52fBr94/ujfAN43dLSl1EU8d0LzWbN2BVnNc3teLw6mkZEu8yHPZTirGR5aJuukdv0tXcsug5N7aEXLirjLF4ZQ8quuWD9flOt2dDawc9fW8s3H1nMnupm+mck8sR1M/nLJVP4xvQixvZPp7HNzaOfG6oz0675enBy2N3u250/9jZISGNbeSONbW6SXXZGFaRF/TtkJrsYbgR+R7NoswRTcRZBxtn+dQBs1ouoaolOyaHrup/i7Aj5ftlsYncH2cxQarNRp0kjaYRQijNFnCmb5tyRuZYLa44UmIqz+u7nBmUTH3yIE2eFGYmkJTpwe3W2+yk5yo2w9LQEB0m9wS54gOC028z4hljsmopciSZj8rhR8n0fnt+LPlsqS3HtS53Pa2tegvm3yfVjb4Pjbj/wry0GqCzalg4PjW3W/t5HWr6ZP66YLXbND9bvj0ilFw7rS0VxNn6ABeKswjpxpus6q/saNY9IdM1r7cs4OwSQVuArpFny8MF9LRGib/bci6AUZ/UtUSjOWlTGWQSqk2AtbpFA3TelC3GWlAnTrpLrXz0Y/eP7o2yNXPabFFXrSP9MZdWMfRKgrC05Ka74BPIfLsgZAck54Gnz5dF1Rd1eqNmJrtlZrY0Gwi9cTKtmnFrtxhemM6ZfGu0eL2+tKeWTTeWc+teFPLt4DwBXzB7EB7cdxwmj5XNts2n88OSRADzx5U5qmtph5ClCDtcVC1EYCCv/J3bO1AKYeSMAq4x8s0kDM2K2finFQv+eyl5SGWdt9dDWPRspIPYJcbbRO4ja5vawasJAqG91027Yp44YqyZIuDdAw36f4iNCm6ZCV+Lsk758s6BQirP9dd3VKDsrZewZmntoL541TWN0QfeCALMdupeU3BxImCr/tugDivcajZoDoyBXZg3N5q1bj+X+i6NowewpjD5DYghqdkKJEUOw6W147TuALuexk+4+qC8xGiS7HKY912qzpkmcHSGNmv4Y2z+d6YOzcHt1XlhaHJfHbGn3mKR9MKsm+DVrVlq3au6sbKKupYMEh40x/aPfkOzDoYeuxFlfxtkhgtnflst1r0LDvoP7WiJA34q/F0GRXu0eb8RtMrEpzmKxahr37ao4A5h9E6DBtgVQvin651CIshhAodBYHJXWxq44U2HAR9Si3go0LXzOmZFvphVOQTNy9kIRZ41tbtO2Fw+rprxMzVSd/d+7m7juyaWU1bUyOCeZ5741h99eMNFcVCmcOq6Acf3TaWr38MjnO8CZJIsMCGzX7GiFhX+S63N/bJYPrNxTC8DUQbHvip46vh8A0+PwWAGRkAYJxs6w1YIAQ3G2SR+EV48us1H9vdMSHCRaaQk+XKDG5A1vQP1eSMiAkRE02/rBP+OsvL7VDM5VZHAffMhPS0TT5NzrX6YAh4/iDGC0Ydf0Lwgw26GPIJumQjyaNZVVM5JiAH9MHJhBakIvyuRJSIXRZ8r1tS/B9k/gpWulBGrSZXDGH6PauOwNiDTnrNj42x6JijOAK+dIRulzS/bgiWIDrCs27qvHq8u8OT89eJ6iIkJ2RmDVVPOqCQMycPZtZh9RKMpO7jQk9SnODhEMmA4DZ4G3Q2IADhH0jS69CCkuh/nlj3SxabZqRjJgmLagOFg11WP5I3sojD1brqsGplgQI3GmVDnxyDgzd+mPwMVGWAyaI5fBcs6MfDOGHOu3cAn+eVf5ZlnJzrjuJJ03tRC7TaOxzY1Ng2/NHcp7PziOo4bnBDxe03yqs6cW7ZIFtr9d09vFlrj8CWgohfSBYl1GPjcLNgjZPDUOAbanjCtg6S9O5vsnjYj5sYLCzDmzaNc0iLPdjmEA3YgIK6hUis4jxaapoJS7qtVu3LngjC6w3Zdx1sEnRinA5IEZfWNWALgcNnMTxL8gwOvVTZt4113tQxG+goAAirMjqBhAIZZcWYWSWvl8RGPV7LVQds3Vz8Hz35T29TFnw3kPiqX8EIWZc9ZgkTgzFWdHJnF2xoT+ZCU7Ka1r5eNNMawTDKw3Nm8mhLBpgm+srW3usDx/WNVXDHDEItFp7zT+9hFnhxDm3CSXyx4PHe/Ti3DongEPQ9hsGmkJ0e2AHjzFmSoHKAh8+1G3yuXq56GpMvrn8bglLBtiV5zFIePsSGwhs4wiP+KsK5kEZr4ZQ+Za2vHfUy27joPirPjIT0vkR6eM4rhRebxy89H84qxxYTN+ThlXwPhCP9XZiJPBlSrqoJJlvgPbm+DzP8v1eT8BRwJer86PXlxFVVM7owpSzXybWJGXltCzjWzpUqRgKeestU6sqcD+ZCHzVKtjJKhqOsIaNRWUVdNrEMmTLo36obJT5FxQ3dRmLnr6bJrB0T9AQUBZfSvtbi9Ou2befihDZSoGIs6ORMVZuoWNm3AwM86iVJz1Sgw/UbJkW2uho1kKAy5+HOy9SBkXBXyKM4tWTaU4OwKtmiCExCUzJE/46a9jLwkw881CFAMAJLl8RIjVZs0+4uzIhv/GVkQCkj4cXIw9Vzbnm8pFgHAIoI8462Xw5ZxFqDgzctEiUuTEoxwgUKumP4pmixzT0wZLH43+eaq2grtFSIrs4VE9hFKcNbS6Y5oog8/e0qfeCID+k8GRCC3V8nfzh5FvhmaHotmkJRif9xB/D5VvNiRONk1/3HLCCP57/SzLtklRnY0CRHVW1ab5bC3+ds0l/xE1ZtYQmHIFAP/5fAefb60k0WnjgW9OO3QsiJEQZ/s3GPcZiDNVAu2rm6K3ah55xJnfBkT6ABh8TNQPlZ0i792++ja+2CqbFieNCbLB0Qf6pauCAB9xttuwChVlJR8WWZZj+smCtaS2xRxzy49g9XSsVk2PVzeJ1mitmr0SDhdMuFiuDzoaLn0aHIf+50MVBFjNONtbc+SWAyhcPkvsmgu3Vpjq/2ixzmjUDJVvpjA0gmbN1g4PG8uElOtr1DwyoYrDXA7boTO37gPYnTDzBrm++F/Bi9Z6EQ79meBhBsWURzqRq49KcWaQXU2xWDVVOUAQ9YymwVG3yPUlj0juUzRQNs1+E6O2CqQmOMwd5rIYCwL6rJoh4HDBgBlyvatd08g3o3AKJKZbWrgoq9TgXmKXOHlsPhMHZNDc7uGRz3d2t2u21sOXf5efzbsT7E5W7KnhT+9vBuCec8bH1KZ5wBERcSY2TfpNINuoBK9qjFx+fcRbNQEmXhyTLSrLUJyt2VtLU7uHvLSEsDv9RzJ8ijOfInmnkW825DCwaQJkJDtNgnCrURBwJCvO1MZNtBtp++tbcXt1HDbt8FOfn/QrUZld+bKZz3moQ/2NrFg165o7zHlJNMUPhwuG5KYwd2Quug7PLtkT9eN0eLxs2SfqsfEWiLNhedabNdeX1uH26uSmJhxeluk+WIYiWvtsmocgpl8H9gQoXQl7lx7sVxMWfcRZL4MiEqLPOIukVdNQHzRVgDeyMgJASAJlvwymOAMYex5kFEFzJax9MfLngc6NmjGgUDVrxlgQcCQvNiwhWM6ZX74ZWCOKVTh3vK2a0cI/6+y/X+2iqt8xEqDfUAp7l8DX/4KWGsgdBZMuoa6lg+89uxK3V+fsSf25dGbRQf4NIoSZcWahHEARZwXjGWQQnYp8iASVR7pVE2BidG2aCqocQG3gnTA6D1uMLa6HM/plGBmYfpsq8W7z7Q3oWhDgKwc4zIgfC4hVcVZizCP6ZybG3JDc65CYDhMuAlfvOO/GAwWG4qzCguKs2FCb5aYmhI1wONxx5ZzBALy4rJg29/+3d+fxcdX1/sffs2RPJm3aLG3TvXajpRtQy172e0F2RFBZrqAsvQLK9QfKQ8D74/JTQb1c8fK4lwvVK6KgKKAXFFsW0cKF0kJXCnSlTbqSpNmTmfP748x3ZpJOtsmcM9vr+Xj0kWkyM+ecfDPJmc/5LAm8V5D0wd5mdQZDKiv0D6r0dYrJOBtEqaYZDDB//Ahn21YgbU2tsiexjirJsYut2aBkdLSv5puPpHZfBoHAWZoJJHgiZ3qcDalUs3iUJI9khaTWg0PaniS7FM8K/xHtK+NMsvtiLP6KfXvVw4mlYg5zMIBhsgrIOHNYX5M1Y/qbSYMLFKfjm9fTZlbp6Fo76+w//rYnWq759mPSqh/bt0+9U5bHqzt+8552N7RpQkWx/uXiuZl3YhcYZ39s2j3wfetN4GxO5ETmo30JBM7M1Npce31Vz7UnaU4+RaqZM6ynqijueQJ5Gv3N+hWvx5mZ6pYNgwGM3gMCcrtU07QKSCxwZkr5yHLJDKbH2WAyzqKDAVjb02dWaUx5oQ61dOrF9fUJPYcp0zxqbGBQ50CTK+3zh8FM1lwT7m9GmWbuOmHqKH3l5Cm64+9mpnpXkAgTI9j47OCqW1KIwFmaCRQmVjqQUKmmz29HeqXEBgSYxxRV2HXK/Vl4ld2fbP9m6cMVQ9tOKCTVhzPOhhk4GxuZrJmcjLNcfLMxKOOPleSx+5kdDp9o9epvJsVONYv/897ZHYpkB6ZLqabUO+tshxqnhqfHvvcrqaNJqp4jzb5Qv/jfnXphfb38Xo/+7YoFSZ0K6ppAOOOsaYCMs1BQ2hfucVYzV1PDJ76Dbe4bK9LjLNeuHpaMkr6+Wfr808N+qpEx37s8n0cnfio5wyiyVU2cwJnJdp2YJtmuyWDKxDfXH1ZHd1ANrfbv3lzMnh7MVOf+7A43j8/lUr5MUm1KNZvaZQ1wAXcX/c0i/D6vPnes3ess0SEBGyODAQYu05SiGWc7DrYqGOp/rdbGZJwhN/l9Xt3597N06gwuEGakMUfbPX1D3dJb/5XqvekXgbM0E8nAaRv8FdDuYEgtnXbm15CniQxnsuZAgwFiFZZLC75o3377saFt55NtdjDCVyBVzhjaY3sxgbPdDYlnnLV1BnW4w16fXHyzMSiF5VL1UfZtU67Zq7+ZNHCG5e6GNoUsqSjPl3ZByqUzqjSvtlxtXUE9smuCnSkU+eI3tXlfs77zvB1I+j/nzNS8TD2pMxlnLfuk7n4mZH6y3Z7A5i+SKqZEAmc7DrWqszvOdNV+RKZqptmauyK/OCmNuPN83sjfk8WTR6m0ILMn4jktMhyg0X5THQpZkWzXyVkUOJsRk3F2oNl+neX5PBpRnIFB/WEqTVKpJhlnmcEMB2jvCg2YZbjrUG5P1Ozt8mPHy+f16K3tn2hzfdOQH79+d3gwwLjB9dkcN6JI+X6vOoOhSGZnPPsPd2h3Q5s8Huno2sEF5QCkIZN1tvrxxPuhu4DAWZqJ9nwa/BXQ2BMAE4gYNBP0SmSyZsv+ns8xkEXX2B+3vBjNQhoMk21WPXvgzLYBREs1E884M9lmhXle3oz2x/Q52/Wm/bFXfzNp4B4z0YyP4rQrcYydsPn4m3vUPu0c+wtjF6h18lla9os16ugO6dQZlfrSiZNTuKfDVDxK8oWzl5r7ed3Wr7M/Vs2SvD5VBwpUku9TMGRp56GhlWtGSjVzrcdZkpk+Z0sp0xyQyThr6wqqqa1b9U3t6ugOye/1aOyI7On/Na2qVD6vR41tXZE3s5WlBWn3+9UNgWFmnH0czjgbl00TNbNYYZ4vsub7ByjXJOOsp5ryQp05y77Q/os3hzYkIBSytLFuaBlnXq8ncsGiv8maa8Nlmp+qKo1UMADIQDPODfdDPyit/3Wq96ZPBM7STLTn0+CvgJoyzZJ8n/y+IS5pJOMsgcCZeUzJIN+UVc20S/SsoLT2F4PfTpL6m0nSmDgNoIdqf7P92Mqy3HyzMWi9+5z16m8mDVyquTPcZ2RCGpVpxjp1RqXmjx+h9q6Q/tN3uTTvSunCR3Tv85v04b5mVZUV6MHL5mV2U3aPJzogoL/eA3s32B/DmYYejyfS5+zDIfQ5a+sMRjJoc26qZpJ99pjxmjMuoAvmj031rqS9wjyfRoazruqa2rQ9HLQfX1E89L+raawwz6dJ4X6Rr39gD/epDGRPYHAozN+f5o4EM85MqSYZZxkj0udsgAEB0R5n6XnukQpmSMAz7+xWyxBeM9sOtqi1M6jCPG+kBHMwBjNZc+2uTyRRpglkPJ9fOvY6+/abjyTWD90F2XM2mCUS6XHWmEh/M2M4GWemvHOwGWeS3etMktb89+BfFCZwNsyJmlK0pGJPQ9uAPS76Ep2omZtvNgbNZJzVvSft33JEfzNp4Iyz7QfSbzBArNheZw+v6dS+M36oZ/eU6Vdv75LHI/3oc/M1KhuypgLhwEu/gbPwYICauZFPmXLNj4bQ58z0N8v3e1VGRuew3Lx0mn7/jyeRuTdIsZM1ze+eSWn6u2c4ZtbY5VJ/+cDOGs/VlgPDmappWVa0VJOMs4wRDZz1ffHUsqxINiEZZ1HHTx2lyaNL1NzRrWfXDr6B94Zwf7OZNYEhXYSIBs76Pn+ITtQcOejnBZCmFl5lt3upX3fkcLk0QeAszUSmPA2hx5mZSDjk/mZSNFsskR5nplSzv4mavc2+UMovkw5tlXb8deD7W5YdeJGkMfOHuodHqC633yB0dIf0SWti5RmRKWS8Ge1fea2ddmsFpb/+yP5cTH8zKTbjLP7Puynxm5DGPYZOmR7NOrv3uY361m/tANI/Lp2m46eOTvHeJclgAmeRiZpHRT41NXzim0jgLFfLx5A6sZM1s3EwgGEGBGwP93BLt/6Rbhno709/DjR3qqM7JI8nmsmO9GeCxP1lnO0/3KGO7pC8HmlMFpVpD5fX69HnF0eHBAz24vOGmImaQzF5dP+TNYMhS+99bD83GWdAFiiukI7+rH37jX9P7b70gcBZmgkUmVLNoWecJRQ4S8pwgOrBP6agVJp7iX37nZ8NfP+mPVLrATtTqXr20Pex9+b9vkj2xZ4EJ2syUXMITHbZu7+0P8b0N5NiS5Pj/7yb5tzpNFGzN4/Ho9vOtHud/WFdnZo7unXcpAp99fRPpXjPksiUah7uY7Jme6PUGO570iNwZjLOBl+qaRqWU6YJt9WURwcEmFLNyUMoLcoUZkCAkesZZ80d3QNO7uvNZJtVlxUq38+pdKaoCmec7eunx5npbzamvEh5WVSmnQyXLKxVvt+rjXVNWhPuLzaQDbvtjLM544bWvH+gUs2P9jeruaNbRXk+Ta8uHdJzA0hTi2+wP27+vdSwK7X7Egd/EdJMIldATXZaIJHGmMMq1RzCVM1Yplxz47NS2yf939eUaVbOkPKSc1XXNHoebuAsV99sDIkp17TsnlWx/c2k6M9sc0e3Qr3euIRCVqTHWbqWahonf2q0Fk4YIUkaUZynH31uflb1RYpM1mzaHf/rpr9Z+XipKFoyYXqcbd3XPOir0ybjjPJCuG1MwGSctaV9mfhwzOwVOMvVi0BlMcOUhtrnzEz6o0wzs1SHJ2vu6yfjzEzUrGVtjzCyJF/nHW1fSHvijYGHBFiWlXDGmemHVt/UHren2tpwmebc2vLsOt8Ccln1bGnyyZIVkt56NNV7cwR+06SZwAAZOPEMr8dZOFusJZGpmmY4wBBKNSVp7EKpeo7U3S6tG2ByhpmomYTBAMaYmKyCROwj42zwzIAA6Yj+ZlL0jYtlSc2dPU+M9oXLJfxeT6Q3XbryeDz6zgVz9OkpFfrJlQs1Ns33d8gCZjhAHxlnvQYDGBNHFcvrkQ53dEcCzgM5GAmckXEGd5mMsz0N7doRLhOflIWlmhMqilWU54v8P1f7dRb4fZFssaFO1jSDAdL9bxN6Mj/r/fU4YzBA/8yQgOff3aNH/7JVnd2hPu+7p7Fdn7R2ye/1RErEB2tEcX5kMnS8ck2T8bYgfNESQJYwWWerl0tdiQ/zcwKBszRT1k8GTl+iPc4SaKRtssXaPpG6B/fGVpIUCkktB8LPMYRSTcme0meyzlb/tP8hAUmcqGmYoMaexmFmnAUInA2oapZUEE7P79XfTLInvOX7zBuXnoEzUyo1bmRRRlxNnDOuXL/88hIdPy1L+prFimSc9dHjrH6d/bF6To9PF/h9kYmoHw6yz5kp1STjDG4zvare+7hB7V120D4bs068Xk+P0qZczp4OJDggwJRqZuPPRzaLZJz1cyHHlGoyGCC+BeNH6LSZVeoMhvR//7BJ5/zoNa3cvDduVvmG3Xa22bSqUhXGBOsHy2SdbY0TOFtrAmf0NwOyy/Rz7Pcd7Q3Sh39O9d70kP7vRnNMfxk4fRlWxlnRSMkbfpxp9j8YbYei5XclCQQK5l4m+QqkveukurV93y+JEzWNseVmsmZiUexIj7PS3LxKPyRenzT+OPv2xBPi3iU62aznFf+d4f5mE7jqm3qxPc5Cca4u7z1yMIAx1D5n+8MZZ1kxjRQZxWScNYWDKLUZErRPRGz2Ry5nTyc6ICCScUbgLKPETtXsq32AKdUcX8HaxuPxePSfVx2j/3fxXI0uzdfWAy36h+Vv6+rH39IHew/3uO/6PYn1NzNMj8nekzVbOrr1fr393EzUBLKM1ycddZF9e8Mzqd2XXrLzjDCDFebFlg4M7kSuyQwHSKTHmccT0+dsCAMCzH2LKiRfAtstrpBmfca+3deQgJYD0Z5KNXOHvo0+mClJdQn0OAuFrOjUvxx+szEkp31LmvtZacmyuF8u6+OKvymVysYeQxmnrEaSRwp12cM6YoWC0r5N9u04r1PT5+yjfYPLOKNUE6liAmfGpCwcDGDEDgjI5ezO0oL4F24G8jGlmhnJnLd1dIf6nF4fyTjjol2ffF6PPnfcBL18+6n6yslTlOfz6LUt+3XOv/5F9zy3QQ2tdub4xgT7mxlTKuNP1ly3u1EhS6oJFB7xextAFjjqYvvj+y9InYMfMOY0AmdpKNLnrG1wJ3LDyjiTEhsQkOhggFimXHPdr+O/KEy2WcXUI0r8hsOU4yTS4+yT1k51hyx5PEz9G7SxC6RL/lMqi1/SG73i3/PnPTpRM3vfvGYMX170td67XPPQNqmrVfIXSRVTjnjo1PBkrI+GWKpZmcNv5pEapQX+Hg3js7G/mTGzxv6bWlGSn9NTIfu6cNMfy7Io1cxQhXm+yLny3jiTNbuDoci5IaWaAysrzNOdfz9LL912is6cXa1gyNLyv23XqQ+8op/+bbvWJzhR0+hrsqYp05xPmSaQncYtlEZMtN9fbPljqvcmInfPltJYYIilA6asJJBw4Cwc0BhKxpkp6xxO4GzSSdLISVJHkz1hs7dIf7PklWlK0SvE9U3tQx5Bb8rIKorzGVOeJH29ccmUiZo5IzDW/tg7cGbKNKtm2enVvZhSzb5Gyvd2gFJNpNCYmOyFSVn8u+e4yRU656ga3XjK1FTvSkpF/v4MYapmU1t3ZArnuBHZ+zOSrfqbrFnXaJ8X5vu9Od37b6gmjS7Rf151jJ64brFmVJepobVLdz+3QfVN7fJ4pFljEsw4C2f9bjvQ0qO01kzUnM9gACA7eTzSnHDWWRqVa/LOPw2VDTHjrClpGWdD6HFmMs5KhhE483qlBV+0b8cr13RgoqZkp+r7vR4FQ5b2xbni2B9zokWZZvJEft57Dwc4YEo1szfrI6OUhQNnh/sInNX0HAxgmMDZ7oY2tQ7Qt7ErGFJDq/37jFJNpEJNeTSDaGIWl2rm+7165IuLdP3JR2aJ5pK+Mp7783GDfVFnVEm+ivKH3vAcqRXb56w3M1GzdkSRvF6Pq/uVDU6YNlp/+OqJ+ucLjtLIYvu1NbWyNFISPVQTwpO5m3tN5mYwAJADTLnmBy9J7U2p3ZcwAmdpyGSOHe4YWuAsoamaUjT4lUiPs+FknEnS/M9LHq+0c5W0f0vPrzkwUVOyezOYE6ehDgiIDAYgcJY0gThvXBpaOyOBNIYDpIm+Ms7qzWCA+IGzkSXRkfIDZZ0darHLNL0eaWQxgTO4b0wgNuMsewNnsCVSqslggMxWVRYOnMW5cGr6m9Vy3pEwv8+rLy6ZpFduX6o7/26mvndp4lUjBX5fpNecGTBU19im+qZ2+bweza1NrAQUQAaomSuNmiZ1t9u9ztIAgbM0FM04G/hEzrKsJPQ4S1GppiQFxkifOtu+vSYm66y9UTq01b5dk9zAmRQtx6lrHNqAgP0MBkg6c8U/9ufd9DerKivgin66CIQnazbV9fz83g32xz4CZ9Lg+5yZwHRFSQFX+5ESptG0z+uhf1UOSCjjjMEAGa2qn1LNyERNXvvDVl6cp6+cMlULJwxv6uXkmHJNKVqmOb26TMX5CSYMAEh/Ho805xL7dpqUaxI4S0PxMnD60tYVVHe4T1dCUzWl4Q0HGE6ppmGGBKx9Uuq2M05Uv87+GKiVSkYNfxu9jA2f8NYNMeOMUs3ki17xj/6876C/WfoJjLM/mkm3ktTWIDXutG9Xz+7zoaZc86MBMs4OhjPOKNNEqpiLKrUji+hjmQMCiWScMRggo1WHz9/itepgomb6mTLa9Em1L7wxGADIIaZc88MVUtsnqd0XEThLS331fIrHZJv5vR4VJ5qZk0jGWTKmahqfOksqrZFaD0hbwqmYdc70NzPGjAiXaiaYcWZS/TF88Upldh60AywTmKiZPsrCGWeHYzLO9m20P5aPl4r6vqocDZz1n3F2gFJopNjCiSOV5/PopE+NTvWuwAXDKtUk4ywjRXucxcs4CwfOmKiZNiKTNcMZZ2vobwbkjqqZUtVsKdQlbf5DqveGwFk6GkrpgClvCxTlyeNJsLTJBL9ahjAcoMVknFUmts1YPr80/0r7thkS4NBETWNsuAH0noYhBs7CVyh5Y5888TIsTalmNk+1yziRjLOYHmcD9DczplaFSzX3DRA4MxM1S8g4Q2pMry7Tmm+fpX++oP+faWSHREo1TcbZOIIrGcmUasYdDhAOio6vICiaLmIna3YHQ1r3caMkJmoCOcNkna3/TWr3QwTO0lIggYyzhPubSdHAWWez1NH/G1tJUigktRwIP7Y68e3GWvAF++OHK6TGjx0bDGBEe5wNsVTTZMSUEjhLlnhX/E3gbAKBs/Rhepx1Nken2+wNl1RXH9XvQ03G2bYDLQqGrD7vZwJno3l9IYVKC/yJX4hCRkkk4+zjcDkfGWeZyVQM7DvcIcuK/j1q7wpG+myScZY+poTPH3YeatWGPU1q6wqqrMCvaeHPA8hyc8KBs62vRuMPKULgLA1Fm6UPJuMsPFGzcBgNMvNLpbzwSULLIPqctR2SrKB9uyRJ5SyjpkqTTpJkSf/7n9KB9+3POxQ4Mz3OEp2qaa5YYviiV/xjAmeH7JT8iUy1Sx/5JVJheIKVyTozgwFq+s/OqR1ZrHyfVx3doX6zPA82h3uckdEJwAXx/v70p7WzW5+02uddTNXMTOb8rbM7FLn4LEWHPpQW+DWieBgXo5FU1YECFef7FAxZeu5d+9zj6PHlDBACcsWoqXY8wApKm55L6a4QOEtDgaLBn8iZP/qB4WSceTxDGxBgeqEVVUi+JJ5cLLza/vjGv0tWSCoeHe2rlGQmcHaguUMd3cFBPaa9KxhZE0o1k6f3cID2rmCk98hEGvSml7Kx9sfDe6RQUNob7nE2QKmmz+uJTMb6sJ8+Z/sp1QTgotICk+E/uFJN09+srNA/vEx/pEyB36eR4cBYbJ8zMxigdmQRGadpxOOJnj88u9YOnDEYAMgxkXLN1E7XJHCWhqLDAQaRcdaehMCZNLQBAZHBAEkq0zRmfUYqHCEFwycyY+bZQT0HjCzOU4Hf/vGvH2S55vZww/rCPK/KChiBnSy9S2V2hpvzlhVy1TftBMKBs6Y90qFtUneb5C+SKqYM+NDB9Dk7QMYZABeZbP3mjm6F+ikjNz5uYDBANjDlmrF9zj4+xETNdGXKNU07h/nj+x5GBCALHXWR/XH769Lh+pTtBoGzNBQYQulAJOOscLiBsyFknJkhAqVJGAwQK69QOvqz0f87VKYp2Vewhlqu+Yf37GmCJ04bzdXIJIpkWHZ0KxiyYgYDlPB9Tjemz1lTXUx/s9mSd+CJvtHJmi193udgMz0EAbjHlGpaltTaNXD2uSnnq6VMM6OZck3Tt1aKGQxAf7O0YwYEGGScATlm5ERp3DGSLGnjsynbDQJnaSiScTaoHmd2cG3YJQORjLPBlGqaiZpVw9tmPAuvit52MHAmxQ4IGHiypmVZkRTx8+ePc3S/ck1ZTH++5o5u7Qhn9jEYIA1FJmvujvY3G2AwgBENnMXPOAuFLB1sCWecETgD4ILCPK/84V5Jg5msaUo1yTjLbNWBIzPOdkUyzljbdDOlMho4qx1ZRLsUIBfNucT+mMJyTQJnachk4HR0hwbsvxXtcTbM0kETBBtUqWb4PqUOBM5q5koz/l4qqQwPC3COyTgbzGTNd3Y2aOehVpXk+3TmrCSXqOa4Ar9P+eGy2cPtXZGMM/qbpSHTc/BwnVS/3r5dPXdQDzWBs619BM4a2roiEzcr6HEGwAUej2dIkzVNcKWWrKSMVm0yzmIDZ+EeZ2ScpZ8po6MTNMk2A3LUURdK8ki73pAaP07JLhA4S0OlMf2zBjqRMz3Ohp9xlkippgOBM0m6/Anp9g+kklHOPH/Y2HDG2e5+pvwZz63dLUk6+6gaFeUPXJaGoQnEvHHZEX5jMpGMs/TTI+PMBM4Gl3FmrhgfaO5UQ2vnEV83ZZrlRXmRQCoAOC06WbP/jLO2zqBe3WKf/xxdW+74fsE50R5nMaWah8Klmly0SzuTYzLOCJwBOSowVpqwxL694Xcp2QXenaQhn9cTaT4/UOAseT3OEhgO4ESppiR5vY4NBYg1xmScDRA46wqG9Ptwf7Pz5491fL9yUVlMX7+dplSzoqS/hyAVTI+zg1ulxl327UEGzkoK/JHy6Hh9zsxEzdGlZJsBcE90IFP/51t/2liv5o5u1Y4s0rGTKtzYNTgkknF22M44a2rvipxP078u/ZQW+DUhHNDktQfksDlmuuZvUrJ5AmdpKlo60P8VUNMHLSU9zpzKOHNJtMdZ/6War394QAdbOjW6NF8nThvtxq7lHPPz/klrZ6T5MhlnachknHWFA1/l46WiEYN+eH99zsxEzVH0NwPgosGWav56tV0acsnCWnm9DK7JZFWBnhlnpgR3VEm+SpianpZ+fOUC/dsVCzSPjDMgd82+QPJ4pT3vSIe2ub55AmdpymTgmOb/fWmK9DhLUqlmyz57vFR/WrIjcDYuMlWz/4yzZ9fYZZrnHT1Wfh8vGSeYNy5b6g+rO2Qp3+9VTfjEFmmkaKTkiwlsVc8Z0sOnhsst4gXOmKgJIBUGU6pZ19im1z88IMkOnCGzVYWby+8/3CHLsiJlmrWUaaato2tH6DPzqPoAclppVbQH+obfur55ogBpyjT7HzDjrD1JUzVLKu2PwU6pvaHv+4VCUsuB8GMyO3BmSjWb2rvV3BE/QNna2a0/bbTLVynTdE5Zgf3zu35PoyRpQkUxV/TTkcdj9xgwaoYYOKsKZ5ztO7JU8wClmgBSYDAZZ8+8s1uWJR03uYKJz1nATGXsDIbU0NqljyODASjTBIC0Zso1N7g/XZPAWZqKZJz1EzjrDoYiAR/TXD1heYVSYbjZbX/lmm2HJCs86bMks8sWSwv8kRPmvvqcvbRxr1o7g5o4qlgLSA93jAkUr9/dJImJmmktNnA2yP5mRn+TNQ8cplQTgPuiPWXjn29ZlqXfhMs0L11Etlk2KPD7ItOb9x5uj5RqMhgAANLcrPMlr1+qXycd/MjVTRM4S1OBQVwBjf3asEs1pcENCDBfK6qQfEnYZoqNLQ+Xa/bR5+zZtXskSRfMGyuPCwMLcpUJFJsJp1zRT2M9Amdzh/RQEzjbcahVnd2hHl872GIyzgicAXBP7HCaeNbsatDWAy0qyvPp7+eOcXPX4CBTrrm3qUO7wr1Vx4/k3AMA0lpxhTTlVPv2xudc3TSBszQV7XHWd8aZyUYrzvcpLxm9twYzICAyGKB6+NtLA2NGhAcExMk4O9TSqdfCo+fPnz/O1f3KNWW9MibJOEtjZeE3jv4iqWLykB5aHShQSb5PwZClnYd6lmvuDw8HoFQTgJvM35/mPgJnZijA382pUSmN47NGdEBAbMYZpZoAkPaOCpdrbnre1c0SOEtTpnStv/HojcmaqGmYZv/9ZZy17A/ftzI520yxsSP6zjj7w7o6dYcszRkX0LRwbyY4wwSKjYmjS1K0JxiQmaxZPVvy+ob0UI/HE+lz9mGvPmcHDtsZZ5RqAnBTtDXGkedb7V1BPf+unXl+CWWaWaU6nHG2r6k9Ms2bjDMAyAAzz5V8+dLBLa5ulsBZmhpMjzMzcTNQmKTAmWn2P5iMswwfDGCMLbevOMabrGmmaV4wj2wzp5FxlkGmn2WXaB57XUIPN+WasZM1LcuKlGoyVROAm6LDAY4833pp414dbu/W2PJCLZkyyu1dg4OqwxlnG+ua1NYVlMcTvZgKAEhjRSOkaWe4vllyztNUYICeG5KTGWf9Bc7C2WjZUqoZ7nFW19gzcLbrUKve3vGJPB4x/toFscMtvB6plqu+6atiinTj6wk/fGqlnU0YGzhr6QyqvcvueTa6jFJNAO7pb6rmb96xyzQvWVTLpOcsUx2wL9K8vf0TSdKYQKHy/eQTAEBGOOpi6b0/uLpJ/kKkqf6ugBomG82UdQ7bYIYDZFmpZrTHWc9SzefCpRlLpoxSTTgrDc6JLdUcU17EyWsWi2acRUs1TZlmUZ5PxflczwHgnshwgI6e51t7m9ojfU4vXkiZZrapLLPP7faF//7UkukOAJljxt9Ji65xdZO8O01TJnBmyjHjMRlnSZmoKQ1tOECWlGqOi/Q4a5NlWZLssrFn14bLNOeTbeaG2FLNiUzUzGqmx9nWfc2R19yB5vBETbLNALisrynmv12zWyFLOmbiSE2m72bWMRlnBv3NACCDFJRKZ/1fVzdJ4CxNmWBY7yugsczEzaT1OBvMcIDIVM3sCJyZbLL2rpA+abW/n5vrD2vL3mbl+7w6Zw6j590Qm3FG4Cy7TRxVLK9HOtzRrf3hK/0HIhM16W8GwF1lMa0xYi+g/WZ1tEwT2cf0ODOYqAkA6A+BszQVGELGWdJ7nLUekELB+Pdpya7AWYHfp9GldpaLGRDwu3C22Wkzq5L3vUW/Aj0yzriyn80K/D5NCJfEfBjucxbJOCNwBsBlJuM5GLLU1mWf+7z3caM+2NesAr9X5x7NBbRs1PvvDRlnAID+EDhLU9HhAF2RK6C9mdHpSSvVLB4tySNZIan14JFfD4WklgP27Swp1ZRiBwS0KxSy9Pxau78ZZZru6ZFxRp+RrNe7z1k0cEapJgB3Fef7ZPr+m3JNMxTg7KNqkpfVj7SS7/dqVEn0b854zj0AAP0gcJamTCAhZNkT5+JJesaZzy+VjLZvxyvXbDskWeF9MffLAmPC5Zp1jW16a/sh7WlsV1mhX0tnZk9wMN3l+70qzLN/HU2gVDPrmT5nH+2zM84OUqoJIEU8Ho9KC6IDmTq6g3o2fAHtUso0s1pVTLkmpZoAgP64Ejh7+OGHNWnSJBUWFmrx4sX63//9Xzc2m9EK87zK89mXQPuarBntcZbEKXT9TdY0nyseJfmy5wrsWDMgoKFdvwufLP/dnBoV5vlSuVs556ZTp+miBeM0qyaQ6l2Bw6ZW2uW4H1GqCSANmIuVTe3dWrlpnxrbulQTKNQJ07LnIiGOZAYE5Pu8qi5jgjoAoG+OB85+9atf6Wtf+5ruvvtuvfPOO5o3b57OPvts7dvXz+RGyOPxRE/k+uhz1pTsjDMpZkBAnPXJsomaxtgR9snSjoMt+p91dZKkC+aPS+Uu5aSvnv4p/fDy+fKamhlkLVOqubVXqeYoSjUBpIDpc9bc3q1fh4cCXLRwnHz8PcpqVWV24GzcyCLOPQAA/XI8cPaDH/xA119/va699lrNnj1bjzzyiIqLi/XYY48dcd+Ojg41NTX1+JfLoiPS+8g4C38+aT3OpGhQLF7GWct++2NpZfK2lwZMj7MV4avMVWUF+vSUUSneKyB7mcDZ7oY2tXZ2U6oJIKVMH7NtB1r0yhb7XOeShZRpZjszWbN2JGWaAID+ORo46+zs1OrVq3XGGWdEN+j16owzztCqVauOuP/999+v8vLyyL/x48c7uXtpL3ZEem+WZSW/x5kUk3G2/8ivZXnGWWcwJEk6f95YrjIDDhpZkq+KcFPmrftbtJ9STQApZDLOfv7GDgVDluaPH6Fp4V6MyF7HTKqQxyMtmcrFUgBA/xwNnB04cEDBYFDV1dU9Pl9dXa36+voj7n/nnXeqsbEx8m/Xrl1O7l7aCxTZJ3JNcTLO2rtC6gpa4fslM3A2iB5npdVHfi2DmR5nBmWagPNMn7ONdU2RiwNM1QSQCiZw9kF4YAlDAXLDKdMr9e7dZ+mmU6elelcAAGkuiV3lh6+goEAFBWQcGGUF0Wa1vZlsM5/Xo5L8JDax7y9wlqWlmlVlhfJ5PQqGLE2pLNGccTSnB5w2tbJUb23/RG9tOyRJyvN5kps9CwCDZDL8JXvK82eOHpvCvYGbAoX83QEADMzRjLPRo0fL5/Np796eQZi9e/eqpqbGyU1nBXMF1AwBiBXpb1bol8eTxLLCHBwO4PN6VB1uEHvh/HHJ/X4CiMv0OXszHDgbVVLAaw9ASpTFTCc/c3a1yosJpgAAgChHA2f5+flatGiRVqxYEflcKBTSihUrtGTJEic3nRVMCWa8Hmcm4yypZZrSAKWa+3reJ4tcsqhW06pKdfmxud1XD3DL1Cq7VHPnoVZJTNQEkDqxGWeUaQIAgN4cL9X82te+pquvvlrHHHOMjjvuOP3oRz9SS0uLrr32Wqc3nfEiGWdxepw1OTEYQIpmnLU3SN0dkj+mdLbFBM6yq1RTkr5+1gx9/awZqd4NIGeYjDODwQAAUsWcb1WWFeikaaNTvDcAACDdOB44u/zyy7V//359+9vfVn19vebPn68XX3zxiIEBOFKgn6makYyzZPdmKBwhefOkUJfd06w8fOU1FJJaDti3s6xUE4D7akcWK9/njUyzJXAGIFVOn1WlX71Vrn84cZL8PkeLMQAAQAZyZTjAsmXLtGzZMjc2lVX67XHmVMaZ12tnnTXttss1TeCs7ZBkBe3bJVyNBTA8Pq9Hk0eX6P29hyUxURNA6owpL9Lz/3hiqncDAACkKS6rpbFoj7MjA2eNbd3h+zgQ+4w3IMD0PCseJflomgtg+EyfM4mMMwAAAADpicBZGjMZZ/FKNSNTNZOdcSbFHxCQpRM1AaRObJ+z0WVknAEAAABIPwTO0pjpXxZvOIBjPc4kqSTc/L95f/RzLeHbWTgYAEBq9AickXEGAAAAIA0ROEtj/Q0HcKzHmdR/xlkpQx0AJEds4GxUCYEzAAAAAOmHwFkaM/3LWjuD6gpPnjMiGWeuBc7CtynVBJAkUypL5PXYt6sCBM4AAAAApB9XpmoiMaUF0eVpbu/WyJJoD6CmcBaaMxlncYYDUKoJIMlKCvz65wvnqKWjm1JNAAAAAGmJwFka8/u8Ks73qbUzqKb2rp6Bs0iPMyemajIcAIA7Pr94Yqp3AQAAAAD6RKlmmuurz5mzPc7iZJzR4wwAAAAAAOQYAmdpriycUWYCZZIUDFk63GEH0pzpcRYOnHW1SB3N9u0WEzijVBMAAAAAAOQGAmdpzgTGmmIyzg63R4NoJiMtqfJLpbxi+3bLPikUkloO2P+nVBMAAAAAAOQIAmdpLpJxFhMsa2qzg2hFeT7l+x1YQo+nZ7lm2yHJCkrySCWjk789AAAAAACANETgLM3F63HW6GR/MyN2QIAZElBcIfkc3CYAAAAAAEAaYapmmjMZZ7HlmSb7LFDk4PKVhHuZNe+TCgLhz1GmCQAAAAAAcgeBszQX6XHWlqqMs31SYXn4cwwGAAAAAAAAuYPAWZqLm3EWDpw5MhjAiC3VjATOqp3bHgAAAAAAQJohcJbmygrNVM1o4MydjLOY4QAmcEapJgAAAAAAyCEEztJcIJJxFi3VjPY4cynjrGhE+HOUagIAAAAAgNxB4CzNBfrJOHMncLZPKhrZ83MAAAAAAAA5gMBZmjOTM3tknIUHBZhsNEeY7LKWfdGMM0o1AQAAAABADvGmegfQv0iPszaXM85MkCzYKR38yL5NqSYAAAAAAMghBM7SnCnVPNzeLcuyJEXLNh0dDpBXGB0K0N1mfyTjDAAAAAAA5BACZ2muLFyO2R2y1N4VkhSTcVboYOBM6tXTzCOVjHZ2ewAAAAAAAGmEwFmaK873yef1SIpmmpkeZ45mnEk9A2fFFZLP4e0BAAAAAACkEQJnac7j8USyzg63d8myrEi/MzM4wDElMT3NKNMEAAAAAAA5hsBZBjAlmY1t3eroDqkzaJdsuppxVkrgDAAAAAAA5BYCZxkgNuPM9DfzeqSSfIczzmKDZQTOAAAAAABAjiFwlgFM4KypvTumTDNP3nDvM8fEZpxRqgkAAAAAAHIMgbMMYEo1YzPOHJ+oKfUq1azs+34AAAAAAABZiMBZBigLB8ma2rojkzUd728m9QyWxQbRAAAAAAAAcgCBswxgpmf2yDhzeqKmRKkmAAAAAADIaQTOMkBZpFSzW01t3ZJcyjgrHi0p3EeNUk0AAAAAAJBjCJxlgEBkOIDLPc58fmnKqVKgVhr1Kee3BwAAAAAAkEZcqPfDcAV6ZJy52ONMkr74WynULflc2h4AAAAAAECaIOMsA5h+Zk1tsT3OXApkeTwEzQAAAAAAQE4icJYBevQ4a3c5cAYAAAAAAJCjCJxlAFOq2bPHGVW2AAAAAAAATiJwlgHKwkEy16dqAgAAAAAA5DACZxnABM6aO7r1SWunJEo1AQAAAAAAnEbgLAOYHmeStLepXRIZZwAAAAAAAE4jcJYB8v1eFebZSxWy7M8FCgmcAQAAAAAAOInAWYboHSgLFDEcAAAAAAAAwEkEzjJEWcwUzcI8rwr8vhTuDQAAAAAAQPYjcJYhYocBUKYJAAAAAADgPAJnGSJ2QACDAQAAAAAAAJxH4CxDBGJKNQMEzgAAAAAAABxH4CxDkHEGAAAAAADgLgJnGaJHxlkhEzUBAAAAAACcRuAsQ8SWZ5JxBgAAAAAA4DwCZxmijB5nAAAAAAAAriJwliEC9DgDAAAAAABwFYGzDNEj46yQwBkAAAAAAIDTCJxliNjyTEo1AQAAAAAAnEfgLEP07HHGVE0AAAAAAACnETjLEPQ4AwAAAAAAcBeBswxBjzMAAAAAAAB3UfOXIUry/RpTXqjWzqAqywpSvTsAAAAAAABZj8BZhvB6Pfr9P56oYMhSYZ4v1bsDAAAAAACQ9Rwr1bzvvvt0/PHHq7i4WCNGjHBqMzllVGmBqgKFqd4NAAAAAACAnOBY4Kyzs1OXXXaZbrzxRqc2AQAAAAAAADjGsVLNe++9V5K0fPlypzYBAAAAAAAAOCatepx1dHSoo6Mj8v+mpqYU7g0AAAAAAABymWOlmom4//77VV5eHvk3fvz4VO8SAAAAAAAActSQAmd33HGHPB5Pv/82b96c8M7ceeedamxsjPzbtWtXws8FAAAAAAAADMeQSjW//vWv65prrun3PlOmTEl4ZwoKClRQUJDw4wEAAAAAAIBkGVLgrLKyUpWVlU7tCwAAAAAAAJA2HBsOsHPnTh06dEg7d+5UMBjU2rVrJUnTpk1TaWmpU5sFAAAAAAAAksKxwNm3v/1t/fSnP438f8GCBZKkl19+WaeeeqpTmwUAAAAAAACSwmNZlpXqnehLU1OTysvL1djYqEAgkOrdAQAAAAAAQAq5HSsa0lRNAAAAAAAAIFcQOAMAAAAAAADiIHAGAAAAAAAAxEHgDAAAAAAAAIjDsamayWDmFjQ1NaV4TwAAAAAAAJBqJkbk1qzLtA6cHTx4UJI0fvz4FO8JAAAAAAAA0sXBgwdVXl7u+HbSOnBWUVEhSdq5c6cr3wzj2GOP1VtvveXa9nJlm01NTRo/frx27drlysjYWLnw/U3FNlO1prnwvU3FNlnP7Nom65ld2+RvaPZtk9dodm2T9cyubbKe2bVN/oZm3zYbGxs1YcKESMzIaWkdOPN67RZs5eXlrv6A+3w+119QubJNSQoEAjlxrLmyTcn9Nc2V7y3ryTaTgfXMnm1K/A3Ntm1KvEazaZsS65lN25RYz2zapsTf0GzbphSNGTm+HVe2kmFuvvlmtpllcuX7mytrmivfW9aTbWaiXPne5sp6Srnz/c2VNc2V7y3ryTYzUa58b3NlPaXc+f5m+5p6LLe6qSWgqalJ5eXlamxsTEn0EsnFemYf1jS7sJ7ZhfXMLqxn9mFNswvrmV1Yz+zCemYft9c0rTPOCgoKdPfdd6ugoCDVu4IkYD2zD2uaXVjP7MJ6ZhfWM/uwptmF9cwurGd2YT2zj9trmtYZZwAAAAAAAECqpHXGGQAAAAAAAJAqBM4AAAAAAACAOAicAQAAAAAAAHEQOAMAAAAAAADicDxwdv/99+vYY49VWVmZqqqqdOGFF+r999/vcZ/29nbdfPPNGjVqlEpLS3XJJZdo7969Pe7z1a9+VYsWLVJBQYHmz5/f7zY//PBDlZWVacSIEUk+Gri1ntu3b5fH4zni3xtvvOHk4eUcN1+flmXpgQce0PTp01VQUKBx48bpvvvuc+rQcpJb63nPPffEfX2WlJQ4eXg5yc3X6B//+Ed9+tOfVllZmSorK3XJJZdo+/btDh1ZbnJzPZ966inNnz9fxcXFmjhxor7//e87dVg5Kxnr+e677+qKK67Q+PHjVVRUpFmzZulf//Vfj9jWK6+8ooULF6qgoEDTpk3T8uXLnT68nOPWetbV1enKK6/U9OnT5fV6deutt7pxeDnJrTV95plndOaZZ6qyslKBQEBLlizRH//4R1eOMZe4tZ6vv/66TjjhBI0aNUpFRUWaOXOmfvjDH7pyjLnEzb+hxl//+lf5/f4B40nxOB44e/XVV3XzzTfrjTfe0EsvvaSuri6dddZZamlpidzntttu0/PPP6+nn35ar776qvbs2aOLL774iOf6h3/4B11++eX9bq+rq0tXXHGFTjrppKQfC9xfzz//+c+qq6uL/Fu0aFHSjymXubmet9xyix599FE98MAD2rx5s5577jkdd9xxjhxXrnJrPW+//fYer8u6ujrNnj1bl112mWPHlqvcWtNt27bpggsu0Gmnnaa1a9fqj3/8ow4cOBD3eZA4t9bzhRde0Oc//3ndcMMNWr9+vX7yk5/ohz/8oX784x87dmy5KBnruXr1alVVVennP/+5NmzYoG9961u68847e6zVtm3bdO6552rp0qVau3atbr31Vl133XW8MU8yt9azo6NDlZWVuuuuuzRv3jxXjzHXuLWmr732ms4880z9z//8j1avXq2lS5fqM5/5jNasWePq8WY7t9azpKREy5Yt02uvvaZNmzbprrvu0l133aX/+I//cPV4s51b62k0NDToqquu0umnn57YDlsu27dvnyXJevXVVy3LsqyGhgYrLy/PevrppyP32bRpkyXJWrVq1RGPv/vuu6158+b1+fzf+MY3rC984QvW448/bpWXlyd799GLU+u5bds2S5K1Zs0ap3YdcTi1nhs3brT8fr+1efNmx/YdR3L6962xdu1aS5L12muvJW3fEZ9Ta/r0009bfr/fCgaDkc8999xzlsfjsTo7O5N/ILAsy7n1vOKKK6xLL720x+ceeughq7a21gqFQsk9CEQMdz2Nm266yVq6dGnk/9/4xjeso446qsd9Lr/8cuvss89O8hEgllPrGeuUU06xbrnllqTuN/rmxpoas2fPtu69997k7DjicnM9L7roIusLX/hCcnYccTm9npdffrl11113Dfr9TW+u9zhrbGyUJFVUVEiyo4RdXV0644wzIveZOXOmJkyYoFWrVg3puVeuXKmnn35aDz/8cPJ2GP1ycj0l6fzzz1dVVZVOPPFEPffcc8nZafTJqfV8/vnnNWXKFP3+97/X5MmTNWnSJF133XU6dOhQcg8APTj9+jQeffRRTZ8+nUxfFzi1posWLZLX69Xjjz+uYDCoxsZG/fd//7fOOOMM5eXlJfcgEOHUenZ0dKiwsLDH54qKivTxxx9rx44dSdhzxJOs9WxsbIw8hyStWrWqx3NI0tlnnz2s39sYmFPridRxa01DoZAOHz7MujvMrfVcs2aN/va3v+mUU05J0p4jHifX8/HHH9fWrVt19913J7x/rgbOQqGQbr31Vp1wwgmaM2eOJKm+vl75+flH9COrrq5WfX39oJ/74MGDuuaaa7R8+XIFAoFk7jb64OR6lpaW6sEHH9TTTz+tP/zhDzrxxBN14YUXEjxzkJPruXXrVu3YsUNPP/20fvazn2n58uVavXq1Lr300mQeAmI4uZ6x2tvb9cQTT+hLX/rScHcZA3ByTSdPnqw//elP+uY3v6mCggKNGDFCH3/8sZ566qlkHgJiOLmeZ599tp555hmtWLFCoVBIW7Zs0YMPPijJ7q+E5EvWev7tb3/Tr371K335y1+OfK6+vl7V1dVHPEdTU5Pa2tqSeyCQ5Ox6IjXcXNMHHnhAzc3N+uxnP5u0/UdPbqxnbW2tCgoKdMwxx+jmm2/Wddddl/TjgM3J9fzggw90xx136Oc//7n8fn/C+5j4IxNw8803a/369Xr99deT/tzXX3+9rrzySp188slJf27E5+R6jh49Wl/72tci/z/22GO1Z88eff/739f555+f9O3B2fUMhULq6OjQz372M02fPl2S9F//9V9atGiR3n//fc2YMSPp28x1Tq5nrN/+9rc6fPiwrr76ake3A2fXtL6+Xtdff72uvvpqXXHFFTp8+LC+/e1v69JLL9VLL70kj8eT9G3mOqfPiT766COdd9556urqUiAQ0C233KJ77rlHXi8D1Z2QjPVcv369LrjgAt19990666yzkrh3GCrWM/u4taa/+MUvdO+99+rZZ59VVVVVwttC/9xYz7/85S9qbm7WG2+8oTvuuEPTpk3TFVdcMZzdRh+cWs9gMKgrr7xS9957b+Q9aKJcO3tatmyZfv/73+vll19WbW1t5PM1NTXq7OxUQ0NDj/vv3btXNTU1g37+lStX6oEHHpDf75ff79eXvvQlNTY2yu/367HHHkvWYSDM6fWMZ/Hixfrwww+H9RyIz+n1HDNmjPx+f49fWLNmzZIk7dy5c3g7jyO4+fp89NFHdd555x2RDYHkcnpNH374YZWXl+t73/ueFixYoJNPPlk///nPtWLFCr355pvJOgyEOb2eHo9H3/3ud9Xc3KwdO3aovr4+MoxlypQpSTkGRCVjPTdu3KjTTz9dX/7yl3XXXXf1+FpNTc0Rk1X37t2rQCCgoqKi5B4MHF9PuM+tNf3lL3+p6667Tk899dQR5dVIHrfWc/LkyZo7d66uv/563XbbbbrnnnuSfSiQs+t5+PBhvf3221q2bFkkTvSd73xH7777rvx+v1auXDno/XQ8cGZZlpYtW6bf/va3WrlypSZPntzj64sWLVJeXp5WrFgR+dz777+vnTt3asmSJYPezqpVq7R27drIv+985zsqKyvT2rVrddFFFyXteHKdW+sZz9q1azVmzJhhPQd6cms9TzjhBHV3d+ujjz6KfG7Lli2SpIkTJw7zKGC4/frctm2bXn75Zco0HeTWmra2th6RieTz+STZGaNIDrdfoz6fT+PGjVN+fr6efPJJLVmyRJWVlcM+DtiStZ4bNmzQ0qVLdfXVV+u+++47YjtLlizp8RyS9NJLLw37vAo9ubWecI+ba/rkk0/q2muv1ZNPPqlzzz3XmQPKcal8jZrqGSSPG+sZCAS0bt26HnGiG264QTNmzNDatWu1ePHiIe2wo2688UarvLzceuWVV6y6urrIv9bW1sh9brjhBmvChAnWypUrrbfffttasmSJtWTJkh7P88EHH1hr1qyxvvKVr1jTp0+31qxZY61Zs8bq6OiIu12majrDrfVcvny59Ytf/MLatGmTtWnTJuu+++6zvF6v9dhjj7l6vNnOrfUMBoPWwoULrZNPPtl65513rLfffttavHixdeaZZ7p6vNnO7d+3d911lzV27Firu7vblePLRW6t6YoVKyyPx2Pde++91pYtW6zVq1dbZ599tjVx4sQe28LwuLWe+/fvt/793//d2rRpk7VmzRrrq1/9qlVYWGi9+eabrh5vtkvGeq5bt86qrKy0vvCFL/R4jn379kXus3XrVqu4uNj6p3/6J2vTpk3Www8/bPl8PuvFF1909XiznVvraVlW5DW7aNEi68orr7TWrFljbdiwwbVjzRVurekTTzxh+f1+6+GHH+5xn4aGBlePN9u5tZ4//vGPreeee87asmWLtWXLFuvRRx+1ysrKrG9961uuHm+2c/N3bqxEp2o6HjiTFPff448/HrlPW1ubddNNN1kjR460iouLrYsuusiqq6vr8TynnHJK3OfZtm1b3O0SOHOGW+u5fPlya9asWVZxcbEVCASs4447rscoWiSHm6/P3bt3WxdffLFVWlpqVVdXW9dcc4118OBBl440N7i5nsFg0KqtrbW++c1vunR0ucnNNX3yySetBQsWWCUlJVZlZaV1/vnnW5s2bXLpSHODW+u5f/9+69Of/rRVUlJiFRcXW6effrr1xhtvuHikuSEZ63n33XfHfY6JEyf22NbLL79szZ8/38rPz7emTJnSYxtIDjfXczD3wfC5taZ9/U6++uqr3TvYHODWej700EPWUUcdFXkfumDBAusnP/mJFQwGXTza7Ofm79xYiQbOPOGdBgAAAAAAABCD0UoAAAAAAABAHATOAAAAAAAAgDgInAEAAAAAAABxEDgDAAAAAAAA4iBwBgAAAAAAAMRB4AwAAAAAAACIg8AZAAAAAAAAEAeBMwAAAAAAACAOAmcAAAAAAABAHATOAAAAXHLNNdfI4/HI4/EoLy9P1dXVOvPMM/XYY48pFAoN+nmWL1+uESNGOLejAAAAkETgDAAAwFXnnHOO6urqtH37dr3wwgtaunSpbrnlFp133nnq7u5O9e4BAAAgBoEzAAAAFxUUFKimpkbjxo3TwoUL9c1vflPPPvusXnjhBS1fvlyS9IMf/EBz585VSUmJxo8fr5tuuknNzc2SpFdeeUXXXnutGhsbI9lr99xzjySpo6NDt99+u8aNG6eSkhItXrxYr7zySmoOFAAAIAsQOAMAAEix0047TfPmzdMzzzwjSfJ6vXrooYe0YcMG/fSnP9XKlSv1jW98Q5J0/PHH60c/+pECgYDq6upUV1en22+/XZK0bNkyrVq1Sr/85S/13nvv6bLLLtM555yjDz74IGXHBgAAkMk8lmVZqd4JAACAXHDNNdeooaFBv/vd74742uc+9zm999572rhx4xFf+/Wvf60bbrhBBw4ckGT3OLv11lvV0NAQuc/OnTs1ZcoU7dy5U2PHjo18/owzztBxxx2nf/mXf0n68QAAAGQ7f6p3AAAAAJJlWfJ4PJKkP//5z7r//vu1efNmNTU1qbu7W+3t7WptbVVxcXHcx69bt07BYFDTp0/v8fmOjg6NGjXK8f0HAADIRgTOAAAA0sCmTZs0efJkbd++Xeedd55uvPFG3XfffaqoqNDrr7+uL33pS+rs7OwzcNbc3Cyfz6fVq1fL5/P1+FppaakbhwAAAJB1CJwBAACk2MqVK7Vu3TrddtttWr16tUKhkB588EF5vXY72qeeeqrH/fPz8xUMBnt8bsGCBQoGg9q3b59OOukk1/YdAAAgmxE4AwAAcFFHR4fq6+sVDAa1d+9evfjii7r//vt13nnn6aqrrtL69evV1dWlf/u3f9NnPvMZ/fWvf9UjjzzS4zkmTZqk5uZmrVixQvPmzVNxcbGmT5+uz3/+87rqqqv04IMPasGCBdq/f79WrFiho48+Wueee26KjhgAACBzMVUTAADARS+++KLGjBmjSZMm6ZxzztHLL7+shx56SM8++6x8Pp/mzZunH/zgB/rud7+rOXPm6IknntD999/f4zmOP/543XDDDbr88stVWVmp733ve5Kkxx9/XFdddZW+/vWva8aMGbrwwgv11ltvacKECak4VAAAgIzHVE0AAAAAAAAgDjLOAAAAAAAAgDgInAEAAAAAAABxEDgDAAAAAAAA4iBwBgAAAAAAAMRB4AwAAAAAAACIg8AZAAAAAAAAEAeBMwAAAAAAACAOAmcAAAAAAABAHATOAAAAAAAAgDgInAEAAAAAAABxEDgDAAAAAAAA4vj/zD+wZ0HalasAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "beta_plot = companies.performance.get_beta(period=\"monthly\").plot(\n", " figsize=(15, 5), title=\"Beta of Tesla and Apple compared to the S&P 500\"\n", ")\n", "beta_plot.axhline(y=1.0, color=\"red\", linestyle=\"--\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "f93251fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNsAAAHDCAYAAAAdqByAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5ykVZ3v/z5P5Zy6OsfJA8MMMMRhAjkrgiDoegVWEXUNLL/1rnrXuHsN6+5edFFW7yqoK+oFV1cxraBkRPIAw+TpCZ27q0PlJ53fH1Vd0z3TM9Mz03E4b15DdT31hFNPPfXUOZ/z/X6+QkopUSgUCoVCoVAoFAqFQqFQKBTHjTbbDVAoFAqFQqFQKBQKhUKhUChOFJTYplAoFAqFQqFQKBQKhUKhUEwRSmxTKBQKhUKhUCgUCoVCoVAopggltikUCoVCoVAoFAqFQqFQKBRThBLbFAqFQqFQKBQKhUKhUCgUiilCiW0KhUKhUCgUCoVCoVAoFArFFKHENoVCoVAoFAqFQqFQKBQKhWKKUGKbQqFQKBQKhUKhUCgUCoVCMUUosU2hUCgUCoVCoVAoFAqFQqGYIpTYplAoFArFmwwhBJ/73OdmuxmKAzj//PM5//zzZ7sZR8UPfvADli1bhsvlIhqNznZzppz29naEEPzTP/3TbDdFoVAoFArFPEKJbQqFQqFQzAD33XcfQgiEEDz55JMHvS6lpKmpCSEEV1999Sy0cP4yKoiM/nO5XFRVVbFmzRo+9alPsWfPntlu4gnJ5s2bueWWW1i4cCH/9//+X7797W/PdpPmLHv27OEDH/gAra2teDweqqurufbaa3n66adnu2l885vf5L777pvtZigUCoVCcULhnO0GKBQKhULxZsLr9XL//fezdu3accsfe+wx9u3bh8fjmfY25PN5nM4Trwvwzne+kyuvvBLbthkcHOS5557jrrvu4mtf+xrf+c53uOmmm2a7iScUjz76KLZt87WvfY1FixbNdnPmLE899RRXXnklAO973/s46aST6O7u5r777mPt2rV84xvf4IMf/OCste+b3/wmVVVV3HLLLbPWBoVCoVAoTjROvJ62QqFQKBRzmCuvvJIHHniAr3/96+MEr/vvv5/Vq1fT398/7W3wer3TfozZ4PTTT+fd7373uGW7d+/m0ksv5eabb2b58uWsWrXqkNtns1kCgcB0N/OEobe3F2BK00dzuRx+v3/K9jfbDA4Ocv311+Pz+XjqqadYuHBh5bU777yTyy67jI985COcdtppnHPOOTPatuk816ZpYts2brd7WvavUCgUCsVcR6WRKhQKhUIxg7zzne9kYGCA3//+95Vluq7z4IMP8q53vWvCbf7pn/6JNWvWkEgk8Pl8rF69mgcffHDcOvfeey9CCL773e+OW/7FL34RIQS//vWvK8sO9Gz73Oc+hxCCrVu38u53v5tIJEIymeTTn/40Ukr27t3LNddcQzgcpra2ln/+538ed4zRFNn29vZxyx999FGEEDz66KOVZeeffz4rVqxg48aNbNiwAb/fz6JFiyrv57HHHuPss8/G5/OxdOlSHn744SOe08PR0tLCfffdh67r/OM//uNBbX7sscf40Ic+RHV1NY2NjUBJoPvQhz7E0qVL8fl8JBIJbrjhhnHvb2hoCIfDwde//vXKsv7+fjRNI5FIIKWsLP/gBz9IbW3tuHZ9+9vfZuHChfh8Ps466yyeeOKJCdvf29vLe9/7XmpqavB6vaxatYrvfe9749Y5/fTTue6668YtO+WUUxBCsHHjxsqyn/zkJwgheOONN4D9n/v27du55ZZbiEajRCIRbr31VnK53GHPa2trK5/97GcBSCaTB11T3/zmNzn55JPxeDzU19fzV3/1VwwNDY3bx+i18MILL7B+/Xr8fj+f+tSnDnvczZs3c/311xOPx/F6vZxxxhn84he/GLdOKpXib/7mbzjllFMIBoOEw2GuuOIKXnnllYP2VygU+NznPseSJUvwer3U1dVx3XXXsWPHjoPWHf3MPB4PZ555Js8999xh2wrwrW99i+7ubr761a+OE9oAfD5f5bP8whe+UFk++rkcyETfs//6r//iqquuor6+Ho/Hw8KFC/n7v/97LMsat+2hznVrayuvv/46jz32WCUNe6xv4NDQEHfccQdNTU14PB4WLVrEV77yFWzbrqwz1tfurrvuqpyjTZs2HfH8KBQKhUJxoqIi2xQKhUKhmEFaW1s599xz+dGPfsQVV1wBwG9+8xuGh4e56aabxok3o3zta1/jrW99K3/xF3+Bruv8+Mc/5oYbbuChhx7iqquuAuDWW2/lP//zP7nzzju55JJLaGpq4tVXX+Xzn/88733veytpbIfjxhtvZPny5Xz5y1/mV7/6Ff/wD/9APB7nW9/6FhdeeCFf+cpX+OEPf8jf/M3fcOaZZ7J+/fpjOgeDg4NcffXV3HTTTdxwww3cc8893HTTTfzwhz/kjjvu4AMf+ADvete7+OpXv8r111/P3r17CYVCx3QsgHPPPZeFCxeOEzhH+dCHPkQymeQzn/kM2WwWgOeee46nn36am266icbGRtrb27nnnns4//zz2bRpE36/n2g0yooVK3j88cf56Ec/CsCTTz6JEIJUKsWmTZs4+eSTAXjiiSdYt25d5Zjf+c53uP3221mzZg133HEHO3fu5K1vfSvxeJympqbKevl8nvPPP5/t27fz4Q9/mLa2Nh544AFuueUWhoaG+NjHPgbAunXr+NGPflTZLpVK8frrr6NpGk888QQrV66stCOZTLJ8+fJx5+Ad73gHbW1tfOlLX+LFF1/k3//936muruYrX/nKIc/pXXfdxfe//31+9rOfcc899xAMBivH+dznPsfnP/95Lr74Yj74wQ+yZcsW7rnnHp577jmeeuopXC5XZT8DAwNcccUV3HTTTbz73e+mpqbmkMd8/fXXOe+882hoaOATn/gEgUCA//f//h9ve9vb+OlPf8q1114LwM6dO/n5z3/ODTfcQFtbGz09PXzrW99iw4YNbNq0ifr6egAsy+Lqq6/mkUce4aabbuJjH/sY6XSa3//+97z22mvjxLH777+fdDrN7bffjhCCf/zHf+S6665j586d497Pgfzyl7/E6/Xyjne8Y8LX29raWLt2LQ8//DCFQuGoo07vu+8+gsEgd955J8FgkD/84Q985jOfYWRkhK9+9avj1p3oXJ9//vl85CMfIRgM8r/+1/8CqHwGuVyODRs20NHRwe23305zczNPP/00n/zkJ+nq6uKuu+4at/97772XQqHA+9//fjweD/F4/Kjei0KhUCgUJxRSoVAoFArFtHPvvfdKQD733HPy7rvvlqFQSOZyOSmllDfccIO84IILpJRStrS0yKuuumrctqPrjaLrulyxYoW88MILxy3v6uqS8XhcXnLJJbJYLMrTTjtNNjc3y+Hh4XHrAfKzn/1s5flnP/tZCcj3v//9lWWmacrGxkYphJBf/vKXK8sHBwelz+eTN99880HvbdeuXeOO88c//lEC8o9//GNl2YYNGyQg77///sqyzZs3S0Bqmib/9Kc/VZb/7ne/k4C899575eHYtWuXBORXv/rVQ65zzTXXSKByLkbbvHbtWmma5rh1DzzfUkr5zDPPSEB+//vfryz7q7/6K1lTU1N5fuedd8r169fL6upqec8990gppRwYGJBCCPm1r31NSln67Kqrq+Wpp54qi8ViZdtvf/vbEpAbNmyoLLvrrrskIP/jP/6jskzXdXnuuefKYDAoR0ZGpJRSPvDAAxKQmzZtklJK+Ytf/EJ6PB751re+Vd54442VbVeuXCmvvfbayvPRz/0v//Ivx73Xa6+9ViYSiUOeywO37+vrqyzr7e2VbrdbXnrppdKyrMryu+++WwLyu9/9bmXZ6LXwb//2b0c8lpRSXnTRRfKUU06RhUKhssy2bblmzRq5ePHiyrJCoTDu2FKWrhGPxyO/8IUvVJZ997vflYD8l3/5l4OOZdt2ZTtAJhIJmUqlKq//13/9lwTkL3/5y8O2ORqNylWrVh12nY9+9KMSkBs3bpRS7j+vBzLR92yia/X222+Xfr9/3Hk63Lk++eSTx113o/z93/+9DAQCcuvWreOWf+ITn5AOh0Pu2bNHSrn/HIXDYdnb23vY96pQKBQKxZsFlUaqUCgUCsUM8453vIN8Ps9DDz1EOp3moYceOmQKKZTSzUYZHBxkeHiYdevW8eKLL45br7a2lm984xv8/ve/Z926dbz88st897vfJRwOT6pd73vf+yp/OxwOzjjjDKSUvPe9760sj0ajLF26lJ07d0727R5EMBgcV6xg6dKlRKNRli9fztlnn11ZPvr38Rxr7DEB0un0uOW33XYbDodj3LKx59swDAYGBli0aBHRaHTcOV+3bh09PT1s2bIFKEWOrV+/nnXr1lXSQp988kmklJXItueff57e3l4+8IEPjPOzuuWWW4hEIuPa8etf/5ra2lre+c53Vpa5XC4++tGPkslkeOyxxyrtAHj88ccr7TjzzDO55JJLKu0YGhritddeGxdhN8oHPvCBcc/XrVvHwMAAIyMjE5zJw/Pwww+j6zp33HEHmra/m3nbbbcRDof51a9+NW59j8fDrbfeesT9plIp/vCHP/COd7yDdDpNf38//f39DAwMcNlll7Ft2zY6Ojoq+xw9tmVZDAwMEAwGWbp06bjP76c//SlVVVV85CMfOeh4B6Zx3njjjcRiscrz0fN4pGsznU4fMSpz9PUDr83JMPZaHT0v69atI5fLsXnz5nHrTvZcj/LAAw+wbt06YrFY5Xz39/dz8cUXY1lW5Xob5e1vfzvJZPKo34NCoVAoFCciSmxTKBQKhWKGSSaTXHzxxdx///3853/+J5Zlcf311x9y/YceeohzzjkHr9dLPB4nmUxyzz33MDw8fNC6N910E1dddRV//vOfue2227jooosm3a7m5uZxzyORCF6vl6qqqoOWDw4OTnq/B9LY2HiQmBGJRMalUI4uA47rWKNkMhmAg4SPtra2g9bN5/N85jOfqfhUVVVVkUwmGRoaGnfORwWXJ554gmw2y0svvcS6detYv359ReR64oknCIfDlcIMu3fvBmDx4sXjjulyuViwYMG4Zbt372bx4sXjRCugkgY6uq+amhoWL1487pij7ejs7GTnzp089dRT2LY9odh24Oc+Kiody3kfbdPSpUvHLXe73SxYsKDy+igNDQ2TMtHfvn07Uko+/elPk0wmx/0b9Y4bLdhg2zb/5//8HxYvXjzu89u4ceO4z2/Hjh0sXbp0UpV5j/UchUKhI4poo69XV1cfsR0H8vrrr3PttdcSiUQIh8Mkk8lKkZAD7w+TPdejbNu2jd/+9rcHne+LL74Y2H++R5nou6RQKBQKxZsV5dmmUCgUCsUs8K53vYvbbruN7u5urrjiikNWdHziiSd461vfyvr16/nmN79JXV0dLpeLe++9l/vvv/+g9QcGBnj++ecB2LRpE7ZtHyTWHIoDI7wOtQwYVwBgIjN34CCT9iPtczLHOlZee+01qqurD4ryGxsZNMpHPvIR7r33Xu644w7OPfdcIpEIQghuuummccbw9fX1tLW18fjjj9Pa2oqUknPPPZdkMsnHPvYxdu/ezRNPPMGaNWsm/RkcK2vXruWRRx4hn8/zwgsv8JnPfIYVK1YQjUZ54okneOONNwgGg5x22mkHbTud5/1ITHT+J2L0vP/N3/wNl1122YTrLFq0CCgVBfn0pz/NX/7lX/L3f//3xONxNE3jjjvuGPf5HQ3Heo5OOukkXnzxRYrFIh6PZ8J1Nm7ciNvtpqGhAZj892loaIgNGzYQDof5whe+wMKFC/F6vbz44ov87d/+7UHvdbLnehTbtrnkkkv4n//zf074+pIlS45r/wqFQqFQnMgosU2hUCgUilng2muv5fbbb+dPf/oTP/nJTw653k9/+lO8Xi+/+93vxg3W77333gnX/6u/+ivS6TRf+tKX+OQnP8ldd93FnXfeOeXtH8tolM+B1SYPjGKaLZ555hl27NhRifg5Eg8++CA333zzuKqrhULhoPcHpei2xx9/nLa2Nk499VRCoRCrVq0iEonw29/+lhdffJHPf/7zlfVbWlqAUtTQhRdeWFluGAa7du2qRMCNrrtx48aDBNPR9MDRfY2249577+XHP/4xlmVVBL61a9dWxLY1a9YcUjSaKkbbtGXLlnGRerqus2vXrkpU1NEyui+Xy3XEfTz44INccMEFfOc73xm3fGhoaFyU5sKFC3n22WcxDOOwRQ6Oh7e85S08/fTTPPDAAxNef+3t7TzxxBNcc801FbFq7PdprAh/4Pfp0UcfZWBggP/8z/8cV6xk165dR9XGQ4l7CxcuJJPJHPNnplAoFArFmxmVRqpQKBQKxSwQDAa55557+NznPsdb3vKWQ67ncDgQQoyLamlvb+fnP//5Qes++OCD/OQnP+HLX/4yn/jEJ7jpppv4u7/7O7Zu3Todb6HCaNXGsR5OlmXx7W9/e1qPOxl2797NLbfcgtvt5uMf//iktnE4HAdFLP3rv/7rhJF669ato729nZ/85CeVFE1N01izZg3/8i//gmEY41I3zzjjDJLJJP/2b/+GruuV5ffdd99BYt6VV15Jd3f3ODHWNE3+9V//lWAwyIYNG8a1A+ArX/kKK1eurKTgrlu3jkceeYTnn39+whTSqebiiy/G7Xbz9a9/fdw5/M53vsPw8HCleu7RUl1dzfnnn8+3vvUturq6Dnq9r6+v8vdEn98DDzxQ8XQb5e1vfzv9/f3cfffdB+1vqqL6br/9dmpra/n4xz9+kL9boVDg1ltvRQgxLnpsou9TNpvle9/73rjtR4XTsW3VdZ1vfvObR9XGQCAwoZD8jne8g2eeeYbf/e53B702NDSEaZpHdRyFQqFQKN5MqMg2hUKhUChmiZtvvvmI61x11VX8y7/8C5dffjnvete76O3t5Rvf+AaLFi1i48aNlfV6e3v54Ac/yAUXXMCHP/xhAO6++27++Mc/csstt/Dkk09OWyrjySefzDnnnMMnP/lJUqkU8XicH//4xzM+GH/xxRf5j//4D2zbZmhoiOeee46f/vSnCCH4wQ9+wMqVKye1n6uvvpof/OAHRCIRTjrpJJ555hkefvhhEonEQeuOClhbtmzhi1/8YmX5+vXr+c1vfoPH4+HMM8+sLHe5XPzDP/wDt99+OxdeeCE33ngju3bt4t577z3Is+39738/3/rWt7jlllt44YUXaG1t5cEHH+Spp57irrvuGuc/t2jRImpra9myZcs4w//169fzt3/7t+PaOp0kk0k++clP8vnPf57LL7+ct771rWzZsoVvfvObnHnmmZOOLpyIb3zjG6xdu5ZTTjmF2267jQULFtDT08MzzzzDvn37eOWVV4DS5/eFL3yBW2+9lTVr1vDqq6/ywx/+8KDz+573vIfvf//73Hnnnfz5z39m3bp1ZLNZHn74YT70oQ9xzTXXHNe5gFKU2oMPPsiVV17J6aefzvve9z5OOukkuru7ue+++9i5cyd33333uMIgl156Kc3Nzbz3ve/l4x//OA6Hg+9+97skk0n27NlTWW/NmjXEYjFuvvlmPvrRj1au86MVClevXs0999zDP/zDP7Bo0SKqq6u58MIL+fjHP84vfvELrr76am655RZWr15NNpvl1Vdf5cEHH6S9vf0gP0eFQqFQKBQllNimUCgUCsUc5sILL+Q73/kOX/7yl7njjjtoa2vjK1/5Cu3t7ePEtg9+8IMUi0XuvffeSlpYIpHg29/+Ntdccw3/9E//dEjvpanghz/8Ibfffjtf/vKXiUajvPe97+WCCy7gkksumbZjHsiPfvQjfvSjH+F0OgmHwyxevJg77riDD3zgAwcZ3B+Or33tazgcDn74wx9SKBQ477zzePjhhyf0Clu6dCnV1dX09vaydu3ayvJRYeuss846yKvr/e9/P5Zl8dWvfpWPf/zjnHLKKfziF7/g05/+9Lj1fD4fjz76KJ/4xCf43ve+x8jICEuXLuXee+/llltuOagt69at44EHHhjXjtWrV+P3+zFNc5ygM5187nOfI5lMcvfdd/PXf/3XxONx3v/+9/PFL37xuNI1TzrpJJ5//nk+//nPc9999zEwMEB1dTWnnXYan/nMZyrrfepTnyKbzXL//ffzk5/8hNNPP51f/epXfOITnxi3P4fDwa9//Wv+9//+39x///389Kc/JZFIVAS9qeK8885j48aNfPGLX+SBBx6gs7OzIkQ//PDDBxUxcblc/OxnP+NDH/oQn/70p6mtreWOO+4gFouNqyaaSCR46KGH+P/+v/+Pv/u7vyMWi/Hud7+biy666JC+dhPxmc98ht27d/OP//iPpNNpNmzYwIUXXojf7+exxx6rtPv73/8+4XCYJUuW8PnPf/6g6rkKhUKhUCj2I+RMuN8qFAqFQqFQKBQKAB555BGuvPJK1q5dy29+85ujqhKqUCgUCoVi7qM82xQKhUKhUCgUihnkoosu4nvf+x5//OMfufXWW2ek8qtCoVAoFIqZQ0W2KRQKhUKhUCgUCoVCoVAoFFOEimxTKBQKhUKhUCgUCoVCoVAopogZEdu+8Y1v0Nraitfr5eyzz+bPf/7zYdd/4IEHWLZsGV6vl1NOOYVf//rXM9FMhUKhUCgUCoVCoVAoFAqF4riYdrHtJz/5CXfeeSef/exnefHFF1m1ahWXXXYZvb29E67/9NNP8853vpP3vve9vPTSS7ztbW/jbW97G6+99tp0N1WhUCgUCoVCoVAoFAqFQqE4Lqbds+3ss8/mzDPP5O677wbAtm2ampr4yEc+clAJdoAbb7yRbDbLQw89VFl2zjnncOqpp/Jv//Zv09lUhUKhUCgUCoVCoVAoFAqF4rhwTufOdV3nhRde4JOf/GRlmaZpXHzxxTzzzDMTbvPMM89w5513jlt22WWX8fOf/3zC9YvFIsVisfLctm1SqRSJRAIhxPG/CYVCoVAoFAqFQqFQKBQKxbxFSkk6naa+vh5Nm35HtWkV2/r7+7Esi5qamnHLa2pq2Lx584TbdHd3T7h+d3f3hOt/6Utf4vOf//zUNFihUCgUCoVCoVAoFAqFQnFCsnfvXhobG6f9ONMqts0En/zkJ8dFwg0PD9Pc3Mx1X1pJxOebxZYpFAqFQqFQKBQKhUKhUChmm2y+yP/75MuEQqEZOd60im1VVVU4HA56enrGLe/p6aG2tnbCbWpra49qfY/Hg8fjOWh50OuhJjzxNgqFQqFQKBQKhUKhUCgUijcHA/QDzJjd2LQmqrrdblavXs0jjzxSWWbbNo888gjnnnvuhNuce+6549YH+P3vf3/I9RUKhUKhUCgUCoVCoVAoFIq5wrSnkd55553cfPPNnHHGGZx11lncddddZLNZbr31VgDe85730NDQwJe+9CUAPvaxj7Fhwwb++Z//mauuuoof//jHPP/883z729+e7qYqFAqFQqFQKBQKhUKhUCgUx8W0i2033ngjfX19fOYzn6G7u5tTTz2V3/72t5UiCHv27BlXCWLNmjXcf//9/N3f/R2f+tSnWLx4MT//+c9ZsWLFdDdVoVAoFArFHMLAIo+JhSSKB4GqMq5QKBQKhUKhOHos5IweT0gpZ/aI08zIyAiRSIT3/J8zqY/Uz3ZzFAqFQqFQTAKJxMAmh0kegxwGRWFhYmNgUysDNDAzhrYKhUKhUCgUihMHE5tN2U5+/ZEXGB4eJhwOT/sx5301UoVCoVAoFPMPiUTHKotrJjkMdGFhYGNKGykkDqnhw4kHB91kqSWAY3rtZk84JFJFBCoUCoVCoXjTYmHTQRpd2DN6XCW2KRQKhUKhmHYkkkI5LTSPQR6zErlmlgP7nVIjiJsGGaRZRmiWIarw8d+inZe1HrpklkYV3XZETGzS6IygkxMGVdJHEv9sN0uhUCgUCoViRrGRdJBhWBSZ4SxSJbYpFAqFQqGYemwkhXLU2mjkmjEauYYEJC7pIISbJhmimTDNMkwCH84DotdWyWp2yxF6yVGnotsmxEaSQSeNThoDXZjoWAgEnVhKbFMoFAqFQvGmQiLpKgttlpScX0zw8AweX4ltCoVCoVDMIyQSG4l1wOPYvzVAQxz2n4ApTS+0keOi1vKYlbTQUUNat9SI46VRloS1JkLE8R5RPGskRKMMkdLy9Mgs9Sq6DShdC3lMRtBJU6QgLHRpIQWEpIvlMsGAKNBBmiImHtXtUygUCoVC8SZAIukmy6AooEuLC+wGrsru5e9msA2q16VQKBQKxQwikUgoC2P2hMLZ/ke7IqSZZdHKEjb2mP2MPtrlv0Yj5EfFtEM+SnAgcKBVHscLckcW7PRKWuho5JpdbqcNCLzSQVL6aSZEs4zQRJAIXrSjFPk0BCtlkj1yhB5y1BJAexNHtxXLAttIWWArYmIj8UknS2SMFXaSxcTw4+K37KRXyzIki9Sobt+bmgImfeSI4CGMZ7abo1AoFArFtCCR9JEnJQoUpMU5so7L9BAu25zRdqhel2IcpYgIZaSsUCgUU4GFTQaDDDpFrIpoZgtZjlAbL5qNfV4ylhi9H5eWjBXLHLIkkjnRcOPAjQOvdODBiQSKwkTHxsBCZ78IZiOxhY0U4489nv3HPZxgJ5GYZdFQIPBIJ7UyQBMhWmWEBoKE8UxJBF0zYRpkkEGtQJ/MU0PguPc5n9jvw1YkJwyKlPzuXNJBgwyygiTLZYLIAee7jiA+6WSE4pvunCn2k8dgHxnSFBmkwEqqZ7tJCoVCoVBMCykK9IscOQxOk9VcItsIG9tB6jPaDiW2KYDSLPkABUYoEsBFPSEcSnRTKBSKo8bAJoNOBp3smAqbsiyeaZSEKk0KHAhcOHCi4cGBRzrw4sCHq/QcJ16ceKUDL058Y/55cODEgasckXYQB+hno0KfgUWRUjRUEYtC+ble/lcU5UdK7S5iHVK4c+KgVvpoIUyLDNNAED+uaal+6URjpUyyT6bpIkM1/hO+yuaoD9tI+XoqCgsDC00KEvhYLhOcLJPU4D/kRFlC+ggJNz3kZrj104ONpIiFF8cJ//lPFRl0OsmQFjouNEwpVZVahUKhUJyQDFGgV+TIYnCSneAquRCfpeM1hijMcFuU2PYmp4jFAHlGKJIXZjkKQycjDRYQUf4uCoVixqkycsTNPDu8MSwxP1IFdayywGaQFQZ6WagCSUC6WSijLJQxIrhL4llZMHOXhTZHJV5s+tAQlQi4w8Y3TVSp6RDCnQQ8OKaukUeglSh15ei2fpk/IU3/JZIcJiMUyaCXfNiwkEjC0sNKmWSlTNJE+KBCEhORwIcPFyY2OhbuGfy8poMB8vSKHEHpopmwEoyOwAhFusiSFkXi0kcIN/tEmoI08eGa7eYpFAqF4ihRkyWHJo1ON1ky6Cy0o1wjF+PBid/owWXl6XUlZ7Q9Skl5kzKRyFYt/ayU1ewQQ+wRI7whB1hAVPl6KBSKGUOTNktyvWDlsG2d7YG62W7ShMhydM1oimheGJXILyEFYdy0yijLZJw2IvhPsEHtqHA307jQOIUkHTJNJxmq8J0QHc7R62nUh604zofNxTIZ5xRZzSKieI+y6+bDSUL6aNeGGZIFqud5KmkGgxwGeWFgSUkrEWV/cQiGKJQGHUKnxg5wg1zGc6KLTpEhhxLbFAqFYr4xQpEecoRwUUPghOgDTRVZDDrJkBE6TXaY6+SSUv9bSgJ6P067yI7gBuDRGWvTCSu2pYWlVN8J0Msi2/AYka1K+jlH1rNKJvHg5CxZy+9EO6+LfraKFA0yRK36Miumkd0jC8ibPhZH3sDhsGe7OYpZQiJxmCP8yW2QFw6EHKbHdqJpXrzltElPORJsNu5Ho5UfRwW2gjArEWwOqRHBwyIZZZlM0ExIRQZPEwtllFqCbNEGSMkCCXyz3aRjxsAq+7Dp43zYPNJBkwyxgmqWyRgRvMd1nDoC+KSTYfR5LbaZ2BSEgUNqxPAwIArYUrKAqBLcxiCRpMppNBlKg44b5BJi+AjjwSkFeWbWJFqhUCgUx0cWoxKpPEQBXdo0EVJjdCCPSQdp0kKn2g7wdrmkEjDkNYdxWzlMh5etoXNmtF0n7Egg5TDZxiBNhPGduG9z0hwospnYJKWfc2Qdq2T1uEGhFxdvkYuoJcAT7GOfSJOVBq1EJpWyolAcDUXLw3AximHZDOtB4r6R2W6SYhYwsOglR4Ah3MJCCBdg4TWH2e02QVCpmumWDvxlTzNvORXTg2NaBtujKX0ZdNJlzyy9YkyvEcfHIhlluUxQTwiXukdOO24crCRJp8zQSZo43nnX0cxhMECeLEbFh80hNaqkj+UkWCGrSE6hJ11V2betb577tuUwMLAJ4OR6eykPadvpFFl2yEEWEFNes+yvwNZf9qtZaEe5bsygI4gLD04KSmxTKBSKeUMBk86ymBSXPjQEvSKLKe03fYR3cVRoQycmvdwgl46biA0YA7itHN2hkxj01M9o205YFarOcpESOm/IAeoJUE3gTXkRThTJlpC+ciRb9SHTUTQEZ8t6amWAX2k76RFZNpfTSk+0dCjF7DJSjGJLiUMTZPSAEtveZEgkwxTpI4chi8QsnZU6OKvexdKhF5G5zTwXiLLT7aRP7E99z1CqJiQQONBwSm1c4YDR4gLOY/BCs5Fky9FrmTECm43EJR3USD9LiLNMxqkhgEMJbDPOQhmlBj/btEGGZZHocUZ+zSQGFh2kGUFHCohID0tkNStlkgZC0zKpFceHHydGOdXZNU9923KYGNjlSrch3m4v42faVvaJNNvlIIuIvqm/jxJJDzkGRJ4cBsvtBG+Ti8f12/zShVeUqtMqFAqFYu5T6TcInYj0cKO9HAubX2jb6RZZLGmz4E36+2dgsY80I6JIULp5u71kXOV1zTbwGYMIbHbEN4A1s3rQCSu23Zyp4ZmQl1dED3tFmkFZpIkQQdyz3bQZQcciRYEhihREaSa4Svo4S9ZxmqyZtOdLCxHebZ/EQ9oOdoghNssBmomQmIeRBIrpR5brLUokduUflb/HLy+91imLZD17ceEha87fdDDF0VPEoocsaaGTw2CZbnFDzkGdo4lfJa6i01XPGftSLBwZYGd8PVJoFDHpIks3GfpEySh9gDxFYTFEgcHyvh2IShRcoBzJMSrCuSeIgisVhzEqFUSLY0zpPdJJkwyzlDhLZJwqfG/KyZu5hBcnp5CkW2bZR3peiW195MkKg5B0c6W1gIVEpz3l2I+TuPTh1EYYksV5WVhCIsmiI5G0EQWgCh9vt5fwM20be8QI2+Qgi4m9KQccNpIuMgyJAnlpcaqs5mq5cPy1JW0SVg6vCwbFRJVQFAqFQjGXsLDpKFeT9kkn19mLqSuLSTfYS/i5tp19Is02OcgiYm+qLDQTm31kGBE6XunkWnsRzYTHrTMa1ZZ1xdkXOQNSMzvRdMKKbR4cXC7bOEkm+L3WTodIs5kUNdJPHcET9kI8UGQzy5FsZ8laTpO1R22sDBDGwzvsZfxR7OEF0c0uMUROBmgkpAacJzBWeWBjjhHHJhLLJBILGwtZkibEfsFt/CPlv/Yvs2yNEZFBuiSaEFhWHbYN2on59VSUGfUT6idPThhICSvtBLflslQbOhsTa7AcXvZGzqBp+HlaB58mkdtBf6BUUaiVCK1ERi8qLGxSZSPwHpGlnzx9IscIejkKzoCyh6fzgCg4Fw4K5TRRXZT812TZlH6hjLKMBItllKiaYJhzLJFxXqGPHdogI7I4L4r5ZNAZFgVMKVknGzmJqhk5rkBQSwCvdDDM/BTbDGyKopRu2yr3d6bjZcHtP7Vt7BHDbC0LbidqP28iLCSdpBkSRXRpcZas4zLZNi6tXUibRG4nAbOHar/BXo9LeRsrFArFHMZG0kmGEVFESMFV9oLKZBNAkgDX20v5ubaN3WKYLTLFYmLzvur4ZLCQ5Wi/Ik6pcbW9iEXEx680WhjBKrAjtgHdGYQZjuo+YcW2UZoJc7O9gmdEB8+KLnpElqFylFsEzwnTyTCwGDggkm2syHa8vnVONC6WLdTJAA9ru+kVWXLSYAHRN8UX+s2CRFLAYphipSKegVURy0r/F2Meqbwymqw3+qhJDQegoZXS/NBwoeHGgVtquHGS1aN0F6vxOkcY8WYZdveTNT2E3Cq95UQlj0lPuTpeHpMq6eMiu4XVhoOotRnD4WdHfD0AtubijaoriOXaieXbGfQ2YjkOjn50oJHETxI/p8hySW8J+bKRbDdZ+kWeXpFlgAJFYVLAJMVoZEfpmg5KNwtllOWyigVE5oV482bGh5MVJOiWGfaR5qQ5/nnZSHrJkcWkVYY5XdbO6PGrpJ+QcNNPfkaPO1WMppCGcB1U5CGKl+vtJfxM28ouMcxWmWIJ8TeF4GaWox5GRdy1soELZcu46D7NNqnKbcevD+C3s/gsiRROdGnjUX04hUKhmHNIJN1kGRZFTCm5VLawguRB68XwckNZcCtloaVYQuyYAmzmC3Z5gmlYFJESLpOtnEzioPXcVgaPmcHS3OxInD/zDeVNILZBSShaJ5tYJhP8t9bOTjHEdgZJSB8NhOa1WGSMiWTLl0W2eFlkO/1oRTYp8VgZdEcAKQ7uoAoEK0hSbfv5pbaDvWKETXJgTg9KJRK9EpM1dimV53KMjDTx87FLxz8/cJ9uHARxzbsUFgtJmiLDFMmOqYgXkC7qZBgvDtxlI3o3jnGimQsHXhy4cOBBw1NZrySwjZraTyRsP5avxZ1zsaF6mD96dvGSkabDFCx7c2R7v6mwkAyQI0WBHKVqgmfKOi6QTYTwENK34bJydIZOJe3db146EFjI3uhZBHv7qc1soiOyetLH9OFiAVEWEB0XBTdAni6y9Ioc/eTx4GCZjNNKRHlSzjOWyjgb6WOnNkxG6nPaKiJVTh/1SI2LZeuMF9NI4MWPC4MsJva8E6JylKL1G+XEhUjCeLiunFKzUwyxRQ6whPi89aebDCWvmlLUg5SSi2QL58mGcVkHDlunKrsdvzGAQ5qkPXX4ZRcuKcljKLFNoVAo5iD95BkUBQrSYq1s4BzZcMggoSBurreX8kuxnc1ais3l378TsU8rK5YJJRHyItnCalk74bkJ6AO4rBwpfxsDgQWz0No3idg2ShI/77SX8xI9PKntIyUKDMsijYTnnQfZoUS2M2Utp8uao/9ySUk8v4tQsRdTc9MZXoUUE3fAqgnwLns5vxXtbBL9bBUpGmWYmimsnHa8mNiMUCyfn1JhiLEc6FQiD1h6NK+PXSrKHlER3ITxEsQ1Zwc0Y6PY0hQpCIsiJprUqJF+VlHNClk1bUJqwdbo1T2AzeoEmGYdW7IFesiwBIE2R8+b4ujJoNNDllw5oqzeDnKJbGUh0VKBA7uIzxhCINlWdT6IMfcRIdhSdQnVmdepzbyBXx8g5z549mqyONCoLhfNOeiLrph3BHBzMlX0lL3blk0wszkXKGIyQIECJufKBpoIzXgbAriISi9OTTAki1QxfzwyS1WBDSSylEJ+CEJ4uM5ezH9p29kmBispNdPtiTcb6FjsZYS00NGk4DK5gDMPGHA4rQJV2W0EjBQSwfP17yZc7CKS68Vn2+Q1c0xCkuLNiD1qAVL5b7/Vh32QHchYX96Jlx9qexuJhqhYOPhw4kSbM+OGY0GlYSumi0EK9IscOQxOldVcKFuOaN3kxck1cjEueyeviT42UxLc5vIk5NEyWgRo1DJhrWzgvEOIkEKa+I0UmjTZEV9/SF1jujnxeh9HQEOwmloW2zEe1nazmQF2iSEGpYdGwsedbjndGNikyFdEJAOLmPRypqxltaw9NgVbSmKF3YSKPXjMDG6hUTeykc7wKpggwg1KESPXyEXU4udJ9rFXjJCTBs2EZ01ckkjymAxRJI1OQZjoWLhkKQqr9DXc/3Uc/YkXCLTyv7HPRWUdgQMQUlSea5XXtPLfINAYFAV6RZZecvSSxyMdhHETwUMQ95wQ3g4XxbZKVnO6rKFpBj7HTt2PaUmSbp2WiAOtEOM/B3vpsPP0ygy1Ijitx1dMPyY2feUfxSwGXulgg2xirWwcF94e0PtxWTnS7ho6w6cdtJ+8O872xEWEC93Upl9nZ3ztIe9NijcfS2WcV0Uf7WKYnDTm3EyuLKeP5oRBlfSxQTbNygBNIKgnwGbpZITCvBLbdCyKwsIpNVpl9LDrBnBzrb2EX4htbNFSbJEplhI/oQS3Ama5+pqORzq42l7ACpLjriuXlSWZ3YbfGMTUPDzbeCu74us5qfchAlkXIdsip5mz+C4Us4lEMoJOL1l0MdYuZL9YNvo3h3xt7CvAQfe1iWe0BAIXGl7pJIgLPy585ayIuSpeSSQmkgImRUwKWBQwEUAr0cooQ6E4XtLlCeoMBkvsOFfJhZMek7lxcLVciBcHL4oetpBiETEiczQD7WjpJ09K5MlLkzNlLRccRoT0G4O4rRwFZ5g90bMBkFIynNNnssknUM/jKAnj4Vp7MVup4hGtnV6R4w05QH054mGuGf+PFdlGRaSSyNZ07CIbgJREC3sJF7rxWBl2xdcQ0PtJZrdRk3mDnuBJ46NMxqAhOFc2UCsD/FrbSa/IVXzcZnKwY2Ezgl6J8itgYiMJSw+nlcWjJIGKeAZURLUpR0IfOTYxwDYtRfeoWTv5MRFvHkKzILwVKkLk+Ci2aulnFUlOkckZTQfu0AMYtmR5WMft0Gj0WbTRTK+dpoN+kvjnXTruKJq0OT3TjQReCtZiv8mEIYkkjV7ypxIGhrRpkWEula00HVAlqGJeahdpj56DOYEnG8Du2Dk0jrxA8+CfiefbSflnJxxcMfcI42GZTNBDjn2MsGSORbeNoJMWOlJKLrRbCMyiGDjq25aaZ75tOUxMbMJ4SEyi8qyvPMP/kL2DN7QBNpcFtxPBwyaHUTKFRicgXbzNXsySA0yhPeZIOXV0kIIzzFMtH6QzcjoAeVcMn/ATtIdJYc3GW1DMMjaSHrIMigJZDFzSUbH7GJ081qBiA1Ly3S0tdcpyoaHyMieOsmXI/vUqj3J0ndL6BpJukaFDpOknT0bojFCsFC/ySAdB3Phx4sOFdxbFNxO7LKyVRLU8JrooTU6b2NhjhESPzNA4C9HKihOPPCZdZMgInUY7xNvkoqP+3XKicalsw42DP4sutjHIAiLE59EE20SkysXPshisktVcLtsOO5YO6P247Dx7Y+vIu0u/kQXDZu/gzPZ/5n+v4zgQCJYSp8UO8ajYxyuih70izWC5gMJshl1KJAY2OUxyGGTKVfV0LKLSywbZyGpZd3yddimJFDsIFzrxWCPsiJ3Pn1puI1jsYV373cRzu7A0F/3+xYcU3ADaiPJu+2R+WfZJ2SwHaCVKbBoLUIymQA5RGBfF5pQaDTLI6dSyXCZmJcIhiZ8N+NlgNzFAntfpZ5s2SDdZ+sR+4W1sxNt0efccKYrtNFlNM5EZF/50W6PH8AI2pyYsQMOjSU72VPGG7idvu+h15Khjfka3NRbTxIwsTrvIMiHYFKyb7SbNGDoWveQYEUVyGASkm4tkC2fK2gm9k7zmMG4ri+nwsSux7pD7tTQPb1RdSSy3h0RuJ0OeemzHkQfdijcHJ8kEm0Q/e0iTx8A3R6LbrHJ0Zw6DZTLByTNUffRQJPDhx0U3WSzseTOhkaNkl9Esw5Nusxcnb5GL0GzB61o/m+UAS4nPmWvjWMig00mGtNAJSw9vt5cclFbrM1IkcrvwGyky7mqeaPkwfaHllddzrhhx4ccvBzEPsNhQnPgUMeksFykqSoslMs7lso0ALhxlQW1U4pqeSemaSgGj3YywR4zQIdL0kBtTPRycZVuWkvjmqqSeTkcwhIVdEdVGI9aKwsREYmJXrGgc5UrmdTJIA0G80smrWh89ZKkjMG/up4q5iY5FB2nS6CSkj7fLJYSOMQhCQ3C+bMaLkyfFPnaIIUwpSeKbs9Gjh2OYIj1loW2pHedqufCwfqwuK4fXHMEWDrbHN1SWZ4oz/6v3phbbRvHi4nLZxkkywe+1djpEms2kqJF+6gjOiBCxX1wzyJcFtlIlSLscpyWJSA/rZCNnHq/IViZc7CaS78BnjrArtoZnm9+HpXkY9jXzbNNfsmbPvxHPtWMJD4P+lsPuK4KHG+3l/EHs5kXRww4xSK0M0EBoSn8YR6PYhimSEwYFLGxsgtLNKTLJ6bJmyo95PCTwsZ4m1ttNpMiziQG2aoN0kWFA5OknhwsHEekpC2+uKTFzLmBWKoruj2ITVMsAq0iyQlYRmUR0wHTRZfgwLEncZdAW2f/9avbbNAw1scfso8sxQPU8jG5zSouW4iC7HQa2y8fC4iApV4BuT/jIG89jJJIhiiVhQRjYUrJUJrhEtlKN/5DbBfV+3FaO7tAKhrzNhz1GX3Ap+6KrWdI3QG12M53hU6f4XSjmK1G8LJVxekWOfWRYTGy2mwRAH3lywsAvXVwsW2f9tymIi6j04NAEw7I4L2a6R/3aQNImD+3XNhGeckqNZouyh00pwm2upRpPhhGKZZGkSJX0c729lPoDJqQCxT7i+XZ8xiBDvmYeb/0YQwf03wquCB7Nj8fe37+cj4MvxdEhkQxTpJccGaHjlBrnyybWycZZKSLiw8UyEiyTCZAlL+q9pNnDCB1ami6y5IRBL1mgFGXnklo57XQ0+s151H1EGzlGWCuLa8KsRKyNJtRqCHzSRVL6qCdInQxST5AEvkphPRvJiNQZ0gp0yayKblMcMyY2+0iTFjpB6eI6ewlVh+k7T4ZSBlo9Hhz8kT3sFsOY0qaOwLy656fRS9F+6LTZEa6TS44Y7VcqjJBnxFNPb+ikyvJM0cQwZ1ZuU2LbGJoJc7O9gmdEB8+KLnpElqFylFtkiqO0xopro9Fr+gHimlNqhHDTIIO0EuUkGSc4RWl+wWIP0cJefOYwu6Nn8UzLBzDHRIn0BZfxfMN7OGvvd6nObsHUXOMqBE6EC41LZSu1MsAftN30iCw5adJG5Lgrvo6mQI5U0mhtHFJQJ/2cRg0nycSUnZvpIo6PtTSy1m5kkAKb6J9QeAuXhbfQUQpvE0WxWdj4pYuVZSFyNqLYJqJDD2BakqVRHa9r/3us9RpUixoGjCh57wDdMkvDPOu8tBSGGUTnJa+HbneANTlYke1gyOml4DhxTErHUsSku9yBz2EQlV7Ol02cKqsP2xF22Do+YxCBZHv8gsNG0AIgBJurLiOZ2Ux1ZitefYiCOzq1b0YxbzlJVrFZpNhLmiLWrFdZzGMwKAoUsVgrGw8rOs8UAkEdQTbLAYaYH2JbAQtd2Lilg+YD09AngRsHV8mFOBBsFH1sIcUSYgTmkWn0IAW6RZYsOnV2gOvlMpJjrycpCRe7iBb24TWG6A8s4bHWj5L11h60r7wzilcL4LJAShtL2DhVRdITGqucNjpUThutkj6utBewiNicGXS7cOyvHm6XJte7ydLOMB3l1NOMMBigQD95NAQuHPili+CYyLex/WZZEdasitdaHhNT2GVxrSSsCQRe6SSJj3oZpI4gDTJEFb7DDuo1BKfJavbIEXpVdJviGLGRdJQjll1S4y32ooMtV44RgWC1rMUrnfxO20WHSGNJm0ZCc+a7fzhyGHSW02ob7CBvl0uOPFkmbfz6AA5bZ1fsPGxt//rZooktZ7Y6mhLbDsCJxjrZxDKZ4L+1dnaKIbYzSEL6aCB0zKLR0YprLURokRGqykHTU0mg2EcsvxufMcS+yGk83fIhDMfBg4COyOm8bGY4vfN+6jKvY2pu8u7Dp8AIBKuoptr285C2gw6R5g05wEKiR52Wa5d9n4YokhX6uBTIk2SC02UtTYTm5Q9bDC/n0ch5diPDFHidAbZqKTrJkBJ5BsjjQiMs96eaHuraO3QU2/6KorMZxXYgphR06z4kNqclTBhz06zzGnidAULZFjyBDnpEjtp51Hlx2yZ1xWGeddvsdodIe+p52d6Dy7Y4NbOPZ8NtyCMJSvMIG0mKPP0UyJUr4q2S1VwsW4hO4pobnXnKuJLsK/sJHYmsp5od8QsIFXupy7zGrth5Rxbp5gBOK49DGhQdoXnR3vlIAh8LZZRekaODdGnQNkuMVszKSYMGGeRcefjJqpmkSvoIC8+88W0rpZBaxPERO8bfMhcaV8gFONF4qWwaPR+qtEkkAxToEyWz7BY7zPVy6fj7a8V7twufOUxHeCVPtnyEgnvi6E7dEUA4IrgsDZ+0yAmTsBLbTlgKZQ+otNDRpc1ymeBKuWBSv9GziQONBkKlCVdZMjYfIE87w+wVaTpFhkFRYEgUGCRfKbrgk078uLDKxQx0YWGV00FHozg90kEML3UySB0BGmSIavz4cB61ANFAiGYZJqXlVXSb4qiRSLrIMCKKSCm5VLZNS1X1k6nCazv4lbaTHpHFlDYtRGY92v5wFDBLabVCL0Vzy6WTGs/6jCHcVhbdGWBXbE1luS0lmaI54+9YiW2HIImfd9rLeYkentT2kRIFhmWRRsIk8B7xZjyXxLWx+PWBcorBEJ2hFTzZ+hF056F9sXbF1+GxMpzS/TOaRl5mT+RMCq4jp3HUEeQv7JP4jdjJG2KAzWKAZhkmif+I5644Lort4BTImTbyn24ieFlDA2vsBkYollNNU+wjTUoUysKbg1BZeCtJvhrpcjrtqBA5GsV2ikyyeg5FsR1Il+6jaEHEabIwMr59cZdFyAVBMwlmjCF317yKbmsrDLHHYdDvdJFxV7MseDl7xB941X4DVz7Ponwv2/w1s93MKSGHQU85mq2ASVL6udhuZRnxyf14S0lA78NpF9gTuxjDGZj0sXfFz6Nx5AUah18kmt9zUJrUXMNtZkhmt+A1M2TdcVK+tsPedxXHzgqZZJsYpIM0jccxQXa8DFIkI3QcUnCxbJlTlTCr8OHHSXfZi2iuT2bky8URWmW4VDncNvAbKbLuKqSY/OfrROMS2YoDwQuiuyK4heao4DZaxXZA5MlisNiOc51cND6KX9rE8+2lavJWhvboOTzT8oHD31+EIOOtI1x04pMWecwTqk+lKDFq7dBLjiw6LungItnMebJxfN9Q2oCY85NAAkEVfqrwc4asA1lKrR4V30aLLqRFqW88upVbaoRxUyMD1JeFtSR+QrinJLJHQ3Cqim5THAOj9/ghUUCXFueXix5OFwuJca29mF9o2+kRWSwpaZujlXR1rFLFbXSi0sMN9tJJp9UGjFJhhH3h08l49p/PnG5RNKxxGVUzwdzp/U0xYTOFQ09hOPyYmueYfkQ0BKupZbEd42FtN5sZYJcYYlB6aCSMb8zpO5y4ZmDDGHGtUYZoIUzzDIhrY/HpKeL5nfiMQfoCS3mi9WMUnUcIUxWCzcnLcVtZlvf+msaRF9gdOXtSA2M/Lt4mF1NNgGfoYLcYISMNWjjY4NhGkhkTxVYoR7HNB/FoKgnj4RzqOceuJ41eTjVNsY/SDF6qLLy5pQNT2OOi2FaWhci5FMU2EZ16ANOyWRIr4nePv+EJAc0Bk/ZBB1X5BgZdQ/SQnRfRbT7LIGoM84bbZo87QrN/PYv95+PXYuyy/oON9g5OLwwQN4KkXJMXluYaFna59HaBnDRwSY1zZD3ny+aj8pL0miPlwggedowxL50MpsPHG8kriBQ6SOa2M+Kpx3bMTQ8mp5WvVAW0NA+hYg/BYi9DvmYGfc1YmhrkTiVJfCyQUfpEjk7StM5CdJuBRT858picLmtYOEf840YJ4SZc9m0bkUVicziV1K74tUFr2a8tWthLtLCPtDFIX3DZUe3PicZFsgUHgj+LbraSYjGxOSc2SSTdZEmJAnlpcrKs4hq5eFy/U0iLRG4HQb0fl5Vja+Iinmu8BWsShWNyrjgBvATsLDmHOZ1vRTELWNj0lAfxWQyS0s9V9gIWEK0ITJptEtJ7CBZ7MDU3Kf+CCbNc5jJhPKykmpWyelzRhX0ijYagXgapJUAYz7RG8DSOiW6bTxPEitklRYEBkScvLc6UdayXTdOe2tlEmLfbS/kvbRudIsN2mWIhsTk1vi75N44wIkoVt99uL5l0wTyHXcRnDAGwvWq8PU2maKJbNrHAzE6wnbBiW8TsJzKSxdbcGJqXvDOC7gygOwLoDj+2NvkTHcbDtfZitlLFI1o7vSLHG3KAegJ4cU5aXGuRERIzKK6NxWsMkcjvxK8P0u9fxGNtf33IFIODEBqv1l6L28qyuP8PNA8/z+7oWZiOI3fQHWisk43USj+/09rpFVny0mQBEXy40LEqUWx5USqxLWQpsnClTLJSJud8qPsoLiuHJZxHdW0djhBuzqaes+16suiViLc9pMkJA690zjsh0pKCTt2HRLIqYTHRLajeZ+JzObHySVpCYQbnSWh+WyHFFqdJyunC9rSxNHAxAA3eVdhRkwHzu7wkOzg1v5e0tgjDMf9uvxl0eshWPAEbZIjLZCutRI66gxAwSoUReoLLGPQdfWRad2gFneFTWdT/B6pzW+gOrTjqfUw3Dlsnmd2G30iRd8V4quVDNIy8TFvqSeK5dsKFTlL+tpJYqM2/62EuIhCskFXsEIN0kaURa8b9qHrLRUKi0sMFsnnO+aIIBPUE2SpTDDG3xbbRNDCPdNJECCFtfMYQTqtIuNh91GIblPolF8gWHGj8SXSylUEWESM6RwQ3u5xWNCgKFKTFabKaK+XCcR6Emm1QldtOoOxL83r1W3i5/p2Tvo/kXTE8mp+gnSaFNV1vRTEL5MtpoxmhY0ibk8ppo6MTsUKahIq9BIs9eK0MLiuPFBohvZc+/yJGvI1IMff7kxMxrujCDDIa3bZbjsybCWLF7DJCkd5ydc2TZYLLZOuMXTO1BLjBXsrPtG3sFSNslaVJp9kolHIgFjb7ymnvHungbfZiWph8YaSKPY27mq7QqnGvZYsmumnTVjuzAQ8nbO/+ldB6Vvj6CRe78FgZfOYQADYOLM2N7vBTcIbRnUF0hx/d4UeKQ58OgWApcVrsEI+Kfbwietgr0jjRKpVr5pK4NhaPOUJVbgd+fZBBfyuPtf01Oc/hvdcORAonL9W/E5eVoy31NI3DL7InetY408HDsZg4CdvHQ9oO2sUwm2WKOF5yomRYamDjk05OknFOl7W0EcU1X36opCSk9xDN70Ug2RNeDdrU3rACuDmTOs6068hi0EmaavxzPortQHoML0VLEHSaLI1OvE6d18Dj8jBS9HO2Xc0esb/zMtvfpUMRtIoIK0OfCzpdEZYGr8aj7b+ZN3pOx47nKfT9O6+QYlF+L12B1jmftjGKRNJPnn6RJ4uOTzq5ULawRtYfU3qcNloYQdpsT5wPx9KxFxqbk5dTld1KVW4Hg95miq65U/FVs02qykKb4fDxVMtf0RVeSVd4FVsSF7Oq+0EaR16iOrOZaGEv/b6FZDzVx3YuTmA02yCk9+CyCuVIwCNPZtQSoEVG6NPydMrsMZnqHysZdEZEEUtK1svGOTtZVCX9hISboUq61dyk5NdmUyNL0SkecxiXlcfS3GjSxG1mjiklW0OwXjbhQONp0cF2BllIZNaFRwubTjIMiSK6tDhH1nGpbBv32+ewiyURX08hsHm57h28XnvNUaXU5p1R4sKHT0oMJbadEEgkg+WK4BlKA9WLZSvnynqcaAhpESz2llOO07isPHlXlM1Vl+KURdpST1Ob2Uyo2ENvcBm6c25PcM41RqPbBlV0m+IIZDHoolTwps2O8Fa5eMYtL+L4eEdZcNtVHpcvITarlhcWkn1l/zpNCq6y21hCfPI7kJKA3o/TLrI7eva4wo9QimyTwKLqmbVxOWHFtoer/gd7mmpwWAWqstupym0nlt9NPL+bgN6PzxgioA+AAEs4sYSbojNE0RmqRL/pDv9BAx8vLi6XbZwkEzym7WGAQtlzbe6Ia2Nxm+lyClOKYV8Dj7bdSdZ7bJ5Rlubh+YabcVt5moafp3HkRfZGzph0By+Oj5vs5Tws2nlF9NIjcjikIIGPU8pRbPFJ+OHNKQ4wJraFRrTYwZCvedoOGcDF4qO5+cwhOvQAhmVzUqRIwDPxdVPjMfA4BX3SRdQM06KFGdQKdMnMlFXnmWpa8yk2u0z6nC78/tNp9J427nUhBM2+8+iIpTH7v88OR4bqYi+ZY/wuziSjURZDokgOgzY7wuWyjfrj6EgGjAHcVo6sO86+yJnHvJ8Rbz07Y+sIFXupzbzO7ug5c0LAFNImkduB30ghhcazje+lK7yy8nra18CTbR8jmdnMqq4HqM5soT69kXwhxoB/ITlXbE68j9lEs/VSyq3eh8fM4LILuKwsXeFVR9xWIFgpk+ySQ/SQo4HgjMwY2+WKf1lM2mSY06bRe+V4SeDFj4tectjYaHOo3zKWHCYWNi2EEQj8xiAuu0DOFcNl5QkXOukPLjmmfWsI1soGHAieFPvYLoZYKJm1Cq0mNh2kGS6LtRtkExvKguAoTitPMrsVvzGILZw8V/8etiUvOer7Rd4VxSv8eGyJhT3Vb0Uxw4xW7hwWRbIY1NgBrpYLS1Hn0iaodxMqdpfupVaOgjPClppL2Jy8gpwnCcDu6Lmc3vFDEvldtAw9y4BvAYP+lqMScd9sCGkhpMTWnOO823qYX8W9FDNHAZPOsul/jR3guslU15wmQni43l7CL8QOtmqpiuDmm4X2WNh0kWVEFLGl5ArZyilUH9U+xtrT7IyvH/eaadtkiyaaECypnlkh/IQV20axHF56wivoCe9PMXIbw1Rnt5HI7ySW212pzBnU+wgVe0AILOHC1NwUygKcURbgDM0HQtBMmP9hr6hUtpmLuM1sRWgb8dTyWNtfk/YeX0U0wxngT03vw2XlqUu/Sv3IRjrCqyYdjeHGwRVyAc0yzE4xxCIZYxGxWTOxPh6EtIjndpUGg1aGvsBiPGaaeL6dIW/Tm36wfCC2LBVHkMCqhIk4xO3H65DU+Wy6hgS9upvTXDVl49kcdQRmPCXsSETNPMPkyApIeZKcFroGbYLOqRCChtDlDOh95Id/Qa9M4TV9aEfyTZxFDCw6yTAidHRpcbqs4Qq5AO/x/HRISUAfwGkV2JY4/7gLBexMbKAh/TL1IxsJFzsZ8TYc1/6OGymJ53cR0PvRpMnz9e+mPX7ehKv2BZfx8KL/RfPQs5zS81/E8rtpHHmBtLualH8BxTdhZIGjIrL14jazJWHFHSUvYgT1bhxWEctx5HS/OoI0ywgDWmHG0tAHyJMTJt5yRMlcmng7kDAeQtKN0AQjUp+TEXhWxa9NsEBGQNp4jWGEtOkOrSj5lRl99HNsYhuUhNlzZT0OBI+zlx1iCFvKSRsxHy+yXCVRx6aXXLkiHVwsWzhXNozzmXKbmUqfznD4eab5NvYc4wRD0RnCrQVx2AJNmlhi7hfKUExMHoNOMmSEgSltTpFJLpdthKWLoN5TEdk8VpaCM8QbySvYVH0VWe/4yYCe0Mn89+LPcErPz1nc/whVue0E9V56A0snbzvzJsFhFwkVewjo/Tikwb7QadgON02EaJYhFd2mmBADq1RdE52I9HDdgZWlZwE/bq6Vi/m1vZPXRT+bKQlugWkqHGQj0bHQsShW/pn7i0hKyYWymTNl/XHZ0xwY9JIrWhRNm4DbQXNiZr0pT3ixbSJ0V4R90TPYFz2jtKBcFa9qrABX2IvHzBApdkOxC4nAEm5MzUPeFSlHvwUoOsNz0mvHZeWoym4jYAyQdVfxWNsdDB2DL9JEFF0Rnmm+nXXtXyeZ3UJtehPdoZMn3eETCFaQZIVMTkl7ZoOSX8qOcrhqgS1Vl/By7TtYs/fbBIf78Ov9ldnC+YqQFpHCPgBMzYulla5/U/Mc00xnn+ElZ2r4HCbLY/Kw6zb4LV5zOegtujk7EKRVRkhpBTplhuajyN2fdqSkrpDidYdJr9NNdfASYq6mQ64uhCAR/wsKejcDuT+RMbtwOtz4xdwb6ObLJbczQgcpOF82sU42HbeA4LHSeMwMluZmZ+zoCiNMhO4Msjl5OZFCJ9WZraTdNcjZuidLSaywh2CxF5edZ2PtdWypvuLw90ahsSd2LvvCZ7Bk4Pcs6/ttWWzqZ8jbwKCv9aBQ+BOR0cFLUO/DbWZw2kWy7ipeTVzDtqqLWdb3W5b3/ZpEfge9wZOOuD+tHN3WLocrQv10iglFTFIUKGBynmyY8x6TGoJ6QmyTgwxTnPUO/0TkMTBEyWKikRAeK4PbzmE4fGypuoTTulJECh1otn5cXqkCwVmyDicaf2QPu8QwtoTqKRLcbEqpmkZZVBv9u/TcxBSl6DITG5d0cJlsY7WsGTfQ8BpDJHI7K/6PT7Z8mO7wKcfcJikc2J4GHIYDr21RcJjTNrhSTA8SSYoCfZTsHbzSwUWyjbPsGiLGIOFCFx4zjdvKojsCbKm6hNdq3kLmMJPulsPLy/U3sTtyFmd0/IDq7BaaR54n5Wsh5WubtHXMiYrTypdENqMft5nFaReRwkEyt42e0MloCFap6DbFBFjYdJS9yLzSyXX2YuqYG8XSPDi5Wi7CjYOXRS+bp6Bw0GjhyOIYYU3HooCJKWwsSr97NqXxoIbAK52cJWtYKxuPWmjTbKNiT7Mjcf5B/e5M0cQwbRrjfiK+mb2PzT2VaDYQgqynmqynmt2UIxBsi0ixk2R2G7FcO/F8O5FiBy4rj7cwAhJsoWE6fKS8zaS9tYf1fJtJSmkGJaEt74rxROvHGPQvnNJjZD1Jnmm+jbXtd5PI7cLS3PQFFr8pormcVoGq3PaKX8ortdfzat11SOGkPXo2iex2krkd7J7nYluo2E0svxeXlQMhsIUTWziwhRND86I7/FiaB1PzYlaEOC+2cEx4HXToAUzbZkmwQNh7+O9KnVfH5/IykPeikeE0WcNuOUwPOeoJzpnotiozS4eWpyCg4GlhRfCyI24jNAf+6g/j29dLh7mdlNEBrib8Yu4MdEYo0k2WdNmf7XLZxipZPSVRvAG9H5eVpT+whIHA1NyXOsOr6AqdwoLUEySz2+gNLZ+S/R4t4WI3oUI3HivDlqpLeLX2+klH/doOF5urr2RHfD0rev6LhanHiRX2Ei52k/K1MOxtPCEHOg67ZHQf0PvwmFkcdpGsu5qNVRexLXERRXcUgL2xs2gceYlYfjd9/qXISfhiNhKiUYZIaXl6ZPa4Up8Ph0TSUy6KkJT+GakoNhUkpY+gcDOCPttNmZBc2c+1SYbw48JndOG0CvQHFtHvX8yQt5FkZiuhYjfDx2ndIBCcLmtwIniY3ewWw0hpU03giJ+lRGIdQlDTsTCEVR5YSOzyI+UBhkDglBpuHMSlj/NlEycx3lPXrw8Qz+/Crw8y4q3j8daPkgosOq73C5B3JQngxieL5FFi23zCHJM2msOgzg5wtb2QZYZBuPgGXjON28xgOPxsr7qA16vfclTfkcHAAh5Z9L9Y1vsrlvf9lnhuN8FiH72BpeTciTdFX38sLitLuNiNX0/htrI4bJ2Mp4a9kdOpyWwmnm+nz78Y2+GmmTBNsmR/Mp2/O4r5g40sZ4mMepEtoG0WKqUfDhcal8s2PDh4TnSzlUEWEDmircLo719xgmg1Q9jliSSJjQ3lX1OX1AjgIiG9VBOgWvqpwU8cHz6cx9R/8hsp3FaenDvG3gnsabJFE8OyWVITRMzw/WtuqENzEc3BsK+JYd/+KBVhG8Rzu6nKbSWeayeR30W40EVtZhPxwh5SvlbSnppZ9TdwWoWSn4c+QMEZ5vHWj9AXXDotxxr2NfNs0/tYs+ceYvl2TM3NoL91Wo41VxibxmFqHp5vuJXtVRdWOh5d4VUMpx6jLv0qbiON7pqfP7JCmgSLfbisHB3hU7E1J8FiHz5jEJddxGUVSp6HZUoiXEmIszQ3RUcAyzEqxHnQhZv+YhLblqyKHzqFdJQ6r4HbGaDX8mDZkjotQJuMMqAV6JCZo6pMM10IKQnpKbZqFgNOH82RG8YVRTgc0unHX/PXtHZ+Hqxu9jm6qXXUzYpPwrh2lWfKSxWSdBLSd9SVgA6HZhv4jUE0abM9vmHKigFI4eSN6itJ5HYQz7cz6GvGcM7sjGFA7yNS2IvPHGZX7Fyeb3jPMUU9G84gLzX8BVurLmFl909pHvozyew2ooUO+v1tZDx187ZS3FicVoFQsZuA0Y/HzFQGL1sSl7A9eSHFA9KrB3xt9AcWEil0EC3sYdDfdsRjjEa37R0TZTAd3mQj6KSFDhIutJsn5b+i2SaaNCZV1Xu6SOAjgIv+OerblsfAHvVrk+A3htCkyd7omaBp9AWW0jT8POFiz3GLbVAaBqySNTikxn9r7ewRaWxZKrghoZzuuT8qbaygtn+mvjSoKLmg7Z+xd0kHPpyEpZsYXqJ4iUkvcbxE8RDEPaGdRrDYU7E6SfnbeLz1Y4z4Go/7vULJt80vfPjsPDlVJGHekCunjWbLaaOn2knerkeoLe7FY5Yix02Hl53xdbxWc00pq+UYBpe25mRT7TXsi57B6n0/oC79Go0jLzHsbaA/sBBLmxvVe6cNKfFYaULFbvzGEG4zg4bFsKeezVWXsSuxHt0RYHXHDwgXu0jkd9AXXF6Obiv97nSTo0ZFt72pkciKMG5KyaWyhRXMzWAMBxoXyhY8OHhadLJDDGFJSbIc5W2Vf++KYyLViljo5QklE3vMZJLAKQV+XESll2p8JPFTI/1U4SeIe5xNwnEhJUG9H6dVYGds7YT2NOlycYTFM1wcAZTYdlRIzcVAcBEDwfKMopTUj7zIip5fUpXdTm36NWL53aR8rWQ81TMuujlsvZw6mkJ3+Hmq5UP0hlYcecPjoD+4hOca3sM5e79DdXYrluZm5Dh94eYqPmOQRG4nPmOQvDPK0y0foDNy+rh1Cq4oe8OnE8/toiq3nc7IaYfY29xm1Ieu4Azzp+bbyZaj9IS08Ov9hAtdhPQegsVeAnofIb23POOXw2mWq/+WM0Wl0EhLL+fqndgITtM16AmB0wsuX/nRW3osiwhxl0XIBT3CQZ/upNZrcaqsZpccpocsDXMgui1ppNmjFSkIcPhW0uA746i2z/kaqI/fitb3TSxjhJ2ijwVaEu8sCW6j5u6DokAWgxY7zLVyCYkpNAv3GylcVo6cK8be2FlTtl+AIV8z7bE1BPV+ajOvl2a2Zmj2ymsMEcu34zeG6Aydwp+ab8c6ztTPrKeaZ1o+WBbdHqQ2/Tp16dcpFPbR71tAzl01L6MLnFaBcLELv9FfjmTTSXtq2VJ1KTuqLji0T53QaI+eS016E/H8bgZ9rZN6/82EqZdBUlqBPpmnZorTNixs+siRx2CZTBwUlTQh0qY6uwWfMciIp46Uv21WBNTIGN+2tDSIHEfKyFRjYZMTJgLBAhnFbZWM3U2Hl33h0u/uoK+FnCtBVXYb2DZoU3MOV5DEYWv8VtvJPpFmROql2ftxgppEjolOc0iBGwdBXESkhxheYniJy9JjBA9+XJMfXEhJpNhBpNCB1ximJ7icJ1o/OqX2FHlXDJ/wE7RTpDCmbL+K6UEiGaBAPzmywsAnndygx1mfN/GZ7XisDKbw0B47h9dqriHlXzglvxEj3gYeXfhxFvX/gRU9vyBS7CCg99MbWELGUzMvf4cOi5R4zWHCxW68xjAeKwNIBn0tvJG8gt2xc8dNkuyKr6Uu/Sqx/G76/YuQmosWIiq6TQFAP3kGRYGCtFgrGzhHNszpyPdS4aBGvDh5lL20i2EyUi95rQkLs5z+aVV+AcEhBV6cxPGSlH6q8VEtAyTxE8Ez7f61biuL20xja052JA62pzEsm1zRxKkJltbOvE+2EtuOByHojKymM3w6jcPPc3LPL0nkdlCXfpVCIUzK20rWUz0jnWjNNkhmtxIwBjA1D880f2DGhJ6uyGm8bN7I6Z0/pDbzOpZwVcSZEwIpCeq9xPJ78BmDDHsbeKL1I4dM4+iIrKZt8BmqclsnbeY9lxDSJlTsxWXl2JG8fNxnKYWDrKeGrKeGrgM3lBKvMUy42EWo2E1Q7yVY7CNo9DGYyWNJk2pnFn8+A/nO0aOB5gSHC9wBqF8Nbj9CQHPApH1Q0Ft0U+vNU0uAhTJKSsuzT2ZoncXoNk3aYKTIaxYZZ5iW2LsnLIpwJDqjZ3Nybgcy80t0I8sWj4NlJGa89LaJTScZhkWRorRYKZNcJRdObYWk8syTyyqwK7b2oMilqWBb4kLq0q9Sl36N4AxVe3WbmVLlUX2Ifv8Cnmz58HEXfRjLQGARf1zwtzQMv8DKnp8Rz+2iceRlMu4qUv4FFFyzH+U5GZxWvpwu2l9OwzEY8daxueoydiY2TOqc9ZVNb0vebj1kPEeu9ulEY5WsZp9M00WGavxT2tHtI09WGASki0tk66TEFL8xiMccxmkXSOR24DMH6Q6ePONRbiXftgDbZIphinNKbCulkFr4pYt6gviNLlx2oZxSXSqCMuKtJetOlGwdzFRJgJ4ilpPAYQt+re0kJQpogFNqeHASxEVMeojhI4KHeDlCLYgbD47jv76kJFbYTbjQjcccYV/kDJ5q+SDFKf6u551R4sKHzy4ZVivmLiY2XeViRTmps9xw856cmwZjCI+VwRJO9obP4NXaa+mfBksXKRxsS15CR/g0Vnf8B40jL9KQ3siIXktfYPGsRuhOGVLiN1KEij3lqoYZpBD0+RfzRs1V7IusxprAGzLla6MnuJxwoYuq3C76gkvGRbf1qOi2Ny2DFOgXOXIYnCqruVC2TF001zQiEJwha/FKJ7/X2ukXeQSlPoNHOgjhpUr6qMFPUvqpIUAUz4yPXUYZLYww6G+lf4KxeaZools2Qa+T5rgfq5ib0fYpsW0qEIJ90TPZF1lN89CznNT7KxK5XdSPEd0ynuSUpUwdiGabJLPb8OsD2MLJn5pum/KokSOxK74Wt5VlZfdPaUi/zB7trHkzCDwsUhIt7CNc6MRrDtMXWMoTrR8m46075CZpTy1doZOJFvZM2sx7LhHQ+3GbmYrx/KQRgoI7SsEdHeeZJaXkpT1D9AwO8/5Vbla3GTDcAZluGOmCdBdk+yE/CHuehoUXgtCo85n4XE76dA+QL6f4VLNLDtFVjm5zzVJ0W1wfptNhkBeCUPACYu5jTGESGltrruWswl6k8Tw5Lcdml2A5cdwzdHsuYrKPNBlhYEvJOtnIBbJ5ymei3FamPPPkYnvi/Cnd9yhFV4QtVZcSLnRRk32DrCc5rZMdTitfTisfZNhbx+Ntd5D3JKb+QELQET2DzsipLOp/lOW9vyJS7CIw/BzD3noGfa0YjpmtrjRZXFaulC6qD+C2Mjhsk2FvPZurLmdnYv1RpftamptdsXOpym6nKrtzUmIbQCsR6mSQIa1Iv8xXUiKOlxwGg6KAgcUG2TS5/UpJuNiFx8zSGToFlyySyO6gZehZuoInz3jEYpX0ExQe0hRn7JiTIYeBiU2TDOOVDnzGIJptsC+8utKXksJJb3AZdSOvEi50TanYBrCEONW2n72MEMJDDA8B3NM6Sy+kTTy3sxJdvjO+jmebb5uW73feFcUrSlMqwjaZr1qAsE385iBZZxhOwNTGLAZdZMig47cM3pnXuKhgE7RS2MJBR3gVr9a8jd7g8mkbZ4yS81TxRNvHaB18mpXdDxIpdOA3UvQFFjPiqZv2408HQtr49QFCencpDdfKYgkXXaFTeCN5FZ2RlYf35BaCXfF11KY3ES3spd+/AKk5aSZMowwxqBXolTnqmPn0NcXskUanhywZDJbYca6SC6f2t0OW0jVLvQUbISk/Ly+vvH7w89G/AcRhtl2DpJUEm5w6Tkf0uH3VpoNSxlUKTZrsiK+b8LuaLZropk1rVYCAx8nIDHd3lNg2lZSryu2NnkXr4NMs7/01sfxu6tOvkC9ESflaybqrpvTHSEiTqtw2AkY/IPhz4y20x9ZM2f4n3xDBluSleKwMy3t/TdPw87RHz8aYwgiPmUZIm3h+F8FiLx4zzd7ImTzdfHvFsPvQGwr2Rs+iceRlokdh5j0nkDahYjduK8f2xAVT4g2TLVpkiiYOt5dTV50GNROE0+dS8MgXYM+foOsVqD+Neq+Bx+VhsOgt/agIQQ1+Fsgo/SLPPjK0zUJ0myYtcvYQhrCwnUmaYzce1/4MZ4DX697F+e192MVdPOHQ2aINsowErmke/WTQ6SpXR/JIB5fIBQdVwZsqgnpp5inlb2NgCsy9D8W+yGqah5+jdfBpEtnt9AeXTMtxHLZemuQwUuRdUZ5o/SjpaU6hl8LJtuTF7Iyt4eTeX7F44A9ECp2Eij0MeZsZ8jVNOPM+G7isXCldVB/AY2XRbJMhXyNvJK+gPb72mMWD7tBKhr0N1KU34jWGKLiiR9ymFN2WpEOm6SRDFb7jvsYlkl5y5KRBvQxxtjz0BMxY/EYKj5nG1Dy8XP9Ohr31rO78D1oHn6Fx5CVSvlYGAgtnzIai5NvmZGCO+bblMLGRtBHBZedwWzkszc2e6Ph0/ZSvjay7ikihY1raES37q80EQppUZUtVzl12njeqLufFxndPmzeWrbkQriSapeGQBhI5ZwZQR4PbSJGSQ2TNEQx3LVX4TogoolLaaJ5+8th2nmWGwbU5B8sNE4RJV2gFr9W8je7QipkVuYSgPX4eXaEVnNb1Y1oH/0Rt+nVCxR76AkvRZ9gv9VgR0iKo9xEs9uAxS5WOTc3DnsiZvF59NX3BZZM+r/3+hfQFlxAudpXshAILcaBxajmqupss1fhPiOtyPlLy/wQHAgcaDsS0RpjlMUsCudBptEO8TS7CO4WSi8dMU5XdhsPWy+9iNKFT7n9XclRM2/9a5bkcu+7ht60FThOCjlANeffMp2AeCb8xiNvKUXSG2R05Z8J1MkUTy5YsqZ6ddG4ltk0DUjjYFV9He/Rc2gafZHnvb4gW9tKQfoWcK0rK10bOdfzVfIS0SGa3E9D7EdLmuYab2ZG4YPb8E4TGq7Vvw2VlWdz/B5qHn2d39Ox5GV6u2QZVuR349QFcdp6tVRfzfOMtmJP0YRrwLyibee+btJn3XMBvpEq+Hw4vm6qvnJJ9pnI6ecOiKe6jLXkI8dUfhzUfhWwf9G2BQBU1wWY8TkGfdJG1BAEnlei2nWKYTjI0EJzQVHo6Ceop+oWJITQS0RvwOI5fUB7yt7Cj5hou6/wPjHyKRwMOtjDAMhLTEkUhkQxSpJcsGaETk17eai9iIbEpPxaUom/9RgpNWmxPnD+tQoKtuXgjeQWxXDuxwm4GfU1YU3wPKg2KSxFthsPH080fnJLqgJPFcvrZWH8D26ouYmX3T2kZfIZEbgfhYicDvjbS3rpZK9TjNrOEil1lUSmDwGbY28im6qtoj6057t8D3RlkT/RM4vldVOV2sC+yelLbtRGlVgbZog2QkoXj9iIcpEBG6Dil4GLZMrn0idGoNivDnsiZpXQHIfhT0/vp8y9hVfeDxPPt+MwhukMrZiRaMYqHYNm3LSsNQnMgldTApiAMNKnRKiP4jSGcdoERb91BhRCGfE0UXBHi+V04zRymc25GeB4JzdZJ5rbj1wdwSJONtdexse76aa9yL10NiIITNxYFzFkv0nMsSKljYROwJZsYop889QSI4p2X4iGAjkU3WQyZJWbmWFWUXJkXRKVGb2A5r9W+ja7wylktyFZ0RfhT0/vZEzmL0zp/RCy/h+bhZ+n3L2TY2zirbTscmm1UbE48Vga3lUN3BNgZW8em6iuPzetOaOyMr6c68wbxsnc3mqMS3ZZS0W2zRgadvWKEIhYaAlEW2pxS4MKBA4ETDWdZhHOMeXSOeT7Ze4mORQdp0uUiY2+XS6b8d7XkezuIRAMxRjYTgpJEVkr6lEJgo41ZT0MKrbRMaNjCgRQOJKN/a5WCd5LSo9PWiRQ7qE+/zK7oWmzH3PqNGJ2c2hVbM2FmiZSSTKFcHKFmdr5/SmybRqTmZGfifHbFzmNh6jGW9f2WaKGDxuGXyLrjDPpaybnixySOCWlTlSvNgDqkyQv172Rr8tJZNyqVwsnL9e/EbeVoSz1F0/AL7I6ehT1Hoi0mg9MqlDxg9BQCi1dq385rtW8/usqCQmN39JyjNvOeVaQkXOzGbWbZFTu3VMHquHcpSWV1DMvm7LYEDu0w5yCxAE6/BZ7+Gux7Hu+iGHW+KF1Dgu6im4VOHYBq/CyUUfpFjg7SM1o+W7NNRmQaE5OAawHx8CVTtu9d8bVU5XbwttQfyGsGT/oEW0mxlPiUzoZKJD3kSIk8WQwa7RDXySVTllo3EaOFEfKuCHsi05/iPuBfyJ7o2QR7+6lNb6IjOjlBZlJIm6rsDvzGABLBnxtvnbVCKHl3nGebb2NL8lJWdT5IffoV6jKbiBX2knPFsTVnqUKwKD2W/jnG/F16PhX3JreZIVzsLpVfL4tsQ75mXk9exe7YucddMGIsHeHTaUs9SU12M04rPykBz42DlSTplBk6SRM/joG4gUU/efKYnC5rWDjJe1DJqy2NJdy8XvPW/eddCHZUXUB/YAHn7P0Oyew2moeepSd4Ehl39bT+djjQqCfIdjnIIMU5IbblMTCwCeKiVvrxGXtw2Dr7wqsPGsAbDj/9/kVUZzYTKXYy4Jw50Xsqied3Eyj2AfBC/bt5o/qKGYlWMjwJPBkvPjtN3mHNS7HNwgAkp+puPELwitdmB0OEpYd6ggRwzRvRrYhFijxZmSdiZqgxDdYWJOcYbob9S3m09q10RE6fdhF20ghBZ+Q0egPLWNX9AAtTj1Gd2UKo2ENvcNm0eLMeKw5bJ1TsIVBO0XZaBYrOMJuTl7E5eTnD3sbjutf2BRbTH1hEqNhDvLCHlL8NR9kzdK+KbpsVJJIUBXLSJIALiSxVkhY2RVF6tt/mv8SoGFd63F8AZ1SQc6EdUpDTEHSWs0WC0sV19hKqprhv7bJyeI0hQPJM8230BpYiNScWDqTmLCWDCkf5sSSqybLwJjn6/p5mG5yz999pSz1JbfY1OkOnzpnxrNPK4zVHkGjsiF8w4Tq6aZM3LFwOjaW1KrLthEVqLrZXXczO2AYWDfyBZf2/I1zoImC8SNaVIOVrJe+KTf7ilTaJ3E4CxT4cUufl2ht4o/rqOXPxW5qb5xtvxmXnaRp6nsaRl9gbWT13OgeHwW1mSkKbMYgp3LxQ/x62JS85pnPbG1zOkK/pqMy8ZxPf6EBQc0/Z9ZTTLdIFA5dDsGbhJPx0Fl0EqW2w8UHY8xSN4Wt5zemkt+hmYaAktu2PbhuigzQNhGYsus1l9DOCiYaTWOK9x1QU4VBI4eCV2rcTye/jXZlXyToEL3pMtslBFhObkg6aNaYQQkFanCQTvEUuJDidA2wpSzNPVoHd0XMouKcnem4cQrC16mJqMq9Rm3kDv94/NX5OUpLI7ypPchi8UP9udsXXHf9+j5MhXwuPLbiT2vSrrOz+KcnsdmL5PVTGl5JyR2tsx2t0ZlPDEm4szb1fmNOcBwlyBwp2o0JASWQrzbKOimwpXyubqq9iT+ycaUmBy3qSdIVXEc/vIZHbQc8kq24vklFqCbBVSzEsi8eUHlhJHxUGUenlQtk8uYH8mKi2veEz6AssPWiVYV8Ljyz4JKd33s+CwSdpGHmFlK+F/sDCaf39TOInhJsM+rQd42goFUewaZMB/LaB28xiay72Riau+NwfWEjOFSOo905rivp04bB1fMYQTlvnT03vm9GJ07wzRgAfXnuELAbMUMrsVOG0TQpYgGCZDHPpSJafOZfwlKOLPpFlCykS0kctgSlN45pqCpikKDBCkbwwaTAyLNJNLigIIp7l/KnxGvZGzsDW5qYYajp9vND4HvZEz2J1x39QldtB89CfSfnaGPS1HN1k9RTjtAol31CjH7eZxWkXybnibK66jC1Vl5H1Vk/JcaRwsCO2gWRmG/H8LlLeZtActBCmUQaVd9sskMckI3SEFLzNXswiYhQxyWGQxiCDTg6DrDDJY5DHIItZeV7EwsJGFzYFTOyDjiAr4pxW7glYSFxS4632IpqYerE5qPfhtnIMextpj6+ddusQW3PxSt0NhAudVGc3Ey50MuJrmNZjTpZS0bUcw946ekIT+6Nnyn5tEZ+L+ujsZNrN3V+eExDb4WJr9WVsT1zAkoGHWdr/34QK3TQaL5J1Jxj0tZJ3Rg/fySoP9oJ6Ly67wMbaa3mt9to5Z0pqOPw82/heXGae+vRG6kc20hE+dc61cyw+Y5B4bid+Y5CCM8Izze9nX/TMY95fycx7DVXZHUdl5j0rSElY78ZjZdkXPq1UzWoKGMzp5HWLuohvcuG7mganvQdS7dD+BEvSf+Yx13kMFLxAprJaEh+LZIx+kWcv6UlHlhwPwi6QkTlMLJLe1XgDK6f8GEVXhJfr38Ga3SneN7yXr8UTbHEW2CGHWETsuDwmRkPbR4SOJSXnyjoulq3TXmTCbWXxlEtyb0tMPPM0HeTdcbYnLiZc6KY2vYmd8bXHd/+RkmhhL8FiL247z6s11/BG9ZVzZpIDIegOr6QndDI16deIFjpKKTJmFreVKXnSlB9ddh6nraPZBk5shMwhsKHi5VHiYIFu/3NLc2EJFy67gMfMAJIB3wLeqL6aPbGzpr0DuDdyBo3Dz5PI7aQ3sAw5icGcBycrqKJLZthH+pjEtiwGw6KIJSXrZSORSe6jNJkxgiVcvDY2qu0ATKePPzf9JX3BJZza+f9KVbDNIbqDK6bNCykhvQSEiwEKs+7bJpFk0ZFI2ojiN4Zw2QXS7mpS/gUTbjPkayHvihMudoFtlipczyN8xiAuO0/WXcXOxPoZvafkXVH8wodfSgakyTwJAKvgsgrkkCA0bM8CHMXXWavDSZ5TeEZ08YLoZkDkGZQFavBTTWBaC1wcLXlMUuQZEToFTCxsGi0378q6OUnXeKnxVp6tunjOeHEeib7gMn6/6NOc3PsLlvb9nkRuB0G9l97AUvLu+Iy0QUrYpwdo0AZIGh349VS5ArZOxlPNtviFbKu6aFom/vqCyxgILCCk9xAtdjDkax7j3Zahmyw1+OeMN+aJTooCBUzqZZAFRNEQ+HDhw8W4hEN5wIbl5xY2BSyyGGQoksEYI86VRLucKC0braDtxsGFsoWlTH2xLM02S1YDts62xIUzdl/IuqvYWHsd5+z9d2qyb5BzRTFn25tR2viNAZy2zq7YeYc8F6OVSJfH/Xics5PaPr96JCcItsPN5uor2Za4kKX9/82S/ocJFXsJ6ANk3EkGfS0UnJGDO1xSEs+3lwZ7Vo7Xqq9mY931c1bAKroi/Kn5/azd/XWqM1uoTb9eNnKde725YLGXWH43PmOIYW8dT7V8hP7g8QtO4828h+dshVavOYzXGMEWDjZNYZTkQFZHt2zOao3jckzyOvUE4dy/gkwPVV1baJGtvGxVYdmykoYqymXVt4tBOshQxMIzjaKRRGKbA5gYRKSHYPL2aTtWX3AZW5KXsbL7p3xgKM1dsSjtjiw75BALy52FoyWLUQltd0mNS2QLZ8n6GSlBHjD6cds5Br1N01as4FDsjp1N48jzNA/+mXi+/ZCD9ckQKnYTLpQik7YmLuKVuhvn5L1XCgfd4VV0h1cdZiWJQxq4rCweYwSvOYLXTOOx0rjNDF4rU3rNLIlzHiuDy8rhtIs4pIGwDVxWvizQafT7F7Kp5i3si6yesc7foK+Ffv9iovm9xPPtk45oWiLjvEIfO7RBhmWRyFFEddpIesiSw2SBjHCarJnchuUUfY+VYV/4dPqCB0e1jaNc3a7ft5Cz932Hmswb5bTS5aQ9tVP+GxrFS0C6QZPkpEmQ2RvYG9gUhYVDarTJMD5zLw5bpyN86iGjY7KuBCPeWpLZrYT1Hka8c2PWfbL4jRROq8iu2NoZ97jNu6IkNB9eE0yMGT32VOCwi2WB2EtHbD31+X3E87vJeGrZIJs4TVbzuNjHa6KPDpGhXxaoJ0Ac34z8/k2ERJLHZIA8GaGTx0RKqJZ+zqWedfkCtUY7GW8926sumjdC2yiWw8PGuhvYEzmL1R0/oDbzBk3DLzDoayLlX4AtHOVqh/a4yoilqohjKyJO/PpB646uV96m1/Bg5dxANzFXL5q0GPbWs6XqUnYmNqBPY+E2W3OyI7aBqux2ErmdDHmbQAhaiIyJbstTy/woIjGfKWCSFjpSwjmy4ZhEdgcaATQCuKgemw46Vpwb87eJjYk9bVG0AaMft5Ul74qxK3betBzjUHSGT2VHfD3L+35D48jLtMfOndU+sM8cqvgtHu5cjBZHmC2/NlBi26xiObxsqnkrWxIXs7z/dyweeIRgsY+g3kfaXc2Qr4WCM1zqWEtJrLCHULnD/kbVFbxc/645n5qZ9SR5pul21rV/nUR+F1bWTV9gydwR3KQkUthHpNiJzximL7CEx1s/TGaKqgqON/PePmkz7xll1KvNytAdPPmQobhHS96wSOcNHJrgvMVHmcIXa4Ez34vv8X/m5M6X2cW59OtOarxWZZUq/CyR8XJ02wiLpsncH8C0stiygJA2ycCFWJ7JVR48VrZWXUw8v5O21NO8P23yjXCQDi3DLjnEAqJH5T8zRIFucmSETli6eYu9cFpm3CaiUpLbNtgRXz/j9ytL8/BG1ZXEcntKHV9PPfYxeIf59X6ihb34zGHao+fwXOMts5oWc9wIUUkdLbhiDE9yM802cVq5kjhnjeAx0uiOAH3BpTOf3iQEu2PnUpt5jVhhLwOTNLX2laPbusvRbUcjtg2QJydMvNLBxbJl0p13nzmE1xweE9U2ue3Svnr+uPB/cmrnj1k08Bj16VcZMlL0BZZO6fXnRKOOADvkIEMUZlVsy5X92kK4qbOceMwMUmjsiR7G61EIegPLaRx+kVBxfoltTquA10wjNY1d0XNn/PiG5sOpRUveQ9KYd5FtyFIUpNsRoS+0grSnlprM6zisApbDSxgPV8uFrJY1/FHbw06G2CWG6ZOlIgphPDPm51aK2jRIlYur5DFBQr0McI5s4CQSuCVE9I04bJ0dsfOnrRLtTDDkb+EPiz7B0r7/5qTeXxIr7CVU7Cm/p1HRDKgIbIxbNr5a4sTL91dW3E/WjFJleikISSrUxNbqK2iPnTtjQnZP6CRS/jaCxV7ChQ5GfI3jvNu6yFCNT0W3TTOD5ai2aulnOTMTVTnq6zYtSEmw2IvLyrMjvn5mLFnGIgSbat5CLL+bpuEXSWa3HXnicBoJ6AO4rBydoVPJHGJMNlocQQBLambHrw2U2DYnsJx+Xqu9li1Vl7K87zcsHPgDIb2PkN5H2lPDoK8ZnzE8Lqrihcb/MW8GeyO+Rp5tuo01e75JLL8bU3PPieqcQtrE87sIFnvxmGn2Rs7g6ebbp/wGdixm3jOJx8rgNYaRCDZVXzVlFaRS2VIV0pqQ99hMKVvXIfq3Ek39gnPSL9BTWDZObANYKZNsEyn2kaGIObmKgEeJhcS0BrGlUfJfqP4fU36MA7E1Fy/X3Ui40E1bdjPvybdxnx86RYZ2OUwrkSMOECSSPnIMiDwZDOrsANfKpdTN4Iyq30jhtnIUnGF2x9bM2HHH0hdcyt7oGSzt+x212c10hk89qu29xlCpQqQxRFdoBc+0fGBKzf7nE7bmRNfC6K4wI7PdGKAvsIRBXyvhQvdR+YgslTE20sdObZCM1CclLhUxGSh33tfKBhon68VS9mpzW1k6wqfSG1w+ue3KWJqHFxreQ29gGad33k+k2InXHKEruALdNXWdx2r8BHAzMsu+baN+bY0ySMgcxmkVyLirjhi5OOhrJuuqIpHfAbZdsiSYB/iNQZxWnoyrmr7Q0V0bU4IQSHcdmq7hsE2kJudNMQEAKQ2kkLhcdeTdcXqCy0nkdhLP76JvzHetjiDvtJezlRSPa/voEhm2MUS0XETBP42FISSSDEap8IEwyEsTIQWNMsR5sp4lY6qO+/U+PFaWojPMzjngB3q8SOFkc/WVdIRPY3XHD6lLv4LLzpfN20u2BJSN3G200vWIA6tcJdGu/HNiCxeWVqqSaGmu0vNRH1HNiSVc2Dh4bjhIf16j21VPY+MKYuGZHWTbmosdsfUksjuoyu8sif+V6LYQQ1qRPpmnRkW3TRs6FsMUsbA5k7ppt0uZCUqRXFlMh5dtVRfPShsMh5+X695BqNhLLN9Oxl1F3j0zk/djcdhFfMYQAsm2qvMPOdGaNyyKpo3H5VBim6KE4Qywse56Nicv46TeX7Fg4HFCxR5CxR4Mhw+3mWFHfAPPNd06Z01SD0V/cDHPNdzMOXv/nersNizNPauzz5ptliuODuC282yrupDnGm+dFiGsZOa9knh+D1W5HaVU2jlEqGza3edfRNdRChGHYzCrUzRtzmiNHVuevBBw6l/g3bWN4JbXELmtEGkdd1NN4BsT3Zaelui2ojWMZhcI2pKqyLUMOWfmhp1zV/FK7fWcs/f/sjKzi+tdK/l/rg66RRZNajQTOuSgyMKmiyzDokgOgyV2nGvkIsIzXGmwVBghz97EuhnzazkIIdhSdRnVmTeozmzBqw9OWlB3mxkSuZ349UEG/At4suXD05qCMhWYls1gziDmd+GcbOr2PMXWnLTHziWZ3Uoiv2vSYlsANyeToEdm2Eua5UeI9Byt4JsTBknpZ51smnQbfeZQJUX/9aOIahuHEOyNnc2gr5Wz9/47tZlNtAz/mZ7gMkY89VMSKR6XPoLCxRAFJLMjuEgkuXJlyVYi5aIBRTrDq44Y4TPsbSTnjpPI7cBrDs/8rP+xIGUphdTW2Rs5fcbSBYtmqTKbVr5uhKsWNDdOWcTAnrGCQ8eLkBITExAITytQSnVqGn6eaGEffYFl474bAsFSEiyyY7xID89onaREnmFZJImfWgJT+t4lkjQ6KQpkhUEBE00KWmWENbKBRUTHFz6SsuTHbOXZkVhPzjMFRX3mCGlvHY8u/Bt8xT4ctlkqwqO5yiJbSVgbLdhzLBUTRykYFs8VU2SFicflwJmVxGahIGp3eAWD/laCQ88TKnaT9tbhLEe37ZNpOslQjX9eCdvziUEKFIRJTPpYKZOz3ZwpoVQYIUtXaCWDvtZZa8eQv5VN1VdyeuePaUi/ws7oWmzHzEbDj0a1ZdzVdIZPO+R6o8URYgEX1aHZixI+sXvi8xTdGeLl+pt4aPmXeK3mreRcMVxWnvbYuTzbfNu8DSvvipzKS/U3kXEnqc28TqjQhcPWy2HhM4fTKlCd3UxQ78UpdTbWvo1nm94/rRFneyNnMuytI1TsRtjmtB3naHGbWfzlEtJv1Fw9ZdGSRdNiOG+gCcF5i46jw+jy4TzrNkx/FSFriEh+z0GrrJRJkvgZolhKy5hCitLEsoaxsFhEDenkW6Z0/0eiK7yS7YkLKDqCnDm8lWusBVTLAL0iyz7SB5Ush9KM3l7SpESegjQ5y67jHXLZjAttLitbKsktHGyPnz+jxz6QrCfJjvgF5F0x6jKvT+qe47QKVGW34zdSjHhrebL1I3N+8GPaNm90pXm1Y4g/7UxRNKwjbzTP6Q6tYNjbiNMu4NNTk95umUyQxE9W6GWB59CMoJMWOki4yG6ZfBRMJaotQ3dwBT3B40vRz3hr+OPC/8mm6qsoOoPUpl+nJvM6mn38XltxvASkCynkEc/HdFHEoigsXNLBYsuPxxxBCo29kSMXKrI1J72BZRgOH5Fi5wy09vhx2XncZqYsGs9M5O9I3uDF3YNs7k5XlpmuKpzCi1fas/bZHwt+WycnLCwEDm8pnWnAv5Bh7//P3n8HSZbd973g51x/07vy3VXt/fR42zODcQCGA4AESAACAXojw0c5UqJEymvfW602FLHap5BWT7ErvfeHFLGx74992lUsJfGJogjQAAQxgwHGte9qU10+3c1rz9k/sqptdXeZzMqs7vxEVMRM1c17T1Vn3nvO73x/3+/ESuHq+pqv09F4ljF+WZ7kZbmLLBazoskHLHCdJskamYMbQaGoEnCeKtOixrxoEamE/bLAT8lj/Kw6wWFKdyWM20njRpjQJ+U3tzSGfqVlD9Fwx/DsIXyzQGDkiIw0se6QaFbbamILmwd1v724tg2dvGuy2OyNUjfRbM6WXqVplah4p2/MOfaQZ0JlQcAsXk/G9rATI6nS3jh4Wg33dQrxejETDydaBuDjbUyrvhfnyq8yXXgGicF44/3tXccrRTqcx5ABFwvP3XftvhqOsKeS7unm86DY1seERp7vTXyD/++Rf8x/3fvr/MHUrxDv8PalC8VTvD/6RVpGkbH6+0wuf5vd1e8wXP+AkneebHANd6WtArW1Cc9aWHGT4ebHpMM5FBrfnvg53h37WtdbclfNvBNhUmpd6Oq1NkI2nMGKGyy5Ux31k1ttIR3K2pyY2FooxNDEXs6Ovk1Ny1NqnMaObneYKuFyWJVw0LncweY2hcKTy+gyYDwGu/JT21/oFoIPhz/HTPYxdBXzVOMKX5AHGFYpZkSTqzRuK7h5RFyixpLwQcFbag/vqH1dDY+4F+mVSO4ldxezWywydILzpVPMpw9iyIDCGkXbW9FkSKV5mlS0SMso8M2pv0jVXb+aqRdIqfjkeoPZuk8QSZphzDfPzNPwd87ieTNEeoqLhefxjTwV78y6X5fF4ogqk1Lmfe8bMZI5PDwijqjSA1Vwt7IaPKPQ+eHIFzpiJiw1k++N/yTfnPwVlt3d5IMZJqvfueu+uFEMNEZJYyqdZYItj3MztFZaSHNYjEcBpvTxzOK6W28XU3toWmVS0fqLrr0kFS1iyhZVe4zF1P5tueZMzWfJi7i0cHOh71tF0jjYSnZ8w6qbmElAgiLRDEy7/feTmsF0/hlaZoFS6+J9X+9i8pbawy/IkzyhRjARXBI1PmSBRVprbmbdD4liCZ9zLDMtaiwKn1gpjsgSPyNP8FPqOPvvkyqeCdvhZ/PuPuZ76IW0k6n7EUEs2VVyKaUtmkHv3s9tBdIUhoxIh7NA+z77hBqmoGyu0tzwe2zAg1nGpyVicspaf4hRn9NWtXlUnV0btkLpBkoYvDf6ZRbS+0lFixT86W27tp3UV9ppbc6VXr3vsc0gQSrF4R62kMKg2LYjCMw808X7V293DELwSeXTvDf2ZarOLgDspEkhuEKleYax2g+YqL3LZPVPmFr+NmO171P2zpL3r7RbPuMmQm1OreFEywytFNoiPc03p/47Phn6zPakqayYeTfsYYr+9Lar+dbCSFqkwgUEkg+G3uloC8tiMySIEp7YXcAxt1bocUwdY/dzfOg8wTwFdtW+h5bcXkB4TA0xTIoqIa0O7czXVYiR1NFUwmFtL3PFlzty3o0S6w7fG/szLLmT5P0rHA883pH7qCiXq6IdJQ9QJWCaOlUR4CqDL8lDvKwm7to93w5WgxF0GXGu+Epf+EvGussHQz9C3R5hyDtz13toFaFihrwzpKNFYt3hD6b+/LanqG4UpRRn5hrM1nzCRPKNFyZ5+WAFpRTfOrtA1eutD1e3uZJ7gpozjhNXMZLmul93TJWp4FIjuud9Y37FZymjLN5UU+tPMLxV1ZY9yvXs8XWP64EIwdXC0/zOgd9iOvc0moyYrH6HQmtrz5ZhUmQwqfWo2OYRESOZVDkycRVDBlzLPrbuTcZ2knsRQwYYsd/l0W4RpVbukSGX8s9uyz0ySiSLzRCpFIj2fQOgZRRIiRSuhFDunHuFLoN2y7NwcIybNgWzK6m9dlxDTx78Pijh8OPyEN+QxzmoiiRCcVYs8wlL1AkfWBBJUCzS4hzLXBZ1loSPVIoTssLPyRP8pDrKHvL3vXfoMsSNltBUwunKmx3zzn3UqPkxUime31sm5xjEUvWs4BbrDudKr+CZRYabZ25Tt42rDAg1ULd1mATFMgEhCSfVMNlt7ujoBpqMSYUL6DLkdPm1vkknblkl3hv9cWrWKMPNj7Hi9c+9tkI6nMdKPBbc/Sy5U/c8TkpFw48QQnBoM77hHWRQbBuw/QiNT4Y+y/92/J/yv574F/zHg3+fP5j88/xg5Ee5WHyOqjNBIgwM6ZMJZyk3zzFS/4CJ2rvsqv4JU0t/xET1T6k0PqHQurQScFBDu09LaiaYpeKdJh0uULdH+N19f53p4vPbKsVdNfNGQc7vfZtLO4G0SdWZ4FKxcyloYSypttqpZq9sNIX0HkxVMryff40PzWOAYOwO2XIRhyOqjIvONPV7n2idJChachlNRhyLNLyRn+tp8m/NneAHwz9G0xpirP4DDicOb8u9lJTDZVHnAlWuigZ1EVBRLl+XRzlOpWd+IG60hJV4BEZ229qj1sP17HGu5p4gESbD3kd3H6AkFe8cqXABBXx7189xNf/Uto9zIyilOL/Q5Fq1RTOI+crTu/ipF/bw1z5zmE8fH8XSNb51doG5em8KKNtByypxOfckkZ5mqLl+dVsBh8OqvKKKbdz1c4+IJeETKclLapwhUus+d1vVVkUJnR+O/FhXFs+eNcTv7ft13h/9Er6RZ6TxIWP199v2DJugrFwyWPhsf/vxrX5tB5IMdtxW6l1aRwvpKqGRYSG1h0SzyQXXujTSzmAlTazEI9ZsLhZf2JZrLjRCmkGMa+qgFFHS7h4IjCy2SGMiUD0qtG4KFSJR6HoBXdxs7fasMtczR4k1d0OdBJPk+Cl5nC8lBxlXGTwR8bFY5DxV/DUUfwmSBVqcZ5krosGS8BEKnpDD/KI8yVfUYXaTW9dzOB3OY8UeTavC9P2SdwfckzCWNIIIXRM8M1VgdymFbWjM1npXeL+afXxF3dYiFc4DbXXbk2pkRd3WGKjbOkiNgJaISSmTZ9Ror4fTEdLRPFbSpGUWOV/sr9CUmexJzpY/RaBnmKh9D9GFjrRb0WRMKlpCKMmZ0qfuK5ZphjFBLEmZOvsrvQ0j6b3cYMAjTWRkmMscvis+WEsicsE18v40+eAaWX+GbHiNbDCHmXikomXS0QLQDv+WK4lEsWYT6Gli3SXSHSLNxU4a5P2rONEy86kD/P7ev0TdGd/23/V2M+9z6zbz7ga6DEhF8+gy5qPKZzvanrzkhbTChHLa5uSuQkfOOZZ3yGXS/G+ttzlmLjHa+IBi68JtqbYn1BAfiQUuUccj2lK62JLySCVNsjJhr/Uk7+ce78SvsSUuFl+g3DrH4bn/xETtXeLC8yRyL7+tnWdOtHdH98k8X1KHKNDbdvNMOI8lPS4UXsSz+8icVmh8NPQ2leZpKt4ZlpwpAnPFPVkpyq3zpIM5dBXx3fGf5FzpU70d7zq4vNTiylKLuh/z+ZNj/NypveiaQNd0fvX1A2Qdk//w/av88fkFntxdYKK4/oLRTuJy/hkml7/NkHeGGRmi1rn7e0yV+UgsME2dgORGy7WirTrwVMSEyvCc2sAzQylywQx20mAmc6yroThSM3h/7MvMpQ/x7OX/hYI/jbPcTiv1rcKGzlXCxVUGSlO0VITbxYTGO/FJCEWCpXSOxRIz8fGMArPZjbWgz6cP4i3/EZnwOovp3qee34vVFtJFd4qqO7kt15xrBPgr9g5LXjvAyDJ0EBrCGkGPNAwZ7ZhteKlClADDvPuz2Q5K+A4F/wpz6cPr3ljVEJxgiMOyxLfFNb4jZlgSPsv4DKs0Iyum9kv4N9rVAhJSyuRZNcoLaoIh3I1tdClJOpzDkD4fFT/T9yE8/UrdjwhjSd4x2TuU4Wo1IOsYzDVD9vZoGhIZaS4UT1HyzjPkneHiynxoVd22rAXMKm+QTNoB1IrCNCDmaTVKmYegG0wp0sFcOzSl9Gr/Bf+sWN2UWhfYvfwnDDU+ZraLqdqpqB2M0DILXC7efyOuGSSEiWQ051BK91bh2LVH6uLiIt/4xjfI5XIUCgV+8Rd/kUbj7p3jW/lX/+pf8dprr5HL5RBCsLy83K3hDehzpG6ynJrkYukU3x/7Mt/a+6v89uH/gf/XY/8T/+/j/5T/ff/f4DsTP8vHlc9wLfsYntluIbCTxm0tqbtq36PcPIcTLXMl/yT/Zf/f6EmhbZWbZt7Bhsy8O00umMGOm9TtEc53OF5+sRniRwknd+VJ252p54/lHTKOyXWZ57sjX6FqjzPkncYNl24cU8DmqCrjYjC9Be+2gIRI1hAy4tnQ4troT29Pq/GDEBo/GPkis5mjWIlHxTvDMSp8Ru5hWKV4Uo7wk+pYzwttZuK1gxHQOFN+o6djWYuaM8650iv4eo7R1bAEpSj402SCWUzZ4ofDn+PD4S/03IT2QcxUfS4uNln2Ij51aIi/8NoBzFtMYA1d4+df2sPXn5+klLb400vLnJtr3Ggfe5ioOhPMZg4TC4uyd2HdryvjckAVsdG5cosqdhGfhggx0HhLTW3I99CJazjRMkpoXVO13clM7iS/c+BvcanwPEJJJmvfoehd2JD3qbni22agsbTNCiePiAhJEYfhqIUhfWYzRzdceFhyJ2mZJeykCbJPA0KUJBUtocmIS/nntuX90Qxiql6Ipgkmiik0IfDDm38fYY4ghImudoZnmyVjAiQK0Ny7/e4WUvup2RMrZtqzGz6/ic4ptYtfkid5QY7hKpMZ0eADFjjLMldFg2URYCqNl+Q4f1Y+zo+qg5tKmHSjZeykSaS7nC2/tuGxDmhT99tKlj2VNCnLYCzvUEpb1HvsW3o5/xTL7iRW0rwxZ73du22gbusENUJaIsZS+sY2x/oYJ65iJw1i3eF0pT9DU2Ld5d2xP8Oyu5uCP00qmOvOhZRqp5BKn+n80wTG/WOGG0FMlEgODKfRtN7O5bumbPvGN77BtWvX+M//+T8TRRE///M/z5/9s3+Wf/fv/t09X+N5Hm+//TZvv/02v/mbv9mtoQ3YyQiBZ1XwrApX87fH/Zpxg4J/hbx/mZx/lWw4Qy64jhNVuVB8ke/s/nkivbeqjlUz75J3jop3hmlr+9sFdBmSDufRZcjHlbeIjM7tqMWJZHnFH+rlDrWQApTSFuW0haEJPhD7qQz9CCdn/lfG6+9yvvASUm/vWrTVbYtcpLYpdZtCMU+DbNxkdywpp1/kfPpAx36PrRIaGf507M+QCucpeRdommVOWEMclWU0RF/EyK9GcledCWY66VPVQc6VXmWi9i7jtXfJBVdRQifnX8OO65yuvMl7Y1/rjwLrfZhvBJyda7DUjHhuT4lf+8zhNf0RNU3wE0/tIu9a/JtvnueHV2sEccKR0fam1kODEFwqvMB47X0K/mXmU/tBW18R44Sq8IlY5Ap1dtH29ligRYuYZ9Qo+yisfxwrXm120uR6+gjXco9t4pfZHC2rxH/b+5c5dv0/cGz2PzDU/AQ3XuZ65ui6w11GSJNRFjUCxtk+hc2qX9temcGNawjg4iba6RrWMHVrmIo4TSacpeGMdX6wW8SJ65grxZXtaiGdbwR4YcKugsu+SpqPrtVoRbcX29AsNBUQk2D0IFRnI6STkEUhCYVOyrr7GS01g0uFZxhufkSpdYGmvTmj9AwWP6L287Qa479qFznNMjURkFMWL6gxnlVjW97gyoTtjo0ruSeoOv0dxNPP1PyIRCqOT7QX4eMFl6xjEkSSKJG3bURtJ6GR4XzxJYqtiww1P+aS1f7M76VwQ902pzyGB+q2TdNWtfn4xBxTZUY3YPnQz2TDWaykuRK20b9K7aq7mx8Of4Gnr/5bxuvvc944RaJ3Vk1mJc12WrMwOPuAYARobzCh4NDI/Yty20FXim0ffvghv/3bv813vvMdnnnmGQD+2T/7Z7zzzjv8k3/yTxgfX7vi/Ff+yl8B4L/+1//ajWENeMi5V0uqUDEKvW9UKldyT7Bv8b8x0vghZtzsaLFrPWSC61hxk6ZV4Wyls8qjJS+iFSUUUhZPTnZO7iyEYN9Qhj88u8BcPeT02FsUWxfZt/j7TNS/z3T+GRCCPDbHVJk54XGJGkc2kBwIUCdES+qYKuGlKM0nU1/tm/fNKkvpfXw4/A5PXv1/MlF/j3OFU9Dhh9pmEUqSChcwZMj54stIbfva0DZCaGT4aOiz5P0rDDc+IjCyOHGVS4Xn+M6un+/bca+y7IWcvt5gyQs5MZHjN94+TOY+KlIhBJ8+NkLeNfnnv3uas7NNgljy2EQBvcc7fp1kPr2fxdQecsFVCsEVltfZnlfBZZ8qMCc8rlLHQMcTEQXl8JravaEitp3UV7za4IcjP7rtXo9KGPxw9MeYTR/kucv/M6XWRaaW/5gr2Sdutkzfh7JyyQiTq9uobJOoGymYj4UaZtLC13PMZDdRqBQa1zNHmai9Ry6c6ctiWypaxEx85jKHqNvdH59SivlGQJhIPnVoCNPQ0DWBH99UPUpjCE1YWFLRIiHb58U2O/GJhSLSLNLW2ibZs5mj1OwxRhs/RE98ki3YZQyT4ivyCBeoMU+LwxTJdcB83Uw83BV/wo8rn+m7+cZOIU4kjSBGE3BiPA9AMWUylLUxdcF8PWCs0Lu2wsv5p9m39PuM1X+AHS0TmIUb6rYrqsFVGgxtQhU5oE2TCE9EGErjRTXxUPwdjaSFEy0D8PHQp/v+3nChdIoh7zQHFn6Xsfr3ubyyLusU6WgBS3osObsfGFq2ej8QQnC4x+EI0KU20j/8wz+kUCjcKLQBvPXWW2iaxh//8R9345IDBtwTJYy+ukm1rBJXck8Q6Wkq3vrNvDuBJuP2Lqr0OV1+/YEy3I2y2AxpRZITE3lyTmcLFhMFl2LaZMkLkZrBu+N/hrnMIZy4Stk7e+O446rCMGkaIqTJ+o3CExQLqkk6bnEykKjcm9vmpbNRzpY/xaXCs0gMxuvv3zMYZLtpByM0CYwM53qU3rperuYe52r2JEoYpKNFZrLH+cOpv9BR/8JuUPcjPr5eZ7EZsLeS5rfeOUops75F33N7S/yNt4+wbzjDlaUW3724eMMk/WFACYMLxZfwzHLbGH2dnwuB4DE1RAWXeVrURECiFK+p3eQ3olpRqq2QTBrMpQ5zNd87r8e57DF+58Df4nzxJRSCifq76/p7lHBIKZNE3CyAdRufmFAkOMrgUByttJAeIjDzmzrfcmqKplXGXVmo9BNCSZxoGU0lXCi8uC1zk+VWRCOIcS2dTx0eJm0b2KZGEN9UtvlWiRQujlJ4OyCRVKgQqSRoLo6+9vvEsyrMZo4QaQ6l1sWtXxPBXvI8y2hHCm0A6RVVW9XZxUzuZEfO+ShSD2KCSJJ1TA6OtBfXQgj2D2VwTb3nAUGBmedi4UV8I8dw8/SN76+q25SAOVo9HOHO5YaqTcVMqTy76b2SqRO0VW3te8PV3BO9Hs4DUULn+6M/wVzqIG5cpdiBe+4qQiWkwgU0GXG++PIDNzGbYUIYSzK2wVS594rRrhTbZmZmGB4evu17hmFQKpWYmZnp6LWCIKBWq932NWBAv3M5/wxVe5xMONdOUd0mMiuSZM8scrry6Y6eO5aSJS9EKdXRFtJVxvIOedfCW2l98c0Cfzr+darORDtBMmgnPeVW1G1pZW4omXSRFk7SICclzyZFPhz5sY7/Dp1CCYP3xr7CfPoAbrxMcQOJa90kHc5jyhbXMido9lMwwhooYfDhyOdYcncxlzrIN6d+lcDo/Q7Y/fDCmI9n6iw0QsbyLn/7c8cYzW9st/7YeJ6/87mjHB3PM98I+eNzC7ctunc61zPHWHZ3o8voRvrbehghxZTKYwqdOiH7VJ7H1fCDX3gLdlLHjZZRwA9HvtDTBGNoL/D+cOovcDX3OJqM15WCbaEzTAoTjWW2J8Vv1a9tSNkUIw+hFNMbSCG9k2VnF55ZRFMSK+6vOaETV7ESj9BItRXZ28BcPcALEg6PZJkqp3BNHdvQCaKbhXbfKJASaUwlUKp36Y3rRagIJUDTixji3mEoV3JP0rBGyAVX+2ZTahWhYtLhAroMOVv8FMk6Q10G3E3bry1houiSd29u9E4UXUppi6VW7wvI04VnqTq7cONlrKg9N11Vt+WVzVXqA++2TdAipiFCBIIX1TjaQ6Bq02RMauXecLr82rptIHqNbxZ4b+zL1O0xhrxPsOL1r8HuR3sj3yMwslwovvTA4xtBTJhIRvIOOaf3WaAbKrb9zb/5NxFC3Pfro48+6tZY1+Qf/aN/RD6fv/G1e/fA72BA/7Nq5p0Ii7J3fluuKVTSNoBPWpwrvULLKnX0/MteRCtMyLkmT+0udPTcAKN5h4xtIBNFI2gb3i6kD/DD4S/gmSXGG99HT9qLhFvVbY11qNsCEmrKI5MEvOIr5stv03Q2ttDebnyzwLtjX6VmjzHkndlQYaEbGEkLZ6Ud5kz5tb5Sk96LqrOL3z70D/lPh/5ef6WmrkEQJ3x0rc58I6CYsvjNd46wZ5Nx5pPlNH/nc0d5crJAI4j51pl5mkFvTaQ7Raw7XCg8T8vIM3SL4vVBCASPq2HKyiGrLD6t9mBscD9yVdU2nzrI1dyTD37BNpBoFmdLn8KzylRaZ9dVcBghTVqZ1DagDN4KHjEJkhOxhZX4BEaaq9nNqwITzWYufYhId8mvo8C4nbRTSH3mUofwrM5vSt1JlEgWmyGJUrx1dAQhBK6lYxsa4a1tpJqBbpTR0dBUb1VAD0JTkliFSEA3d9332IXUPqrOBEIp0mGXjLs3STpcxEo8fCPPuVJ/K8H7nbofEUvFifHbVU3jBZeca9IKE6TsrYq7ZRa5WHieQM8y5H1y4/ur6jYp1EDdtglWvdrGVXpj/qp9TCpawEqatMwC54udDbHrNrOZY5wuv0Gg59hVexehtr6Zm1ndyM8+hmc/+LnZXAlHODSc6Qtv4g3NJH/913+dDz/88L5f+/btY3R0lNnZ29N/4jhmcXGR0dHRjv4Cv/mbv0m1Wr3xNT093dHzDxjQFVbMvOv2KHn/yrakpmXCOeykQWDk+KjydsfPv9QMaUUJR8dy625r2wiOqTNZSmEZGrO1m4uBc+VPcaH4Aokw2VV7F5Qki8VxVSGtTC49QN2mUMzSxE0a7I4kBxnlo6Ef6fj4u8Fs5iifVD6Nb+TYVf0eRe/8htIHO0k6nMdKPGr2GDPbaAq/VaRm9zw45UFEibxRaEtZBn/9s4c4Nr65FrtVhnMOf+tzRzl1oEIiFd86s0CtD3b/O8G13ONU3QnspH5DQbAexsnwObmfL8tDjLMxlaMd13HjZQB+MPqjSO3+u6kXF5q8d3mZaBtUhdeyj7Ho7kGXEdngwd0FZeWSwaJF9wuwCQqPqN3KG4ApfRZSB7a8GbSY2kfTLJOOersJcStCxbjRMkJJLhS3p4V0oRHSDGKKaYuX9rcXKamVYlssby+8CnMYXehoqr8L7ykZ4QlJgsCw728aLjWT6fzT+Ga+3VreLyi1YunR4nL+KVr2xvxlB9xESkXdjxHAiYnbn4sjWZuC21YMLrd6/76eLjzHsjNBOlrESJpAOwW6nUzqDJJJN4hPTF2EKAUvqIkNb5D1JUrdEEZcKjyHb3XO/3pbEIKPhj7L1dxJNBUz3PhwS6drb+TXUGicLX1qXa9ZTSA+MNwf3SobelcODQ1x5MiR+35ZlsWLL77I8vIy3/3ud2+89r/8l/+ClJLnn3++o7+AbdvkcrnbvgYM2AnMpw+wmN6LEhqF4HJXryWUJBtcx0o8LhRf7LhqK5GKRS9EKsWp/d3brZ8qp8g6JgvNm0UBJXS+P/YVZjNHsZImQ832juExVWZEpfFEdF91W50QX/kU4pA3fcG5oc/tnIebEHw0/CN8f/Qn8KwSQ83TjNffQ5fbrExQknTUlryfL57aMZL3nUAiFR/P1JlrBOia4Fff2M+zezuzMMu7Fr/x9hHeOjaCoQu+dWaB+R5723QC3yxwOfc0gZ6hsgF1G8AUeQ6w8UJPLriGHTeYSx3gau6p+x6bSMW1qs+5uQaXFr0NX2ujJLrDudIreFap7RP6AHVbGYcUBolQBF32bWsREQlJSunsjQKEklwqPLvlQtSSO0nLLGAm/rZaNdwPN6q2wx+MHJcf8B7pFHONAD9KeGaqSD7Vbq9zTQND10juLLYZQyAstA4oEbpJJgloCIWv6TgPKLYBXM8eo26P4sa1G+r3XmMndey4TiJMPqm81evh7GgaQYwfJaRsg8Mjty+uDV1j31Aa29SZ7YNnW9OqcLnwDKGeYbhxu7ptTKWRQjI/ULetm6UVVduwSnF0E8/tfsSJq9hJg1h3+KTyZq+HsykS3eHd0a+y5E6S96+SCa5v+lzpaAEz8ajZo+vayA9jSStMMDSNI2M7sNi2Xo4ePcrbb7/NL//yL/Ptb3+bb33rW/zqr/4qX/va124kkV65coUjR47w7W9/+8brZmZmePfddzlzpm0a//777/Puu++yuLjYjWEOGNBTlNC5UHhxxcz7Ylf9RNLhPFbcINDTfDTUeVVbtRXhhQkZ2+DZPd0rVI2vhCTU7tihDIws3x3/OsvOLoqtS2SC62SwOEGFjDK5yNq+PQmKOTwycYOToaJgTnJ6h018ldD5aPgdfm/vX2UhvZ90uMjU8rdxwuVtG4MbLWMlHpGeHrTDdBCpFKev15mt+yRS8Uuv7OWNIyMdvYZj6vzFNw7yo49PkLJ1/vjCIleXd/5k/3L+aWr2OOloDi3p7iLLiuu40RIAH4x8/oGqttXFoWvqzDW2pxB0Nfc4i+4eDBk+sJ3OxmBItX3blrqcSuoRE5GwNzZIy4BId7mS3XoLrm8WWHZ2kwiLXHCtAyPdOqloEUP6XM8cI7AKXb+eF8ZUWyGaJnjr6M37RsrSMTVBcsecQzNHQJigEhL6NzjFSkIiFKFmkzUenObqWRWuZ44QaXZHTbu3Qiacw0qazKf2s5A+0Ovh7Gjafm2SsbxDeY2uit2lFEXXZLHZH0X3i4XnWXYmyETzGEn7WWve5t02ULeth5CEKgEJkmcZw+zzBOX1kl3x1p5NH2HJ3dfr4WyaujvOD4Z/lKZVYbT+g81tdCh5w9fyfPGldflaNlf82rKOwe5if3StdE1v+W//7b/lyJEjvPnmm7zzzju8/PLL/Kt/9a9u/DyKIj7++GM87+au7r/8l/+SJ598kl/+5V8G4NVXX+XJJ5/k3//7f9+tYQ4Y0FNmbjHz7pqfiJJkgxmspMl0vm3Q2mkWmyF+mHBwOMtQtnuqptG8Q9YxCWJJckeK4nJqDz8Y/SJNq8JY/X2M2OOoqjCi0rRERG2NReMiLRLlMxrHfCow+Gj4R4mM3ifXbIa5zBF+Z/9vcaH4IgqYrH2HgndxW9pKM9E8ZuJxPXOEhv3gxc+AB6OU4uxcg5maTxBJvvH8JD/2xERX/CdMXeMXX97LTz43ScE1+e7FJc7PN1F9Zii+Eer2KDPZ48SaQ6XVXV/MXHANK24wn9rfjrt/ALVWRBBLUpZBM9iexM9YdzlfPIVnFttpeA/4tx0lQ0qZa943O4lHhERxMhIYic9iak/HwlXmMofxzTzZLeyqdwpNRjhxFYFqt5BuA6vBCBMFl8d23Wyvcy0dU2+3kd76GVfWKEJYmCgCtT3vy82gywCFQmopUvr61CxXV4IS8sG1ngcl6DLEjRYRSE5X3kSJh6NI0CtqfkSUSI6N5dZ8Po4XHAopa9vutQ+iYY9yJfckoZ5i6JZk0n0r3m3JQN22Lpbw8UVMUbmcVP3tubtejKSFs5Ki/fHQp3eE9/H9uFR8gYvFF0k0i/Haexu+97pxFStpEukpzhfXt5HfCGLCWDJRdHGt/ri3dq3YViqV+Hf/7t9Rr9epVqv863/9r8lkMjd+vmfPHpRSvPbaaze+9/f//t9HKXXX18/93M91a5gDBvSURHe4UHyRllmg4p3ryjVS0dKKJNnlg5F3On7zlkqxtGLA/PKBSlfNKMtpi3LawtAE8827F4Hni6c4V3qZWHPZVf8eGaWvqNusu5JJAxIW8cnHHq/4oJx9O16VFZh5vrnnL/Le2FdoGUVGmh8zVn8fvYttVEbi35gcnK68seMnB/2AUoqLCx7Xln2aQcwXn5zg689PdfWzpWmCrz6zm196ZS/DOZsfXKny8Ux95xbchOBS4Tnq9ii5LvpiWnGDVLSMQPHByBeQmvnA16wuDm1DI4glUbI9KqIruSdZcqcwZOuBgSpl5ZDBpNXFNtIYSUvEaAqOBzGairmUf6Zj95Ald5KmWcaO69Bjc/RUtISZtPDMEldzmw9/WC9KKeYbAWEs+dShIWzj5qLDtXQMXUMpddt7LzDLpISLpSDq15AEpVAqQgoQRhFjnZYF86n91JwxhJI9D0pIh3NYsUfDGt5S6u6A9vu85kcI4PjE2jZCY3mXrGMQJYpW2B8Ft4vFF6naE2TC6zcUPyY6jw/UbesiRlIlIELytBrGofeJk50gE85iJR5VZ4KruSd6PZwto4TO+6NfYi59CCepU9pgIGA6bLeQzqYPUXfG1/WaRhATS8WhkcyDD94mHgInwQEDdjZXsyepOhs3814XSpELZrDiJldyT7DkPtjfZKPUWhHNMCZl6Ty3r7ueCUII9g1lcEyd+bXar4TGD0a+xLXscYwkYLjxIUdVmVGVxhcxNdqTmtVQBGSLg6Hkycjk/dEvkehOV8e/HSih88HIj/J7e/4yC6m9ZMJ5Jpe/faMg1mnS0QJW0qJhjWwpQXDATa4u+1xe8qi1Ij5zfJRfemUfutb9IqYQgrdPjPGX3zzIrqLLmbkG379cRcqdOelfSO1jIbUfJXSKfnfCk1ZVbQvuPqbXoWpLbjHzHsk7GJpgobE9hY3ISHOheIqWUWDIO33fY8u4pDCJkYRdKri1VlpIh6RgNEmIdXddysD1UrdHaVoVEBrpaKFj590Mqymk17IntkU9vdyKaAQxrqXz2uHbPVpdU8fUBZoQ+LcEdMS6g6UVEAg02X0vwc1gqYSAGAlo1vpV+u2ghGfwjVxvgxKUJBPOY8iA84UXd6ySvl9ohgl+lOCYOsfG1g4NStsGE0UXy9C43ge+bQA1e4xruZPEmstQ88yN7++nwNiKum1hoG67J8v4tERMTlk8qTprrdErNBnfaJk8XX79ofE+Dowc7459lZo9TqV1Bjuqrut1bQXwEgLF2fLr69qEU0rRWFGwHhrpD782GBTbBgzoOYGZZ3rFzHvIO/PgF2wAN17CjmskmsUHw5/riupocSWFdP9QhrF894tV4wWHYvre/huRkeZPx7/OUmqSvH+FEX+Oxxgis5JMqlDUCakTMhT7vNUSLKePMp1/rutj305mc8f5z/t/i4uF5xBKMln9DoXWpc620ChJKpxHlwHniy8+FMXKXnO95nNhocmSF3HqQIW/+MZBLGN7H9Uv7q/wG28fYU8lzfSSx3cvLRFvk/qqowiNC8UXaVhDba+mDqv02qq2JQRyxavtwaq2Vb+2tG3w1GTx3hsHXeJy/imW3UmsxMMN712AcjCoKBdDdM+3zSMiQnI4ErgyZMnZRd3uXGK9EjqzmSOEeqqnvm26DLDjGgrB+eKpbbnm/EoL6aGRLFPl231rTF0jZRloAvzw9s+1Zg5hoEOXfQ43SzYJaQpFIHRce2N+Rtezx6k7YzhxDT3pjX9XKlpaaYtKc6b8ek/G8DBR9yPCWDKUtRnN3Xv+sbeSIWMb/RMAJAQXii9RdcbJhdfQVt6PJjqP01a3XRmo29YkQbFMQEjCSTVMloejKJWKFrCSJi2zwPniK70eTkeZzxzmk6FP4xt5dtXeRazDpqCtamvRMIe4kl+fj2uwEo5gGdqg2DZgwIDbuVJ4mqozQSqaR+/UJHdV1ZY0uZY9zlz6UGfOe9slFIvNkEQqXtpf7mqb2yrjeZe8a+KF924Lq7m7+P7oT9C0hxlt/JATkcOIyhCIhGV85vDQZYtnAphUNu+PfumBpuY7kcAq8vt7/zLvjf0ELaPASOMjxurvdyydz42r2EmTSHc5X3q4Jge9YLEZcnauwWIz5KnJIn/t7cM985w4MZHnb3/uKEdGs8zVA/74/CJB3N8phWsxmznS9sVUCZmws95dbdVwg0V3D9OF9RXrV/3axgsuB4czFNMmS972LfxDI8P54il8I3+bX9BatH3bDGr3SXPeCh4RSilOhApNRm1loOjstHQxtYemWSG1EmDRC9otpD4Na4jrmWNdv16cSBZWrB3ePDa85nM55xptZVt0+2daN8towkAQ3fWafiCdBNQ1SUvTSZkTG3pt06owmzlMotkUe6Ruy4RzmInHtezxdbdFDbg3db/tz3RkLId2H/X3RMGlnLao+f3zvl52djOTPU6kOVRaN1OzD6iBuu1+1AhoiZiUMnlGdW5zpqcoRSacxUx8LuWfxbe6FzTXKz6pvMWV3BOAYrT+wf03P5UitaIAvlR8lkhfX9BBI4iJEknBNRnLux0ZdycYFNsGDOgD6tYIM5ljxJpD+ZaH7lZw4hp2VEOh88Hw5zu+iIH2RKcZxjimzvP7yh0//1qM5h0ytomUikZw74nTdP45zpReI9LTHKp9n8dViYwyOU8Nj4g9YcQbPlzPnuBa7uS2jL0XKGHww9Ev8ft7/hKL7hSZcJbJ5e+sW8p9P9Lh/IqfwuGuBG88StRaEZ9cr7PYDDkyluVv/shhcs6DlVLdZG8lw9/9/HGe2F2g7kf8wdmFvjGZXi+JZnOh8BJeh30xrbh5w+T8g+EvrCslC276tZ2cyDNWaG8ctKLtLWJeLjzNsjuJk9Rx7lOEqiiXLBZeFwovEQktEZOWioORJNbtjraQrrLsTNKyimgqwowbHT//eminkAZcyT2xLerf+WaIF8YUUxYv3eO5nHVMDF3gR7cr24QxDMJC24Zgnc3gJCEREGgOOX3jYTxXck9St4bJB1e3PSjBTDycuAYITpffGvibbhGlFLVWhAKOj6/t17bKWMEh6xj4kewflbYQXCi+TM0eI+9fQcj2fXZV3ZYbqNvuQqFYpEVAzDFVpkz/FFS2ghNXseMGsW7xydBbvR5OV0g0m/fGvsKiu4dscJ1MOHPPY+2k3vYa1yzOll5d9zVWwxF2l1Lb3hFyP/pnJAMGPMoIwXTxeer2GHn/GmKrZt5KkQ1msJMms5nDXM8e78w472CxGdIKE6bKqW2LWHZMncmVG+ls7T4qQCH44ciPci17El3FvFK7zqhKo4TCSVp8yhdkcPj+yI8/EmlgM7nH+J0Dv8V0/hk0lTBZ/Q751vSmFxy6DHBXjOHX66cwYG2aQcxHMzUWGgGTpRS/9c5RKtn+aMkdyTv87c8d5YV9ZaJE8gdn56m1etOCtVlmco9RdXZhJl5HiswA2eAadtxgyZ3iUnF9qrZb/doe25VnNOeQsQ3iROFtYxEzMHJcKLyAb+QZbn5yz+NKOLg3fNs6WxD0iImRTMSSchJTs8epup0v2Me6w3zqALHmtAss24yRtLDjOlLoXNjGFtJWmPD0VJFieu0Wq5SlYxv6bZ5tAJgjCGGikH25yBcqRKKQeoqUvnH1x0JqPzVnHLFigbCdtFVtTZbd3VzLPbat134Y8SOJt9IydmJ8bb+2Vcppi0rGbodrbZNH5npYdPdwPXuMRFi3bQbtH6jb1qRGSEvEWErnOfXwKEPbwQhNZtNHWXI31h6/k2jYo/xg9Is07SHG6j/ESNZ+b7c38lsspvZtyGu8GcQkSvVVCykMim0DBvQNC+5e5tP7kcKg4F/a0rmspIEbLwPww+HPd6WYpJRioRkQJ4qX9pXvK+HvNFPlFFnHuKdv2yqx7vDd8a+z4O5hNJjjpUAnp0xOBgnPh5Lp/DPMZY5s06h7T8sq89/2/ho/GP0xfCPHaONDRus/QJMbV66spgQ1rGEu55/qwmgfDfwo4cNrNRYaIcM5h7/1uaPs2qbC9XrJpyz+5o8c5c0jw+ia4FtnF7bN1L8TBEaW6cIzBHqWSgd8Mc3EI3VD1fb5dRsZ3+rXdmQ0i2vpTBTaxt2z2/z3nC48y7K7e0UBvXYBMoVJWTkYQmN5JVymU3hERCrhaKywZMx07umubXospPbjWSUywfanUKaiRcykRd0eYT59sOvX88KY5VaIpgk+fezexuGuqWMbGmF8h8rHGgNhIVBEXUyx3gyakkgVIgUovYQhNr4hkWgW0/mn8Y0c5W1sJdVkTCpcQJcxZ0qvrcvfccD9qa34tZXTFhPF+yuchBDsH87gWjpz/fTsEoLzxZepOaMU/GmEbG+6WOg8saJuGySTtmmr2nx8Yg6oAqP01zxpsxhJC3clwOzjoU8/9BvX0/lnOF98iVhzmKi9C3eoqDUZk4qW0FTC2dIr6+7KUkrRWNnMPDI6KLYNGDBgLYTGhcKLNKwKpS2aeeeCGey4wXxqP9e6FB/dCGKaQYJlarx4YHtaSFcZy7sU0xbV1oOLRA1nlPfGvkrdHuEztWl+xnP5cssCLc37oz/+0D/Y7kRqBt8f+wrfmvpVltzd5MLrTFa/gxXV1n8SpUiv+ClcKLxArD8cUv7tJoxlu9DWDMm5Jn/j7SMcGO6vScIqrqXzl948xOdPjpGydP7o3ALXqjtnx/1y7ilqzjjpaAk92VrhKLeialt2J7lYeH7dr7vVr62caRfopsppMrbO4jaGJAD4ZoGL+efw9RxD3r3VbWNkcDvs26ZQeERYSnIohEQzuZx/umPnv5MldxLPLGHKFprcxjZopUhFS+gyZDr/zLYUWOZWghEmCi6P7bq32idlGdiGRnBHsS0xSphaCg2BSPorkTSdRDSFJBIapr1r0x6x1zPHqTujOHF124ISbpqf57ctJONhp+7HhEk7BMTUH7ycnSi4FFMWi83+8W2Ddmr2XPoIUpiUWudvfH9V3RYLyWKHNzt2Ik0iPBFhKI0X1QSCh2Pu3la1eVSdCa52ab3WVwiNH4x8kdnMEazEo+Ldbp3U3qDyaJkFLm0guM4LE/w4wTZ1Dg5nOj3qLTEotg0Y0EfMZY6w7E4ilNy0mbeZNFfMoBUfjHyua8b/qymkk8UUe8rbe2MbKzhkbYMwliTr8N+4mnuC05U3ifUsLzXmGIlDzhdPsexObsNo+5Or+Sf4nQN/i+nc0+gyYqr6bXL+5XUVeZ24ipU0iXWHcxvwUxhwkziRfDRTY74RYBsaf/Uzh3h8d6HXw7ovlqHxS6/s56vP7KaQMvmTC0tcmG/2eljromkPcy33WNuM2tu8L6aZeKTCBQSSHw59bkMeXLf6ta0WCkbzDsWURbUHrbnTheeouhO40TJWtLafWbkLvm0RkkAkFJOEPXFC3R5hKbX+VpGN4pklavY4Uphkg3v7xHQaK/Gw4gaJZnKx8ELXr6eUYr4REMaSlw9UsI17KwVdS8cyNGJ5x/1eCExjCIFAU/1VTM/IdhJpS+ikzJvPbi+M+fBajfo6ze+bVoXZ9GpQwsVuDfcmSq20kPpMP6Tm572g5kdIBccf0EK6ynjBJZ8yaYUJUvaJbxuA0DhXeoWaPUqxdemGjYyFzuMMrXi31R9pddsNVZuKmVJ5dnN/j76dgiZj0uECugw5W3xt3Sr5nU5oZPje2FepOuOUWudxwhXvWKVIR/OYic/l3JMEVmHd51z1ayulrb6xYVllUGwbMKCPSDSL88UXaZlFKs3NmXmvJuQtuVNczj/b4RG2WU0hjWLJC/tK6NvYQgpt/41SxkbXBPPNdbQECMGHw+9wJf8UUuj4Ro4fjPzoI6dquxPPqvB7+36NH458gcDIMlb/gJHGBw9Uf6TDeazEYy518JEuWG6WRCo+vl5nrt5+7/7Ka/s5tb/S41GtD10T/ORzk/zcqb0MZ23ev1Ll/FxvjOc3yqX8c9TsMXLBzI12nY2SC65hJ02Wnd1cLL647tfd6td24hbF0VjeJeuY+LHc9gWgZ5W5lH+OUM8w5H285jFlXFIYREgiOjM+j4gIyVQkKSaSy7mnupsGLQSz6cP4Ro7sfUyZO00qWsSULarOLhbT3ffhqbYiGkGMa+m8ceTeLaTQ9mwzdQ15Z7EN0I0KGgb0WRtpNlkptukmGeNmCuF8I2R60eP7V9bpxygEV1eDEsIrXQ9KcOIadtwg0SxOl9/o6rUeFYI4wQtiDE1wYmJ9hZfRvEPeMQFFPeivZO359AHm0wdQQr+tALxfFW+o25YeYXVbi5iGCBEIXlTjaA+Jqu2m4rXAufIrvR7OtrKYPsBHQ2/TMgpM1N9DkxGm9LCjtsfpufKnNnS+ZhATJpJ9lfS2r0kfxKDYNmBAnzGTPcmyuwtTejgrffzrxUhapMJFNBI+HPqRdSfkbRQvTGgEMaah8eKB7S8SCCHYP5TBMXXm19l+lWg23534Kc6WXuH90S/RcDaeZPYwIjWTd8f+DN+a/AssO7vIB1fZXf0OVlRf83hdhrjxEgI5CEbYBEopzsw2mK0HRIni50/t5TPHd1Z8vRCCz58c58+/tp/RvMMPrtZ2RMFtyZ1kLn0QKYx2q/4GWVW1aTLmw+F3NqRqa97i13b0Fj+RSsYi55poApa87W9vulR8gaqzi3S0iJHcrVJMYVBc8W2r0hmvI48YTUYciBUIvSsppHeylJqiaZVxohpsR1FTKdxoEV1GXMo/ty0hPKstpIdGsuyp3N/PyDV1DF0jWaPQpBtlNGGB6q9im50E+AICzSZ3S7EtSiRhImn4MWqdhbP59AHqzhialKTChW4NGWgHI1hJk7n0ARbS+7t6rUeFWismiCXFlMVUOb2u15i6xp5KGtvQuV7rL9WmEjrniq/SsIcptS7AirrNvkXddvkRVreterWNqzT7KPR6OJ1BKTLhLGbicyn/LC2r1OsRbTtnym9wJf8kIBht/LC9kS89lt3dzKUPb+hcjSBGKTjUZ35t8BAX26J+iXYeMGCDhEaG6fwzBMbGzbxzwQxW0qTqTHCx+FKXRngzhXQ873BgqDe98eMFh2LafGBIwq20zCJ/NPUX+HDkC10c2Q5ECK4UnuF3DvwWV7JPYsiAqeq3yfpX79r1T4ULWHGLpllhuos+Sw8jSinOzTeZqbVohQlfe3Y3P/HU5r2Hes1rh4f5s6/u2zkFN6FxsfgiDXuYon9pw4qW1YTnZXfXhpMla/7dfm0Ahq6xt5LG0vWehE40rfbnONTTDDfu9m4TCMbI4Ci9IyEJq35tGRmzN1I0rWEW0ge2fN4HUXXG8cy2t6gbL3X9enZSx0o8Yt3hYnH9vn6bJU4kC82QRCnePDr8wHtKW9kmiBN5V4FKGEMIra0A6huUQsh2Emmip0nrN31ioxXfOSkVzXB9itXtCkpop3a3N6dOl99at9n3gPtTD9r3071DaRxz/YXsqXKKfMpkYZs9MtfDbPYw86kDKKFRCKZvfH+/KjKq0kSPqLrNJ6YuQpSCF9QExkNSunDiKnbcINYsPhl6q9fD6QlSM3lv9KsspPaQCefIBTNoMuJc8eUNqd0TqWgGMULA4T5LIoWHuNh2dq7J9dqjd1Ma8HBwJf80VXuCVLR0z2jkO9FlQCpq9/5/VP4s8QZUFxtlsRkSJpLn9pYw1mFM2w3G8y5518QL+6sdYCfTtIf5r/v/Gh8Mf45ATzNW/wEjjQ9vtpXeCEbwuVh8jshY347ygDbTSy2uLreo+zGff3yMn35xaltTfLvBnQW3C/P9XXCbSx9i0Z0CBTn/6rpfZyQt0quqtqF3Nnx/rbViokTy2C1+batMFNteQgsb2DjoJBeLL7Ls7CITzWOsYYpf6aBvW0BCIBJKScJULLmSe7xrCuxbUcJgNnOYSE+RC651/XqpaAkzabHoTlF1dnX9egvNEC+MKaYsXtr/4MAid6WNFLg7kdQcRQgTiUTJ/ni+2iohICYRAqkXMcVN5V6UKARtT8mNFFFmMsepOaM48TJal1pm215tHnVrhOlC9xWcjwr1VoxUisfW6de2ynjBpZgyafRZGym071HnSq/QtIYoexdubAbZtySTXqJG0qF2/p3C0oqqbVilOMrDo/5aDUaYzRxhye2eZ2m/07SHeH/kx2lYw6TCRUIjy4UNikWaYVvpmrIM9lb6b13y0BbbHEPnOxcW+eBajbifjDAHDFgHTavCtdxJIi21bnVbNpjBjpvU7VHOd7H3vxUm1P0IQxO8fHCoa9d5EKN5h4xtIKWiEfRXutROJtEsvjf+df5w8s9RdSbIB1fYVf0TrLjZ9p5JGsSazdnSxvwUHmViKZle9Li00GTZi3jj6DB/7tX9PStUd5rXDg/zyysFt/ev9HfBTWomFwov4lnF25LfHkRbNdyg6k5wvvTyxq4pFTU/QsCaCZFjeYeCa9Ls0QKwYY9wJfckoZ5iqHn6rp+3fdtMIiTxFhd6HjFKReyOJCkMLnXJV3QtFlN7aVoV0l1uG0RJ3HAJTcXtYIRtUDPN1QNaYcLTU0WK6QebbLumjqEJhBD40R3vO2schEWMwJL90W6XTUI8IfGFhmNN3FawDpMERbtNcCMF66Y1xFz6IIlmb6qt/IEoeSO1+3zx1CC1u0NEiaQRxGhC3OZ/uR7GC22PzCiRd7/v+4DrmWMspPYhUOT9yze+f0iV2KvyIOAya1t8PIyEJFQJSJA8yxgm3W/H3w6MpIUbLQOKTyqffuQVr1fyT3Gu9Aq+medq9gSevbG1ZXMlHGEoa1NKd3/zbqM8tP+6v/DKHkZzDufmGvzRuUUa/jbGvQ8Y0AGm889QdcbIBtcfaOatyZBMOI8uAz4pv0VodK+1czWFdCTncKiHcl3H1NldSmEZGnO17W+/eqgRguni8/zv+3+Tq9mTmNJncvmPKfiXsBKP+fQBltw9vR5l3+OFMefnm/zpxSVOz9ZZ8iJe2Ffir7x5aEOtLzuB13dQwW0me4KqswtT+jjR4gOPNxKfdDiPLmM+GPqRDS+aG/fwa1tlNOeQcQzCRN5oidtuLhZfpGpPkA1nMZLbuwLSmBSUjSHEln3bPCJSSchULGiZFeYyG/Nl2QrLzm5aZgFdRRhx94pITlzDkh6RntqWYmIrTFhuhWhC8NbR+wcjrGLoGmnbQBPg3/Ge07UUSs+DEIg1lI69IJOENDVFSzPIGBM3vq+UIogkuhDYpkattYGNNyG4knuKhjVEzu98UEIqWsKKm4RGmjMbNPsecG/qfkwQJ+Rcg30btDHJ2AbjeRfL0Jit91/3k9TMtrrNLFPxzt14TxponFITVFSKOTya9F8bbDdYwscXMUXlclL1bnO/06yq2qrO+Ipn2SOOEHx/9Mt8a+pX+JOJn9nwyxtBu3PgwFCmL21ZHtpi22ePj/F/+OIJnthdoBnEfPPMHJcXvXWbpw4Y0GuW3Cnm04dIhNk2TL0P2XAWK27StMqcKb/W1XEtNkOCWPLsnhKW0dtbyJ5ymqxj9Kz96mGn4Yzyu/t/g4+G3ibSXXL+NYSSnC2/9sjvxN0LqRQLjYAPrtb43qVlTl+vc70WYGgab58Y5a9/9jBpu4vJiz3k9cPD/PIrtxTcFu423O8HIiPNxcJz+EaeSvPsA4/PBddWvDDHuVDauGp41a9t7A6/tlXyrkklY2Pqgvke+LYB1JxxruafINJcKneo2wSCcTLYythSsU2haK34te2LJddyJzYUMrFVQiPDQmofsWaTC9bfQrxRUtEiZtJiLn2Apr2+4tdWmGsEeGHCeMFdUzl5L3Kuga7drWwTQmAaZQQaqP4oSGSSkIZQeLpFVr/5N42lIpYKTRMUXBM/utuD7n7Mpw9Qs8fQVdLxoIRMOIclPa5mH6NhDwKZOkXdjwhjyVQpTWYTz9K9QynSts5cvT/njTPZEyym9iJUQvaWlvcR0jypRkhjco7qQx+WECOpEhAheVoN4/BwzJs0GZMO25Y/Z4uvk2gPViI/CkjNYLrw3IZVbQDNoK1uPtyH4QjwEBfbAPYNZfjvv3iCLz4xTto2+N70Mu9dXr7bn2LAgH5ECC4WXlgx856+566rJmMywSym9DlTfp3AKnRtSEGUUPXbO+inepBCeidjeZdi2qLmD9pIu0U7xfWn+aPJX6Zmj1F1xpnextavnUIYSy4veXzv0hI/uFLlwkKTaitiNO/wS6/s5V/+9FP8xttH1tXitZN5/cgwv/TKXkZzDu9frvZtwe1q7klqzjhuvLxmCucqRuKTiubRZcRHlbeJ9PunPK7Fql/byTX82qBd3NhXaRt9zzV7p9K9UHiJqjNBLryOltw+jopKkcWisQVFhU9CTEwpkYwnGtP557Y65A0znzpAyyyRDee6cn6hEtxoGaEkFwsvdj2tWSnFXN0njCWvHKxsSDGbtU0MTRBEd8+JTaOCEAZC9sez1U0CPCEINIuceXsSqVQKUxcU0xagqG+gkyXRbKYL7aCEB21qboS27UIVKfSVYIT+U1vsVOp+TCwVxydym3r9RCFFOWVT3YgKchtJNIuzpVfwrHLbRuaWuf9TaphJlSMSCdfoz2drp1jGpyVicsriSdX9TYvtIhUtYCVNfKPAuS5a/jwqxImkEUToQnB4pDeBfQ/i4SgT3wfXMvhzn9rPY7sK/D9+/xyXFj2WvIgnduUf+kXPgJ1P28x7D7lghpx/lZo7cdcxbTlyE88s8En5010dz6IX4oeS4azNsfHNTXQ6yVjBIWsbBJEkSST6Q+KB1XcIwcXiS1zOPYWdNLrapryTUKq9sLte85lvBDTDBD9KcE2dp/cU+dxjYzy7p/TQtYw+iDeOtCfG//f/dp73L1eBtgq1n/CsMleyT1BsXaTSPMdM7rE1j1v1wqw5Y5wrv7rh6zzIr22VsYJLMWVtKF2501SdCa5lHyPvX2bIO8P17PEbPyvhkMJkhiYJEn0Te7UeEU4SMBorMMtczxzt5PDXxZI7iWcWyQYzIGPYQOLZenCjKmbSIjAyXN6GtOZqK6IRxDimzutHhjf0WtfSsQwdP77bu0ozKmjCQqret4NrSiJViAQiPUNav7nRFyWKRCpcS2dvJc37l6vMNwJyrrnu81/PHKdmjzHc/BBNhsgOBHakwzmsxGPZmeR69sSWzzegTSIVdT9CCMGJDYYjrDJWcMi6Bv5cQiIlutZ/88aZ7EkW3Sl2V79LJrxOw24XmG0MTqkJ5lWLqzQo4Tw0iq9bSVAsExCS8JwaI8tDsl5XaiU0xedc5WVa1sMT+NArGkFMFCsyjsFkn80zV+m/O0wXECsqnH/0E4/x0oEKiVT8wdkFzs41kPLhluEO2NlIzeBC8SU8s0S5de4udZtQSVvVlrQ4V3qFlv3gFLKtsNAM8eOEpyaLfVFAKKctSmkbXRPM91AR8qiQ6A6e1XtFY6+JpWSm5vP9K1Xeu7zMmbkGC82QnGPyE0/t4n/8ySf5R196jFcODvXF56QXvHFkhF96tb8VbtOFZ6jZY2TD64g10giNxCcdzbcTniuf3VT67q1+bUfu0+IwlnfIuyatKOmd3YUQnC+domaPkw+uoSU3/yZZLPLKRt+Cb5tHREpG7IkV1zPHepJm3LSGqNujSKGTDWc7fv5UtIgpW8ymj2zLQmq1hfTgcGbDBe2UZWAbGsEaxTZhDqMJE4TsuJfZRskkEZ6QRJpAGEWs25JI28q2tGUwWUqTcYwNF6wb1jDzN4ISLm15vJqMSUcLaDLiTOk1ZIcLuo8ydT/CjyUZW990y1gl3TZRN7Tete0/iFh3OF96Gc8sMdS8Xd22mxzHVQUHnfMPaTtpjYCWiEkpk2fU6INfsENw4ip2XCfWLE5X3uz1cB4KmkFCmEhG8w5ZZ/2bLNvJI1FsW2Uk5/J3P3+Mn35hilLa4oNrNb5zcZFW2H+JNAMGrHI9e5xlZxeGDEiFt5t5Z8I57KRBYGT5uPKZro4jjCVVL0IIePlgfxRchBDsG0rjmBrzjf703xjw8HBr4MEHV6tcXvTwwphDI1l+/dOH+J9+5ml+5fUD7OtTk9bt5o0jI/ziK3sZydl9WXCrOruYzRwmERZl7+40wmw4gx03qNujnNukwfkNv7a8S2UNv7ZVRnIO6ZV05WbYu0CnZWeSmexxYs2i3LrpZ3fTt03fVLFNovBVSFom7Il700IKgBBczxwhMLJtdVsH0WSMEy8jUFwovdTRc69FnEgWGyGJVLx1dARN29g9J2XpOKZOGK+xWDdHQZhEgKV6226XSUKaQuEJnZQxhrjFLzRKJIlU5F2T0bxD0bWoBxv8/AjB5XznghLS0Txm4tEyi5wvdv998ChR99upgxMFl/wG1Iu3ommCA8PZvp83Xs09wZI7iSED0uH8je8LBM+rMcbJ4ImIBfojMXij+LHDnDeCVLfftxSKRVoExBxTZco8PCm+q8EIc5nDLKb29Xo4DwWr4QiHhvvTrw0esWIbtBOYvvbcJH/3C8c5MpplsRHy+6fnuF7zB+EJA/qSSE9xsfACvpG/bfGDkmSC65iJx4XiCzSc7hrwLnohfpRQydgbMmHuNhPF3rdfDXh4uV/gwZtHR/g/f/lx/q9fe5J3To6T69NdtV7y5tERfumVff1ZcBOCi4UXqdsjFPxpkDc33vSVBY4uQz4a+uymW6dX/doeu4df2yrtdGW39+nKQnC+9DI1e4yCf+U2z66Kcsli02DjxZcWMZYKSEtJTsvfs213O1h2p2iaFVJxtaOqLTdewkxatIwCV3NPdOy892KhGdIMYwopk5f2b1zV7lo6pq4Rr9HhYRglEj2FrwmcqLef2awMaQqJp5tk9Nu9m6JEIRUU0iYjOZuM07aVkHJj3sw3gxJiUutIKL4nSpEO5zCTFhcLz3XVQ/dRpO6376fHx+9/P30QE4W23+9CHxfbIj3F+dLLtMwCQ3eE1qSxeFGOU1A2l6gRsfNEI9eau7jSGGfJv309USOkJWIspfOcGu/R6DqPkbRwo2VAtcURg5CxLaOUohG05yMH+9SvDR7BYtsqJyby/J9+/DE+c3wE09D49oVFPrxWI04G4QkD+o+r+SeoOhM4cQ0zbk980+ECdtwg0tN8NPQjXR/DYrNdbHt8V56U1T9tEWN5l3yq3X41YECnuDPw4PxC467Ag9985ygndxXQN6goedS4s+B2sY8KbvPp/Sym9oAQ5G9JqMyteLXV7VHOll/f1Llv82vb/eANiqlyuw2u1+nKi+5ermeOkgiLinfuxvfLuKQxiEiQbGyu1PZrCxmPFbX0cQKjd7vQVWcCzyoilMKJqh07bypawpQ+17Lb8/vNNQJaYcLTkyVK91FN3gvX1DF1QbJGsc0SKRI9h0RDS3qrnMkkIQ0NWppF1rjdl261jbTgWlQyNlnHABS1DYQkQDso4XJ+60EJ7TaxBrFmc7ryxqbPM+Bubr2fnpjY2obvRMGl4Fq9bdtfB1dyT7LkTmJKD/eOtNyDlDisSuhC4yK1Ho1w8wSJTSIVrejmJmVb1ebjE3NAFRhl44FE/Upmxcex6oxzJf9kr4fzUBAmEi9MMHXtvjYdveaRLbYB5FyLX/v0YX7ltf2M5x3OzTf5w3ML1AfJhgP6jJZZ5Er+SSI9tZJOJMkGM1hJk+n801Sd3V29fpRIql57AdgPKaS3MpZ3yNgGSXJzh2PAgM2glKLWijh9vc53Ly7y0Uyda1WfWCqe3VPi733hGP+3n3qarz8/xUju4Wlt2A7ePDrCL64U3L7fRwU3JQwuFF6iaZYpty6AUiuqtjl0GfBx5dObVrXd6td2dB0TwdGcQzFlbbhQ0HGE4FzpVer2KAV/GiHb48likVU2mhBUN5hK6hOSkjFTseByoUctpCskmsVc+hCh7pILr3XknLoMcaIqCsGFbWgdbIUJVS9CE4I3j24sGGGV1Iqyba1imxAapl4BoaMpf6vD3TxK4cY+noCWZpMzblfwR4lEAMWUialrTJZSWMbm2gNnssep26O40dKaHo7rYXVBPZc+xJK7d1PnGLA2zTAmiBJSlsHh0a2pWEby7cKsVBtLr91uQiPDhcJL+EaBoeYnt/1MQ/CimmBUpVkWPsub9NLsBVIJImkhhCCSN4ttTSI8EWEojRfVBIKHYyNTqPiGUv5s8XUS7SEJfOgxzSAhjCVZx2Ci2L+F2Ue62Abt3v23T4zxP3zpMZ6cLNIKE755Zp5Li82+3u0Y8OhxOf80VXucTDhHJpjFTurEusMHw+90PVZ+yQvxwoRC2uKJyWJXr7VR2u1Xqd63Xw3Ysdwv8ODLT7cDD/6PX3qMlx/hwINO8NbREX7x5f4ruF3PHmfZnUSXIalw4UYCacMe4ewW1Cnr9WtbZSzvkHUMgridktdLFlL7mM0cRgqTcus80F7cTZDB2qBvW4JEJD6akoyR4Wr2ZLeGvW4WU/toWuXbvJC2ghstYcoWnllmJtv9Ftl2MELMWMHh8d2FTZ3DtXQMXZAohVxjvmsaFYQwkD1sUXNUTERCLDRiPU1au32zL1rxm8un2gv2iWKKrGNuylaiYY0wlz5IIqxNBSUYiX+jTex05a1Bm1iHqfkxQSwZztkMZZwtncs22um1tqFxvdbDYvI6uFx4miV3N07SxImWbvtZEYdn1ShZZXGBZeQOCUsIExspQRMQy3b67w1Vm4qZUnl2k+vxKDtHOlzASjx8o8C58iu9Hs5Dw6pf265iqq/n5oMnwQpT5TT//RdP8KWnJsjYBu9NV3l3epkwHrSVDlgf3S7OVu0JZjNHSDSLIe8MdtLkavZxFlP7u3pdWG0hlTw2nu9LX6qpcppsH7RfDdhZ+FFyW+DB9BqBB3/htUHgQSd561j/Fdxi3eFi4Tl8I8+Q9zGZcL6tait/ekvtgOv1a1ulnLHJuyaaECx7PVbpCo1zpVep2aMUWpcQK352bd82i8YGlG0tYmwZkJMSnIP4Vu83bJbcSXyjgCEDNLn1xXYqWsRIAq7mHifWu6t6VUoxV/cJIskrByubXmS020g1UIpojbmuZlbQMJCqd8qfTBLRFBJf09CNPI5+++cxTBIUUHTbC/bRnEMhZW5O5S4EV/JP0bCHyG8iKCG9omqr26Nczj+98esPuC91PyJKJMfGcxsOA1mLqXKavGuy0OdJ9oGRW/FtzlFpnrnr5yfUEPtUASVgmnoPRrhxQmmjAAHEK8q2FjENESIQvKjG0R4SVRtKkVnxcbxUeHZbUqofFZpBTCwVh/vYrw0GxbbbcEydX35lH7/x9hH2DqW5Wm3xzTPzLPZpNPSA/iGIE/50xdupa0U3IbhYfIG6NYqVNEiEyQ+HP991VVucyJWFn+qbFNI7Gc+7K+1XgzbSAQ/GC2POzDb43qUlTs/eDDx4axB4sC28dWyEXzjVXx5uV3NPUHXGsRMPO67RtIY5M7R5VdtG/doAdE3cUFvM9cG8Yz59gPn0QZTQKa74WLV920yCDfi2+SrEkRETiWCu0B/pjIGRY8mdItFs8v7WWkmNxMeJ6yhN43zhxQ6N8N5UWxHNIMGxdF4/srkWUoCUZWDqAiEE/lqep+YImmaRoNBlbwpu2SSgoSmamkFaH7otiVQpRRBJdCEoptvFtpGcTcZuhyRsRh06lzpAfSUowd1AUIJQknS4gCEDzhVfJta3prwacDtKKeqtGAUcH+9MQNdYwaGQsmj4/e/3ezX3OFVnHDdeRrujxdlA45SaYEi5zNGkucEW/14QJjZKgRCCWJmgbnq1jas0+yj0eogdo+3jWCfWLD6pvNnr4Tw0KKWor8yxDvaxXxsMim13IYTghX1l/vFPnOTlAxWkUvzhuQVOX68j1/C1GDAA4NKCx2Iz5Mxcg5kuStIXUvtZTO8l1hxmMseZyxzu2rVWWW5FeGFMzjV5arLQ9etthtHV9qtIkgxCTgbcg2YQc/p6nXenlzm70ipaSdv8wsuDwIPt5q1jw/zCqX0MryjcLi14PR2PbxaYzj9DoGcwE5+PK28RGJtvY9moX9sqE8UUBXdzbXCdRgmdc6VXaNgjlFoXQSbksMkqC00Iautd1MkWmkoYlQ6Xc/1jDD2XOUTLKJANZrd0nlS0hJG0aJjDzGWPdmh092auEdAMYw4OZ9hb3vyOvq4J0paJJsBfQ9lmGBWkcPA1jXSPQhLayjaFp92dRBpLRSwVmiYoZ9rFtnLGJueaaNrm1KGJ7jCdfwrfyG4oKCEVLWIlTQIjw9nSqxu+7oD744UJrSjBNnSOj3emvXC84JJzDMJEEvR5wFbTGmIudZBEc9r34jsYJcMTaoQUJueoovq8nTRIbBQKASTSoqVi6iJEKXhBTWA8ROWJTDjb9nHMHGYxta/Xw3lo8COJH0ksQ+fQ8KDYtiOpZGz+9ueO8XMv7aGcsfl4ps63Lyzihf1rpDmgNyx7IdfrPkEsqaQtPrxW65q6TQmd94e/yLnSy7w79tVt8QRZTSE9NpajmO5PU89y2qKUttE1wXyftwQM2H7qfsTHMzeLbIvNkLG8w6++doB/8VNP8VMvDAIPthshxErBbS/DOZv3Li9zabG3BbfpwjNUnQmW3N2cLm8tSXCjfm2rjOUd8imTZtAfi7/ZzGHmUgdQQqPoT6MhGCe74tv24GJbjEQoH4EiY07iWf2jjl5yJvGsEnbSgM165CnVbiGVIdP5p0g0q7ODvIM4kSw2QhKpePPoyJbb6XKuga6JNdO8LS1LbGTwhCDVo2JbNglpCPB0i6xxe7FtNYnU0gXZFRWyrgmmSmksXWNhk+rQ69kT1O0xUusNSlCq3UIqPa5kT9J0Rjd13QH3pu7HBHHCUNZiLN+ZZ3XWNhjNu5i6YK7e5/PG1RZna4icf3XNFuen1AiTKkckEmbovVr8foRJ+5moawKFYFbF+MQMqxRHeXjaLI2kdcPH8ePKZwY+jh2kEcSEiaTgGozm+1tJbPR6AP2MoWt85ZndHJ/I8c9/9wxnrjf45ul5Tu7KM5JzBh4+A5BKcXHBo9aKOTySJeua/OnFJWbrASO57nz4a+4Efzj1K105950kUrHUDJEKTvVpCym0g072DaX5w3PtFLJB4WSAWkkZu7LcYqEZ0PBjEgV7yym+9OQuXjsyRMoaPAJ7SbvgNoIC/vW3zvPe9DIAk6XepEo17FF+b++vYSYegVXY0rk26te2ymjeIWObRCtqC7vHpr9KGJwrvcpQ8xPKrfMsObupaC5ZYa1L2dZSEU4SUkgUXv7lrtsebIS6PULDGqIiTpOO5mjaIw9+0R2YsoUVN5CasS0ppAvNkGYYU3BNXtpf3vL5MraBoWlrtpHaWppYy4CmY0TbbyKvK4ktAxqmwBcWOf32IlaUKBKpcE2dlHXzczJRdMi5Boub9D2sWyPMpw9Q8s5T9C+xmDpw3+OtpIkT1ZDo7WCEAR2n7keEseTwaLZjynMh2vPGtG0w1wjY1aPnznqZT+2nZo+S96/gRou0rNs//w4GL6kJ5lWLKzQo4WD36TL/tmKbFlIlJEHyLGOY9K/R/UZZTSeuOeNcyfePqvthoBnEhLFkqpJpe4/2Mf09uj7h2Fief/zjJ/nsiVEsQ+NPLizxw2s14kG72iPPtarPkhdiGRp/9tX9fOboCKUVddvDQLUV4UUJWcfgmanem1rfj4miSyll9UX71YDeoZRi2Qv54FqN719e5sJ8k1orZm8lw2+8fZh/9vWneOfk2KDQ1icIIfj0sZGbCrfp3ircWlaJmrtrS+e4za9t18b8hbK2wXDObqst+sC3DWA2c5SFlSCeQnCFMg5pTELiB/q2CemBShiRJrOF57ZjuOtHaFzPHCHU0+SCmU2dIhUtYsoWVXtsW8KK5hsBrTDhqaki5Q0oJu9FyjawDG3NMDBNGBhGkfZSYfufq+kkpKUkodCQepqMfrs/3aqyLWUbty22RnIOBdekGWyyE0UILuefomlXKLTWVhHdSntB3WTJneJ69tjmrnkH1VbER9dqBHF/KFx7iVLt+2kn/dpWmSi4lNIWy17/zxsT3eHyA1qcp8hxXFWw0fu2nVQqQSgtBALXjAnNBTwFReVyUg31engdQ6iYdDiPLkPOFF8j0fqzM2in0ghilOr/cAQYKNvWTcYx+atvHeLkRJ7/+Q8ucmG+yVIzZKqUQghx43Z2a/uguuU/bvz8lv+59Rao1P1/bhsakyvXGtAfBHHC5SWPuh/zzslRHt+dpxHE/OePrvPdC4vM1X2Gsv0tbX0QC832xP6J3YUNtUL1grG8S841udbnMe4DuoNSiiUv4spyi2UvpO7HCODwaJYvP72LF/aXsY2HZ8f0YWK14KaU4t/8wQXem15GALv7XGlwL1b92lK2wdGxjXmJCCHYV0njWjoLjZBdxd7/DaRmcLb0KSreGcreORadXWSVhdAEDRWR4z7PBukBkpw+ypw9tm1jXi9L7h6aVoXiGj5ID0QpUuEiugy5lH8WqXV3St2KEpa9CCEEbx7dfDDCraRMHcdcW9kGYBojxEJHqu0vRmSTEE+TeJqJqWfvSiKNEkkiFXn39iCbkZxD2jEJ47aHq74J1cNc6iA1e4ycfw03WrpngqAmI1LRIppKOF15AyU68x64vORxYcEjiBMe393fG53dJoglXphg6hqPTXS22Nb2bTM5HzWRUqJp/a1BuZ45Tt0eY6j5MUJGKO32975A8LwaY1rUOC+qLCifCv3V6RFJC6lA1yRpu0GkLYMSPK2GcB6iskQ6XMBKPHwjz7nSK70ezkOFVIrGymbK4T4PR4BBsW1DtFteRjk0muOf/5czfP/yMu9drnKrovleewh3lsjUfX62FgowNMFEH0y8B7Rpt49GjORsfuaFPQjR9g15/fAw52YbfHCtxqd2cLFN3mghVbxysNL3hd6xlZCEJFE0goiMPUiSfBRQSrHQDLmy3KLqRdSDGF3AYxN5vvLMLp7ZU+p7ifmA9vP1M8fbbWL/5g8u8O5KS+lOLLit+rXtKac3tUkxmm+rdOca/aO2uJ49xkJqL5lgloJ/lbFUmtNqkWWCexbbIhWjyQBNKUTm2b5qIV1l2dlFyyxS9s5hxXVCY/0TdytpYiUesWZzsfhCF0fZZr4e4IUx43mHJzpUgElZOrah3zORUTeHkcJE0kTIBKVt34ZFJglpCElTN0lpJTRx+7WjRCEVFFK3P+tLKYvCSkjCohcxlN34ZzDRHS7nnmaoeZpS6wJX7lFsS0fzWEkTzypysdiZJNpkRRmLUiw0Bwnrq/fTUtrq+OZDJWNTTFtommChubn3ynZSt0eZT+1baXGeXtNwP4PFC3KcRc3nElUKWBh91Jq5mkTqGAGhsUASJ6SSNE/qG2/j71uUIhPOYSYtzldO0bK33vI/4CatMCGI2onc+4bSvR7OAxkU2zbBZCnFP/zicf4/717lg2s1BG3PKCFAE6JdPBMCTbR3GW58X7QLa+3iXPt/Vo8Xq8evfnHz+OmlFj+4UuV6PRgU2/qEZS9ktu4TxoqvPTvJ8C3+bC/sK/NfPrzOdy8usdAMKPdpqMCDWPJCvLCdpvfc3v43LHVMnd2lFN+7tMxcLSAz1Nti25IXoglx1677gM4glWK+EXB12afaCmn4Maau8fRUga88vZsnJ4uDVNEdxsNScKv5m/NrW2Us75B1TaYXWyil+mKjQ2om54qvUmmepdI6y5B7goywadynvVCTHppKyCuNZuG17RvsBkh0h7n0AUbqPyTnX2M+s/5i22oL6aI7RdWd7OIo25sKs3WfIJK8fLCC0yEvP8fSMXWN5B6tksIYAmHTEpCSIU1t+1Qy2STkkhA0NZOscXfowGobaTF1eyiFpgn2lFP8kaEx3ww2XUCZyR6ntjjKUPOTNVVEKEUmmMNIfE6XX99SevGtNIKYIJJYhkYQJztCcdVN6n7bm+ngcBrL6OzfQdcEB4bSfPv8AnP1zb9Xto2VoISJ2nsU/Mv3TLc8RIkzapnvade5oGocoH/UkcFKsc0yWjT1JRJMRv1xslaf/+03gBNXseM6sWbxSeXNXg/noWM1HGEoazOU6X9Ry6DYtklsQ+fLz+zelmt99+ISV5dbzFQH7XH9gJSKCyuhCMfHc3z2xO2TwLxr8urhIc7NN/ngao1XDu48DwKpFNNLLZpBzNN7il0Le+g0U+U0GcdgoRmyt4d/9iUv5IOrNZpBzGuHhzs+QXyUkVIx2wi4utSi5kc0ghjH0Hhxf4UvP72LxybyW07oG9A7VgtuUsH/sgMLblIqaq3N+bWtMpyzydoGknarxGrSYq+ZyZ1gMbWX3cvzTAZ10q7BIh4SibaGBbCeNAlISIsCTXdvD0a8PhZT+/GsMplojnkOre9FSpKKFtFlxKX8cyjRXeVIzY9pBgm2qfH6kc60kEJb2WbqgkSuXWyz9RyekcbTNEqJT9PYpmKbUm1lmwktzWLcuPt3jhKJAAqpu5cyYwWXvGuytAUP17aKaD8l78JKUMLtnnxOXMVKmsS6w+ly5xbU9RUlV8rS8cKEJS/qiD/fTqXux0ilODZe6Mr5dxVTFFMWCzskyX4ufYi6M0ouuIoTLeObhbuO0RCcUhNcVQ2mRY2aurcCebsJExuFQtrzBPhYKstoMA7Uez20jrEajDCTOX7PguiAzdNYCUfYP5TZEfP9wQpwBzCyMvEOInmbJ9yA3nCt5rO8EorwCy/vXXOH+dT+ClPlNLVWtKXJXq+4vvI72qbOTz2/py+UFethfKX9qub3rvUijCVnZxsseyGJUszUWj0by8NEIhVXl1t8b3qJD6/VuFptkUjFpw4N8U+++jj/8MeO8/juwo548A64P0II3j4xys++tIfhrM2708tM9zA0YSPc8GuzNu7Xtopt6EyWU1i6xmy9fxaAiWZztvQKnlXmUPMiGWWCEDS5+36rlCSRPqAw3WMg+ne6ueRO0jKLmEkLTa7vee3EdczEI9TdbWkhnasHNMOYgyNZ9lU6ZwidMtvhAvcqtlkriaSe0Egn2/csc2SMrmLqmoavWWT1tZRt7THnXeuun43mHfKuSSvcQsCAEFzJP03TqlDwr9z140w4i5U0mU0fYdmd2vx17mBVGTuUsbENrW+CUnpBGEsafoSuiY77ta0yXnAppEy8rbxXtpFYd7mSfYJAz1LyLtzzuCIOz6pRcsriHFVkn4QltBKLln2FprVAQMionECX/eUrtxWMpIUbLQGKj4c+3dfPvp1KI4hRwKEd4NcGg2LbjmAoa5NxTBQ3DQEH9IZbQxHeODLEyXsoFwopi1cPVsinTD7YYcmkcSK5vNSiEcS8crDCiYnOtEZsB6N5h4zTLkwncvvTgpVSnJ1rsLRSqMw6Bgt95Lu0E4kTyZWlFt+7tMRHMzWuVX1Q8OljI/zTrz3B3/n8MY6Oba5db0D/slbBbb6PCk/3YtVfaKzgbilUZrKUJueafZeufC17kkV3ClvG7I0lptJY5u5/FyvxSUgQCFTu9R6MdP20jALLzgSJsMiuM5U0FS1iJi0WU3updzn4IZaShUZAIhVvHhnp6IaCe4uyTa6xmWtrGRI9TaDpWMn2dVdkZYiPxNN0hO6SXcPPKYwTFFBM3a38HMk6ZGyDIJZEyebnAqsqIl1GONHSje8biY8bLQPwSeWtjvkRSnVTGXtsPEe+D+8B28mqyq/gmuytdMebaTTvkHVMpGz7/e4EZrInqNujpKN5hLx3kfCEGmKfKqCE4nIfKMd8YubNa/jmEqHwedKucJhJfGU8NGKSVVVbzRnjSu7JXg/noSORimYQowk4tAOSSGFQbNsR2IbOrqKLqWvMP8I7XP3AxQWP6koowk+/cH/F18sHh9hTTrPshVRbO2eydGW5Ra0VkXdNfuqFqR1VxCinLcppG10TPSlyXa36zNUDYqn4zLERKhl7R0TK9yNRIrm06PGntxTZdE3wuZPj/I8/+SR/4+0jHBjO7qj354CNsVpw++qzu6lkrB2xcbGqSjm5Sb+2VUZzDoWU2VOV7lokusO50it4ZolD3jxZTOprJFWaSRNJgiVcVObxHox0AwjBXOYwvpkjF1x/8OFK4kZLaEpyofBi14MfFhshzTAm75qcOtBZo23X0jF0DYUiiu8uShnCRtMLIDSU2r7N3nY4QoKnGxgihavfvumnlCKMJZoQFNfwxS2kTEppC0MTW2oPjFeCEgIjQ8k7f3N8qwtqe4wruSc2ff47uVUZ+9zecltx9QhvstdW/Nr2riQ0dwPH1Jkqp7AMjeu1nbHGqjoTLKb2IIVJwZ++53EmGqfUBEPKZZYmzft4bHYThWIJnwvUaIgIlMEX3b38VvkJsrpFgk6wM4SF90WomHQ4jy5DzhRfI9F3hgXPTqK50kKatoyOqry7yaDYtkPYVUyRcYxHeoer16yGIkSx5GvP3R6KsBaltMUrB4fIuSYfXO39jtJ68KOEa1UfL0z4/Mnxjic/dRtNE+wbSmOb29960fBjLq0k1L5+eJivPLObnGPiRxLZA5XdTma27vOnl5Y4fb3O9VqAbWr8+FMT/PNvPMWvffoQeyrpQZHtEUEIwacODTFZTlMP4r5eeHbCr22V0bxD1jYIe6TSvR9Xc0+w5E4xEUeUE0kgEiS3j1FID4nCNKcQWv8vOJacKTyzjB3X4AF/byeuYiYtQiPFdP6Zro9trhHQChOemix03LvLNdsBCZoQ+NHaq13THEWgk6gEtkl9kk1Cmho0NIuUXkITt/uyJVIRJQpdE5QzdyvbhBBMVdpzgcUtbrzNZI9Ts8dIR4sIGSFUQiqcx5Ah50qvdnRBXW+1F5IjeYdjY1nStkGYKML4IahEbIK6H5EoxYkutZCusqecJu+aO0fQIASXc0/RtMrk/cv3PXSUDE+oEVKYnKOK2uZ20gTJVRpcEw2qKsGO8hxpnORn8nvJ6hq23g4BasY7vySRDhewEg/fyHOu9Gqvh/NQsurXNpRzdkwA3c5/Zz8ijORsCm7/7XI/KqyGIlRbMccn8rx94m7/kLU4daDt3bbYDKm1+v/f7tJiu1g0UXD5iad29Xo4m2Ki0PZt287CdCwlZ1baR/dU0vy5V/cxknNuRMovev3/b98vxInk/HyTuXpAyjL4yecm+Rdff4pffeMgE4WdVfwd0BnKGZuTu/KkLJ0z841eD+eedMKvbZVy2qKwev9o9Nf9I9ZdzpVOkdaKjIR1FIoWN4ugqSSgSYQEtMxzvRvoBqg5ozStMgiNVLx432PbKaQ+s6lDeFalq+Pyo4RlL0IIwVvH7m6l3Cq6JsjYBrqA1j2Kbbo5jBAmgVDYyfY8VzNxSEMImrpBzlijhXQlidTUBTn7bs82aKf6FlIWS1t8/tbsMRZS+0iERdGfJhUtYidNfCPb8QV13Y8IE8nx8Rw512Q4a2PqgvlH0I4iTiSNlXaxbhfbxvIuxZRJfQetseYyh6nbI5jSx4rur/p+So2wW+WIRMIMzW0aIXhEXKDKvGjRUjH7onGONo8zqVu4lo4QkLcUmoCm7G7ITFdRikwwS96/gpl4XCo8S8vurAp5QJtm0O4eODSS2TGb7oNi2w5hJOeQcUyCSD00fe07iWvVlcAAQ+MXTu3FNtb3UBjK2pw6UCbrGH3fAlXzI+bqAVGi+Mozu8iv4YOyExgruORc854Lh25wYd5jsRngmjq/+sYBSpl2K+v+oTSOoTG7Q1oT+oHZekAziCmkTP4vf+ZxfvnVfYzkHx7z3AGb45mpEmM5h6vLrb59BnbKrw1WVLqVNE4PVLrr4UruKRruFLvjhLxMWLrFty0dNQmFJNQs7MyLPRzl+lHCYDZzhFBPkfOv3fM4oWLcaBmhJBeL3W8hnasHeGHMWN7hid3Frlwj6xhomqAVra3oM/UCiZ6ioQky2+DbpitJSoY0NEFLs8is4dcWJ4pEKhxDJ2WvPR8bzTnknQ4Y3wvB5RtBCZfJhHOYSYsruSdp2p2LPVdKUV0p9pxYaUPfV8ngmvrOUVx1kHoQE0SSnGOyf7i77WLjhbZvWxjvHBVhaGS4mj1JqKcpty7c91gHg1NqgpJyuUKDgO4qxBWKBVpcosYyAYYSfFbt5eX4OJYyKJgJhtYuQWTNdjt4M96ZxTYj8RlqfkLZO0c6nKdhj/DR0Nu9HtZDy2o4woGhndFCCoNi245hKNtOJAVFze/fNpqHkdtDEYbvGYpwL145OMRkOcVCI6DRp7tmSql2C6QfcXg0y2eOr0+514+M5hyyjkGctE00u81cPWCm2qIVJnz1mV08sbtw42e7iikKaYtF79GbKG8GpRQztXYb86n9FSZ2WBvzgO5xcCTD7lIKVHvzox9Z9Wt7bCLXkR3XiUKKgmux1Ie+j5GR5nzxFCWy7Ip8arcU2zTZRCoJRgnX3DnPkkV3L02zQuoWI/w7caN2C6lv5Lice6qr41FKMVcPCGLJywcqayafd4KcY2JoGsE9igy2libW24mk2W0otmWSEJRkSdeJNPO+yraU3W6DXYvhnEPa1okSSbjFzbe59OGVoIQQN1xCaganK29u6Zx30gwS/CjBNXVOjLc96kbzbYX88iOojq+1IoI4YVcxRc7p7uZv3jUZzjmYumBuB6kIZ7KPtYMSwjm4T1ACwBQ5jqsyNjrnu9hOGiO5TJ0Z0aQuQkZUim/I47ykJmglFlIphpyb187oElPXaCU7rNimFJngOiOND8gFVzETj/OlU/zHg3+f5dSeXo/uoSRKJM0wRtcER8Z2TnjfoNi2QzB1jckVA8+FR3CHq5dcXPCo+hEjOYefeXHjgQEjOYcX95fJOAYfXutP77aFZshiM0QIwTdemOzapH47cC2dXcUUtqExW+/uwsCPEs7NN1huRTyzp8RXnt192/tjLO9QcE28h8H5dRtY8iLqfoRjanz+ZHcT/gbsLExd48X9ZYopi3N92Ep6m19bh1qeRvM2+ZSJF/bnBtuV/FO45i5yicSQAQqFk0QEKiQRoLvH0cTOeZYsu7tpmQV0FWLE3prHpKJFDNnieuYYgVXo6nhqfkwjiLENjTeODnftOq6lY5sawT2UbbbIkGhpmrpGehuKbdkkJBCShqajCXvNJNIokSRS3bcIk3MMypmVNswt2kq0gxKeIjCyuPEyi+4eZjOHt3TOO6n5EUEkGck5DGfbPnBjeZec01bq96uit1vUg5hYKk5MdH9RLYTgwHCalGUw1+V5YydZcidZdidRQicfXL3vsQLB82qccTI0RMginf89G4RcoMqCaBGohKfkCD+rHmOS9r9hMzFQQMW5ea/JGBJDE3g7qI3USFoMNz++oWZrmSW+uedX+Oaev9RRteuA21n1a8s6BpOlnbMZPyi27SAmCi4Z+9GOAd9uboQiJIqvPbeboezmjHA/dWiIyVKK63WfZp9Fi0upuLToUfcjnp4q8vzene8zsKeSJuMYXU0klUpxZrbBshcxnHX4i28euKu9eCzvtlV2cntUdjuda9UWzSDhsYkCB0e25nk14OHjsV15xosuVS++p5l7r7jdr60zi8PRvEvGNogS1Xe/L0BgZKnlX0UXDqW4hUdEJWqypCV4momb3hl+batEeoqF1H5izVlz4arJCCdeRii4UOx+e+xcPaAZxhwYznQ1dS1l6djGvZVtlpYh0VP4QseS3Z+/tJNIJU3dwhQurl6465goUUgFxfTafm3QLqDsLadxTL0j8+bVoIRYc/ik/AbqjtCGrVJfUcYeHcuiae1Nu+GcTdYxkErR7NOiezdIpKLutzcvTowXtuWa44UUpZ2mIhQa07mn8Mwixfukkq6SweIFOU5BOVykSkxnnisKxSwe06LOsgiwlcEX1H5+TB0kzc2CeEO2/7ti3yy2pQ2JoQtaO6HYpiTZ4BqjjQ/IBdcwpM/Z0qf4/x38h1wovYraQZtLO5HVJNLxvEva7uz9t5sMim07iJGcQyFlUh8s2reFW0MRTkzk1h2KsBZjeZfn9pbJ2P2nbrtW86m2IlxL52dfnELXdobh5P0YyzuUUlZXW66nFz3mGwEC+HOv7lvTvN+1dHaXVlR2tZ2zW9oLmkHMkhcigB99YnzHGJ8O2D6Gsw4nxvO4lsbZuf5St93q1zaU7UxiZMY2GM05WLpgrt6fivaZwnNk9Qq5JCaJazhxgxhJy0hTtDqr/NkO5tP78cwSmXD2rp+loiXMxMezSlzNPd7VccRSstAISKTizaMjN4ov3cA1dWxDJ4jv4dkmXNBzKKGhVNz1RNJ2sQ2amomrF9DF3eq1aKWNtPgAb9nRfHve3IlW7Jo9zpny61wqPMelDhdblWorYxW3hwE4Zlupb+kac4+Q92tjxa8tbRscGt0eb6bxgnPD73cnJcjPZo/SsEcxEw8zfnD4wWFKHFJFdKFxga2vR0ISLlFnVjRpELJbZvkZeZyn1SgaN+9bUkEjNhDAsHtLG6mRoGuCQPV38cRMPIabH1PyzpMKF2hYQ/z+nr/Mt/b8d4MwhG2iEcQkUnFwZOf4tcGg2LajGMk5ZGyDIJI76kGwU1kNRXA2GIpwL147vKJuq/m0tmrY2yGiRHJlyaPhx7x+eIhDD4maaCzvknEMgigh6cJnZdkLubzUou7H/MiJUV49dG/Z+J5ymqxjsDBQpN6Xa1WfZpCwp5LimalSr4czoE95dk+J0bzD5aX+CkrotF/bKnsqaVK2wUKzPxfagZmH9JMYwqQULhKpgERAbI2T0rtj6N9Nlt0pWmYRK/FA3r5Zk4oWMROfa9nHiIx0V8ex2AxphjF51+TU/u4u5FxLxzI05D0+TkIITHMchE6ERFdd3PBVql1s09pJpFl97U3OKJEIoPCAYttI3iHnmPj3aJHdEEJwpvImv7fv1wmNzi72vDChFSU4hn5X8uZkOdVW6j9Cc4j6LZsXpfuoFzvJcLZt+6EJseUE2+0kMHJcy54g0lOUWucfeLyG4JTaxYhKsyxat/ltbpQaARepsihaxEryghznp9Vxxrj789GSBrECQ4PyLU1CGV2iC4GvjK4X8jeFkuT8q21vNv8ahgw5XXmD3z74D7hUfAHEoJSyHSilaPjtcISdtlYdvEN2EJWMRdZ5eEIS+mmhdCdB1A5FaPgxbxwd7ogHz65iimf2lEhZBh/OVDswyq1zealFzY8pZyy+8fzG/ej6lXLaopi20DTBYqOzk6YokZyda7DshRwdy/ELr+y7r+pgvOBSTFtUWztn8rbdhLFkvhEQJZK3T4xhGYNH04C1OTSaYVcxhVKq656M66Ubfm2rjBcciimT5T6+f/i5F0HPEpGwrCU0NIOU+8SOfJ40zTJVZwwpTHLh9Rvf12WAHddQQnC++FLXxzFXD2iFCU/sLlDZpH3FeklZBqYu7rsxZRplpLBoaKKrIQkpGWOqmJqm0RIWWWNtr7ooac8f8879CzEjOYe0bRAlsi9bsVep+zFBnFDJ2ozdkb49mnModlmp32+sttQeH+vs5sX90DXB/uHMit9vf25u3Itr2ceoWyNkg1lYxwZzEYdn1ShZZXGOKnKDYQkSxQxNrog6VRGQViY/Lg/xjtqHw9oKtUbSbofOGhEp6+YcL32Lsi3pMx2JFTcZaXxEqXWBdLhI3Rnl9/b+Gn84+efxrZ23mbSTCWNJK0owdY3Do4Ni24AuYdwSkjC/g9Jy7kQpxQfXarw7vdw3Cq87ubjoUW1FDOccfvqFzhWhXj88zO6Sy7VlH7/Hv7sXxsxUW/hRwo89Ps7IHRO8nYymCfYPZXBMjdlG5xYGSinOzjVYakZkXZO/9OYBMg/wDRjLtyPlg1gS99tMok+Yrfs0gphKxubNI3ebYQ8YsIpt6Lywr0zeNTk7++CWme2gG35tq4zk2vcPP5R9u0GlO/tp2rtoaTqLIqFqOJTtY70e1uYQgtn0EXwjSza4WWxbbSFtWENcz3T3d/OjhGUvQgjBp491/36YstqJnvG9pG2ArWVI9DQNTZCJu1dsW00iXTAMpKavGY4AEMXt8kAxfX9lW8Y2GM6uhCT0cbhYzY8IY8nRsdxdVh7tOYRBEO+s9sbNItXNzYvj2xCOcCu7iymKKWvHqQgXU3uourtACLLhzLpec0INsVcVUEJxeQPtpAExl6gxJzyaKmafLPBz8gQnGEJw77VSQ5pICQVTYmg3yw8ZQ6JrAoVGK+mPDRqhJHn/CsPNtjebJiM+HHqb3z74D7hceGagZusBq+EIOce4a0Oi3xm8W3YYuwrtCOylHfYguBU/anuRXFz0+OaZOaod8NLoJEuroQhS8fUthCKsxe6Sy9NTJVxL56PrvfVuu7ToUfNjJkspfuzJiZ6OpRvsKrgUU1ZHA0Vmaj6ztYAwkfzMC1McHn3wRLCUtqikLQytvyf7vUJKxUy13Vr92uEh8g9oCxow4PFdBSaKLsutiLAP1Crd8GtbZSTX9hHqZ0W7ISxU6nGUZhFoGi2jQMmY6vWwNs1SagrPLOPG1RsqkXYKacCV3BMkeneVZnP1AC+MGcs7PDnZffWEY+oYmkBKhbxHwc3WMsR6hqamk0m69xzLJCEBCXXdRBPmmm2kSimCOEET4r4BCavsKadxrc6EJHSD2/3a7p5TlDM2+R3Y3rhZvCDBjxMcU+dYhzcvHsR4oe3x5+0wb2wlDKZzT9MyChRbF9f1GhONU2qCinKZxaPJ/d9bCsUyPhepsSjaNg6fUrv5ujpGhQcnQzYSE6kUQ87tBWNdQMZUaAKafRCSYMUNRhofUvQukA6XWHZ28bv7/jrf3v2LbduEAT2hEcSEiWSy1A692UkMim07jJGcQz5lUu+zRMuNUA/aC5OCa6Jrgm+dXeB6n5jHS6m4uOBR9dqhCJ/ZQijCWggheP3IMLuLKa4sefdM/+o21VbEfD0gloqvPbubrPPwFThG8w75FbPbTtAM4vZ7oxXxysEKX3h8fF2vE6LdmuBaOnODYttdLDRDGkFM2tZ557GxXg9nwA5gJGdzZDSHbWicne+9um3Vr+3EeOdbnkxdY6rUVrT3a0gCgOMcYMad5JydRrP24Ojbu0juJDV7As8qg1I4cRUjaWHHdaTQuVA81dVrK6WYawQEseTUgcq2LCpWlW0AYbL289JeSST1NI100r2iVVaGNIWiobWTSFNG4a5jEqmIpULXxLr8vEby7TbMfk2ZbEUJXphgGzonxu9ezOuaYG8ljW1oj8QcYnXzYjjnMNzlFuo72ckJ8rPZo9TtUeykiZ601vWaMTI8qUZIYXCOZdQ92kkTJNdoclU0qIqAonL4qjzCG2oSi/XdoxrSQAEV++5r5EyFENCMe1eWECqh0JpmpPEh2WAGoSQ/HP48//HQP+Ba/gnYgbYIDxPNICGRatsCUzrJoNi2wxjJ2e2QhHjnhiSselM8tivPF5+cIGMbfOfCIhcXmj1vk7kRimBq/OKpfVsORViLPeUUT04WcEydj2a2X92mlOLiQpOaH3F8LMfrD2nb3o1JU6K2vEuZSMWZ2QZLXshUOcWvvLYfQ1//7XNiRWW31OzPyX6vUKqtamsGMU9NFZksPXh3dMAAIQTP7S0xkrN7HpRwm1/bru7seu8utRXt/RqSAJDRhwjsCRatEmX7yI70a1tFagaz6cNEuks+uLoSjNCibo8wnz7Y1WvX/ZiGH2MbGm8cWduvrNO4ZrvYJoS4Z5CArWVItAwtoWHL7hUhMnGwEo5g4mp5DHG3UjRKFIlUmLp4oGcbtD3Pso6J36PNzQdR89vtUaWMxa7i2u1RE8UUBdfsW3VeJ6n7MVEsOTqW7WoK71rcmiDfLyKA9dIyi8xkjhFrDiXvwrpf95QaYbfKEYmE63h3n5eYi9SYFx4tFXNUlvlZeYJDlO7bNnonzaS9qT/k3P05zBrt1lIv6Y1iyY5rbTVb6yJutMSiO8Xv7v8N/mTXz24oDEWp9r1pQGdRSlH32/OsnRaOAINi246jnLHJOW05eT8bJt+Phh+jVNtI+hdO7eXnTu2hkrH5/uUqH83UkT1aOK2GItT9mLeOjqwp5+8EbXXbCLuKKS4vtQi3eQI41whY9iIMTeOnX5x6aM3oXUtnVzHVEbPbiwtNFpshpq7xK6/t37Bh9XjBbavswrjnBeV+ou7HLLdCdE3wo4+P7+gF+oDt5ehYjoliijiRPfXXudWvrVstTyO5dmtTo0/bSAEyxhC2lsHSMgxZ3S1IbQeLqb00rQqpaIFUtIQuQ6bzzyC17qrA5xrtFtJ9Qxn2D23PDr6mCTKOga6JeyrBTZFCGVmk0IAYTXZ+3mKoBFdG7WKbMMjcMxxBkkiFY+i41oMX5yM5h4yttzfewv77DNVbEUGccGQ0e89NvLF8u6tlp7U3bpTVRbUCjm9zC+kqeysZso7J/A4sbF7LnaRuj5APZ9ad7Olg8JKaoKRcLlMnpP0eUygWaXGRGkv4aErwppriq+oIBTY2B1YK6omBAIbcu8eVNiSGLra9jbStZrvIcOMjskHb6+790S/ynw7+PWZyj21YzXZ6tsEfnJ3nw6tVlr3/P3t/GiTZeZ/3gr/37OfknrVvve8bADYWAgJ3EAR3bZREwlquOaJ8bUphWzfmShO+tu+VFYqJazsc1rVjxiNb/mKPImYcdtgKmzYV8lgSyUtYpBaTBkhib3R3dXWtuZ6TZ3nnw8lsdANd1VlVuVa9v4j+gEZV5qnqzJPv+7zP/3laar3fI5phTBAlWKbO6RnlbLuH9fV1nn/+efL5PMVikS9+8YvUarUdv/4Xf/EXOXv2LK7rcuTIEX7pl36Jra3RaG4cBXRNcHQig6VrrI1hSUIYJ1SDEF0ILrZHbj778AK/9JHTLJRcXrld40/f3CQagmvv9faI4GzB4S+890hfN/4npzJcWSpgGxrfv7X9e6LXxInk2nqDih/yxPEy7xlAHswwOTaZIesY+8pKW6sF3NhqUm/F/Nh7Fnj0WHnXj9HJXZKkApMiZbmSFiOcnsnx0GJx2JejGCMcU+eJ42XyrsnLK4O7h76TzsjTbMHpeV5bh3EoWTGEzdnMs5xyP8CkdWLYl7NvNtwjNM0iRtLCjirEmskbxff29TnjRLJaS+Mdnjk/PVBXT3qIy7bONk3omMY0idCpCfD60EiajUOETFjXTULd2L4cIU5IpMS19K4OC11LZ7bgpuViIzaKLaWk0haXLt9nhLRDp1W1FcuBH9AOkrtHai/2uNm5W+YKDuWMSdUfP0PDmneSij0PUpJprXT9fcfIc0FOYKPzKltEJFynxk1RpyoCpqTHF5ILvF8uYexBOmgmOlEChgaT99HpskaMqWk0B+hsc8ItZqvfpdS8hhtusuad5PdO/ip/Mv88oZHZ9eNJKdmot9hotHhltc43XlnjhdfXubHZJBzRz+1xoR7EqfvXNZkZ8Gh5L+ir2Pb888/z3e9+l69+9av87u/+Ln/wB3/Al770pW2//saNG9y4cYO/+3f/Lt/5znf45//8n/OVr3yFL37xi/28zLFjoeSQdw3WR6xYoBtqbbt8zjU4Pvm2Ov1Dpyb5v33iPCenstzcavLCa+sDzTPbaLS43S5F+PxjS7t2Lu0WIQTPnJ9hsejy5npjYDfim1tNKs2IrG3w008dHbhFf9DMtbNa9hosHoQxr96us9kIeWSpyBee2FszrWVoHJtMc5fGbTShXwRhzGotIE4kn7oyv6uxXIUC4KGlIgtFh/V6a2iL2U5e2+WFQt8OaMoZi3K7ZGWUR0nL5lEuZD9+39G/caNlZFl3jxNrNm64xZazyHqmvyLier1FI4jJuyY/dGqyr8/1TrKOgalrO667XK1IqDvUNI1sH8S2XBwgiFkzDCQaOeP+mbmdMdK0OKQ7jpQ9vBEsSQiihEYrxtS1Hacp8o7BdM5pt6qO1s/QS6p3jdQuFIfTODhfdNPDjTAZO5Ek0QyuFa7imwXKzde7/j6B4Ak5zzxZaqLFy2ywJpoEMuJKMs3PyoscY+/iZy1JyxGyeoRnvXutl9XTRlJfGnt+jm7RkohS43Wm6t8j21pBIvjTuc/xn07/TW7nzu85my1KJK04wTZ0nrs0x3TeYaPe4ttvbvBHP1jl+7eqqWtTud12Tacc4dhkZiz3Cn274hdffJGvfOUr/NZv/RZPPPEETz/9NL/5m7/J7/zO73Djxo37fs+lS5f4V//qX/HpT3+akydP8uEPf5hf//Vf59/9u39HFCk3SIfpXBr8Xg/G73SrU29+pJQhY997Uz0/l+dvf+YiV5aKVJohX395jdoATpY6pQgVP+JKH0oRtuP0dJbLiwUsXfCDATSTtqKE65tNakHERy/McHJq/Obed8tswSHnGARRTLxLt6SUkpdvpzltk1mbX/zIqX2FVR8tZyi4o527NEiWK2lW21zB5X2nB7uxVBwMFoouZ2bzWLrgtSEUJSSJpNrnvDZID2eOT2ZwTO1Ab7RHjdXMaRpm6v5+s/A4UvTXddFpIX1kqdjTFvRu8Cwd29C2dbYB2HqOSM9Q1TRyfWgkzcYhoUzY1C00YZC/TxMpQCtOSCSUvAfntXWYLTiUPJOtEXMrVZqpM7acsVgqb++mEUJwYjJtVT3IreYVPySIY85OZ4e2qS55JlM5OxU2R8wJ2Q0ruQtU7VncqIq+i/dpDosnkjmK0mFLBJhS4xPyBD8qT5NjfwcotdggSaBgxhjau/9dM0aMrgmCpL9imxNuMlP7LkX/Gm60xe3MGX7v1N/gz+d/kkjfn7jbihKiROIYGr/wgRP81s88yl995gyPHCmSSMn3b1X52surfPuNTZYr/lAmuMaVWhCRSMnZ2fHct/btTvaNb3yDYrHIo48+eufvnnnmGTRN45vf/GbXj7O1tUU+n8cw7v8GDIKASqVyz5+DTpo/sTcBYdhUg4gokVyYv/8bZr7o8rc+fYGnTk0SJQlfe2WN9T6LEze2mmw0WtiGxv/Qp1KE+yGE4CPnZ5gvubyx3uj7eNC1jQaVZsh0zuYnH1vq63ONCpMZm1LGQhOC9druFtlvbTRZrQVI4ItPH+foxO5t5XczV3QoehY1f/xE8l4TJ5KVSoAfJjxzfvpdwrtC0Q1CCN57osx03uHa+ruDnftNrdX/vLYOnZKVUXPmHGTW3aM0zDJNs8QbpSf6+lx+GLPRaN1ZFwwa10zFtp2cbZ2ShJqmkemL2NaiqkFdtzCFg6ffP+Yiao+RljPdO9tm8w5Zx8QPk5FyllT8iCCMOTOTfeBI7OyIt6ruFynTshkp4VIfDy8ehBCCk1NZXFPfd97vMKhbk6xkzxFqNqVduNsAzjHBE3KOi8kEP5Nc5HE5j94DqaAWp862Sfv++5ys0XG26X15f2pJRLnxGtP175NrrZAIg2/PfZ6vnvobrGZ7kzEaRGmWpGfrZC0Dx9L5+OU5/u7nHubv/8TDfPqheYqexUrV549fX+drP1jlldu1sWu9HTRJIqkFIULA6Wkltt3D8vIy09P3hpsahkG5XGZ5ebmrx1hdXeXXfu3Xdhw9/Y3f+A0KhcKdP0tLB19EmMhY5N12ScIYfegmiaTmRwgBF+a2/yAtuBb/83Pn+PilOWxD4xuvrHNjoz8bKT+Mub7RpNbnUoTtODuT4+J8AUMTfc0dqgcRtyo+QZTwo+9ZGPip+bDQtHTR5Jgat3dxGlxphm1xMnUBPtODzU+nHbUVJwMdkR5FblcDakFEwTV5bkBOUsXB5PxcnvmiSxAlbAzYNVptRn3Pa+swU0hzH5utw33vGCR1e5o/m/sc357/PFvOYl+fa7VdjDCbd4aSpepaOrah09rh0M8WWRI9Q1PT8HrcSCqkJBu3qGmCmmZia/ltx5E717ibMdKpnE3WNkikpD5CJQmdvLZLXeSTzRVc8o5JM4xHSjDsFa27R2p3yK8bBIsll3LWYrM5nocbN3IPUbOmKQQ3ui5KANAQ/JBc5AvyIvP0TtioJWlm8bS7jdimp862EIOoV22eUmJFNYrNN5mtfoeifw0n2uJm9iL/6fT/wnfmfpRY791eqNUW24qe/a6InjOzOf7qM2f4pz/7KH/pI8dU8QAAtaRJREFUgyc5P5cnjBNevFnhj15e5U+vbXC7GpCoJtN30WjFBGGCaxqcnN6f6WFY7Fps+5Vf+RWEEDv+eemll/Z9YZVKhU9+8pNcuHCBv/23//a2X/erv/qrbG1t3flz7dq1fT/3qKNpgmMTGWxDGys7+R0XgGlwZnbnNhHH1PnLHzrFTzy2RNEz+Pabm7y8Uu35AuONAZYi3A9NS7Pb5osur63V++Juk1Lyxnrqajs+meGTV+Z7/hyjzGLbEdLt+GYUJ/xgpcpmI+TMTJb/y/tO9CTbLu8YzObTzJXbY3ha2iuklOkIaSviiRNlZgvDyWVRHAw8y+Dx42XyjsHLK4MdJa34IWGccKmPeW0d5goOWccglqPZqHhQuZW7yA+mPgqivyNt6/UWQZTw1KnJrho2e41nGZiGtuNmz9ayxHqGhhC4SQQ9nKxwkxBDRmzpOk1NJ2tMbfueimKJAIpu92OkjqmzUHSx9NEpSQjCmEYQYWoaV7ooCJrO2+Sc0RMMe0WlnddW9EyWyt5Qr2Wu2BY2WzHJmE0QAaxmTlF15tCkxGutDftyqMXp9MKkc//fpatLTD3NjqvH+7jXSokZNyj4bzFX/W/MVb/DZOMVsq0VImHzx/M/w++f+lU2vN7nb6bTZpLp3Pb3paxj8qPvWeQ3P/8Iv/6jV/johRkyls6NTZ8XXl/j66+s8sZaHX+bVujDSC1Ic3EnsxYTmfHMg9317M4v//Iv83M/93M7fs2JEyeYnZ1lZeXeJpQoilhfX2d2dmcnQ7Va5bnnniOXy/Gv//W/xjS3P72ybRvbHs9f/n6YL7rkXZONMXK2dcoRFkouk9kH/5vpmuALjx9hKmvz2197jRdvVmmGCRfn8j0RP+4uRfjC4/0vRdiO83N5zs/lub7Z5NXbdc70eCZ9sxmy3h6HfP6Jo4duZG+2kGYcLm89ONBZSsmrq2khQsY2+MWPnKawi9PznRBCcGIqi2el7aiLpeEuJofFZjOk0gyxDI1PHzLhV9EfHl4q8ntFl5eWq0RxMpCsnyRJR54Argxg5MmzDOYLLmZbLDgycbju4weZKE6oBRFaeyx6GHiWjqlrxDuIbZaWIdGzhJpOJMFJWvhab9ZNaRNpzJpuEQuN/DZNpJA6SCRpttZuOFL2yNgG642QY/u73J5Q8VNnbDFjcqQLcckxdRZLHpa+we1KQHaqN2uTUaHabnZ+eCq7r3zcXjCTs++IuZvNkPKYbfJjzeJa4SpTte9Tbr5Owx5eLq6UUI8NBJIp5/73FyEgb0qEgHpkULR2JyYbsY8XruOF61hRHTNpoictIs1mwznCG8XHeb30FDVnrhc/0n1pRel4+3QXe0khBA8vFXl4qchaPeA/fmeZ//zSCm9tNvnzt7ZwzCpzBZf5okvJMwduBBklOuUIp6YzY1vqt+vV2tTUFFNTUw/8uieffJLNzU2+9a1vcfXqVQB+//d/nyRJeOKJ7bMvKpUKH/vYx7Btm3/7b/8tjnM4xt12y3TepuCavL42+FDovVJtt7adm811feMQQvDsxVkmsza/+fs/4I21Os1WxCNHSpj72FAlieT11TpbfsiVxSLPXuzfDfhB6Jrgoxdm+O6NLV5drXFyKoPeo81iIiVvrjXYakY8tFTg6UMYRN8Z34wSSSOI8HYQG1eqAbcqPn6U8KUnj3Kxx6MM80WXiYzF8iFuJF3e8qkFEVcWCpzvc86V4nBwpOxxajrLK7drvLHe4OTUzs7pXjDIvLYORyc8MpbOar3FkX1mSCpGh2oQEYQJecfg5HT/X7v3wzV1TF0QxduLbbowsfUioWZS0QW5uIlv9GaNnosDhEy4bdqAILdNOYKUkiCK0YSgnOne2QYwnU9LEm50cfA2CPYiLh2Z8Mg6Bmv1FscfvBUbK6p+GoJ+YcBxLvfD0DVOTGX44zfWWakGYye2AdzKnqdizzJdfwmRtJDa7t4vvaKZ6LQSga5JJt3t7y95M81tq8c68GCxTU8CvHADL1zHjqqYsY+etEg0gy17njcLj/FG6Qm23CN9L7eBNLNNQFdmkruZyNh84Ymj/OSjS7zw+jpf+c4yf/bWFm+s1XlzvZE6PUseM3nngbmOB5F6ECElnBrTvDboY2bb+fPnee655/j5n/95XnjhBb72ta/x5S9/mZ/6qZ9ifj51M1y/fp1z587xwgsvAKnQ9uyzz1Kv1/mn//SfUqlUWF5eZnl5mThWlsq76ZQktMKEeAyqqaWUaeUx7EnAeM/REv/Lpy5wfi7Haq3F//nqGs192GxvbDXZbIY4hs5f/KHjQ7+BXZjLc242jyYEr/VQQF2pBmw2WliG4GeePLYvgXJccS2dhZKHbWg7ht02WlEqwDZDnjxR5ocf6X1Gz3zRIeemmSvjOJqwXxqt6E7A+2cemR/bUyrFaJEWJUwwlbN5Y0AHUIPMa+swV3QpZSy2muPjaFc8mKofEUQxC6V0dG0YuJaOoWkkUu44SuppJVqaQ03TyPawJCGbhIRItjQLgU7euL/YFieSKJHomqCc3Z14MFt4u1xsFDLPKm1xqZu8tg5z7ZKEin+wxkjDOKEahGhCcGUXv49+slT2KLrm2JbS1KwZVjOniIVFqfnm0K6jnqTlCFk9IrODqNwpSWjE23+NloRkgxWmay8xX/kzpmrfp9B8CzuqUbMm+c7Mp/nK6f+V3z3/f+fPFn6KTe/4QIQ2SMdIJakZZi/ousaTJyf5Xz97if/HX7jK5x8/wnzRoepH/Nm1Tf7wB7d5cbnCVjMcifvXIIiSt13f58b4cL6vcwj/4l/8C7785S/zkY98BE3T+LEf+zH+4T/8h3f+fxiGfO9736PRSMPvv/3tb99pKj116tQ9j/Xaa69x7Nixfl7uWFH2LAquia4J1hvhwBb7e8UP0+BTy9D27GY5MZXlb33qIn//q9/nT65t8rUf3E6zenaR25Fey9ulCJ99eIGL88N/Axu6xkcvzPDizQovr9Q4PplBv0899m6I4oS31htUgoiPnJseyKjTqHJsIkPWTsc3j02+2xGSJJKXV2psNFrMF1y+/OFTfRFgp7I2RddEE7DRCJnY5QnYuLNc8akHEYsllyeOTwz7chQHiIsLBeaLLjc2fbYaIYVdjpjtljt5bfP9z2vrMJt3yDkmr682SJIEbZ+fEYrRoOqHRIkcaih8OkYqkEArjnG0+28PbC1HVffY0nVmeii25aKAmgY13cTUbDz9/uO0YSyJE4mpi10Lk1NZm6xjgkwFzt0ULPSaVpRQ80N0TXSV19YhvQcY7XyoZN/rxFGh2o6ZKbgGxyeH4+58J/PtBvnbK9VhX8reEILrhUdYqPwJRf86697JdF5zwNRig0RCwYwx9O2fP6MnmLpGI7n3Na0lEW60iReu44RbmImPEftIoVG3Jnkr/wHeKD3FauY08ZDce0kiaYZpycNMfv9u39mCwxffd4KfefIof/jyKv/pu7f47zcqvLJS4/XVOhMZi6Wyx3TOQT/Ah9b1IKYVJ2Rtg2Nj7Obvq9hWLpf5l//yX277/48dO3aPOvvBD37w0Ki1+yUtSfD4pqGxWg9GXmyrBiGtOKHkWSyU9h6IPpV3+BufusD/8Z9f5g+/f5uvvbLG1aOlrmbkO3RKEeaGVIqwHZcWCpyZyXFzy+eNtQYn9jkKdX2zyVYzpOCa/IX3Hh2Zn3MYzBcdShmLtzaa9/3/b6w3WKu30DWNv/Shk8zk+xPa3xlN+K+vr3O7FhwqsS2KE25XAlpRwnOXZoeeyaI4WGRtg6tHS7x0s8rLt2tcPdq/Rse789ouLw1OIJnO2e0MSclWM6Q0hqNNintJEkm109I+xIM/x9CxDA1dCJphwnY6lq1lSbQsdSHw4t44LI0kxklC1jWNumZgazlMcf/P4DBOc5FsQ8ezdreFsQyNpbLHH7+elosNU2yrtEdIi67J8fscAG7HRDa9B2hCsHmADuw6v4+zM/mRyRXuRJCEcVpKs9vX2yiw6p2mas9S8G/ghhs0rcFnQtYSkySRTNoJgu33ITkjxtB0/EhHyBg33MQLN3CiLcy4iZk0AUHdLPF68UleLz3Jrez5njaK7pVWnDaRWrrG5C4dtzthGjofPjfDh8/N8NpqjX//327ytZfXWKsFrFQD5gppe/VB3d/VglSEPzaRIe+M3/uvw8E4EjmkzLVLEjbHwOLcGZM4NZ3d9yhjxjb46x89w2cfXiBjGbzw2jpvrte7EmrvKUV44shILVRMXePZCzPM5G1+sFLbl/AchDE3t3warZhPXJrl6BifCPSC2UJ6GuyH6Wnw3WzUW9zYbFIPIj778DxPneiv42qp7FH0xnc0Ya/cqgbUgohS1uKZ89uHXysUe+U9R0osFB1WKn5f4xXuzWsbXI6IoWscnfCwDZ3bY9RErtieu19LZ3tcjrQbNE2QsQ00TeC3to/osLUsiZ6hqQm8JE7Tz/dJNmkhZMKaYRIIjZw+ve3mMWxvaj1L35P7fLGUCijD/vztOLmOT2V21T6ra4LjkxlsQztQ94BqMyJO5EhMmnTI2AYLJRfL0FipjOfvOtIdruffQ2BkKTVfH8o11GIDCUxt00TaIaOHzMgVToQvM1/5M2ZqL1Jqvo4XrhNpNq+Wfoj/fPyX+bfn/z5fP/aXuVF4ZCSENkjz2uJE4ph630T845NZ/sqHTvNbP/sov/jh05ycyrC85fO9W2PqvOyCeruJ9NR0ZqwFxfGVCRXM5NOWxWEvGrqh5qcBh736IDV1jS8+fZzJrM3/+4U3+LNrWzRaMWdnti9fiO8qRXhoschHL+zcijsMLi8WOTOTY3nL5431xp5ts2+uN6i03Xs/9p7eZ4+NG5MZm1LGSseuayFT7UyFIIp55XaNzUaLywsFfvrJ/jsA5wpuOppQrfX1eUaJREqWt5o0w5iPXpwZKZFbcXA4NpHh2GSWV27XeXOj0bdxpE5eW2eMY5AslTzy7vDFgvuRSImAsV4UD5pqMxVdlsreroO1e02hHXHgR9tvim0tS6znaAiBJWNMGRGK/W0uc3ELjZjbhoMUguwOTaRhLEkke97QzubT0cDrm/d3uQ+KSjMklpIrC8Vdf+9CabyzxN5JlKR5bULA5RHJa+twYipLztk+gmQcWM5doLI+x1T9+4gkRGqDdXTW4vT5Jh0J73S2yQT8LaivMLe5yUOBREZ1Mq01AiPHtcJV3ig9xY38wwTG6Abkt6KEKJFMuQa20d+pDc8y+NRD85yczvK/f+UlfnCrRtG1mC2MhvDYS2rtbMozM6P7b98Nytk2xnRKEoI4IRrhkoRO8KkuRE9PrTRN8CPvWeAXP3yahZLLyys1/vTaJtE2wfM326UIrqnzP4xAKcL9sIw0u2067/CD5eqe3G1VP2SlGhDGks9dXaKshA00TXByMoNjvn0aLKXkldt1NhotShmLX/rI6YGMCcwVHHK2QRgnNFsHK+R4OzbqLWp+hGvqfPLy8Jp/FQcbTRM8ebLMZNbmjbVG355nGHltHWYLqVhQD0arNCpOJN+5vsULr62z1TgYIsAgqAbpa+n8XH7oImXWNjB1DX+H8ilbZNE0l7pu0BIa2Xj/zZ7ZOHW2rRrpWiVnTG/7tR1nW8nb26hWZ93sD7GkKIzfDv2+vIcs3bmCQ8EzaQQHY/1Q89M23pxtcnrENtXzBZeyZ7Hlj28pTcWeZ907TixMiv5bA31uKVNnG9zH2VZdhmsvwPVvwcpL2I2btITFnxsX+KOlX+Dfnv+7/P9O/s+8Vn7fSAttQDtDUQ70wOT8XJ7PP3GEqZzNt9/coBaM72v0frSihEYrwtA0zs6OjuN1L4ye2qDompJnUspYGEKM9AlXrW2Xz/Up+PR9Z6b41Y+f4+RUhhubTV54bZ0gunexeHcpwjMXZkfKqv5OHloqcno6Rywl19Z3d/oqpeSN9QYVP+TUdJbnLo+ee29YLJQ8Sp7FeiMV225s+qxWA6JE8nNPHdt3Rl633DOasEM76kHiZsWnFsRcWSpwckC/Z8Xh5NJCkfmiSz2IqPZhg5TI4eS1dZjNp2J9ECWEI3TIdrsasFZvsVIN+Pora1zbaKgM3gcgpaTSjNot7cNfk7iWjm3sLLbpwsLUPALNpqppZKP9i225uEUIbOgWAo28sf2BTCezrbjHApTJrEXOMRAwNAGlE6tScI09fR7O5B0ytkErlrSi0RLd98I9bbzuaA1czRXbhRThaJsadkQI3ipcpWFNDlxsC6ROKxHoGky5d30eVG7A7Zegch2SCOauoL//r/H1U7/M72Z+jD8vfHAo+XJ7pRUlJIkcuNP9I+dmePbiDJ6l881X18f3NXof6kFEK07IOTpL5f7kaA8KJbaNMUIIjk5ksE2NtREW2yp+SCtKOFLK9C349MJ8gb/5qYtcXiiy1Qz5+itr1O9S+TulCPNFh7/wxOiUItwP29D56PlppnI237u1O3fber3FRvu18Px7j6gQ+ruYK6Rj140gpuqHvLleZ6sZ8pFz0zx3abBuq+OTnXbU0X3f9oqaH7FZb6EJ+OxDCyP93lOMPwXX5JEjRTK2wcsrvR/VrgXDyWvrUPRMJrI2hi5YHRGxPpHyTu7l6ZksOdfgT9/c5Ls3KsSJEty2o9GK8cMY29SHWo7QwbN0bFOntcOGTQhBRisTahZbmr5vZ5uQkmzcoqZBXTMxhE1Gn9z268M4HVXeq9hm6BpHJjwsQ2OtNhyxrVMGcGwiu6c1cd4xmM45mLo4EGuISruN9+L88N2d72QiYzGZtTE0weoYZ+TdzpyhYs9iJAF2uDWw5622m0izWkS2k01YuQ6r34fGGiw8Cp/75/Aj/0+sR34KL1dC1wT1MXNtBu3R+6kBTxJpmuALjx/lsWNlokTy7Tc3DswhV6ccYb7ojWU5yd0osW3MmSs4I5/dUA0iokRyYb6/G5PFssff+swFnjo5QRQn/NHLa2zUAzbqb5cifP7x0SpF2I5HjpY4NZ0jSpKus0WSRN7JanvkSIkn+xz0P250mqWiRPLScpWNRsiJqQxfev+JgVdnzxddyhmLrebBsn3fj5uVJrUg4sRUhkeO9K8hUqHocPVoifmiy3LF7/moWCevbbbgDPwUG1Kx48RkBtfUR+aQbbUWUPHTiIb/6dmz/NWPnGGx7PL6Wp1vvrpGc4fA/cNMx9EzmbWYKwz/5N41DWxDo7VDZhuAo+eJNJeappGJ9/ca9JIQXcZs6QYNzcDWsljC2/brO27Owj5CyBeLHnlneOvmSjMkTiSXFvYmsN65B1j6WAtAcFcbL3BpxPLaIP1dn5zO4lo6t0fkcGMvhLrHjfxDtPQsEwMsSqjFJomUFMwYQxdtoe0HqdC2+Ch87NehfBzaImu5na3cGLPPjM49czLXuybSbnEtnS994ARnZ3Pcrgb84NbByIOut7WDs7PjPw2jxLYxZybvkHdNmjvY/odJkkhq7Vr783P9P7kteha/8vHzPHtxFsvQ+Pqr6/zgdpWtZshDi4WRLEW4H46p88z5aSazNt/rMrttueKz1QxxTJ2fffIoxj5bXw8arqWzUPKwDY2Vio9r6fzih09TygxefO0If8F92lEPEq0oYbXaIkokn7g8N5I5iYqDx4mpLMcmMmhC8NZGb4PQO3ltw3RhzBVdSp7Jxghko0kpubHpUwsiHj9e5tR0lvedmeLXPnOJKwsFKn7IH718m7UxFwX6QbXt+j87kxv4gc/98CwdS9dIHrDesLQMiZ6jpoEn97f2TPPaYlYMk0hAVp/a8X3VihIk7DmzDTq5hya1Ibhnojt5bXBlsbjnx5ktOJQ8i43GeB/Y3d3Ge26Ibbw7sXgngmS8f9fLuUtU7FkyrVVIBrNnrCcmSSKZtBPE1o23hbalx+HZX4fMvaaAgmtiGdpY5RlLKWmGMUKke/JhMJ1z+NL7TrBU9vjerSq3Kvsf7x8mUkqqwcEoRwAlto09M3k7zW4YsfyWDnc+SM3B1do7ps6XP3SKz11douAaLG+mwsoXnx7NUoTtuHq0zKmpLEGUcHNr5xtnGCd3Muk+cHZqIMLmOHJsIh1lTiT8xNUlHloqDuU6JjIWExkbXROsHYAxkO24VfGpBxHTOYcPnts+9Fqh6CV6uyihnLF4vYdFCffkte0h2LxXzBbah2wjcPq/Vm+x1WxhGxo/fnXxjlBydDLDr/3wJZ65MIOhaXzj1TVeW60dmBGX/SKlpOKHI5PXBumBlKFrRA8Y/bVFjsTI0dAEbhKj7WPj3ilHuG14SOSOTaRSSoIoQROCiczexbbp9ro5DTUf7Lq5GqRlAHnH5NTM3h0bcwWXvGPih/FYv6c6bbyzBWfobbzb0SmkaLaGV6rRCzadRTbcoyRCH1h2Wy02kMAZ7S1Yu0to++ivvUtogzTT2DH1kfhs65YokYRxgqFpTOeH9xq+uFDgJx5dSgsT3tgYu1HcuwmihGYrxjI0JbYphk/BNSln0vyWUTw57pQjTOftgX6QGrrGX3jvEb70/pMcnczwyctzYydAuZbOR85PM5m1eGm5suOC6vpGk4ofUsxYPP/E0ZHLvRgVzs/lmMk7PHVqgs89tji069C0dDTh7nbUg0acSG5VfPww5kPnpsg7g62bVxxuLi8UWSi6VIOoZ619nbw21zKGKpDMthsV40Tek006aKSUXN9MD3muHi2/6zM265j89Y+e5WeeOspk1uY71yv86bXNkTwYHDRp01qMqWtcmh+N8TnX1DF1QRw/QGzTMkjhUtN0QJDZR25bLm4hkNxuN5Hmje3FtjiRREmCrkFpH2LbRMam4JpoQrA5YLdSpRkSRDFL5cy+PhOn8zY5xyCRkvoYuYDeSbXtFL4wgnltHWYLDgXHBCSVMRYwEFpalGCWBye2JSYn5Jscb33/gUIbpI3IrqnjP2CUfZQIooQokdimti/HbS949uIsHzk/jWPpfPO18S1MqAURYZxQcMyRiFjYL0psG3OEEByf8HCM0SxJqPrpG+bcbG7gH6RCCD52cZZ/+rOP8fPvPzmyH+Q78eixMiens/hhwkrl/qJMM4y5ueXTCGM+89Ac88XxvzH1i6MTGf73H7/C3/jkBWxjuOURC0WXUsYa6bzF/bBWC6gGERnH4BOXB1tAoVCUMhYPLRXxLJ2Xb/cmw2TYeW0dOiPxlqFxe4jO2I1GyFYjxNTvdbXdja4JfvzqEv/X585yot0Y/o1X1vrSFDtOVNoHkSXPZGli+4yyQeJZOmZ7jHSnYgtby2JoNhXdJETbV0lCNm4RAVu6gUAjZ2wf9REm6XWZuravzDZdS8vFLEMbeOZZ1U9ziC4v7M+t4Zg6iyUPS9e4vc3acNS52915aUTcnffD1DWOT2WwDZ2VMR/PW8meo+rMYiZNzKi/2V5SwkRwgwvJD8jFG7D0BDz7d7YV2gCyTupsC8fIQdiKEuJE4lkGmSEH+eua4C+89yiPHi0RxjF/cm1zLJ2vnSbSTpnNuDP+P4GC2YJL0bNGIr/lbqSUVNsfpBeGeHKra2Ik8lD2QsY2+NDZaSayFv99G3fbm2sNKn7IYtHlhx8ZnltrXLBNfSRaWueLDgXXotEa7zGQ+yGlZLni0wgiHjtWZkEJwIohcPVoifmCw43NZk/Gfyp+SCtOuDQCLoxjEx4Z2xhaI2nH1VYNIq4sFrj8gHDzq0fL/PoPX+ax42X8MOZrL6+y/IB4hINMtd1IeWIqO/SDnw6eZWDq6eu6FW0/xmUKD1O4+JpJTdfJ7VFsM5MYJwmpaYKaZqILi6wxte3Xh1FCIiW2oeNa+/udLRRdCq450MyzKEmo+iFCCC4tFPf9eEcmPHKOMZIH7d3QaMU0wxjH1Dk/wmIbwJGyR8Ezxz72o2VkuZG7QqhnmGi+1tfncvwVTkY/wJY+2uJV+NjfAa+84/dk7TQ3Mh4jR1Y6ji4pZyy0EdhrepbBl95/gjMzOVYqPq/06LBxkNSCiDiRB2KEFJTYdiCYydvt/JbRujn5YTomYRka5+cOxhtmGDxxYoITkxmarfhdp7CVZsjtmk+USH7ysaV9nfYqBstM3jkQYyD3o+JHbDVDdE3w6Yfmhi5MKA4np6ezHClnEAKWt/YnSnXy2gTDzWvrMFtwKXvWnRDhQbPVDNlstNAF/PjVpa42GTMFh7/16Yt8+qF5XEvnj19f53vLFZIHZIQdRKp+RCLlyOS1ATimhqlraELsuJ4UQuDqRVqaxZam77mRNBu30GTMqmHR0jRsLYstMtt+fRinDhLXTDfk+2Em71BwzYF+9tb8CD9KyNq9yTCeKzgUPYuKP57rh0q7IGQqazObH+0Dufl2KU0tGJ8sse1Yzl2mYs+QDVb6VpSQC5bJNd/CiH1+YJ5H/9jfAffBbfQZ28A0NKKEsTmEbkUJUZIwNYQm0u2YLbh88ekTLJRcXlqucrs6PgdbUraLFTkY5QigxLYDwXTeIWMZhHFCa4RaSatB6gIoeRaLpdEYkxhHsrbBB89OU8pY/PcblTt/L6XkjbUGlWbEudkcz1zYPutEMXo4ps7RiXQM5NaYjoFsx/JW2k54bi7P5R6c4CsUe8HQNd57okzJs3h1dX+nu/URyWvrMJt3yDoG/hBCu++42vyIi/MFHjlS7Pp7HVPnf/zgSf7SB08yW3D4wUqNP35jnWAHJ9VBI7zTSCm49ABH4CARQpBzDDRN4D/g38PVikSaS1UTeMnexJ5c0kKQcMtwiJFk9AmE2H5bEsaSRELeNfd9gDOTt8naBkGYDMxFU/EjgjBmseT25GB0tn1gN4yih15QbY9Sn5vLj/z0yXzRJeeYhHGCP0L7rL2w4R5h01lCCp1CcLPnj58Llik130SEdf7cuMS3pn+ETGH70dG7ydrGnUbkccn2DKIEKWE6N1qC8UNLRT736BLljMUfv7FBY0wO9RutGD+KsU2dM/sokRkllNh2AMg7BpNZC1MXrI6QnbzqRwRRzKnpLOY+TyEPO+89mbrbaq2ItfbY0GqtxUajha4Jfvq9R0dmFEXRPUfLGfKuOZLlJnvFD2PW6gFJIvnklbmRX0QrDjaXF4vMF122mtG+FpuVEclr6zCVsyl4JpomBjoKB+ln+0a9hRDw41cXMXb5+S6E4LmLc/zNT1/g7GyO1VqLr728xuaIRWH0i1p7bZR3DU5MjdZmIu+Y6AKCcOeNrq1lSfQs9Y7Ytgex504TqekiScjp2+e1wdvOtqK3f6Gq5FkUPQtDE6zXB/P+qfphO6+tN2PoE9nhFT3sF9l2Co9SG+9OZG2D+YKLZWisjJFL6H5IofNW4VGaZpGif62nj50LblJqvokTbvKie5Xfc5+jVCp1/Xr3LAPbSN21jTFpJG1FCQKYzI6Os63Dxy/N8ZFzMziGxjdfXScaA1G+HkSEUTqWOzUCa61eoBSQA4AQgmMTGRxTH6mw9ZofIeV4fJCOOnnH5ANnpih5Ft9drhAnkjfX61T8kMePlXns2M45CIrRZK7oUPJMqmM6BnI/liupq22+6PL0qclhX47ikDOVs7m0UMC1NF69Xd/z44xSXhukWaTHJzLYQwh577jazs7keOz43j97zs7m+fUfvsz7Tk+SSMnXX1nj2npjbMaH9kpnfO5IKUPWHm6g9jvpjHE9yNlmaRmknqMmQEPgJbt/DWbb46dr7SbSnDG949eHcZrZVt5HE2kHTRMcm/DS90+9/++fOEnLAISgZ25GXRMcn0zvAePWau5HCc0wxtI1Li2Mxx7hxFSGrK1zuzo6+6y9spI9S9WexYrrmFGjJ4+ZCm3XcMJNrucf4fcmnsfHZHEXmb26Jii4JromxiZeJYhiJIzEIdw70TXBTz95lEeOlAiimD8fg8KEWrsc4cRk5sAc1iux7YAwW3AoeubInAyHcUI1CNGFUGJbj3jq5CTHJzNUmyHfu1Wh0ozIWAY//eTRkQjlVOye+UI6mhBECeEYVZ1vR5QkrFR8gjDhoxdm8IbczKRQADx2rMxcweH6ZnNPC81Ry2vrsNAeRxtkQHrNj1irB0hSV9t+XeuljMWvfuI8P/HoEgXX4M+ubfLdG5WxOIHfK51Gyov7bKTsB56VjnE9aFSu00i6pZvIPTSSCinJxi1iYEM3EIgunG3pe7dX2bRzRZeCZw6kXKwWRARhQsYyODfbuzXxQsmj6JojddDeDdVmWhBSyoxPzMx80aXs2Ww1x8tFeD98s8hy9iKh5lJuvr7vx8v59wptf3T8l6gmqSg+V9jdeGU5kzpOx8HZliSSZhija4LZvD3sy7kvGdvgFz5wgtPTOW5s+fs6dBwE9SAmkZLTBySvDZTYdmCYzjvkHZPmiGQJ1NpZDDnX4PjkaI1JjCsFz+T9Z6YoeiZvrDWoBREfPj/NqWn1+x1Xip7JVM5OR8DH7GT6ftyuBtSCiKJn8uxFlSGoGA3OzORYLHlIKblV2f0I0KjltXWYK7gUPZPGAEsSrm82qfkRJ6eyvPdkdzk8D8LUNX7myaP81WfOsFh2eX2tzguvrtMcg83WbokT2W6kpCeNlL3Gs9K27tYD8pJskUUXFpu6TiT0XYttmSRElzFbukFDGGkTqb59Eymkh7iCdC3UC2bbJQmDeP902mfnim5PnHkd5goOhQHfA3pBJ7/uzMz4xMzMFR1yroEfjmdG3ju5kX+Imj1DrrW8pzHwDjn/JiU/HR29XngPf3T8l/D17J3793xxd46vrGNgmxr+GNz/g/Zou6VrTIzgGGmH+aLHF993nIWSy4vLlaG1mD+IOJHUgvTz8awS2xSjxkzeJmMbRLEkGAHB7e4xicyIjUmMM0+dnOToRJYolkzlbD7/+NJIjDQp9oYQgpNTWVxL5/aIfvh1i5SS5S2fRivmyZMTzIx4u5ji8GAZGu89MUHBs3hlD6e6o5bX1mE275CxDVqxpDWAgoF6ELFaC4gl/Mh7FnqaEyqE4OnTU/xvn7nElcUCFT/kj16+faDyLCH9HQZR6nA6PYIHZa6lYxsarQc4rS0tgyFsfM2kphlk4939O6V5bTG3DJtYA0vzcPSdN1cdAbDk9WZT21k3t+L+h7FX/IgwTrg8X+jpmm0m75Bt/wzjVDJS9dO8tlEqCHkQkxmbiYyNoR2Mw9F17xibzgIgyLVu7ekx8m2hzQ23uF54D3947JcIjBxRkr4eDU2wsIsxUkjz8VxTHxnzyE60ooQoThuS8+7oim0Ajxwp8WOPLLYLE9ZpjuCYbqOVfj56lsGJqe2bqccNJbYdELK2wXTOxtDFQEdKtqMapGMSF+YPjjI9CpQzFh+9MM103uZHH1lQgsYBYKHkUvYsNprDf9/uh81GSNWPsA2NT12ZH/blKBT38NBSkYWiy1aztesDqU5e28URyWvrkHfTz/3UGdv/+8eNzSa1IOLYhMcHzuzsQtorRycz/NpnL/HRi7MYmsb/+eoar96ujXzOTLdU+uRw6hWuqWPqGnGy8+9bEzquVqSlWVQ0DS/e3cYtF7fQZMIt0yOWCRl9Ak1sL95KKWmFCUIIyj1ythVcMx1Z0wVrfcxtu3sM/WKP88nyjsFUzsHUBWsDuAf0giCKqQcRhia4OD8+YpumCU5OZ3HMg5HbJoXBW4WrNI0CJf/NXX9/3r9JsS20vdUW2lpGeoDghzFRInEtg8nc7sYrM7aBY+oPLGkZBdImYEneNbGM0ZdUPnlljg+encIyNF54bf2B9/lBUwvSqbiprD2Sn497ZfRfGYquEEJwdMLDNfWBhL3uRJJIan6EEHB+bnRGbg4KH7s4y//rpx/lc48uDftSFD1gruCQd02arYRkjEcTblZ8akHIpfnCgbJ/Kw4G0zmbC3M5bEPn1dXu3W13b5SvjJgLQ4g0IN019b47LZqtmNu1gDBO+JFHFnHM/rVfZx2Tv/bMGX72qaNMZG2+e6PCn1zb7Lv7aBBU/YgoTrg4lxsp4baDZ7XFti7ETUcrEmkONQ08GcEuBNG0HEGyYrpIYrL6zrEDsZSESYKupS2cveBOuZih9VWoqrXH0D3L4EKP18RCCE5MZnCt/t8DekXVT90rBc/i+OR4uVcWii6lzPhl5G3HrewFqvYsdlRB38UoeN6/sa3QBuCHCVGckHOMXZfAZO20kTQagwOWVpQQSzmSTaT3w9A1fubJYzy8VKIZxvz5W6NVmFAPYsI44eRUZiQ/H/eKEtsOEDN5l6JnsTXkCvBaq72wMA3OzqpNd68RQpBzTVWKcECYyadiG0gqY9pKWg8iNuotQPDph+fVa1MxcgghePz4BDN5h7c2ui9KGNW8tg5zBZdSxmKjz5/7N7bSrLbFkssHz/bH1XY3uib4satL/MrHz3FiKsPNLZ+vv7JG1R/fcHLZFm4lcH5EHT2upWPooivHg6NnSfQcdQFmIrFk9/82nbHTdSPdpOaMncW2MJbEicTQNfJOb5xt0Mk9tPpaklBtpm6NmYLD1C5dPt0wV3Qpef2/B/SKajvT+eRkpq+ifT9YKLoUXYtmGI+USLFXmlaZW9nzRLsoSkiFtmu44RbXCo++S2iD1PEVJZKZvL1r0SRrpyUtUTz6v98gSjPbRile4kHkHJMvvf8EJ6ayXN9s8vra6BQm1IIICZzpYYnMKKDEtgPETN4m7xpDn3PvlCNM520me3QCqVAcVExd48RkBtvQWanuPrx9FFiu+NSCiCNlj8eOlYd9OQrFfTk7m2Ox7BHFSddjl528tpm8zdQILqjnCi55x8Tv4+YvCGNWKj6tOOGzD80PNIf1kSMlfv1HLvP4sRJBFPNHL69yc6s5sOfvJY1WjB/FuKbec4dTr/AsA1PXSBL5QMHNEll0zWND15FCIxt29+9iJRF2EhELjS3dAAT5BzaRJiRSYhs6nt07gWa2YKfO8j6OrFX7PIY+2y5I6+c9oJdU/JBYyp6P1A6CmYJNzjFIpKQ6poej7+RG/mGq9jT5YPmB7tR3Cm1/dOzL7xLaIHW2xYlkfpdNpJCOkZqGRpwkJCM25vhOWlFa2jI5ok2k27FU9viLTx9nvujy3RsV1kfAFRvFCfUgQheCc7Ojl2e6H5TYdoCYboclR7F8YG17P6m2g2DPzY7mmIRCMWoslT0Knjk2mSt3E8YJt6vpeNnHL8+O3Um14vDgmDrvPV6m4Jm8crva1fd08touLRRG0rE5nX9781fvUyPh9a00q22+4PLRizuLIv1gJu/wNz99kc88NI9n6Xzr9Q1eWq6QjIGwcDed4qipnM1MfvSEW+hktqWv8wcF7ttaFkPYbBgmcheNpNk4RJMxa4ZJIDR0YZLVp3f8nrDtIPFMHauH7ZXTeYeMZRBGSV/KxaSUbLXdmP0qA7jnHjCCoed3E8YJNT9CE4LLI9jG+yBsQ+f4VAbb0PbUbD2KrHknqNjzCJmQad2+/xdJeY/Q9uYOQhukmW2C9DBot+ScdIwUHnwPGjZBGCOB6TEZI72bR4+W+JGHFyh5Ji+8vo4/5HtHJ68t6xgcnRiv8fIHocS2A0TWNpjJOVj68JpypJR3WoYujOiYhEIxaswXXUqeSW0Mqs7fyUoloB5ETGRtPnJu5w2TQjFsriwVmS+6rNVbhA9oXBzlvLYOjqmzVPawdI2VPjQat6KElUpAECZ84sosuR6O8O0Gx9T5Sx84yf/4wZPMFhxeXqnxykptKNeyVzrjc2dn8+gjKNwCOKaGZWhoQuC3dn5/2FoWXVhsaRqRMMl12UiaiwMECcuGR4TE0jxcfWeXUxhLEgk51+zpIW7ONpjKWWnBQB9yuOpBnI6hmzqX+jSG7pg6i6X0HnC7MnyHyk7U/Iggism749s2eLScoeCaQ8/H7hWJZvJW4T34Rv7+o6RSkg9uUvSv4YRbvFl4jK/tILQBdyas5ou7P1SwDQ3H1NE0QW2ExWMpJX6YoIlUtB83hEhjX95/ZgpT13jh9Y2hFCbI9kHhSjWgFSd3GpYPEkpsO2AcnfBwLWNo4Z1+mNBoxViGxvk5ldemUHTDXMEha5t9O13vF4mULFeaNFsxHzg9SSkzXlZ6xeFjvuBwbjYtSnhtdWexZtTz2joslT1yTn8+92+2s9qm8zYfvzjX88ffDUIIPnZxjl/8yGmOlD3eWB+drJkHcc9B5IiOkEI7E9ZJM2H9LpxturBoagZNoeMl3WWGZZMQIRNumhkSGeFpZTSx8+YqjFNnW6lHTaQd0nKxNDusH2JbxQ8JwnQD2c9cpyMT6T2gHz9DL+m4O4+UMkMT7vfLXNGh6FnU/fFZqz2IW9mLVJ1ZnKiCltz1GpKSfHCDYrMttBUf42vH/sqOQlsUp+tYXRMslrxdX4sQgnLGQheCZjC6v+MokbTiBEPTRtap/CBMXePnfug4VxaL1IOI71zfGsgoupRpkeIba3X+9Nom335zg9dX6wRhzLm50Wp97wVKbDtgzOQdSp45tJKEapCO3JQ8a083WYXiMJJzTOaKDpahcWuMctvW6y2qfoRn63zi8vywL0eheCCdooTpnM2bGztnTI16XluHuYJDybOo9Lg8IIwTlis+zTDmYxdnKWZGY1TmymKB+aJLK0rGpjAhiNKDSFPXuDTiWVUFx0QXPDD/Vxcmjp6jpVlUdQ0v6a6RNG0ihVXTQRI/sBwB3s5sK/ZYbAOYLaTr5s0+lCR0YlXOz+X6OoY+V0gFoFEvWar6EVEiubQwvofx80WXvGPQisfrcHQn6tYktzNniDWbcuON9C/vCG1v4UZtoe3ozo42SE0XYSJxLJ2pPWaZFV0TU9dojPDvNwjTJlLb1Cl6o/HZuBfyjslf+sAJTkxnuLbR4M31Rl+ep3Pg9MZanT95MxXYXlqucn2jSaMVM190+cITR3j+iSN9ef5hcrB8egpm8g45x+StzeEECFfbFvFT0yXMHuZqKBQHnROTGTKWzlqtxZHy6I9XSClZ3vKpBxFPnpzk2KQS1xXjwYW5PAsll7c2mqzVAia2KfIZ9by2DrMFh6xjtEOpE3StN5+9N7d8an7EZNbmU1eG62q7G88yuDCf5zvXt3hjvcGlMYisqPghQZRQzoz+QaTXDijvRkjwtBKhZlMVsCgTdBkT7+BS02RyVxOpDTTJGQ+OHwhjiQBKbu83tbPtdfONrd4edN3dPnt5sdjTx34n6c9gEERxT+8BvSRO0s22EHBxDPPaOuQdk9mCi6lvslL1WRqD9doDEYLr+UdY3Po2+eAGq5lT9whtb7SFttB48M/qRzFxLCllTHJ7HAfMOiaOqdEc4WiVoP1z5jMGGWu8s4qPTGT4uaeO8X/8/sv8t+tb5FyDsrf/SRXZLhJZr7dYqwfUg5hmGBNGCZapsVR2efLEBE+dmuTUVBbjgOoGSmw7YEznbTK2ThRLmq0Yd8A3gJofISUjPXKjUIwi80WXcsbixpCE8t1SCyI2Gy10TfDZh+cPnO1bcXBxLZ3Hj5V58WaFV27X7yu2dfLaAC6PaF5bh8mMTdGz0DXBeiNkqgct4FGcsLyVnjh/9uEFJkfM2Xd+Ls9Uzk5DysdAbOvktZ2azmAZo72h8Cwd29AJHpBpCGBrOYSWYUsXgEYmblLRtncteUlajhBoJlUhAEFOf7CQG8bptRT64GybbmcEdcrFelXy02ilG0vH0Pu+Jp7IpvcATQg2G+G2BwjDpBZE+FFCxjI4OzO+zjaAE1MZMrbBaq11MMQ2YDVzioo9R8G/znT9ezjhVltoe5yvHf0rXQltkJYjREk6Or3XdWHGNnAtfaQbX1txQpSkk1wHYf37xPEJrj3c5Hf+65v811c3+MDZqT3dC6WUVNoC23o9oBZENFsxUSyxTY2jEx5PnZzkqZMTnJjKjmx+aS9RYtsBw7MMZgsulqGxWgtYKg/uBDWME6pBiCaEEtsUil0yX3TJOSZ+VCdJErQRPJm+m+Utn1oQcXIqy0NLxWFfjkKxKx5eKvF7L97ixZtVojh514lqJ6/N62Owea/QNMHxyQzffHWN1VrQE7HtViWg6kcUMyafeWh0XG0dTk1nmczavLHWoBFEeCMeqFz1IxIpuTgGwqBr6TiGRr0LV4mtZTE1l1XdIEEjF/tUzO2FlFzcQsiEFdMhFKBjkH9AEymkG1sJfRnXytoGM/m3y8V65TzsTHpM5Zw9tTLuBl0THJvw+KahcXsHt+4wqbbz2k5MZvoyDjxIFtqHozfH5HC0G2LN5q3CI0zVv0fBfwtNJrsW2iAdI40SyXxx76/5rK3jGDob8ejGBATthuSp3Oi91/aCEIIffmSBtzaa/N6Lt/ivr6/zQycnu3L1dw4nU4GtRb31tsDmmDonp7M8dXKCp05OcnQicygEtrsZ7dWJYk8cKXt4ls56fbBiW619cpt3DY5P7jzTr1Ao7mUya1PKpCfT642QyRFcLHcIopjVWkCUSD51ZV6NjCvGjqWyy6mpLC+v1Hh9rcGp6Xs/szp5bQsld6Tz2josFF2Knsl6bf+5U3EiudF2tT13aZaZPgsFeyHvmJydzfHdG1tc22hydnZ0nTKtKKEWhOiaGHnhFsA1dWxTY7OL7F9Ly2IImw3dINZMstHODY3ZuIUmE26aWRJiTOHh6DsLkFJKWlGCJgQTmf6INJ1ysbUeim2dMoDzc4Npn10oeRRdc2gFaQ+i0kzz6y7OF8beCZTmtpm8Fo7H4Wi33MpdomrP4UYVXi8+wdeP/RVCfXfvBz+KEaTxBnsla5tYhkaUPNhdOyxaUXoAMI5NpNth6hp/8YeOc6vS5FtvbPKdG1tcXrj/+zVJJFv+2wJbI4hohDFxInFNnTOzOZ46McGTJyc5UvZGOoqj3yix7QAyW3Aoeia3q4P9wO0sLE5N5ciM+CmzQjFq6Jrg5FSGF15bY6USjLTYdquSWsNn8w7vOzM57MtRKHaNEIL3npzk229u8sZa/d1imx8SjkFeW4e5gkPRtbhd3blhtRtuVXyqfkjeNfjhRxZ6cHX94eJ8gT/4/m1ubo222NZx9BQck+NTo38Q6Vk6hqYRd1F20GkkrWiCWJhkkgeJbSEguWVlSGSMZxTRxc4CWiwlYZygCSj1qaSjUy622gOxGu7NaxtUIcZcwaHgmayu7PxvMAyaYcxGo4UmxIFwwk9lbcoZC00TrNXDA+Nuqloz/LfZH2ai/govznxq10IbgN+KkcD8Pg5pMraOZWiEsURKOZLibBAlCGAyO77lCPej4Jn8wvtP8hv/4SVeWalR8qw7xp04kWzdcbAFd0bl40TiWTrn5/I8fWqS956cYLHojuS/2zBQisgBZCbnkLNNrm00B3qTqgZpy9CF+dFd9CoUo8xiyaPkWaw3Rm+x3CFOJLcqPn6Y8OFz0+Sc8R4HURxeLsznmS86XN9sstlo3RlRG6e8tg4zBYeMbRC2G/LsPeZOJYnk5laTRhDziStzIx3mf2o6y1TO5q2N5r5+5n5TDVKX5NmZPJ41+stuz9IxdY046UJsExl0YdHQdAKh48U7ZCxJSa5djrBquCQ0yekPbiKNYkmSSExDo9iHggRID6lzTrpu7gXNMKbRirENfWAFHjPt7LlWLAmi9LlHhVvtMqWFksujx0rDvpx9o7UPR7/52hq3q8GBEdsQguuFq1wvXN3Tt0dxgh/GGJpgsbSfMVIDS9dIpCSKE8wRei13CMJUVJwZA+f7bjk+leVnnzrGP/7PL/Nnb22iCUGjFbHeaKUCWysmkZKsbXB5ocDTpyZ5/ESZ+YIS2O7H6H/qK3ZNWpJgkMSSRisiY/d/M5wkkpofIUQaXKxQKHbPXMGh4JosV3rbitZLVmsBNT8i7xg8d3l22JejUOyZrG3w6LEyL96s8vJKjUePlYF2XlsU445BXluHnG0wk7cxdcHtfYzCrdQCKn5Exjb4sfcs9vgqe0s5Y3FyKst3b1S4ttHg1PRoHvRV/Yg4kVwYk9eSaxmYuiBKHuwqMYSDpXlsahY1rc58FCOSGKm9e3NsyRgriZBCY9OwQDbJGg8W21pxQiwltqH3rfRrOueQsXWSRPYkA7DSjlUpZy0W9iE67Ia8YzCVczB1wVqtta/MrF4SJQm3qj6tOOHZCzM9K6AYNp3D0bX66B6ODpogSvPaHFNneh8iVMY2sAwNTUAzikdObIsTeUdUnMkfEKH1HTx1coI31xv8f/74Gn9ybQNNiDsC28NLRd53epInjpeZ3kcRxmFBiW0HEMfUWSg67ZKE1kDEtlqrEyZtjPQ4h0IxyswVXHKOQRxL6kE0cuPYUkqWt3zqrYiPnJtmoTi6rheFohseOVLi919a4XvLVeI4Qdc1Kn5EEI5PXhukY7EnpjJ4+8idSqTkxkaTehDx0QszHJ0Y/ff35YUCX3t5lRubzZEU2+JEUvPT4qjLAxon3C+uqWPoGlJKYikxdthICSHwtDKRlo6SLiDwkhZ17d1CTy5uocmYmm7SEBIk5PQHH9iEUUKSgGtq2H1qcnUtnbmii9kuFzuyz8/eajMkiGLOzeYGlmkqhODEZAbX0lmtBiMjtq1WW9SDiIJr8sz5B4ur48J8Oyfz5tboHo4OmrSJVFL0THLO3t9Dpq6Rc0w0IagHMaMWi9aK03IEU9dGsoykFwgh+LH3LLJWC/ijH6xyfDLDD52e5PFjZaZythLYdsHBSHRUvIulOyUJg8lt65QjTOftkc6aUihGGdfSWSp7WIbGygi627aaIVvNEEvX+PRDo5vlpFB0y9Gyx4mpDIYueHOjAaQb5XHKa+swW3ApZUw2m3trcFutBVT8ENfU+dFHFsZiMd0ZJa0FMWE0emHatSDCjxIytsHpmdETA+9HZ4wU0hDwB+HoeXThcNswkWhko/uPYmbjFoKEW0aGSMZowiDXhbMtTFLRL++YfX1NdsrF1va5bpZSUvHTvLbLA26fnSu6lDyLjT3eA3qNlJLlik+jFfPUyYkDFSbfGT1OEslWczRLKQaNHyZEccJU1t73Z2fJMzE0QbOLVuRBE7RFRdfSybsHN0rFMjS+/OHT/PO/+Di/8WNX+NSVeeVk2wNKbDugzBYcSp5FxR/MB27VT1uGzs3m1JtQodgHxyYy5Bxj3wv+frBc8akFEefm8mMzEqVQ7ISmCZ48McFk1ub1tQaJTAOAYXzy2jrM5h3yjkkzTJBdhNvfjZSSG5tprtJjx8tjIwxN5WyOTmQwdcH1rd7kbfWSSjMtR5gvphEB44BtaO0Rru42urbIYmouq7pGrBlk4/sfFGXjFkIm3LRyJESYwsXTiw98/NTZJil4/f39zeYdyp7F1j7XzUGU0GjFmLo2sHKEDp17gB/Gu74H9IPNZkilGWIZGp+8Mj/sy+kpjqlzeaGAZ+v84Nb+i2kOAn6UhuXvJ6+tQ8EzsQx9JMW2VpQ62wquOTDn6jA5KKPfw+Lgv0IOKdM5h6xj4O9h0b1bpJRU26d4FwZ8iqdQHDTmiy6ljHVnwz8qNFoRa7UWEvj0lTn0MXL8KBQ7cXGhwELRpdGKuLXl40cxzhjltXWYyadOC6Sk6u8QVH8f1uottpotLEPjc1cXx+bQTAjBlcUCJc/ieo/C7XtJNUgPIi/OFcbqd1pwTHRN4IddiG1aFlPYbGoasbDIbtNImkvSA6QV0yORMa5WxBAPLjwIkzSzrdynJtIOM/l03Rzsc91caYYEUUI5Y7FUzvTwCh/MdN4m5xgkMo2iGDa3ttIDuotzec6OiYC/G957YoKlksetqk/QxXvloOO3SwNmC/t3MGYsA9fUaY7g7zVoi21qkkvRDUpsO6DcKUkYwAeuH6aneJahcX7u4H2YKhSDZK49mtCKUjv+qHB9o0ktiFgquTx5cnLYl6NQ9Iy8Y3L1aImsbfDicpUgTJgtOGOT19bBMjSOdMbQq92Hdkspub7ZpOZHvOdIaexKjk7P5JjOO2w1Q+JkdO6ZiZRUmyECuDgmeW0dco6BJroT2ywtbSSt6BqxMPGSd685NZmQiVOxLW0ijbsaIQUIo1T46lcTaYderZvTzMeYMzNZrD5lzG2HY+osljwsXeP2Lu4B/aDZiu849D/98PxYjeR3y2LJ5eGlIq6p871b1WFfztDp3C96kReYtQ1cazTFtk5py8xBaaFV9BUlth1QbENnseRi6WnYaz+pBiGtOKHkWXtuQFMoFCnljMVk1kLXRN/fu91SDyJWqgFRLPnR9yz0rRFOoRgWjxwpMl9waQQRrTjh0nx+LDeHR8oeOcfcVV7rRiNkqxFi6hqfe3RpbBxYHebyDoslF0MTIxVW3ghi/DDGsXTOj1lxVKcN0O8is83WchjCpiEEodDw4hje4QzLxCGajGlpJlVdByQ5fbqrawmTBAEU+zyGe/e6+fY+Pns7eW2XhjSGfmTCG4koiuVKOpa+WHJ54vjEUK+lXwgheP+ZKRaKHm9tNEfqgHTQxImk2UobOhcK+xfbOvegOBn+OPQ7CaL0njSpxDZFFyix7QBzpOyRsQ3WG/0dR6v6EUEUc2o6eyhm1xWKfiKE4ORUFtfS97Xg7yVvbTSp+iHHJj2eOf/g9jiFYtw4Ppnl2GQGy9CQEi4vjmckQprXalLtMneq42qrBhFXFgtjl1MHae7eQ4sFCq7JWyM0Slrx03HCmdz4uSQ9S8c2tK4KEizhYgiblmbSEAJDSuz4XqEnm6R5bVuGg0/6mN072xIkUOxzZhvctW7eo1AVhDGNIMLUtKG9l+YKDkXPorLLUfJeEsUJK1WfVpzw7IWZA535dHIqy/m5HKYueOV2fdiXMzQ6TaS2oTPTgzHSrJOKbdEoim3tcVkltim6QSkjB5jpfLrorvQ5+6nmR0gJF8cs30ahGFUWOo1i9eHnttX8iNVaQCzhxx9dVK42xYFE1wRPnpygnLXwbJ2LY5o/OltwyLbH0OMuXBZbzZDNRgtdwI9fXRpLNx+ko6QzBYeNRotkREZJ7xRHzeXG7vfqWDq2qRF0IbYJoeHqJRAmK6aJFNq7ShJycQtNJqyYOWJaaMIgr3d3cBNECZqAUra/Y6Rw17p5jyUJFT8iiBKKGZOjE4PNa+swm3fIOQZBFA9trPp2LaAeRBQ9k2cudCeqjiuaJvjQuWnmCg6vrdZGapR9kHTEtqyjp9mh+yRrG1h6KraNQtlHByklfhijCcHsmB2iKIaDEtsOMDN5h6xt4Ef9ayUK44RqEKIJocQ2haJHzBddCq5JsxUNfZHx1kaDih9yairDB890N/ajUIwjjxwpcXkhdXdNj+kiuuxZlLx0DL2bMbLrm02qfsSF+QKPHCn2/wL7xGLJYzbvoAnBSnX4Tc53F0ddHLMMPADPTJ1tYZdjcZ5WRBcWt3WDRBjk3iG2ZeMWILlh5UhkjCkcPL38wMeNE0kYJ2hCMNHnggRIhaqsYxJEck+ibbXtZjw1lR2am2sya1P0LDQh2OzzZMv9kFKyvOXTaMU8dXJy7Fyde+H8XJ5T0zmEEFxbHx137SDx2znDUzmnJwVanTFSKWVXDttBEcaSMJYYmmA6f/Bf24r9o8S2A8xU1ibrmCDZdTNZt9T8iFaUkHcNjk9m+/IcCsVhYybvkHdNJAx1FKTSDFmtBUgJP/HYkQM9CqJQZG2D//m5c/zaZy+NnROpg6YJTkxlsM0H505VmiEb9RYC+PGrCxhjHAOha4KHl4rkHINrG41hX849xVHj2NLuWQam3n1ekqVlMIXDmg6xZpGN73rtSdkW2+C26ZIQ4Wh5DO3BI1hhnJAkElPXKPS5IAFgKpe2eSIl1WD3wewVPyKRcmh5bZDeA45NeNjG/rLn9spmM6TqR9iGxievzA38+YeBqWt86Nw0Uzmbl2/Xhn5IOgyCMCZOJHM9GCGFVPB3DA1dCOqt0SlJaLWbSB1TH8hou2L8Gd+VleKBWIbGUtnD7GNJQsUPaUUJS6UMGdvoy3MoFIcNy9A4NtluFawMJ/BbSsm1jQZVP+LMbI6nT6kGUsXBRwgx1qITwHyhPYbe2Nnh1XG1nZ3N8fgBCDA/PZNjJu+wVguGPkraWRtNZCwWSvsPCx80rqVj7EJss7UcpnDZ1ES7kfRtR5UtY6wkJBEa67pDImOy3ea1tVv/LEPDG0CEgam/3ei723VzK0qo+SG6JriyWOzPBXbJYsmj6O6uKKVXLG/51IKIi/MFzkyPVzHIfnh4qciJyQxhlLA8pHXbMPHD9J4734NyBEhF40Lbpd1oDe/Q+Z2k49mSjK0P5J6kGH/Ge0WpeCCLJZecs/ew1wdRDSKiRHJx/vB8oCoUg+BoOUPBNVmrD6ckoeJHbNRbIOCnHlvCMtTHhUIxDswWUmdscwc3QM2PWKsHSOBHry4eiHKjoxMeM+2xnvUHCI39plMcdXomN5a/W9fSMXeRl2RrGXTNoqoJEmHgJdGdRtJOXltNt2lqgrSJtFuxTZIkbxc2DIKFokvW3r1Q1SnEKLomxyeHk9fWYbbgUPBMGsFgRYpGK7rze/v0Q3Nj6xDeC46p84Gz05SzFt9brg77cgZOM4yQwGyxd6OVJc9si22j42wLooQoSShn7LFr7lYMh/FbASh2xUzeoeha1PrwgZskkpofIUSaV6BQKHrHXDFtFKv5g19kSCm5tt6g4kdcmMvz3hPj73pRKA4Lc4U0rzWM0yDn+3F9s0nNjzg5leWpkwfj/W3qGlcWC2RtgzeHnJt0J69tTLNsPVPH1ARSSuIuxDZLZDGERV0TRELDlgm6TNed2biFIGHLyNBq/13O6C7/s9V2tuUcc2Ab25l2SUJtlxEO1XasyvGpzNCLhDqZza1YEmxzD+gHtyppMcJiyT0Qbtnd8uixEkcnMjRaMetDOigdBnEiaYYxuiZYLPbOyZtzTBxT3/HgaNB0xkinVBOpokuU2HbAmc7ZZB0DP0p6PlZRa0X4YYxnGpydVc42haKXzBVSV2orTgiiwS40NpshG40WmoCffOzIWDozFIrDSsY2mCu46Rh69d3jTPXg7YbhH3nPArZxcEZhzszkmM47rFaHt9ENoph6EGFoYmxbbTvONqCrcHJbS8W2GJ0t3QK0OyUJ2biFkAm3rAIRAQK96ybSqJ3ZNshspLTRNy0X2826udIMiaXk8hDz2jrkHYOpnIOpd1eU0guiOGGl6hPECR+7OHMoM17zjsnTpyYouAYvHSJ3mx/GRLHENjTmejRGCmmOqmvp2x4aDYNOQ/O0EtsUXaJ2UAece8Jee+yQ6ZQjTOdtJrPqpqNQ9JK8YzCbTxfLtwe4cey42qp+xKXFAo8dKw3suRUKRW84NunhWTprtXdvtG9sNqkFEUfLHh84MzWEq+sfxyczTOVs4kQ+MLOuX6QjpAkF1+TYxHDHCfeKbWjYpoamia5cJZrQsbUCQugsGyaJ0MhGqdiWa5cjLJtZEhlhag4ZvTvXU8fZVvL6X47QYSJjkXNMNAFbze7aPMM4oRZEaGL4eW2QZk+emEwddoMSnm/XUldbyTN55nx3Y8IHkfeemORIOcNGPaTmD74Ndhiko5WSjG2Qd3snjGdsA9fU7ghco0Dn8GFK7XsVXaLEtgOOqaclCVYfWomqfkQYJ5ybzam5dYWixwghODGVxbOMvhWc3I/1eovNRhry/PnHjox9WLxCcRiZKziUPetdYkGzFXO7FhDGCZ99eP7AuU8cU+fyQgHP1nlzbTitpHfGCSeHP064V4QQ5GwTXQiaXbpKPK2ELgxWdY1YpI2kmkzwkk4TqUdCjK3lMER3uU5RLBFAcYBim6FrHJ3wsHSd1fuI1fejk9FXcA1OTmX7fIXdMVdsF6V0KRjuBykly1s+jVbMUycnmcz1Lrdr3JjK2Tx+vEzW0Xnp1uFwt6XOtoSpnI3ew5y+rG1g6XrXRS2DwG9Pmkzlldim6I6+7qLW19d5/vnnyefzFItFvvjFL1Kr1Xb8nl/4hV/g5MmTuK7L1NQUn/3sZ3nppZf6eZkHnoWiS84xe3rKK6W8k0mi8toUiv4wX3SZyFhsNgZzOiql5K2NJlU/5OGlIo8cUa42hWIcmW2Pob9zFO7GVprVtlhy+cgBdZ+cm80zk3fuO0I7CKp+Ok44riOkHfKugaaJrjO/0lFSlzUNYs0iE7fIxiGajAk0k4pukMiInD7d9QFtK05fu8UeumW6IV03G10XbXTKEY5NZMnYRp+vrjtm8w55x8QP465KLvbDZiOk4ofYhsanrsz19bnGgR86NclSyeNWxR9oZt6w8MO0obNXTaQdsraBZWhEQ26X7hAnaQairglm84dXUFbsjr6Kbc8//zzf/e53+epXv8rv/u7v8gd/8Ad86Utf2vF7rl69ym//9m/z4osv8h//439ESsmzzz5LHB/8m1W/SEsSdh/2uhN+mNBoxViGxoUxDQBWKEad+aJDzjVphrvLjtkrq7UWm80WlqHx+ceP9PSEUqFQDI7pnE3ONUFyJ0IiCGNWKj6tOOEzD82PjCjQa05OZ5jM2oRxQnXAY1zRnXFCuLgw3mujjG1g6Rp+2N1nj61lsYTLpp7caSTt5LVVDJdASECSM7oXecMoQcJAM9ugvW72TOpBd3uPSjMkTiSXRujffDqfxsgkUlLvcyvpcsWnHsRcmi9welplOC+WXB5aKuKaOt8/BO42vz1aOdfDJlKAjP12K/IouNs65QiWoan4JEXX9E1se/HFF/nKV77Cb/3Wb/HEE0/w9NNP85u/+Zv8zu/8Djdu3Nj2+770pS/x/ve/n2PHjvGe97yHv/N3/g7Xrl3j9ddf79elHnhm8nsLe92JahDSihNKnsViyevJYyoUinuZytoU3TQ7ZqPP7rZEyjsNhVePlkci5FmhUOwNszMKd1dJwo0tn1oQMVdwePZidwH144hnGVyYz+NZBm+sD3aUtBpEBGFCzjE5Neaig2fp2KZGEHcvtunCoqppxMLAkzH52EeTMRtmgVCmcQg5vXuxLYgSNAHl7ODGSOHtNs8giokfsG6+W2Adhby2Do6ps1jysHSNlT7mtjVaEevtEoZPPTSPpg7pEELw/jNTLBRdrm00ibp8D40rfitGQk/LEaAt+BsaAkaiJCGIYqJE4pg6WedgHlYpek/fxLZvfOMbFItFHn300Tt/98wzz6BpGt/85je7eox6vc5v//Zvc/z4cZaWlvp1qQeeyexdYa89OuXtZJKcms6qpkKFok8YusaJqQy2ofc8c/GdrFYDthotbFPn848vqQWzQjHmHCl75B2T9UaLVpSkI01RwievzJFzBusUGjTn5/JM5WxWKoMdJe1kd80XXfJjvhlzTB3b0Lre5HYaSX0g1ExAMBWm0TErVp5IBgg08kZ3Qm+cSMI4QROCkjtYsW0iY1HwLDQhHhjj0BFY847JqZnRyGvrcGTCS8dh+9hImrraIpbKLo8fL/ftecaNU1NZzs/lMXXBK7frw76cvpEkkmYYowvBQqm3YpttaGRsA10TfXdndkPQdrYVPVPtfRVd07dXyvLyMtPT0/f8nWEYlMtllpeXd/zef/yP/zHZbJZsNst/+A//ga9+9atY1v0/aIMgoFKp3PNHcS+GrnGk7GLpOmu13ohtNT8ikZKLaoRUoegrS2WPomfet1WwVyRJO6stiHj8eFnlMCoUB4CZvEPJSyMkbraz2qZyNs8dYFdbh1PTWSazdhp5McBNWtUPidrjhONeHOVZBrahE8XdjW9ZbWebRLJquEg03Dhdc94ys0gZY4rum0jDOCFJJKauDXyMVNMExyY8bEN7YEFRpRkSRDGLbXF7lJgrOBQ9i0oPY2TuJooTblcCWnHCxy7OHrjClf2gaYIPnZtmtuDw2lptIFEgw8CP0nIEy9CYzfV2tFIIQckz0TVBYwScbZ0xUjVCqtgNuxbbfuVXfgUhxI5/9lto8Pzzz/Mnf/In/Jf/8l84c+YMP/ETP4Hv3/908jd+4zcoFAp3/igH3P1ZKPbudCuME6pBiCaEEtsUij4zV3ApehaNVv82jCvVgIof4pk6n39saew3iQqFIr13ZB2TIEq4ueXTDGOeuzhLKXPwNwp5x+TsbA7H1Li20RzIcyaJpOpHCBj7cgRIx0hNXZB0Ga5vCAtby6EJnRVdJ9ZMNBmRCJ1VwyUhwtKymKK76JEwTohlmo80jHzBuaJL3n1wuVjVj4gSyZURymvrMJt3yDndjcPuhZVqQC2IKHkWHzk3/eBvOGScn8tzajqHQPDmgO5DgyYIE6JEknWMvrQGF9zURdZsDV9sC6L0njSjmkgVu2DXn16//Mu/zM/93M/t+DUnTpxgdnaWlZWVe/4+iiLW19eZnd35VLUjnJ0+fZr3vve9lEol/vW//td8/vOff9fX/uqv/ip//a//9Tv/XalUlOB2Hzphr2+u7/9mX2uPkOZdg+OTo2WZVygOGnMFh5xtEMaSZivCtXq76YgTyfXNBrUg4pnzM5yeGe+cIYVCkVLyTCYyFoYmWK+3mMhah6op8OJ8gT/4/m1ubjU5O9v/+1q9FeGHMZ5lcPYA3EcdMw0n300wuacX0YTBqg6xsLBllYrh0tQ0kigma0x1fZgTxpIkAddJx1kHzUzOoeCavL66vdgWJWkJhxCCSwvFwV1cl0xmbYp3jcNO9NCRI6XkViUV8T98bprJnGpnfCemrvHhc9O8eLPCyys1jpa9A3eY6bdzzCYyFkYfRitzjoFr6jRHxNkmgIlDcGCl6B273rVNTU0xNTX1wK978skn2dzc5Fvf+hZXr14F4Pd///dJkoQnnnii6+eTUiKlJAjub+O2bRvbVi/6BzGTt8ncFfaqa3u/IVb8kFaUcHIqd2DbzBSKUSFjGyyUXKxrGreqAccmevueW6n6VJoRWdvgJ5WrTaE4MAghODGV5euvrLFWD/jo+aVDtSE+NZ1lKmfz1kaTIIyx+zziVmkfRC6UXKZ6PE41DDxLx2iLbVLKrj4bHC2PIRzWtSaxZiLR2DSztIiQJLsqR+g423KuOZTPpdlCpyQhIYqT+woJNT/CjxKytjEQQXe3dMZhv2lo3K4FPRXbNhohFT/EMbVDJeLvloeXihybzHBry+dWxWe2xyUCw8YP0/fHfLE/ZXkZ28AxdSrNwTZL348gSosgpvOH53NUsX/6dlR0/vx5nnvuOX7+53+eF154ga997Wt8+ctf5qd+6qeYn58H4Pr165w7d44XXngBgFdffZXf+I3f4Fvf+hZvvvkmX//61/nc5z6H67p84hOf6NelHgomsjYF1+wq7PVBVIPUMn9xfvQWFgrFQeT4ZIasbbDa40axOJFc32hSb0W8/8wkxyczPX18hUIxXOaKaW7bVM7msw8frg1xOWNxciqLbWhc2+h/K2nVDwnjhAtz45/XBveOkXbrbkvHRB02tYREGEihsW6WiGQaBbNbsS1JJEV3ODloJc+kdJcz9H5U/IggjFksuRSGdJ0PYrHkUXTNnpckdIoRLs4XlCN+BxxT50NnpylnLb53qzrsy+k5fpgKUPPF/ghQqdimEe7CYdsPpJT4YYwmhBojVeyKvvqy/8W/+BecO3eOj3zkI3ziE5/g6aef5p/8k39y5/+HYcj3vvc9Go10EeQ4Dn/4h3/IJz7xCU6dOsVP/uRPksvl+PrXv/6usgXF7tA1wZFyBsvQWNtHq2GSSGrtTBIVoq5QDIb5oks50/uQ4+Utn4ofknMMPveocrUpFAeNh5eK/NCpSb7w+BFmDpijohsuLxQoZyxubPY3L0nKNK9NAhcXxj+vDcC1dMz2FEQQdZf3lTaSOtQ0QSwMEmGwZubebiI1uy/nCGNJLCXlzGCbSDsI0S5JMDXWthGqOoUYl0e4EGO24FDwzJ62OTZaERv1FiD49EPzI/uzjwpXj5Y4OuFRC2LW6/1tlh80nfHOuUJ/xLacbWAZGtGQCybCWBLGEkMXzChnm2IX9HUGsFwu8y//5b/c9v8fO3YMeVfw6vz8PP/+3//7fl7SoWah5JB3DNb3YcWt3Z1JMoKWeYXiIDJXcNOQ43D/Y+AdojjhxmaTehDzw4/Mc6SsXG0KxUHDswy++L4Tw76ModEZJb255RNGCWafsr+aYUyzFWMbOhcOSHGUpWvYptZuAoy6ig2xRRZDWETEXHOmORpv8ZZdIpE3MYRNVp/s+vnDON1cD8vZBulnb2GbkoQ4kVT8ECHg0ggLrDP5dBw2jGXPxqmXt3xqQcRS2eWxY+UeXOXBpuCaPH1qkpdXary0XOWpkwfDGZUkkmYrRheChT6OkVq6RhR3P87eD9IYJolj6iPrYlWMJoNPHFUMjemcQ9E1qe/DHdMpR5jO26r6WKEYEBMZi4mMja4JVvfhTL2bm21XW9Ez+fGrqlRGoVAcPKZyNkcnMpi64PpW/9xtFT8iiGImshZzB8T1IIQg76TxI0HYvbNNFxaShK8VzvD/nf8EFcMhIcbSMlii+0OdVpyGkRe84W1sZ/JpSULjPq6wWhARhAmZES/EyDsGUzkHUxfbOvR2QxQn3K4GhHHCcxdncfqchXhQeOLEBEfKGTbqITV/+PljvSCIEqIkwTI0Zgv92RNm2s62RMo7AvwwaEUJcSLJWjques0rdoES2w4RM3mHjGPSihPiPd6wqn5EGCecm80p27hCMSA0TXByOotjaqzW9r9YDuOEG1tNGq2Yj56fYb54+MbLFArFwUcIwZXFAiXP4vpG/8S2qh/SihPOzmT70sg3LPKOia4J/C6bAA3hYAkXgUYo6ySaRSRbJDIiq08iRPe/mzBKkEDRG84YKcBs3iFjG7Tid2/0q35IECXMFd2eFg/0GiEEJyYzuJbek9zXlWpALYgoZSw+cr77DL7DznTO4fHjZTK2zksHJLvNj2KiWJKx9b69T7O2galraELQbA2vkbQjLE5kbbX/VeyKg7MiUDyQiYxFsV2SsLGHUdI0kyREovLaFIpBs1B0KWWsnoQc39hsUvMjJjIWP3p1oQdXp1AoFKPJ6Zkc03mHrWZI3Kfcn2ozQsqDk9fWIePoWIbWtbNNCIGrl9AwaCVpHnMkg3YTafd5bZBubjUB5SGKbXnXYCJjp66wd7jKK+3D58vzhZHffM8VXUqetae1/91IKVne8mmGMe87NTnSIuMo8vSpSY6UPW5VfIIuBexRxg9jokRSztqYfTpk0DVBwUtF/8aQxbY4kQeiaVoxWJTYdojQNMHRCQ97jyUJfpjQaMVYhnZgMkkUinFhvuhQcC0arfierMvd0ooSlrd8Gq2Y5y7NMpNXrjaFQnFwmcs7LJZcDE1wc8vv+eMHUUy9FWHqGhfnD5bY5po6tqHhR91vcl29gCEsWjIV28JOE6nRfdFZnKROMk2IoRUkQCoeHp/MYBv6PSOYiZRUmiECuLgw+uvh2bxD3jHT5sh9rB82GiHVIMQxdT555XC1G/eCxZLLlaUijqHz/QPgbvPDhChOmO9TOUKHsmehi7SYY1i02iUxSmxT7BYlth0y5orbh70+iGqQjkmUPIvFUn+CMBUKxf2ZyacFJ4mU+2oVu7HZpOpHTOVsPvvwfA+vUKFQKEYPTRM8tFig4Jq81YdR0kozzbItuiZHygdrbeRaBrahdd1GCmlJgqm5RLKJlEm7iVSQN7oXZ8I4IUkkpq5RcPva5fZAZgsOJe/edXMteLss7MIYTHrMFGxyPVg/LG/51IOISwt5Tk5le3iFhwMhBB84M8ViyeXaRpNoiBlkvSC400Ta30PbnGNimzqNIboBg/aBg8orV+wWJbYdMmZyadhrPdj9DavaLkc4NZ3tm11YoVDcH8fUOTrhYekat/aYuxJEMcuVdATkk5fnmMwdjCBvhUKh2InTMzlmCg4bjRZJj0dJq0Ga3XViKnvgwuI9S8cydKK4ezeUpWUxhEMsQyIZkMgIXdhktN01kcZSYhkaWWe4zX8zeZuca96TF1VtC6wzBWcsnC62obNYStcPK3tcP9SDiPVGKpx+5qH5kR+dHVVOTWU5N5fH1AWvrtaHfTn7onlHbOvvWjJrG7imfuf5hkFnlH4mP/rvd8VooRSTQ8ZM3iZjG2nQ4y5PVGp+RCKlGiFVKIbE0YkMBdfccyPp9Y0mVT9ktuDw6YfUCIhCoTgcLJY8ZvMOmhCsVPefe3k31fba6OIBXBu5po6la8S7GD20tSyGsEiIUrGNCEvLYOvdO6HCWJIkb4+xDpOZvEPWNohiecfJ0ynEuDifHxvR6ciER84x9pz7eqviUw9ijkx4PHqs3OOrOzxomuBDZ6eZLTi8ulrb11jvMEmkpBnGCCFYLPXX2ZZpi23dZkf2mjiRBFGMrglmVfSKYpcose2QUfIsSp6FoYldfeCGcUI1CNGE4OIYWOYVioPIXMGl5JnU/N2PgfhhzK2Kjx8lfOaheUoZdTqnUCgOB7omeHipSM4xuLbR6NnjRnFCzY/QhODSAStHAHAtHUMXxMluxLYMurBIiGnJJomMyehlNNG966/jbMs55tDFrKxtMJWzMXTBWr2FlJItPy0auDQGeW0d5goORc+isof1Qxgn3K4GhHHCcxdnsI2D5eAcNBfm85yaziEQvLneu/vRIAmihDBOsHSt72OkWdvAMrRd3Yd6SRClRRCWoTGRHV6GpGI8UWLbIeOekoRdiG219ghp3jU4oXIaFIqhMF90yDlmusjZRYYOwFsbaVbbQtHlEyrYWKFQHDJOz+SYyTus1YKejZJW/Yggittro0xPHnOU8CwdU9eIk6RrB44lMpjCQaARJFtI4l03kXYy24recEdIIc3ZOjbh4Zo6q/WAehDjhzGuqXNpjAoxZvMOOccgCONdt/KuVANqQUQ5Y/HhczN9usLDg6lrfOjsFFNZm5dXxtPd5ocxUSzJ2DrFPjcGZ51UbIuGJLa12k2krqmTtYebIakYP5TYdgiZK7oUvN2VJFT8kFaUsFTKkFE3GoViKBRck6m8jakLbu9ilLTZilmp+rTihB95eJ78kDNwFAqFYtAcnfCYyafZQut7KIm6H3evjXIH8L7qmQamLkgkXbtKhNBwtSIaOi2ZZlLtpokU0jHSWEpKIyC2AczkXYqexVYjpOKHBGHCTN5heoxyTyezNkXPQtMEm42w6++TUnJrK816ffr0JGUVEN8THl4qcWwqQytKuFXpfUtyvwnChCiRTGQtrD6PemdsPRXbYkkyBGEyaIttRc/CUJnlil2iXjGHkJm8TcE1d1WhXA0iokRycT7XxytTKBQ7IYTg5GQW19K5vYuQ47c2GlT9iCNlj2cvKVebQqE4fJi6xpXFAlnb4M313rSSHvS1kWNpGLqGAPxd5CU5WgFdmMRJBAjye3C2Cei7Y6ZbZvI2edegGcZU/JAwTjg/l0PTxiOvDdLJlmPtyZbdHNat11tUgxDX1PnkZbV+6BWupfPBM1OUMxbfu1Ud9uXsGj+MiZKE2T6PkEJ7jFTXkMg7raCDpCO2TaoRUsUeUGLbIWQm55CxDVqRJOyiJCFJJDU/QgDnVV6bQjFU5ksu5YzFZrM7Z0Y9iFhpZ6386HsWlAVeoVAcWs7O5pjOO6zusZHxbuJEUvVDBHBpvrjvxxtFLF3DMTR0TdCMuj+gdfQcpnCJZIAuTLL6bp1t6dq06I6Ksy1dN8eJZLMRIoHLi8VhX9auWSx5FF1zV5nNtyrp6OylxQInVYxMT3n0WJmjkx61IGa9vv970iDxoxgkzPe5iRTSohTH1NGFoBEMXmxrRWmGZMcZrVDsBiW2HUKKnkk5k5YkrHVxc6+1IvwwxrMMzs4ezNNbhWJcmCs45B2TZivpKnforXYD6bGJDM+c3527QKFQKA4SxyYyTOVs4kTuKkrjftSDiCBMyNgGp2cOXl4bpG7qvGuhCbGrJkBLy2AIh4QYS/Nw9N0d1LaiBAkUMqMhtmVsg9m8i6lrVJohjqGPZfvsbMGh4JnUg+6E03oQsd4IEMBnHpofelnFQaPgmvzQqUkKrsFLy+Plbus4XftdjgDpfajkWeiaoNEahrMtRgCTOTVCrdg9Smw7hAghODqRwTY11msPXmx2yhGm8zaTKqtBoRgqM3mHgmsCkkpz5wVzzY9YrQXEEj736CKupRrEFArF4cUxdS4vFPBsnTfX9tcCmJYjpGNUEwd4bZR3jdTZFna/ybVFFkOz0IRORpvYVRMpQCtO0ARMeKPzez064eJZOrUgYjJnD0Rk6DWzBYesbRDGkqCLf89bFZ96EHN0wuPq0dIArvDw8d4TExwpZ9ioh9T87rP0homUkmYrQgjBQmkw74OiZ2LowxLbUvF/6gDf5xX9Q4lth5ROBfhGFyGpVT+iFSecm82pUy2FYsiYusbxyQy2oXOrtnOobprVFnJyKsMHz+5ujEehUCgOIudm88zkHVaq+wslr96V3XWQ10aepWMbWlfiTAdby6Fjo2GQM3bnqI4TSRglaEJQGhFnG3RKEkyklJybzaGPUV5bh5xtMJVzMHXB6gNGScM4uRNB8dylWWxDHdb1g+mcw2PHy2RsfWyy24IoIYwlpi4GMkYKaSOpY+q7Ev17gZQSP4zRhFBjpIo9ocS2Q8pM3qHgmA+8aUmZZpKAymtTKEaFpbJH0TN3dKZWmiGr9YBEwk9cXcIx1UJZoVAoTk5nmMzahHFyZ32zW6SUVNrfe2nhYK+NXNPAMjSCqPsxUlvLYAgTQ1i7biKN4jQfydC1kclsg7QkIWebeLbB5cXCsC9nTwghODGZwbV01h6QW7hSDagHERMZmw+fU4d1/eTpk5MslT2Wt/xdidrDolOO4FkGxcxgSgOytoFn6jQH7GxrxQlRW1icyStnm2L3KLHtkJKWJOi0ooRWvP2Nyw8TGq0Yy9C4MIb5FArFQWS+mJ6w17ZZdEgp06y2ZsSZmRxPn5kc8BUqFArFaOJZBhfm83iWwRvrexslbbRimmGMY+oH/iAydbbpu8ps04RB1pjCEA4FY35Xz9eK0+Y/29DI2KMktjmUMhZlz+LS/HiKbQBzRZeSZ7HR3F5ollKyvNWkGca87/QEpYwSGfrJUtnlymIRx9T5/srou9v8KBWgyhlrYI7HrG1gm/qOe9Z+0Go3kdqmTsFVbaSK3aPEtkNK3jUoZ21MXezojqkGIa04oeRZLJa8AV6hQqHYjrmCQ84xCaPkvqegFT+602z1k48tqvEPhUKhuIvzc3mmcjYrlb2NklbbWbaTWZvZ/Phld+0Gz9KxTY2oi0KeuznnfYzHCz/DpHlqV98XxpJEpvl6jjk62xTH1PnLHzzJX3v2DEcnxnc9PJtPS5b8MEZKed+vWa+3qPkRrqnz8ctzA77Cw4cQgg+cmWKh5HJtvUkU7+69NmiCMCZKJPPFwY1VZuzUYTvoX00QJURJQs42Rup+pBgf1KvmkCKE4PhEmvu0tkNuQ2dBeWo6i6mrl4tCMQrkHJPZgoNlaNx6R+6QlJJr6w0qfsT5+TxPnlSuNoVCobibU9NZJrN26t7vspnxbqp+SCtKODum2V27wTF1TE0jvr8usy2GZjNlnd51OULYdrblHWPksvAmsjZPHJ8YuevaDTMFm5xjkEi5bSvpcsWn1oq5sljg5FR2wFd4ODk9neXcbB5TF7y2Wh/25exIM4xJpGSuOLiDhqxtYBu7F/33S8fZVs5YY/2+VwwPpZ4cYmYLDiXPZKOxvdhW8yMSKTk/lxvglSkUigdxYjJDxtJZrd77/t1shmw0WmgCfuqxI0okVygUineQd0zOzuZwTI1rG81dfW8nr00CFw9BvIZn6Ri6IE52qbbtkTBOSKQkP0J5bQcJ29BZLHlYusbKfXLb6kGUriGATz80rwSGAaFpgg+fm2Y27/Dqan1b1+Eo0BkpnxtgYUDWNjB1jTiRAxXcgrbYpsoRFHtF7cIOMTN5m5xr0twmhyOME2pBhCbEWOdTKBQHkfmiSzljsdV8W2yTUvLWepOqH3FpocBjx0pDvEKFQqEYXS7OF5jM2tzc2p3YFkRplq2pa1w6FGLb25vcQQgAYSyJE8nEgILXDyNHJzxyjsH6fSZblis+9SDm6KTHe46qNcQguTCf5+R0FpC8ucc8yX4jpaTRitAELBQHN06dsQ0sXUMAfmuQYluMBKZyKrdQsTeU2HaImc47ZG2DMEpo3Sf3qeZHBFFM3jU4oWzkCsVIMV90yTkmfpSQtE/51ustNhotdE3w+cePYChXm0KhUNyXU9NZpnI2jVa8qwbAqh8RRAklz2SxPL7ZXd3imjqmLpBSEg4gMKnzHAVPiW39YrbgUPQsKv69Y6RhnHC7GhDGCR+/OKfyXgeMqWt8+Nw0U1mHl1dqI+lua0UJYSwxdY350uDcXpahkbENdE1Qb+1+9H+vtKIEAUxmldim2BtqJ3aIydkGk+2ShNX7nG5V2pkkS6UMGdsYwhUqFIrtmMzalDIWmhCsN8K3G0j9kIeWijxyRJ1IKxQKxXaUMxYnp7LYhsa1je5dJJ28tlPT2UMhRriWjqFrCJG6+vpNGKeb26IaI+0bs3mHnGPghzHxXSN5K5WAehAxmbX50LmpIV7h4eXhpRLHJjMEUcJK5d1jvsPGbxcGeJZBacCC+ETWQtcEjWBwjaR+e/prWjnbFHtEiW2HGCEExyY8HFO/r5W8GkREieTivMprUyhGDV0TnJzK4JgaK5WA1VqLrWaIqWt84fEjBz60W6FQKPbL5YUC5YzFjc3uR0mr7Szbi4ckXsMyNFxTRxMCfxcOwL0SxhIJFDwltvWLyaxN0UuFi41GCEAiJcuVJs0w5n2nJylllLgwDFxL54NnpihnLF66VRn25bwLP4yJYkkpY+KYgz1syDsmlqHRCAfjbIuShCCK0TXBbEFltin2hhLbDjkz7ZKEzea9YluSSGp+hADOzx38TBKFYhxZLHmUPIu1esD1zdTV9uixMpcXDscmUKFQKPZDZ5S0FsSEXbi2wjihGoToQnBp4fCsjQquiSYEzVb/xbYgihEidR4q+oOmpYfttqGxWkvdUxv1FjU/wjV1Pn55dshXeLh59HiZYxMeNT9ic4cSu2HghzFRIpkdQmFAxjZwTR1/APcheLuJ1DI0JpT4rNgjSmw75MzkHXKOSfMdYZO1VoQfxniWwdlZ5WxTKEaRuYJDwTWp+BFbjRa2ofH5x5fQlKtNoVAoHshUzuboRAZTF1zvoiih6ke0ooS8a3B88vBk2WadNCvJ7/MYaZJIwihBF0IVJPSZxZJH0TXvTLYsV3xqrZiHlgqcOESv7VGk4Jo8dWqSgmfy32+OlrvND9O24PmCO/Dnzjmp2NYcwDg7vN1E6lkGGfvgRwYo+oMS2w45M3mHjG0Qxsk94wG19oJyOm+rUEiFYkSZK7jkHAMN2PJDHj8xoZyoCoVC0SVCCK4sFih5Ftc3uhHbQoIo4ejE4cqyzVgGtqHRivrrKAnjhFhKDF2joDLb+spswaHgmdSDiFoQsdFooQGfujKPEOrAbtg8eWKCI2WPjXqLuh8O+3Lu4EcxApgdgtiWsQ1sUycaQFELvO1sK3qmKhxT7Bn1yjnkZG2D6VxakrBWezuIs+pHtOKEc7M59aGrUIworqWzVPawDI2sZfD5x5bU+1WhUCh2wemZHNN5h61meE9Y/P2o+hFxcnjy2jq4lo5t6HfCwvtFK05IkjQnLmsrsa2fzBYcsrZBGEveWm9QD2KOTWa4erQ87EtTANN5h8eOT5CxDV66VR325QAgpUxHyQUsDLCJtEPW1rF0jTgZTEtrECVEiWRKlSMo9oES2xQcm8jgWjprbSu5lJJq+xRFuWQUitHm/FyevGvy9OlJTs+okW+FQqHYDXN5h8WSi6EJbm75235dnKRrIyHg4vzhWht5lo5tarT6PL4VxZJYSlxTxzHVFqWf5GyDqZyDqaev+zBO+PilWSxD/d5HhadPTrJU9lje8gkGUE7yIFpxQitKMDWNxZI38OfP2mlBQpgkSNl/wS2IYhIpVROpYl8cHg+8YltmCg5F12K9HcLphwmNVoxlaFw4ZAtKhWLceOrkJDM5h5mCo1xtCoVCsUs0TfDQYoH/+to6b200t91E1oIIP0rIWgZnDtnBhmvqWIZG1GdHSepsk+QcQ32e9RkhBCcm08P21WqL2YLDh8/NDPuyFHexVHa5slDg9dU6P1ipcmmhONTr8cOEKEnwLH0oBSYZW8fUNaRMR84to785ap3DBRWnpNgP6vhCwUzeIe8ad05NqkFIK04oedZQTi4UCkX36JrgzGxO5dsoFArFHjk9k2Om4LDRaJFsM0pa9UNaUcJ80aXoHa77rWulm9y4z26SjrNNfZ4NhrmiS8mzkEjefzoN5FeMDkIIPnB2moWiy7X15sCyyrbDD2OiWFLMWDjm4AsDOtmRmhA0BtGMHCYIUGOkin2hxDYF0zmbjG0QJeksfqdt69R0FlMFQioUCoVCoTjALJY8ZvMOmhCsVFv3/ZqqHxHGCRfm8ofOdeVZBqYm+p6V1IrTQPJhuGYOI/NFh7xjMpV1+MTl+WFfjuI+nJ7Ocm4uj6ELXlutD/Va/DAmSiRz+eGIT5omKLgmuiaot6K+PpeUEj+M0YRgJj/4fDrFwUEpKQoytsFs3sXUNVbrATU/IpGS83OHa0xCoVAoFArF4UPXBA8vFck5Btc2Gu/6/4mUVJohAriwcPjiNVwzdbZFiexrVlLYdu4UXSW2DYLFksdPPrbEF58+zrFJNckyimia4MPnppnNO7xyu0Y8RHdbECUkUjJXHHwTaYdyxsLQBI2gv862VpyWIxi6YEY52xT7QIltCgCOTri4ps7tik8tiNCE4NIha9tSKBQKhUJxODk9k2Mm77BWC941StoIYvwoxjF1LhzC4ijX0jF0gZTyjiDWD8I4HdsqeCpSelA8cWKCT1yZO3RuzXHi4nyes7Opo/a1teG52/wwRgCzheGJbVnHwDE1mn0ujEibSBMcU6fgKfFfsXeU2KYAYCbvUvJMVqoBQRSTdw2OT2WHfVkKhUKhUCgUfefohHdnXKhTGNWhGoQEUcJUzmY6d/hGirx2Zpsm0k1ovwhjiUQ52xSKuzF0jY9emGG24PDKSp14m1zJfiJlGjUEsDBMsc02cEwdv89iWytKR9pzTpoTp1DsFfXqUQAwk7fJOSZRImlFCUulDFlbnSwqFAqFQqE4+Ji6xpXFAlnb4M315j3/r+pHhFHC+bk8mnb4HECmruFZBpoQ+H0MJm9FCUJAOavENoXibi4vFjg7kwMBb6y9e9S934SxJIgSTF1joTRcsc01dfywv4JjEHXyI23l+lTsCyW2KQCYzjlkbB1dCIIo4eK8ymtTKBQKhUJxeDg7m2M677BaDe78nWzntUngwvzhGyHtkHNSsa1f41tJImlFMboQlJWzTaG4B1PX+NjFGWbzDj9YqZH0uRn4nfhhTJxIXEtnYohieMY2sIz+NyN3nG3TQyqDUBwclNimANI8jrmii2lo6Jrg/CHMJFEoFAqFQnF4OTaRYSpnEyeSjfYoqR8mNFoxlqFx8ZCLbYYu8Ps0RhomCbGU6LpGMWP25TkUinHm8mKRs7OpGeKNATeT+lFMlCQUXBPX1Af63HeTtQ0sXSOK+yu2BVF6qDCdVWKbYn8osU1xhyNlD8/SyVjGnZu5QqFQKBQKxWHAMXWuLBTwbJ0326NaVT+kFSeUPIvF0uFtbOw4Sjqb0F4TRpIkAdvQyKgYE4XiXZjt7LaZvM33V2p9bQZ+J36YEMWSuYIz1LHKrJPeh6IkIUn69/MHUYIEJlUTqWKfKLFNcYe5QlqSMFtwmFRKvkKhUCgUikPGubk8M3mH2zUfgGoQEUQxp2eymPrhXTa7po5t6AR9ykoK49TZ5hjaUJ0zCsUoc2WxyJmZPCB5fYDNpH4YE0vJfHF4eW3QdrYZGgL6JvzD282rh7EQR9FbDu+qQfEuHlos8JmHF/jp9x5VYZAKhUKhUCgOHSemMkxmbVpRQtUPqfoRUsKl+cKwL22ouJaOY2h9ayMN49SpkndNtQZVKLbBMjSevTDNdC7NbhuUu63T/jlXGK74ZBsajqmja4JaK+rLc0RxQitK0DXBjMpsU+wTJbYp7mDoGp+6Ms/7zkwN+1IUCoVCoVAoBo5nGVyYz+NZBq/crlPzQwxNcPGQi22epafB5H0a3QpjSSwleUfltSkUO/HQUokzMzmSRPLGev+bSaWUNFup02tuyM42IQTljJWWtQT9cbZ1mkhtQ2cio8Q2xf5QYptCoVAoFAqFQtHm/FyeqZzNjc0mQZSQd02OT2aGfVlDxTUNDL2fYlvqbCurcgSFYkcsI81um847/GC52nd3WxhLWnGCoWsslIYrtgEUXRNT12j0qRm5Fadim2frZB2VH6nYH0psUygUCoVCoVAo2pyazjKZtZFI/DDm2EQG1zrcOWKepWPqGnGfNvZhnAaSFz3lJFEoHsTDR4qcmckRS8mbfXa3+VFMFEtcS2dyBJxeWcfEtXSarf4526JEUnQtdE2NtCv2hxLbFAqFQqFQKBSKNnnH5OxsDtfUacUJFxfyw76koeNaOqYmiBLZFydNK04QQMFVThKF4kHYhp6623IO37/VX3dbECZESULeMfBG4NAhYxs4pkazX8629hjplGoiVfQAJbYpFAqFQqFQKBR3cXG+wGTWxjb0Q1+OAKnYZugaUkrCuPclCVEskUDJU2OkCkU3PLxU5NRMljiRXFtv9u15/DAmSiSzeWckykuytoFr6oRxfwTGIIpJpGQ6Z/Xl8RWHCyW2KRQKhUKhUCgUd3FmJstswWG24HB6Ojfsyxk6rqlj6gJNCPyo946SIEqdbUVPbXAVim5wTJ1nz88wlbP5Xh/dbX4YkySS+SGXI3TI2gamrhH1QfSHt+9FU7nhNq8qDgbKq61QKBQKhUKhUNxF0bP4n549y0rFp6DcVpi6hmcZaAKarYR8D/ehSSJpRTG6JkYiE0qhGBceOVri9HSOr72yylubTZZKXs+fw49SUWuuMBpiW8ZOm5EjmY6099ptF4QxEtQYqaInKGebQqFQKBQKhULxDiayNufVCOkd8q6Brgn8HmclhUlCLCW6JpSwqVDsAsfUeabjbrvZe3eblPJOEcEoNJEC5GwTy9BIEtlzd1siJX6YoAvBTC9PFBSHFiW2KRQKhUKhUCgUih3JOSa6JgjC3m5ww0iSJGnoe9ZRQzcKxW64eqzEqakcYZJwfbO32W1RIgmiGEPXWCiNhvjk2TqWrqUu214L/1FaBmHogimV2aboAX0V29bX13n++efJ5/MUi0W++MUvUqvVuvpeKSUf//jHEULwb/7Nv+nnZSoUCoVCoVAoFIod8Cwd29B7ntnWcbY5poZjDL/tUKEYJxxT56MXppnM2nxvubfuNj+MiWKJa+pMZkdDbDN1LRX+haDe6u29KGg3kbqmQcFVYpti//RVbHv++ef57ne/y1e/+lV+93d/lz/4gz/gS1/6Ulff+w/+wT8YicYThUKhUCgUCoXisOOaOrahEfRabIsSkkSSc0w0Ta39FYrdcvVomVNTWVpRwo0eutv8MHV65V2DjDU6QnjJS122zT6JbTnHwDbUAKBi//TtVfTiiy/yla98hd/6rd/iiSee4Omnn+Y3f/M3+Z3f+R1u3Lix4/f+6Z/+KX/v7/09/tk/+2f9ujyFQqFQKBQKhULRJZ6VbkBbUW9zocJYEktJwVV5bQrFXnAtnWcuzDCZs3mph+42P4yJEsl03hkpE0zBM7EMnUaPxbZWW2ybyFoj9fMqxpe+iW3f+MY3KBaLPProo3f+7plnnkHTNL75zW9u+32NRoMvfOEL/KN/9I+YnZ194PMEQUClUrnnj0KhUCgUCoVCoegdrtVuAUx6LbalzraSKkdQKPbMY8dSd1sQJdzc8nvymH4UkySSxeJojJB2yFgGrqX3vKwliGPitrioUPSCvolty8vLTE9P3/N3hmFQLpf//+3deXxU9b3/8ffZZ8sKCQELAiKCO+KGWpGLqNW6VL2Ky1VcUOuKpSpUf3W5pTzwUm/VqtUrqK1iK721VdurUlCrlopSsK0sCmLrQqQFCUuSWc45vz8mjKRsWWYmCXk9H488HmbmzDnfA3wnzjuf7/ej2traHb7uxhtv1FFHHaXTTz+9RdeZOnWqysrKcl99+/Zt17gBAAAANBdzLTlWtgtgPqX9QKGk8hh7JAFtFXUtjR5arZ4JN2/VbVuaofQq6xydSLdIeLaijpX3BgmpTPZ+qxK8FyE/Wh22TZo0SYZh7PRr2bJlbRrMc889p3nz5umHP/xhi18zefJk1dXV5b4+/vjjNl0bAAAAwPZFnWzYlv/KtlCGpHIq24B2OWxApfaqLlFj2lfthvZXtzWkfYWS+nS2sK1pTzU/z+9FW8LFqhIq25Afre6vPXHiRI0bN26nxwwcOFA1NTVas2ZNs8czmYzWrVu3w+Wh8+bN08qVK1VeXt7s8bPOOktf/epX9eqrr27zGs/z5Hlea24BAAAAQCvEXEu2ZcgPAoVhmLc9jb6sbCNsA9oj5to6fmi1Vq7ZqKWrN6imHXutZfxAjWlftmnoKxWdK2yLe7acPC9pD8Mwtyy1uoRsAfnR6rCtqqpKVVVVuzxuxIgRWr9+vRYuXKjhw4dLyoZpQRDoiCOO2O5rJk2apMsvv7zZYwcccID++7//W6eeemprhwoAAAAgD6JNy0il7HIrz8lPd8JkJpAhqYJlpEC7Hda/UnOWfK4Fq9bp8w1J1ZS1rUor24k0VNS11LOThU8Jz5bbVGWbr+DfD0Kl/EC2ZahXaee6X3RdBduzbejQoTrppJM0fvx4LViwQG+++aauvfZajR07Vn369JEkffrppxoyZIgWLFggSaqpqdH+++/f7EuS+vXrpwEDBhRqqAAAAAB2IruMNLtlTL42Jg+CUKmML8s0VBknbAPaK+7ZGj20Wj0SrpbWbmjz3m2NGV++H6okYqvEa3V9TkElPFuubSoMw9w+a+2VbOpE6tmWKuKEbciPgoVtkvTUU09pyJAhGj16tE4++WQdc8wxeuSRR3LPp9NpLV++XPX19YUcBgAAAIB2sC1TMdeWaUiNefqAmw4C+WEoyzSobAPy5PABPTSwKqGGlK81G5NtOkdj2lcmCNSrpO1LUQsl6liK2KYsw9DmZH6C/1QmW8kXcy0lOlm4iK6roP+SKisrNWvWrB0+379//12m7fnopAIAAACgfUqjtiwzf5VtaT9UEEiebSnOB1wgLxKerdH7VGvlmk1asnqDqku8VgdmjelspVef8s61X5skmaahspgryzRUn86oUu0P6rdUtpU3nRfIh4JWtgEAAADYPZR4jmzTyHXta6+0n61s8xxT0TztAQdAOnxgpQZWxdWQ8vWPNlS3NTZ1Iu3dyTqRblERc7JhWyo/wX8y48sPQpojIK8I2wAAAADsUtS15NqWGjP5qmwLFAShSiOOTKpJgLwpiTj6tyHVqoy7WrJ6Q6tf35D2ZUjqU962BguFVhJxFHEsNeQpbEtlsl2WqwjbkEeEbQAAAAB2Keba8mxTyXwtI82E8sNs2AYgv44c2EMDesZVn8roHxsbW/y6jB8omc42LtmjPFbAEbZdwrMVda28LWlP+tlq3aoEYRvyh7ANAAAAwC7FXEsRx1LKz8+eyukgW9lWESdsA/KtJOJo1JBqVcRcLfms5dVtjU3NAiKOparSzhk+xT1bUcdUMl/dSJtCOyrbkE+EbQAAAAB2KepacixTmSBPYVsmUCjRiRQokBF7ZTuTbkpl9M8W7t3WmPaV8UOVRGyVdNLGJQnPlmtb8vPwXhSEoRrTgUzDUK+yzrlsFl0TYRsAAACAXYo6lhzLyMsHXCnbjdSQVBalsg0ohNKIo+P2qVJlzNV7q+ta9JpkOlAmCFRd4nXavRQTni3XMpUJ2l/Zlspk79exTZaRIq8I2wAAAADsUqypsi1/YVu2sq08RtgGFMqIvXpqQM+4NiV9rd206+q2xqbOnH3KO2cnUkmKe1++F7X3/SiVCeQHoaKOpVKCf+QRYRsAAACAXYq6lmzLkB+GCsL2B26pTCBDLCMFCqks6ui4fapVEXP0Xgs6k25pOlDTiZdUJiLZZi2S2t0kIdkUtpVEbEUcKx/DAyQRtgEAAABogZhry7FMKQyVbufG5EEYKpnJdjzskSBsAwrpqKbqto0Naa3dvPPqti3hVZ9O2olUklzLVMyzZZmGNicz7TpXqqkhRA+WkCLPCNsAAAAA7FJ2zzZThmG0u5ok7Qfyw1CWabCMFCiwspijkYOrVL6LzqSZIFBDKhuCf6Wi81a2GYahipgjyzRU3+7Ktuyy2V50IkWeEbYBAAAA2CXLNBR3bZmG1NjOyra0HyoIJNc2lfAI24BCO3pQT/XvGdeGhrTWbU5t95hsc4RQnmOpV0nn3bNNyi6PdSxT9XmobDMk9SRsQ54RtgEAAABokdJodulWQ54q2yKOpSj7JAEFVx5zm6rbHC3ZQWfSxrSvTBAq4dkqidhFHmHrlERsRR0rL3u2SVIVYRvyjLANAAAAQIskPFu2aeZlGWnQ9KHeNI08jQ7AzhwzqKf27JFQXX1aX2ynuq0xHSjjB6ou8Tr9vIx72YYGjem2V9mGYZj9xYEhVRO2Ic8I2wAAAAC0SMzLdgFM5mEZqR+GKo/SHAEoloq4q5GDe6os5mjJdjqTNmaylW19yjv3ElLpy7AtHbS9M3ImCJX2A9mmoV6duPsquibCNgAAAAAtEnMseY6pZJ4q2yri7NcGFNPRg3qqf4+41tentL6+eXVbY9qXIammCwRPJZ4t1zaV8dse/G/pRBqxLVXECP6RX4RtAAAAAFok5lrybEupTNurSSQpnQkUSqqgEylQVD0Snr66d5XKoo7e+5fOpFuWh/fpAmFb3LPlWoYyQagwbNv7UTITyA9CxTxLCbdz71GHroewDQAAAECLRFxLrm3Kb+OH2y3SQShDUinLSIGiO2bvbGfSL+pTqmvIVrf5QXb/MtM09JWKWAePcNfiTZVtQZhdCtoWqaawrTzmdvo96tD1ELYBAAAAaJGYa8k2Dfnt2CdJyla2SVS2AR2hZ8LTMYOy1W1LPtsoqakTqR/Ks031Ku38lW2JprDNNAzVp9q2rD2Z8eUHIc0RUBCEbQAAAABaJObYciyz3WFbKhe2UdkGdIRj9u6pPXvEtW5ztrot2bR/WSJiqzTa+UNwyzRUGnVkmW0P21KZQEEYqqqk84eL6HoI2wAAAAC0SNS15FjZyragjYFbEIZK+tnlapVxwjagI1SVeDpmUE+VRm0t+WxjU2VboKqEJ6uLLKmsjLmyTEMNqUybXp/MBDIkVSWobEP+EbYBAAAAaJFs2GZKCpXy21ZNku1EKtmmQTdSoAN9dXBP9auMad3mlNZuSsoPQvUpj3b0sFqsJOIoYpuqb2N35GTGVyipqoTQH/lH2AYAAACgRaKOJdsyZRiGkum2bUqe8UP5QSjXNhX3CNuAjlJdEtExe/dUScTWZ3WNCiX1Kes6YVvCsxVxLDW0IWwLmhpCWKahXqVd557RdRC2AQAAAGgRyzSU8GxZhtr0AVeSUn52nyTPthRzrDyPEEBrHLt3lfbsEct19Kwp7zr7l8U9W1HHalPwn/KznUgdy6SyDQVB2AYAAACgxUqjtkzTUEM7K9tKItnzAOg41aURHTUoW91mmYa+0oWWkSY8W55jKtOG/SOTmWzYFnWsLtEQAl0PYRsAAACAFivxHDmWqWSmfZVtZRE+4AKdwcjBVerfI67yqKNepV2nsi0RaXt35FRT99XSqC3PpsIW+Wd39AAAAAAAdB1R15Jrm23esy3dtHyrIsHSLaAz6FUa0YTjB2vVPzd3qQ7BcS/7XpTxQwVhKNNoeaVsMuPLD0L1oBMpCoSwDQAAAECLxVxLnt32yra0HyiUVMHSLaDT6N8zrv494x09jFZJeLZcy1SoUMmMr6jT8ngj1bSMtFdJ16nkQ9fCMlIAAAAALRZ1LEVsS8lMWyvbQhmSSmNdp4IGQOcTdSxFHEuWYWhzMtOq1yYzgQxJVVS2oUAI2wAAAAC0WNS15Nim2rBNkiTluh5WxKhsA9B2hmGoIubKMg3VJ1tXaZtq+mVBTzqRokAI2wAAAAC0WMy15ViG/KBtlW2ppr3eygnbALRTecyRY7WuO3IYhmpI+zKMbDdWoBAI2wAAAAC0WMy15FimMm0obQvCUCk/kGka6hFj+RaA9klEbEUcSw3plle2ZYJQaT+QZZrqVcr7EAqDsA0AAABAi0UcS7ZpKghCBa0M3DJ+KD8IZZuGKuNUtgFon4RnK+pYaki1PGxLZgJlglARx1QFe0eiQAjbAAAAALRYtrLNkCSl/Nbtk5T2A/lhKNcyFY8QtgFon4Rny3OsVr0XbelEGnMtxd2WdzAFWoOwDQAAAECLRZ3sMlLDMNTYin2SpGzYFgShPMdS1LEKNEIA3UXcs+XZpvxWVNkmM778IFRl3JNpGgUcHbozwjYAAAAALWaahhIRW5ZptGqfJElKNy0jTXjZ1wNAeyQ8W67duj0kU5lAmSBQVYIlpCgcwjYAAAAArVIacWQaaltlWxiqPMoSUgDtl/BsOVZ2D8l0C5eSJjOBwlCqLo0WeHTozgjbAAAAALRKIpL9gJvMtGHPtiBUeYywDUD7xT1brpWNNZLpllW3pTKBDEk9qWxDARG2AQAAAGiVmGvJs81WV7al/OzxFXE+5AJoP9c2VdK0rH1zKtOi1yQzvkJJ1SWRwg4O3RphGwAAAIBWiTqWPMdqdWVbxs9WnpSxjBRAnlTEXVmmofrkrt+PgiBUQ9qXZRrqVeoVYXTorgjbAAAAALRK1LXkWaZSmbZVtpXHqGwDkB+lEUeubao+vevKtmTTUnbXMllGioIibAMAAADQKjHXlmObCsKWdwCUpHRmyzJSKtsA5EciYivqWGpM7bqyLZUJlPFDRRxLpVHCNhQOYRsAAACAVom5lhzLlB+0PGwLw1DJTCDTNFQZY/kWgPxIeNmwraEFlbbJjC8/CFUWzVbDAYXCvy4AAAAArRJ1LDmWkduDrSXSfig/CGWZhiqpbAOQJ3HPludY8oNdh22pTCA/DFlCioIjbAMAAADQKlHXkm1ml5G2tLot7Wc/5HqWqbhnF3iEALqLhGfJtcwWhf/JTHbPNjqRotAI2wAAAAC0SnYZqaFQUtpvWUfStB8oCEK5tqmYS9gGID8SXnZJaDoIFO5iH8lUJpAhqSedSFFghG0AAAAAWiViW3JtU5ZhqCHdso6kW5aRlkQcWaZR4BEC6C7iXnYPSYXaZYfkZNpXKKmaZaQoMMI2AAAAAK1imoYSni3TNNTQgg6AUlNlWxiqNMp+bQDyJ+7aijimDMNQ/U7ej8IwVGM6kGlI1aUsI0VhEbYBAAAAaLXSqCPTyO6B1BJpP7tXUkWMsA1A/pimobKoK8s0VJ/O7PC4TBAq5QeyTVO9CNtQYIRtAAAAAFot4dlyLFON6ZZWtmX3UqqIs3wLQH5VxBzZpqH65I7fj5LppiYtjqnyGO9DKKyChm3r1q3TBRdcoNLSUpWXl+uyyy7Tpk2bdvqa4447ToZhNPu66qqrCjlMAAAAAK0UdS15dmvCtmwFXBnLSAHkWSKSXUrasJP3o2TGl++Hinu24q5VxNGhOypoG6ALLrhAq1ev1pw5c5ROp3XJJZfoiiuu0KxZs3b6uvHjx+uuu+7KfR+LxQo5TAAAAACtFHMtRRxrpx9ut7YlbCuPUlECIL9KIrYijrXT8D/lB8oEgSpjrgyDJi0orIKFbUuXLtWLL76ot99+W4ceeqgk6f7779fJJ5+s6dOnq0+fPjt8bSwWU01NTaGGBgAAAKCdoo4tzzZV15Bu0fGpTKBQYs82AHkXd21FHUsbGna8Z1syk903sqrEK+LI0F0VbBnp/PnzVV5engvaJOn444+XaZp66623dvrap556Sj179tT++++vyZMnq76+vlDDBAAAANAGMdeSY5kKwnCXx4ZhqGQmkGUa6pGgsg1AfsU9W65tyt/J+9GWwL+qhOYIKLyCVbbV1taqurq6+cVsW5WVlaqtrd3h684//3ztueee6tOnj/785z/rlltu0fLly/XLX/5yu8cnk0klk8nc9xs2bMjPDQAAAADYoWhT2JYJdh22pf1QfhDKMg0aJADIu4Rny7UtZfwdvx8lM4EMSVUlvAeh8Fodtk2aNEnTpk3b6TFLly5t84CuuOKK3H8fcMAB6t27t0aPHq2VK1dqr7322ub4qVOn6s4772zz9QAAAAC0XtSxZFuG/BaFbdkugK5lKuEVdNtoAN1QImLLtQxlgkBBEMo0t92TLZn2FUrqRWUbiqDVP+kmTpyocePG7fSYgQMHqqamRmvWrGn2eCaT0bp161q1H9sRRxwhSVqxYsV2w7bJkyfrW9/6Vu77DRs2qG/fvi0+PwAAAIDWyy0jDb6sWtuRtJ/9ABxzLcVcwjYA+ZVoWkZqSGpI+4r/S6jvB6Ea075s01CvUvZsQ+G1+iddVVWVqqqqdnnciBEjtH79ei1cuFDDhw+XJM2bN09BEOQCtJZYvHixJKl3797bfd7zPHkekwUAAAAopphry7GyAVsq4yu6kxAt7Yfyw1CJiLPTUA4A2sKzTUUdS5ZpqD6V2SZsS/nZ5giOZapHgvwAhVewBglDhw7VSSedpPHjx2vBggV68803de2112rs2LG5TqSffvqphgwZogULFkiSVq5cqf/8z//UwoUL9dFHH+m5557TRRddpGOPPVYHHnhgoYYKAAAAoJUijinHMmUahhpSwU6P3VLZVhalEymA/DOM7H6QpmGoPuVv83wy7SsThIo6lkoivA+h8AoWtknZrqJDhgzR6NGjdfLJJ+uYY47RI488kns+nU5r+fLluW6jruvqd7/7nU444QQNGTJEEydO1FlnnaXnn3++kMMEAAAA0EqGYagkYss0DTVmtv1wu7V0U1VJeYwlpAAKozzqyLVNNaS3fT9KZbLvQWWx7DFAoRX0p11lZaVmzZq1w+f79++vcKvWvH379tVrr71WyCEBAAAAyJOyqCvLkJLpXVW2hQolVcToAgigMBIRRxHHUsP2KtuawrYeCd6DUBxEugAAAADaJO7ZcmyzRZVthqQywjYABZLwbEWdHVS2NXVErqETKYqk29Zx+76vdDrd0cNAkTmOI8uyOnoYAAAAu4WoY8mzLTVu58Pt1tJ+tvKtgj3bABRI3LMVcSyt3bzt5/xkJhv49yihOQKKo9uFbWEYqra2VuvXr+/ooaCDlJeXq6amRoZBJywAAID2iLmWPNvc7obkW0v5ActIARRUwrPlWKb8YNtl7cm0r1BSFWEbiqTbhW1bgrbq6mrFYjECl24kDEPV19drzZo1kqTevXt38IgAAAC6tmhT2FbXsOMVI2EYKpkOZBmGKuOEbQAKI+5Zcm0zu0dkGOY+64dhqMa0L9MwWEaKoulWYZvv+7mgrUePHh09HHSAaDQqSVqzZo2qq6tZUgoAANAOUcdqqiQJd3hM2g/lB6Esy1Alm5MDKJASL9tpNAhDZfxAjp39rJf2Q6X9ULZpqLqUsA3F0a0aJGzZoy0Wi3XwSNCRtvz9s2cfAABA+8TcloRt2Y3JXctU3OtWv+sHUERxz5JrmTINo1mThFRTJ9KIY6k8xr6RKI5uFbZtwdLR7o2/fwAAgPyIupZsy5AfZpdtbU/aDxQEoTzbVMxhVQGAwrAtUyURR5YhbU5+GbYlM778IFTcsxRzeQ9CcXTLsA0AAABA+8Xc7IbkQRBqR8VtaT+UH4ZKRBzZFh8/ABROZdyRZTavbEtmAmWCQJVxl8ILFA113E02NKbVuIsuSvkUcS2VRihhBQAAQNe1Zc82KVs9EnO3/XixpbKtNMJHDwCFVRp15DlWsw7JW5aRVtEcAUXETzxlg7b7536gdZtTRbtmZdzVdaP3blHgtqv0/fbbb9cdd9yhZ599VtOmTdPSpUsVBIH69eunMWPG6Ic//KEk6fHHH9eECRO0fv36XV5zyJAhWrVqlf72t7+ppqamJbcEAACAbibimHJtQ6ZhqDG147DND0NVxPlFM4DCiru2Io61TWWbJFWXeB01LHRDhG2SGlO+1m1OybOLs4a7vul6jSm/RWHb6tWrc//985//XN/97ne1fPny3GOJREJz587VueeeqylTpui0006TYRhasmSJ5syZ0+rxvfHGG2poaNDZZ5+tJ554QrfcckurzwEAAIDdn2EYKok4Mk1DjU0faP9V2g8VhlJ5jE6kAAorEbEVdSyt3ZTMPZZqem/qSTdkFBFh21ZirlW0DknJTMuXrG5dWVZWVibDMLapNnv++ed19NFH66abbso9NnjwYJ1xxhmtHtuMGTN0/vnna+TIkbrhhhsI2wAAALBDZU0bkm9dSbK1tB/IkFQe5YMugMJKeLY821Rmq00kG5s+e1eXsowUxcMOpbuJmpoavffee/rrX//arvNs3LhRs2fP1oUXXqgxY8aorq5Or7/+ep5GCQAAgN1NzLPl2pYadxK2SVJFjGWkAAor7tlytgrb/CBUMu3LMg3VELahiAjbdhPXXXedDjvsMB1wwAHq37+/xo4dq5kzZyqZTO76xVv52c9+pr333lv77befLMvS2LFjNWPGjAKNGgAAAF1dzLXk2mZuqda/SvmBQrGMFEDhJTxbnpUN28IwzDVHcG1TPRPs2YbiIWzbTcTjcf3mN7/RihUrdNtttymRSGjixIk6/PDDVV9f3+LzzJw5UxdeeGHu+wsvvFCzZ8/Wxo0bCzFsAAAAdHFR11LENnObkG8tDEMl04Esw1AlDRIAFFiiqbItDEM1ZnwlM74yQaiIYylBR2QUEWHbbmavvfbS5ZdfrkcffVR/+tOftGTJEv385z9v0WuXLFmiP/7xj7r55ptl27Zs29aRRx6p+vp6/exnPyvwyAEAANAVRR1LnmMqvZ2wLROE8oNQlmWoMk5VCYDCijWF/5ZhqCEZKNlU2VYWdeRYxB8oHqLd3Vj//v0Vi8W0efPmFh0/Y8YMHXvssXrggQeaPf7YY49pxowZGj9+fCGGCQAAgC4s5lpyLFN+GG7zXCoTKAhDOZZJVQmAgjMMQ+UxV5ZpaHMqIym7b1tVCWE/ioufeLuJO+64Q/X19Tr55JO15557av369brvvvuUTqc1ZsyY3HG+72vx4sXNXut5ngYNGqSf/vSnuuuuu7T//vs3e/7yyy/XPffco/fee0/77bdfMW4HAAAAXUTMtWSbpvxg27BtS2VbzLUUc6wOGB2A7qYi7sq2DDWkfZmGIT8M1auUsA3FRdi2lfrU9jsodYXrjBw5Ug888IAuuugiff7556qoqNCwYcP08ssva5999skdt2nTJg0bNqzZa/faay9NmzZNa9eu1Te+8Y1tzj106FANHTpUM2bM0D333JP3sQMAAKDrirq2HMvIbUhuGEbuuS2VbTHPls0SLgBFkPBsRWxL9SlfrmXKkNSDZewoMsI2SRHXUmXc1brNKSUzxQncKuOuIm7rf7s3btw4jRs3bpvHR40apVGjRrXptVv4/o7vfcmSJS0dIgAAALqRqJNdRhqGofwwlL1V2Jb2s/sllUdpjgCgOBKeraibDdvCMFQoqaok0tHDQjdD2CapNOLoutF7q7FIlW1SNuArjfA/HQAAAOjaYq6Vq1pLZQLZ7pcVbGk/kB+GKo/x/70AiiMRsRVxLK2vTysMQ5mGoZoyKttQXIRtTUojDuEXAAAA0Eqebcq1TZmGoYaUr5j75UeMtB8qDKWKmNuBIwTQncRdW65tNq1as2RbhnqVUtmG4mLjBAAAAABtZhiGyiKOLNNQY7r5SpGMH8iQVB4lbANQHAnPlmuZSmWyy9gjjqUylrKjyAjbAAAAALRLScSWaWwbtqX8QJJUFmNBDYDiiHuWXDsbdaSDQAnXUpRuyCgywjYAAAAA7RL3ssu2GtNBs8fTfqBQUiWdAAEUSSKSrWyzTEOpTKDKuNesSzJQDIRtAAAAANol5lrybDNXySZJYRgqmQ5kGYYq4izhAlAcnm0p5tm5sK26lLAfxUfYBgAAAKBdoq4lzzGVzHwZtmWCUJkglGkaqozxYRdA8VTEsvtISlJVCe8/KD7CNgAAAADtEnUsebal1FZhW9oPFIShXNtUIsKebQCKpzzmymlaStozQdiG4iNsAwAAANAuMdeWYxnywzD3WNoP5QehPNtU3GVzcgDFk/CyTRFs01A1lW3oAPyKaYvGOindULzrOVEpUla86wEAAAAFEnUt2ZapINg6bMtWtsU9W7bF7/gBFE/csxV1LVmmod5l0Y4eDrohwjYpG7S9drdUv7Z414z1kEbe3KrArba2VlOnTtVvfvMbffLJJyorK9OgQYN04YUX6uKLL1YsFpMk/eEPf9D3vvc9zZ8/Xw0NDdp77711ySWX6IYbbpBlNf+t4gsvvKD/+q//0p/+9Cf5vq/99ttP11xzjcaNG7fN9f/3f/9XDzzwgBYtWqTGxkb169dPRx99tK677joNGzZMkvT4449rwoQJWr9+fZv/aAAAANC1RF1LjmUqE4QKw1CGYSjtB/KDUGURmiMAKK6EZ8uzLUUcSz0SbkcPB90Qv2KSshVt9WslOypFexT+y45mr9eKSroPP/xQw4YN08svv6zvf//7WrRokebPn6+bb75ZL7zwgn73u99Jkp599lmNHDlSX/nKV/TKK69o2bJluuGGG/S9731PY8eOVbhVaf/999+v008/XUcffbTeeust/fnPf9bYsWN11VVX6dvf/naz699yyy0699xzdfDBB+u5557T8uXLNWvWLA0cOFCTJ0/Oz98DAAAAuqSYY8mxDIVhdumoJKUygYJQKqcTKYAiK4nYcm1TJRFHCY8aIxQf/+q25sQkL1Gca2Vat2T16quvlm3beueddxSPx3OPDxw4UKeffrrCMNTmzZs1fvx4nXbaaXrkkUdyx1x++eXq1auXTjvtND3zzDM699xz9fHHH2vixImaMGGCvv/97+eOnThxolzX1fXXX69///d/1xFHHKE//vGPuvvuu3Xvvffq+uuvzx3br18/DR8+vFmABwAAgO4n6lpyzOzv8VN+ILupyi0IQ1XEqCoBUFx79ojr0D0r1JjxWcaODsG/ui5g7dq1evnll3XNNdc0C9q2ZhiGXn75Za1du3abqjRJOvXUUzV48GA9/fTTkqRf/OIXSqfT2z32yiuvVCKRyB379NNPK5FI6Oqrr97htQEAANB9ebYpzzFlmoYaUr4kKZ0JZEgqj1LZBqC4HMvUBUfuqcuOGdjRQ0E3RdjWBaxYsUJhGGqfffZp9njPnj2VSCSUSCR0yy236P3335ckDR06dLvnGTJkSO6Y999/X2VlZerdu/c2x7muq4EDBzY7duDAgbLtLwsh77nnnty1E4mE6urq8nKvAAAA6HoMw1BJxJFlGGpIN4Vtfnb1Q3mMsA0A0L0QtnVhCxYs0OLFi7XffvspmUzmHi/Gss5LL71Uixcv1sMPP6zNmzezlBQAAKCbK43YskxDjU1hW8r3FUqqiHkdOzAAAIqMsK0LGDRokAzD0PLly5s9PnDgQA0aNEjRaLaV8eDBgyVJS5cu3e55li5dmjtm8ODBqqur02effbbNcalUSitXrswdu/fee+vDDz9UOp3OHVNeXq5BgwZpjz32aP8NAgAAoMuLe7Ycy1QyHSgMQyXTgSzDUAUNEgAA3QxhWxfQo0cPjRkzRj/60Y+0efPmHR53wgknqLKyUj/4wQ+2ee65557TBx98oPPOO0+SdNZZZ8lxnO0e++Mf/1ibN2/OHXveeedp06ZNevDBB/N0RwAAANjdxFxLnmMq6QfKBKEyQSjTNFQZp0ECAKB7oRtpF/Hggw/q6KOP1qGHHqo77rhDBx54oEzT1Ntvv61ly5Zp+PDhisfjevjhhzV27FhdccUVuvbaa1VaWqq5c+fqpptu0tlnn61zzjlHUraT6N13362JEycqEonoP/7jP+Q4jn7961/rO9/5jiZOnKgjjjhCkjRixAhNnDhREydO1N/+9jedeeaZ6tu3r1avXq0ZM2bIMAyZ5pe5re/7Wrx4cbPxe563w73kAAAA0PVFHEsR29SGxozSfqAgDOVa2b3cAADoTgjbtpau77TX2WuvvbRo0SJ9//vf1+TJk/XJJ5/I8zztu++++va3v53rFHr22WfrlVde0ZQpU/TVr35VjY2N2nvvvXXrrbdqwoQJzTqHTpgwQQMHDtT06dN17733yvd97bfffnrooYd0ySWXNLv+9OnTdfjhh+uhhx7SzJkzVV9fr169eunYY4/V/PnzVVpamjt206ZNGjZs2DbjX7FiRavvGwAAAF1DzLXl2pYyflppP5QfhIq6lmKu1dFDAwCgqIxwN9vZfsOGDSorK1NdXV2zAEiSGhsbtWrVKg0YMECRSGSrJ+qk1+6W6tcWb6CxHtLIm6VIWfGuCUk7+XcAAACANvvrp3V65Pcr9be19dp/jzIt+vsXqiqJ6IlLD+/ooQEAurmdZUWFQGWblA28Rt4spRuKd00nStAGAACA3UbEseRYpvwgVNoP5AehyqMsIQUAdD+EbVtEygi/AAAAgDaKudmwLRMESmUCBaFUHiNsAwB0P3QjBQAAANBuMdeSbRkKQymZzjZIKI/RiRQA0P0QtgEAAABot6hryWnqUF+f9mWIyjYAQPdE2AYAAACg3VzLlOeYskxDm5MZSVIZe7YBALohwjYAAAAA7WYYhsoijkzDUDLjK5RUyTJSAEA3RNgGAAAAIC9Ko44s01DGD2UahirihG0AgO6HsA0AAABAXsQ8S65tKu0HskxDPRKEbQCA7oewDQAAAEBeRB1Lnm0q7YdyLUMlHnu2AQC6H7tQJ163bp2uu+46Pf/88zJNU2eddZbuvfdeJRKJnb5u/vz5uvXWW/XWW2/JsiwdfPDBeumllxSNRgs1VEnSxtRGNWYaC3qNrUXsiErckqJdLx9effVVjRo1Sl988YXKy8s7ejiSpHHjxmn9+vX61a9+1dFDAQAA6Pairi3PtpQJAnm2pZhndfSQAAAouoKFbRdccIFWr16tOXPmKJ1O65JLLtEVV1yhWbNm7fA18+fP10knnaTJkyfr/vvvl23bevfdd2WahS3A25jaqIf//LC+aPyioNfZWkWkQlceeGWLA7dx48bpiSeeyH1fWVmpww47THfffbcOPPDAQg0TAAAAaLGYm11GakiKebYci4U0AIDupyBh29KlS/Xiiy/q7bff1qGHHipJuv/++3XyySdr+vTp6tOnz3Zfd+ONN+r666/XpEmTco/ts88+hRhiM42ZRn3R+IUiVkQRO1K06zVmGltV3XbSSSfpsccekyTV1tbqtttu09e//nX9/e9/L9RQOy3f92UYRkcPAwAAAFuJOpZcy5RpGiqNFOz3+gAAdGoF+VXT/PnzVV5engvaJOn444+XaZp66623tvuaNWvW6K233lJ1dbWOOuoo9erVSyNHjtQbb7yx02slk0lt2LCh2VdbReyI4k684F9tDfQ8z1NNTY1qamp08MEHa9KkSfr444/1j3/8Q5L08ccf65xzzlF5ebkqKyt1+umn66OPPsq9fty4cTrjjDM0ffp09e7dWz169NA111yjdDrd7M/zlltuUd++feV5ngYNGqQZM2Y0G8fChQt16KGHKhaL6aijjtLy5ctzz91xxx06+OCDNXPmTPXr10+JREJXX321fN/X3XffrZqaGlVXV2vKlCnNznnPPffogAMOUDweV9++fXX11Vdr06ZNuecff/xxlZeX67nnntO+++4rz/O2GzK+/fbbqqqq0rRp09r0ZwwAAIC2i7qWbMugEykAoFsrSNhWW1ur6urqZo/Ztq3KykrV1tZu9zUffvihpGxYM378eL344os65JBDNHr0aH3wwQc7vNbUqVNVVlaW++rbt2/+bqQT27Rpk5588kkNGjRIPXr0UDqd1oknnqiSkhK9/vrrevPNN5VIJHTSSScplUrlXvfKK69o5cqVeuWVV/TEE0/o8ccf1+OPP557/qKLLtLTTz+t++67T0uXLtXDDz+8zT57t956q37wgx/onXfekW3buvTSS5s9v3LlSv3f//2fXnzxRT399NOaMWOGTjnlFH3yySd67bXXNG3aNN12223NglfTNHXffffpvffe0xNPPKF58+bp5ptvbnbe+vp6TZs2TY8++qjee++9bf6NzZs3T2PGjNGUKVN0yy23tPePGAAAAK0Ucy05linLNFQRozkCAKB7alVt96RJk3ZZMbR06dI2DSQIAknSlVdeqUsuuUSSNGzYMM2dO1czZ87U1KlTt/u6yZMn61vf+lbu+w0bNuy2gdsLL7yQC742b96s3r1764UXXpBpmpo1a5aCINCjjz6aW1752GOPqby8XK+++qpOOOEESVJFRYV+9KMfybIsDRkyRKeccormzp2r8ePH6/3339czzzyjOXPm6Pjjj5ckDRw4cJtxTJkyRSNHjpSU/TdxyimnqLGxUZFItmIvCALNnDlTJSUl2nfffTVq1CgtX75cv/3tb2WapvbZZx9NmzZNr7zyio444ghJ0oQJE3Ln79+/v773ve/pqquu0oMPPph7PJ1O68EHH9RBBx20zZieffZZXXTRRXr00Ud17rnntvePGgAAAG0Qc2w5liHHMlVO2AYA6KZaFbZNnDhR48aN2+kxAwcOVE1NjdasWdPs8Uwmo3Xr1qmmpma7r+vdu7ckad999232+NChQ3e6J5nnefI8rwWj7/pGjRqlhx56SJL0xRdf6MEHH9TXvvY1LViwQO+++65WrFihkpLme8A1NjZq5cqVue/3228/WdaXXaF69+6tv/zlL5KkxYsXy7KsXJC2I1s3ZNjy97ZmzRr169dPUjYs23ocvXr1kmVZzRpd9OrVq9m/kd/97neaOnWqli1bpg0bNiiTyaixsVH19fWKxWKSJNd1t9sM4q233tILL7ygX/ziFzrjjDN2OnYAAAAUTsQ1ZVumHMtQWZRlpACA7qlVYVtVVZWqqqp2edyIESO0fv16LVy4UMOHD5eUXeIXBEGukulf9e/fX3369Gm2/5ckvf/++/ra177WmmHutuLxuAYNGpT7/tFHH1VZWZn+53/+R5s2bdLw4cP11FNPbfO6rf/OHKf5bxgNw8hVFUaj0RaNY+tzbKmi23KOHV1jZ9f96KOP9PWvf13f/OY3NWXKFFVWVuqNN97QZZddplQqlQvbotHodpsi7LXXXurRo4dmzpypU045ZZtrAQAAoDhcy1TUyS4lZRkpAKC7KsiebUOHDtVJJ52k8ePHa8GCBXrzzTd17bXXauzYsblOpJ9++qmGDBmiBQsWSMqGLzfddJPuu+8+/eIXv9CKFSv0//7f/9OyZct02WWXFWKYXZ5hGDJNUw0NDTrkkEP0wQcfqLq6WoMGDWr2VVZW1qLzHXDAAQqCQK+99lqBR97cwoULFQSBfvCDH+jII4/U4MGD9dlnn7X49T179tS8efO0YsUKnXPOOc0aPgAAAKB4DMPQ/nuUqTLuqn/PeEcPBwCADlGQsE2SnnrqKQ0ZMkSjR4/WySefrGOOOUaPPPJI7vl0Oq3ly5ervr4+99iECRM0efJk3XjjjTrooIM0d+5czZkzR3vttVehhtmlJJNJ1dbWqra2VkuXLtV1112nTZs26dRTT9UFF1ygnj176vTTT9frr7+uVatW6dVXX9X111+vTz75pEXn79+/vy6++GJdeuml+tWvfpU7xzPPPFPQ+xo0aJDS6bTuv/9+ffjhh/rpT3+qH//4x606R3V1tebNm6dly5bpvPPOUyaTKdBoAQAAsDMnH9BbD14wXAN6JnZ9MAAAu6FWLSNtjcrKSs2aNWuHz/fv319hGG7z+KRJkzRp0qRCDWunGjONnfo6L774Ym6PtJKSEg0ZMkSzZ8/WcccdJ0n6/e9/r1tuuUVnnnmmNm7cqD322EOjR49WaWlpi6/x0EMP6Tvf+Y6uvvpqrV27Vv369dN3vvOdNo23pQ466CDdc889mjZtmiZPnqxjjz1WU6dO1UUXXdSq89TU1GjevHk67rjjdMEFF2jWrFnN9qcDAABAcbh2wX6nDwBAp2eE20u8urANGzaorKxMdXV124RMjY2NWrVqlQYMGJDrnClJG1Mb9fCfH9YXjV8UbZwVkQpdeeCVKnFLdn0w8mpH/w4AAAAAAMDuZ2dZUSEUrLKtKylxS3TlgVcWrbJNkiJ2hKANAAAAAABgN0PY1qTELSH8AgAAAAAAQLuwmQIAAAAAAACQJ4RtAAAAAAAAQJ4QtgEAAAAAAAB50i3DtiAIOnoI6ED8/QMAAAAAgELpVg0SXNeVaZr67LPPVFVVJdd1ZRhGRw8LRRKGoVKplP7xj3/INE25rtvRQwIAAAAAALuZbhW2maapAQMGaPXq1frss886ejjoILFYTP369ZNpdsvCTgAAAAAAUEDdKmyTstVt/fr1UyaTke/7HT0cFJllWbJtm4pGAAAAAABQEN0ubJMkwzDkOI4cx+nooQAAAAAAAGA3wjo6AAAAAAAAIE8I2wAAAAAAAIA8IWwDAAAAAAAA8mS327MtDENJ0oYNGzp4JAAAAAAAAOhoWzKiLZlRoe12YdvGjRslSX379u3gkQAAAAAAAKCzWLt2rcrKygp+HSMsVqxXJEEQaPDgwVq4cKEMw+jo4WAHNmzYoL59++rjjz9WaWlpRw8HO3HYYYfp7bff7uhhYAeYS10Hc6nzYz51Dcylzo+51HUwnzo35lLXwVzq/Orq6tSvXz998cUXKi8vL/j1drvKNtM05bpuUZJKtF9paSk/ODo5y7L4O+oCmEudH3Op62A+dW7Mpa6DudT5MZ+6BuZS58dc6jpMszitC3bLBgnXXHNNRw8B2G0wn4D8YC4B+cFcAvKH+QTkB3MJ/2q3W0aKrmHDhg0qKytTXV0dvwEA2oG5BOQP8wnID+YSkB/MJSB/ij2fdsvKNnR+nufp9ttvl+d5HT0UoEtjLgH5w3wC8oO5BOQHcwnIn2LPJyrbAAAAAAAAgDyhsg0AAAAAAADIE8I2AAAAAAAAIE8I2wAAAAAAAIA8IWwDAAAAAAAA8oSwDW0ydepUHXbYYSopKVF1dbXOOOMMLV++vNkxjY2Nuuaaa9SjRw8lEgmdddZZ+vzzz5sdc/3112v48OHyPE8HH3zwTq+5YsUKlZSUqLy8PM93A3SsYs6nMAw1ffp0DR48WJ7naY899tCUKVMKdWtAURVzLr300ks68sgjVVJSoqqqKp111ln66KOPCnRnQPHlYz69++67Ou+889S3b19Fo1ENHTpU99577zbXevXVV3XIIYfI8zwNGjRIjz/+eKFvDyiaYs2lX/7ylxozZoyqqqpUWlqqESNG6KWXXirKPQLFUMyfS1u8+eabsm17l1nF9hC2oU1ee+01XXPNNfrjH/+oOXPmKJ1O64QTTtDmzZtzx9x44416/vnnNXv2bL322mv67LPPdOaZZ25zrksvvVTnnnvuTq+XTqd13nnn6atf/Wre7wXoaMWcTzfccIMeffRRTZ8+XcuWLdNzzz2nww8/vCD3BRRbsebSqlWrdPrpp+vf/u3ftHjxYr300kv65z//ud3zAF1VPubTwoULVV1drSeffFLvvfeebr31Vk2ePFk/+tGPcsesWrVKp5xyikaNGqXFixdrwoQJuvzyywkJsNso1lz6/e9/rzFjxui3v/2tFi5cqFGjRunUU0/VokWLinq/QKEUay5tsX79el100UUaPXp02wYcAnmwZs2aUFL42muvhWEYhuvXrw8dxwlnz56dO2bp0qWhpHD+/PnbvP72228PDzrooB2e/+abbw4vvPDC8LHHHgvLysryPXygUynUfFqyZElo23a4bNmygo0d6EwKNZdmz54d2rYd+r6fe+y5554LDcMIU6lU/m8E6ATaO5+2uPrqq8NRo0blvr/55pvD/fbbr9kx5557bnjiiSfm+Q6AzqFQc2l79t133/DOO+/Mz8CBTqbQc+ncc88Nb7vttl1mFTtCZRvyoq6uTpJUWVkpKZsYp9NpHX/88bljhgwZon79+mn+/PmtOve8efM0e/ZsPfDAA/kbMNCJFWo+Pf/88xo4cKBeeOEFDRgwQP3799fll1+udevW5fcGgE6iUHNp+PDhMk1Tjz32mHzfV11dnX7605/q+OOPl+M4+b0JoJPI13yqq6vLnUOS5s+f3+wcknTiiSe2+v8Xga6iUHPpXwVBoI0bN+70GKArK+Rceuyxx/Thhx/q9ttvb/P47Da/EmgSBIEmTJigo48+Wvvvv78kqba2Vq7rbrO/Wq9evVRbW9vic69du1bjxo3Tk08+qdLS0nwOG+iUCjmfPvzwQ/3tb3/T7Nmz9ZOf/ES+7+vGG2/U2WefrXnz5uXzNoAOV8i5NGDAAL388ss655xzdOWVV8r3fY0YMUK//e1v83kLQKeRr/n0hz/8QT//+c/1m9/8JvdYbW2tevXqtc05NmzYoIaGBkWj0fzeDNCBCjmX/tX06dO1adMmnXPOOXkbP9BZFHIuffDBB5o0aZJef/112XbbIzPCNrTbNddco7/+9a9644038n7u8ePH6/zzz9exxx6b93MDnVEh51MQBEomk/rJT36iwYMHS5JmzJih4cOHa/ny5dpnn33yfk2goxRyLtXW1mr8+PG6+OKLdd5552njxo367ne/q7PPPltz5syRYRh5vybQkfIxn/7617/q9NNP1+23364TTjghj6MDuo5izaVZs2bpzjvv1K9//WtVV1e3+VpAZ1WoueT7vs4//3zdeeeduc9LbcUyUrTLtddeqxdeeEGvvPKKvvKVr+Qer6mpUSqV0vr165sd//nnn6umpqbF5583b56mT58u27Zl27Yuu+wy1dXVybZtzZw5M1+3AXQKhZ5PvXv3lm3bzX5wDB06VJL097//vX2DBzqRQs+lBx54QGVlZbr77rs1bNgwHXvssXryySc1d+5cvfXWW/m6DaBTyMd8WrJkiUaPHq0rrrhCt912W7PnampqtukI/Pnnn6u0tJSqNuxWCj2XtvjZz36myy+/XM8888w2S7SB3UEh59LGjRv1zjvv6Nprr81lEHfddZfeffdd2bbdqtVAhG1okzAMde211+rZZ5/VvHnzNGDAgGbPDx8+XI7jaO7cubnHli9frr///e8aMWJEi68zf/58LV68OPd11113qaSkRIsXL9Y3vvGNvN0P0JGKNZ+OPvpoZTIZrVy5MvfY+++/L0nac88923kXQMcr1lyqr6+XaTb/XyjLsiRlK0iB3UG+5tN7772nUaNG6eKLL9aUKVO2uc6IESOanUOS5syZ06o5CXRmxZpLkvT000/rkksu0dNPP61TTjmlMDcEdJBizKXS0lL95S9/aZZBXHXVVdpnn320ePFiHXHEEa0aMNBq3/zmN8OysrLw1VdfDVevXp37qq+vzx1z1VVXhf369QvnzZsXvvPOO+GIESPCESNGNDvPBx98EC5atCi88sorw8GDB4eLFi0KFy1aFCaTye1el26k2B0Vaz75vh8ecsgh4bHHHhv+6U9/Ct95553wiCOOCMeMGVPU+wUKpVhzae7cuaFhGOGdd94Zvv/+++HChQvDE088Mdxzzz2bXQvoyvIxn/7yl7+EVVVV4YUXXtjsHGvWrMkd8+GHH4axWCy86aabwqVLl4YPPPBAaFlW+OKLLxb1foFCKdZceuqpp0LbtsMHHnig2THr168v6v0ChVKsufSv2tqNlLANbSJpu1+PPfZY7piGhobw6quvDisqKsJYLBZ+4xvfCFevXt3sPCNHjtzueVatWrXd6xK2YXdUzPn06aefhmeeeWaYSCTCXr16hePGjQvXrl1bpDsFCquYc+npp58Ohw0bFsbj8bCqqio87bTTwqVLlxbpToHCy8d8uv3227d7jj333LPZtV555ZXw4IMPDl3XDQcOHNjsGkBXV6y5tKOfXRdffHHxbhYooGL+XNpaW8M2o2nQAAAAAAAAANqJPdsAAAAAAACAPCFsAwAAAAAAAPKEsA0AAAAAAADIE8I2AAAAAAAAIE8I2wAAAAAAAIA8IWwDAAAAAAAA8oSwDQAAAAAAAMgTwjYAAAAAAAAgTwjbAAAAAAAAgDwhbAMAAAAAAADyhLANAAAAAAAAyBPCNgAAAAAAACBP/j/qo871HCD8OQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "companies.risk.get_maximum_drawdown(period=\"quarterly\").plot.area(\n", " figsize=(15, 5), title=\"Maximum Drawdown for each Quarter\", stacked=False\n", ")" ] }, { "cell_type": "markdown", "id": "ba148217", "metadata": {}, "source": [ "And lastly, the historical data can be viewed which includes OHLC, Volume, Dividends, Volatility and (Cumulative) Returns." ] }, { "cell_type": "code", "execution_count": 11, "id": "664513bf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OpenHighLowClose...VolatilityExcess ReturnExcess VolatilityCumulative Return
TSLAGOOGLBenchmarkTSLAGOOGLBenchmarkTSLAGOOGLBenchmarkTSLA...BenchmarkTSLAGOOGLBenchmarkTSLAGOOGLBenchmarkTSLAGOOGLBenchmark
Date
2014-01-079.841328.1532183.0910.026728.5208183.799.683328.0571182.959.9573...0.011-0.0133-0.0101-0.02330.03660.01980.01431.01.01.0
2014-01-089.923328.6787183.4510.246728.7117183.839.917328.3606182.8910.0853...0.011-0.017-0.0278-0.02970.03660.01980.01431.01291.00211.0002
2014-01-0910.166728.6146184.1110.228728.6341184.139.7928.1672182.89.8353...0.011-0.0544-0.0392-0.02890.03660.01980.01430.98770.99241.0009
2014-01-109.897328.5055183.959.926728.5055184.229.483328.0843183.019.7147...0.011-0.0409-0.0287-0.02590.03660.01980.01430.97560.99241.0036
2014-01-139.718728.1899183.679.828.7014184.189.18827.9572181.349.2893...0.011-0.0721-0.0347-0.04160.03660.01980.01430.93290.98610.9902
..................................................................
2023-12-29255.1139.63476.49255.19140.36477.03247.43138.78473.3248.48...0.011-0.0573-0.0426-0.04160.03660.01980.014324.95454.90143.1038
2024-01-02250.08138.55472.16251.25139.45473.67244.41136.48470.49248.42...0.011-0.0397-0.0504-0.04510.03660.01980.014324.94844.84813.0865
2024-01-03244.98137.25470.43245.68139.63471.19236.32137.08468.17238.45...0.011-0.0792-0.0337-0.04730.03660.01980.014323.94724.87443.0613
2024-01-04239.25138.42468.3242.7139.16470.96237.73136.35467.05237.93...0.011-0.0421-0.0581-0.04310.03660.01980.014323.8954.78563.0514
2024-01-05236.86136.745467.49239.0137.08469.02234.9001136.265467.13238.71...0.011-0.0372-0.038-0.03720.03660.01980.014323.97334.79753.0613
\n", "

2517 rows × 36 columns

\n", "
" ], "text/plain": [ " Open High Low \\\n", " TSLA GOOGL Benchmark TSLA GOOGL Benchmark TSLA \n", "Date \n", "2014-01-07 9.8413 28.1532 183.09 10.0267 28.5208 183.79 9.6833 \n", "2014-01-08 9.9233 28.6787 183.45 10.2467 28.7117 183.83 9.9173 \n", "2014-01-09 10.1667 28.6146 184.11 10.2287 28.6341 184.13 9.79 \n", "2014-01-10 9.8973 28.5055 183.95 9.9267 28.5055 184.22 9.4833 \n", "2014-01-13 9.7187 28.1899 183.67 9.8 28.7014 184.18 9.188 \n", "... ... ... ... ... ... ... ... \n", "2023-12-29 255.1 139.63 476.49 255.19 140.36 477.03 247.43 \n", "2024-01-02 250.08 138.55 472.16 251.25 139.45 473.67 244.41 \n", "2024-01-03 244.98 137.25 470.43 245.68 139.63 471.19 236.32 \n", "2024-01-04 239.25 138.42 468.3 242.7 139.16 470.96 237.73 \n", "2024-01-05 236.86 136.745 467.49 239.0 137.08 469.02 234.9001 \n", "\n", " Close ... Volatility Excess Return \\\n", " GOOGL Benchmark TSLA ... Benchmark TSLA GOOGL \n", "Date ... \n", "2014-01-07 28.0571 182.95 9.9573 ... 0.011 -0.0133 -0.0101 \n", "2014-01-08 28.3606 182.89 10.0853 ... 0.011 -0.017 -0.0278 \n", "2014-01-09 28.1672 182.8 9.8353 ... 0.011 -0.0544 -0.0392 \n", "2014-01-10 28.0843 183.01 9.7147 ... 0.011 -0.0409 -0.0287 \n", "2014-01-13 27.9572 181.34 9.2893 ... 0.011 -0.0721 -0.0347 \n", "... ... ... ... ... ... ... ... \n", "2023-12-29 138.78 473.3 248.48 ... 0.011 -0.0573 -0.0426 \n", "2024-01-02 136.48 470.49 248.42 ... 0.011 -0.0397 -0.0504 \n", "2024-01-03 137.08 468.17 238.45 ... 0.011 -0.0792 -0.0337 \n", "2024-01-04 136.35 467.05 237.93 ... 0.011 -0.0421 -0.0581 \n", "2024-01-05 136.265 467.13 238.71 ... 0.011 -0.0372 -0.038 \n", "\n", " Excess Volatility Cumulative Return \\\n", " Benchmark TSLA GOOGL Benchmark TSLA \n", "Date \n", "2014-01-07 -0.0233 0.0366 0.0198 0.0143 1.0 \n", "2014-01-08 -0.0297 0.0366 0.0198 0.0143 1.0129 \n", "2014-01-09 -0.0289 0.0366 0.0198 0.0143 0.9877 \n", "2014-01-10 -0.0259 0.0366 0.0198 0.0143 0.9756 \n", "2014-01-13 -0.0416 0.0366 0.0198 0.0143 0.9329 \n", "... ... ... ... ... ... \n", "2023-12-29 -0.0416 0.0366 0.0198 0.0143 24.9545 \n", "2024-01-02 -0.0451 0.0366 0.0198 0.0143 24.9484 \n", "2024-01-03 -0.0473 0.0366 0.0198 0.0143 23.9472 \n", "2024-01-04 -0.0431 0.0366 0.0198 0.0143 23.895 \n", "2024-01-05 -0.0372 0.0366 0.0198 0.0143 23.9733 \n", "\n", " \n", " GOOGL Benchmark \n", "Date \n", "2014-01-07 1.0 1.0 \n", "2014-01-08 1.0021 1.0002 \n", "2014-01-09 0.9924 1.0009 \n", "2014-01-10 0.9924 1.0036 \n", "2014-01-13 0.9861 0.9902 \n", "... ... ... \n", "2023-12-29 4.9014 3.1038 \n", "2024-01-02 4.8481 3.0865 \n", "2024-01-03 4.8744 3.0613 \n", "2024-01-04 4.7856 3.0514 \n", "2024-01-05 4.7975 3.0613 \n", "\n", "[2517 rows x 36 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "companies.get_historical_data()" ] }, { "cell_type": "markdown", "id": "cbb05eb0", "metadata": {}, "source": [ "Note that it is possible that your dataset doesn't cover all financial statement items if your normalization files are incomplete. This will become apparent when some ratios can not be calculated." ] }, { "cell_type": "code", "execution_count": 12, "id": "8c4abb05", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Obtaining financial statements: 0it [00:00, ?it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "There is an index name missing in the provided financial statements. This is 'Total Debt'. This is required for the function (get_debt_to_assets_ratio) to run. Please fill this column to be able to calculate the ratios.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "data": { "text/plain": [ "Series([], dtype: object)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Obtaining financial statements: 0it [00:00, ?it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "There is an index name missing in the provided financial statements. This is 'Depreciation and Amortization'. This is required for the function (get_interest_coverage_ratio) to run. Please fill this column to be able to calculate the ratios.\n", "There is an index name missing in the provided financial statements. This is 'Dividends Paid'. This is required for the function (get_return_on_invested_capital) to run. Please fill this column to be able to calculate the ratios.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2019202020212022
GOOGLGross Margin0.55580.53580.56940.5538
Operating Margin0.2220.22590.30550.2646
Net Profit Margin0.21220.22060.29510.212
Income Before Tax Profit Margin0.24480.26340.35220.2522
Effective Tax Rate0.13330.16250.1620.1592
Return on Assets (ROA)NaN0.13520.2240.1655
Return on Equity (ROE)NaN0.190.32070.2362
Return on Capital Employed (ROCE)0.17220.18350.30870.2422
Return on Tangible AssetsNaN0.10450.17150.127
Income Quality Ratio1.58751.61721.20541.5256
Net Income per EBT0.86670.83750.8380.8408
Free Cash Flow to Operating Cash Flow Ratio0.56810.65790.73120.6559
EBT to EBIT Ratio0.99750.99720.99620.995
EBIT to Revenue0.24540.26420.35350.2535
TSLAGross Margin0.16560.21020.25280.256
Operating Margin0.00330.06320.12070.1698
Net Profit Margin-0.03510.02190.10250.1545
Income Before Tax Profit Margin-0.02710.03660.11780.1684
Effective Tax Rate-0.16540.2530.11020.0825
Return on Assets (ROA)NaN0.0160.09660.1742
Return on Equity (ROE)NaN0.04780.21060.336
Return on Capital Employed (ROCE)-0.00280.04560.15530.25
Return on Tangible AssetsNaN0.00970.0630.1177
Income Quality Ratio-2.798.6132.08321.1702
Net Income per EBT1.14630.70260.88760.9175
Free Cash Flow to Operating Cash Flow Ratio0.40250.45450.30290.5129
EBT to EBIT Ratio11.22390.56760.94370.9863
EBIT to Revenue-0.00270.05490.12240.1707
\n", "
" ], "text/plain": [ " 2019 2020 2021 2022\n", "GOOGL Gross Margin 0.5558 0.5358 0.5694 0.5538\n", " Operating Margin 0.222 0.2259 0.3055 0.2646\n", " Net Profit Margin 0.2122 0.2206 0.2951 0.212\n", " Income Before Tax Profit Margin 0.2448 0.2634 0.3522 0.2522\n", " Effective Tax Rate 0.1333 0.1625 0.162 0.1592\n", " Return on Assets (ROA) NaN 0.1352 0.224 0.1655\n", " Return on Equity (ROE) NaN 0.19 0.3207 0.2362\n", " Return on Capital Employed (ROCE) 0.1722 0.1835 0.3087 0.2422\n", " Return on Tangible Assets NaN 0.1045 0.1715 0.127\n", " Income Quality Ratio 1.5875 1.6172 1.2054 1.5256\n", " Net Income per EBT 0.8667 0.8375 0.838 0.8408\n", " Free Cash Flow to Operating Cash Flow Ratio 0.5681 0.6579 0.7312 0.6559\n", " EBT to EBIT Ratio 0.9975 0.9972 0.9962 0.995\n", " EBIT to Revenue 0.2454 0.2642 0.3535 0.2535\n", "TSLA Gross Margin 0.1656 0.2102 0.2528 0.256\n", " Operating Margin 0.0033 0.0632 0.1207 0.1698\n", " Net Profit Margin -0.0351 0.0219 0.1025 0.1545\n", " Income Before Tax Profit Margin -0.0271 0.0366 0.1178 0.1684\n", " Effective Tax Rate -0.1654 0.253 0.1102 0.0825\n", " Return on Assets (ROA) NaN 0.016 0.0966 0.1742\n", " Return on Equity (ROE) NaN 0.0478 0.2106 0.336\n", " Return on Capital Employed (ROCE) -0.0028 0.0456 0.1553 0.25\n", " Return on Tangible Assets NaN 0.0097 0.063 0.1177\n", " Income Quality Ratio -2.79 8.613 2.0832 1.1702\n", " Net Income per EBT 1.1463 0.7026 0.8876 0.9175\n", " Free Cash Flow to Operating Cash Flow Ratio 0.4025 0.4545 0.3029 0.5129\n", " EBT to EBIT Ratio 11.2239 0.5676 0.9437 0.9863\n", " EBIT to Revenue -0.0027 0.0549 0.1224 0.1707" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Missing column returns an empty series\n", "display(companies.ratios.get_debt_to_assets_ratio())\n", "\n", "# Missing column skips the ratio in the total overview\n", "display(companies.ratios.collect_profitability_ratios())" ] }, { "cell_type": "markdown", "id": "848c7f3d", "metadata": {}, "source": [ "It is also possible to still include your Financial Modeling Prep key and run the related functionality." ] }, { "cell_type": "code", "execution_count": 13, "id": "25cb560c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Obtaining historical statistics: 100%|██████████| 2/2 [00:00<00:00, 9.50it/s]\n", "Obtaining analyst estimates: 100%|██████████| 2/2 [00:00<00:00, 9.74it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date20142015201620172018201920202021202220232024
TSLAEstimated Revenue Low3096377368.03031073263.03563669919.010424883038.014213344964.09528177383.016540536575.041987852497.061863038539.089650300000.090735100000.0
Estimated Revenue High4004408595.03919953669.04608737488.013482042489.018381493587.012322372524.021391148090.054301041968.080004745473.097335500000.0135949000000.0
Estimated Revenue Average3504090326.03430187356.04032913241.011797570986.016084875537.010782792347.018718498200.047516568631.070008803539.097309747770.0119556983730.0
Estimated EBITDA Low67202937.0-1790598161.0813638881.0132981646.012456436555.05018474813.02331077632.06222540492.08451256459.09503646657.012787406330.0
Estimated EBITDA High116549325.0-1193732107.01334534318.0337625225.018884056737.07632302505.03014680123.09333810739.012676884692.014255469991.019159455417.0
Estimated EBITDA Average91876131.0-1492165134.01074086600.0235303436.015670246646.06325388659.02638020373.07778175616.010564070576.011879558324.016849308929.0
Estimated EBIT Low-432667751.0-3590749718.0-429111338.0-1797932097.03847184569.045613001.06292253089.010078959157.012587376986.013981202161.06394341449.0
Estimated EBIT High-288445167.0-2393833145.0-115781580.0-1198621397.06997703164.01266188429.09438379634.015118438737.018881065481.020971803245.09580684054.0
Estimated EBIT Average-360556459.0-2992291432.0-272446459.0-1498276747.05422443867.0655900715.07865316362.012598698947.015734221234.017476502703.08425495499.0
Estimated Net Income Low-707480721.0-4429783647.0-604415639.0-2181290577.02099149004.0-1433231913.01746428838.03641422676.05460936341.06124613739.08062000002.0
Estimated Net Income High-471653814.0-2953189097.0-359430847.0-1454193717.04586996630.0-329062941.02619643259.05462134014.08191404512.09186920611.018417500005.0
Estimated Net Income Average-589567268.0-3691486372.0-481923243.0-1817742147.03343072817.0-881147427.02183036049.04551778345.06826170427.09101951320.012574779170.0
Estimated SGA Expense Low945468432.0286025570.01399742160.01872842029.010421778962.04984100512.012365515385.02939271443.03049942310.03455119556.08562168082.0
Estimated SGA Expense High1418202648.0369904283.02099613242.02809263044.015632668444.07476150770.018548273078.04408907166.04574913468.05182679337.012828753026.0
Estimated SGA Expense Average1181835540.0323687753.01749677701.02341052537.013027223703.06230125641.015456894232.03674089305.03812427889.04318899447.011281929376.0
Estimated EPS Average-0.0177-0.0621-0.0976-0.5893-0.23990.02640.50521.913.472.65233.6066
Estimated EPS High-0.0248-0.087-0.1367-0.8259-0.33610.0370.7082.67664.86272.835.3
Estimated EPS Low-0.0126-0.0443-0.0695-0.42-0.17090.01880.36011.36122.4732.512.32
Number of Analysts51.049.047.045.043.041.039.037.035.033.034.0
GOOGLEstimated Revenue Low65268485936.069863055218.086956450751.0100521038821.0145256564742.0152962870406.0153067982228.0231959966099.0284302576965.0250440000000.0276000000000.0
Estimated Revenue High69764375481.074675432509.092946272519.0107445230199.0155262273645.0163499412813.0163611765052.0247938065967.0303886193241.0256100000000.0292830000000.0
Estimated Revenue Average67787957128.072559884361.090313113151.0104401316690.0150863707685.0158867489456.0158976658767.0240914003317.0295277125281.0254370000000.0282690000000.0
Estimated EBITDA Low18780939496.019198264630.024254021846.017491760180.028977367529.038185917614.036199309683.064461779570.078387338355.086226072190.089060703635.0
Estimated EBITDA High28171409246.028797396948.036381032769.026237640271.043466051293.057278876422.054298964526.096692669355.0117581007534.0129339108285.094491470455.0
Estimated EBITDA Average23476174371.023997830789.030317527308.021864700226.036221709411.047732397018.045249137105.080577224463.097984172945.0107782590238.091219457648.0
Estimated EBIT Low13552007555.014966768712.018928896440.019537501417.016900815982.025737843472.024208375544.048990664306.064812498549.071293748403.070323787089.0
Estimated EBIT High20328011335.022450153068.028393344661.029306252125.025351223973.038606765210.036312563316.073485996460.097218747826.0106940622607.074612009323.0
Estimated EBIT Average16940009445.018708460890.023661120551.024421876771.021126019978.032172304341.030260469430.061238330383.081015623188.089117185505.072028374537.0
Estimated Net Income Low11617824069.012621305194.015522946080.07492014868.019532977824.025108117211.023401409380.047335069756.056411506308.062052656938.079480360006.0
Estimated Net Income High17426736105.018931957791.023284419122.014342751763.029299466738.037662175817.035102114072.071002604636.084617259463.093078985408.094876390007.0
Estimated Net Income Average14522280087.015776631493.019403682601.010917383316.024416222281.031385146514.029251761726.059168837196.070514382886.073009853150.083774546770.0
Estimated SGA Expense Low11489239912.014996937776.013955942982.014806871777.017356320960.021149137629.017790419858.022821906759.031573740728.034731114799.044249303663.0
Estimated SGA Expense High17233859867.022495406665.020933914474.022210307665.026034481441.031723706445.026685629788.034232860141.047360611093.052096672201.046947549245.0
Estimated SGA Expense Average14361549890.018746172221.017444928728.018508589721.021695401201.026436422037.022238024823.028527383450.039467175911.043413893500.045321868306.0
Estimated EPS Average1.311.441.711.521.992.342.294.35.015.786.66
Estimated EPS High1.43841.58111.87751.66892.1852.56932.51444.72135.50095.917.21
Estimated EPS Low1.13281.24521.47871.31441.72082.02341.98023.71834.33225.296.04
Number of Analysts53.051.049.047.045.043.041.039.037.035.035.0
\n", "
" ], "text/plain": [ "date 2014 2015 2016 \\\n", "TSLA Estimated Revenue Low 3096377368.0 3031073263.0 3563669919.0 \n", " Estimated Revenue High 4004408595.0 3919953669.0 4608737488.0 \n", " Estimated Revenue Average 3504090326.0 3430187356.0 4032913241.0 \n", " Estimated EBITDA Low 67202937.0 -1790598161.0 813638881.0 \n", " Estimated EBITDA High 116549325.0 -1193732107.0 1334534318.0 \n", " Estimated EBITDA Average 91876131.0 -1492165134.0 1074086600.0 \n", " Estimated EBIT Low -432667751.0 -3590749718.0 -429111338.0 \n", " Estimated EBIT High -288445167.0 -2393833145.0 -115781580.0 \n", " Estimated EBIT Average -360556459.0 -2992291432.0 -272446459.0 \n", " Estimated Net Income Low -707480721.0 -4429783647.0 -604415639.0 \n", " Estimated Net Income High -471653814.0 -2953189097.0 -359430847.0 \n", " Estimated Net Income Average -589567268.0 -3691486372.0 -481923243.0 \n", " Estimated SGA Expense Low 945468432.0 286025570.0 1399742160.0 \n", " Estimated SGA Expense High 1418202648.0 369904283.0 2099613242.0 \n", " Estimated SGA Expense Average 1181835540.0 323687753.0 1749677701.0 \n", " Estimated EPS Average -0.0177 -0.0621 -0.0976 \n", " Estimated EPS High -0.0248 -0.087 -0.1367 \n", " Estimated EPS Low -0.0126 -0.0443 -0.0695 \n", " Number of Analysts 51.0 49.0 47.0 \n", "GOOGL Estimated Revenue Low 65268485936.0 69863055218.0 86956450751.0 \n", " Estimated Revenue High 69764375481.0 74675432509.0 92946272519.0 \n", " Estimated Revenue Average 67787957128.0 72559884361.0 90313113151.0 \n", " Estimated EBITDA Low 18780939496.0 19198264630.0 24254021846.0 \n", " Estimated EBITDA High 28171409246.0 28797396948.0 36381032769.0 \n", " Estimated EBITDA Average 23476174371.0 23997830789.0 30317527308.0 \n", " Estimated EBIT Low 13552007555.0 14966768712.0 18928896440.0 \n", " Estimated EBIT High 20328011335.0 22450153068.0 28393344661.0 \n", " Estimated EBIT Average 16940009445.0 18708460890.0 23661120551.0 \n", " Estimated Net Income Low 11617824069.0 12621305194.0 15522946080.0 \n", " Estimated Net Income High 17426736105.0 18931957791.0 23284419122.0 \n", " Estimated Net Income Average 14522280087.0 15776631493.0 19403682601.0 \n", " Estimated SGA Expense Low 11489239912.0 14996937776.0 13955942982.0 \n", " Estimated SGA Expense High 17233859867.0 22495406665.0 20933914474.0 \n", " Estimated SGA Expense Average 14361549890.0 18746172221.0 17444928728.0 \n", " Estimated EPS Average 1.31 1.44 1.71 \n", " Estimated EPS High 1.4384 1.5811 1.8775 \n", " Estimated EPS Low 1.1328 1.2452 1.4787 \n", " Number of Analysts 53.0 51.0 49.0 \n", "\n", "date 2017 2018 \\\n", "TSLA Estimated Revenue Low 10424883038.0 14213344964.0 \n", " Estimated Revenue High 13482042489.0 18381493587.0 \n", " Estimated Revenue Average 11797570986.0 16084875537.0 \n", " Estimated EBITDA Low 132981646.0 12456436555.0 \n", " Estimated EBITDA High 337625225.0 18884056737.0 \n", " Estimated EBITDA Average 235303436.0 15670246646.0 \n", " Estimated EBIT Low -1797932097.0 3847184569.0 \n", " Estimated EBIT High -1198621397.0 6997703164.0 \n", " Estimated EBIT Average -1498276747.0 5422443867.0 \n", " Estimated Net Income Low -2181290577.0 2099149004.0 \n", " Estimated Net Income High -1454193717.0 4586996630.0 \n", " Estimated Net Income Average -1817742147.0 3343072817.0 \n", " Estimated SGA Expense Low 1872842029.0 10421778962.0 \n", " Estimated SGA Expense High 2809263044.0 15632668444.0 \n", " Estimated SGA Expense Average 2341052537.0 13027223703.0 \n", " Estimated EPS Average -0.5893 -0.2399 \n", " Estimated EPS High -0.8259 -0.3361 \n", " Estimated EPS Low -0.42 -0.1709 \n", " Number of Analysts 45.0 43.0 \n", "GOOGL Estimated Revenue Low 100521038821.0 145256564742.0 \n", " Estimated Revenue High 107445230199.0 155262273645.0 \n", " Estimated Revenue Average 104401316690.0 150863707685.0 \n", " Estimated EBITDA Low 17491760180.0 28977367529.0 \n", " Estimated EBITDA High 26237640271.0 43466051293.0 \n", " Estimated EBITDA Average 21864700226.0 36221709411.0 \n", " Estimated EBIT Low 19537501417.0 16900815982.0 \n", " Estimated EBIT High 29306252125.0 25351223973.0 \n", " Estimated EBIT Average 24421876771.0 21126019978.0 \n", " Estimated Net Income Low 7492014868.0 19532977824.0 \n", " Estimated Net Income High 14342751763.0 29299466738.0 \n", " Estimated Net Income Average 10917383316.0 24416222281.0 \n", " Estimated SGA Expense Low 14806871777.0 17356320960.0 \n", " Estimated SGA Expense High 22210307665.0 26034481441.0 \n", " Estimated SGA Expense Average 18508589721.0 21695401201.0 \n", " Estimated EPS Average 1.52 1.99 \n", " Estimated EPS High 1.6689 2.185 \n", " Estimated EPS Low 1.3144 1.7208 \n", " Number of Analysts 47.0 45.0 \n", "\n", "date 2019 2020 \\\n", "TSLA Estimated Revenue Low 9528177383.0 16540536575.0 \n", " Estimated Revenue High 12322372524.0 21391148090.0 \n", " Estimated Revenue Average 10782792347.0 18718498200.0 \n", " Estimated EBITDA Low 5018474813.0 2331077632.0 \n", " Estimated EBITDA High 7632302505.0 3014680123.0 \n", " Estimated EBITDA Average 6325388659.0 2638020373.0 \n", " Estimated EBIT Low 45613001.0 6292253089.0 \n", " Estimated EBIT High 1266188429.0 9438379634.0 \n", " Estimated EBIT Average 655900715.0 7865316362.0 \n", " Estimated Net Income Low -1433231913.0 1746428838.0 \n", " Estimated Net Income High -329062941.0 2619643259.0 \n", " Estimated Net Income Average -881147427.0 2183036049.0 \n", " Estimated SGA Expense Low 4984100512.0 12365515385.0 \n", " Estimated SGA Expense High 7476150770.0 18548273078.0 \n", " Estimated SGA Expense Average 6230125641.0 15456894232.0 \n", " Estimated EPS Average 0.0264 0.5052 \n", " Estimated EPS High 0.037 0.708 \n", " Estimated EPS Low 0.0188 0.3601 \n", " Number of Analysts 41.0 39.0 \n", "GOOGL Estimated Revenue Low 152962870406.0 153067982228.0 \n", " Estimated Revenue High 163499412813.0 163611765052.0 \n", " Estimated Revenue Average 158867489456.0 158976658767.0 \n", " Estimated EBITDA Low 38185917614.0 36199309683.0 \n", " Estimated EBITDA High 57278876422.0 54298964526.0 \n", " Estimated EBITDA Average 47732397018.0 45249137105.0 \n", " Estimated EBIT Low 25737843472.0 24208375544.0 \n", " Estimated EBIT High 38606765210.0 36312563316.0 \n", " Estimated EBIT Average 32172304341.0 30260469430.0 \n", " Estimated Net Income Low 25108117211.0 23401409380.0 \n", " Estimated Net Income High 37662175817.0 35102114072.0 \n", " Estimated Net Income Average 31385146514.0 29251761726.0 \n", " Estimated SGA Expense Low 21149137629.0 17790419858.0 \n", " Estimated SGA Expense High 31723706445.0 26685629788.0 \n", " Estimated SGA Expense Average 26436422037.0 22238024823.0 \n", " Estimated EPS Average 2.34 2.29 \n", " Estimated EPS High 2.5693 2.5144 \n", " Estimated EPS Low 2.0234 1.9802 \n", " Number of Analysts 43.0 41.0 \n", "\n", "date 2021 2022 \\\n", "TSLA Estimated Revenue Low 41987852497.0 61863038539.0 \n", " Estimated Revenue High 54301041968.0 80004745473.0 \n", " Estimated Revenue Average 47516568631.0 70008803539.0 \n", " Estimated EBITDA Low 6222540492.0 8451256459.0 \n", " Estimated EBITDA High 9333810739.0 12676884692.0 \n", " Estimated EBITDA Average 7778175616.0 10564070576.0 \n", " Estimated EBIT Low 10078959157.0 12587376986.0 \n", " Estimated EBIT High 15118438737.0 18881065481.0 \n", " Estimated EBIT Average 12598698947.0 15734221234.0 \n", " Estimated Net Income Low 3641422676.0 5460936341.0 \n", " Estimated Net Income High 5462134014.0 8191404512.0 \n", " Estimated Net Income Average 4551778345.0 6826170427.0 \n", " Estimated SGA Expense Low 2939271443.0 3049942310.0 \n", " Estimated SGA Expense High 4408907166.0 4574913468.0 \n", " Estimated SGA Expense Average 3674089305.0 3812427889.0 \n", " Estimated EPS Average 1.91 3.47 \n", " Estimated EPS High 2.6766 4.8627 \n", " Estimated EPS Low 1.3612 2.473 \n", " Number of Analysts 37.0 35.0 \n", "GOOGL Estimated Revenue Low 231959966099.0 284302576965.0 \n", " Estimated Revenue High 247938065967.0 303886193241.0 \n", " Estimated Revenue Average 240914003317.0 295277125281.0 \n", " Estimated EBITDA Low 64461779570.0 78387338355.0 \n", " Estimated EBITDA High 96692669355.0 117581007534.0 \n", " Estimated EBITDA Average 80577224463.0 97984172945.0 \n", " Estimated EBIT Low 48990664306.0 64812498549.0 \n", " Estimated EBIT High 73485996460.0 97218747826.0 \n", " Estimated EBIT Average 61238330383.0 81015623188.0 \n", " Estimated Net Income Low 47335069756.0 56411506308.0 \n", " Estimated Net Income High 71002604636.0 84617259463.0 \n", " Estimated Net Income Average 59168837196.0 70514382886.0 \n", " Estimated SGA Expense Low 22821906759.0 31573740728.0 \n", " Estimated SGA Expense High 34232860141.0 47360611093.0 \n", " Estimated SGA Expense Average 28527383450.0 39467175911.0 \n", " Estimated EPS Average 4.3 5.01 \n", " Estimated EPS High 4.7213 5.5009 \n", " Estimated EPS Low 3.7183 4.3322 \n", " Number of Analysts 39.0 37.0 \n", "\n", "date 2023 2024 \n", "TSLA Estimated Revenue Low 89650300000.0 90735100000.0 \n", " Estimated Revenue High 97335500000.0 135949000000.0 \n", " Estimated Revenue Average 97309747770.0 119556983730.0 \n", " Estimated EBITDA Low 9503646657.0 12787406330.0 \n", " Estimated EBITDA High 14255469991.0 19159455417.0 \n", " Estimated EBITDA Average 11879558324.0 16849308929.0 \n", " Estimated EBIT Low 13981202161.0 6394341449.0 \n", " Estimated EBIT High 20971803245.0 9580684054.0 \n", " Estimated EBIT Average 17476502703.0 8425495499.0 \n", " Estimated Net Income Low 6124613739.0 8062000002.0 \n", " Estimated Net Income High 9186920611.0 18417500005.0 \n", " Estimated Net Income Average 9101951320.0 12574779170.0 \n", " Estimated SGA Expense Low 3455119556.0 8562168082.0 \n", " Estimated SGA Expense High 5182679337.0 12828753026.0 \n", " Estimated SGA Expense Average 4318899447.0 11281929376.0 \n", " Estimated EPS Average 2.6523 3.6066 \n", " Estimated EPS High 2.83 5.3 \n", " Estimated EPS Low 2.51 2.32 \n", " Number of Analysts 33.0 34.0 \n", "GOOGL Estimated Revenue Low 250440000000.0 276000000000.0 \n", " Estimated Revenue High 256100000000.0 292830000000.0 \n", " Estimated Revenue Average 254370000000.0 282690000000.0 \n", " Estimated EBITDA Low 86226072190.0 89060703635.0 \n", " Estimated EBITDA High 129339108285.0 94491470455.0 \n", " Estimated EBITDA Average 107782590238.0 91219457648.0 \n", " Estimated EBIT Low 71293748403.0 70323787089.0 \n", " Estimated EBIT High 106940622607.0 74612009323.0 \n", " Estimated EBIT Average 89117185505.0 72028374537.0 \n", " Estimated Net Income Low 62052656938.0 79480360006.0 \n", " Estimated Net Income High 93078985408.0 94876390007.0 \n", " Estimated Net Income Average 73009853150.0 83774546770.0 \n", " Estimated SGA Expense Low 34731114799.0 44249303663.0 \n", " Estimated SGA Expense High 52096672201.0 46947549245.0 \n", " Estimated SGA Expense Average 43413893500.0 45321868306.0 \n", " Estimated EPS Average 5.78 6.66 \n", " Estimated EPS High 5.91 7.21 \n", " Estimated EPS Low 5.29 6.04 \n", " Number of Analysts 35.0 35.0 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# initialize the Toolkit\n", "companies = Toolkit(\n", " tickers=[\"TSLA\", \"GOOGL\"],\n", " balance=balance_sheets,\n", " income=income_statements,\n", " cash=cash_flow_statements,\n", " api_key=\"FMP_KEY\",\n", " format_location=\"external_datasets\",\n", " reverse_dates=True, # Important when the dates are descending\n", ")\n", "\n", "# Show the Analyst Estimates from Financial Modeling Prep\n", "companies.get_analyst_estimates()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 5 }