{ "cells": [ { "cell_type": "markdown", "id": "16fde1b1", "metadata": {}, "source": [ "# `tailsCutoff` parameter for `geomViolin()`\n", "\n", "Parameter `tailsCutoff` extends domain of each violin if `trim=false`.\n", "\n", "Accepts float values, by default `tailsCutoff=3.0`." ] }, { "cell_type": "code", "execution_count": 1, "id": "ad5c532d", "metadata": { "execution": { "iopub.execute_input": "2025-12-03T16:08:36.579825Z", "iopub.status.busy": "2025-12-03T16:08:36.578373Z", "iopub.status.idle": "2025-12-03T16:08:39.101225Z", "shell.execute_reply": "2025-12-03T16:08:39.100989Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%useLatestDescriptors\n", "%use dataframe\n", "%use lets-plot" ] }, { "cell_type": "code", "execution_count": 2, "id": "9541ee62", "metadata": { "execution": { "iopub.execute_input": "2025-12-03T16:08:39.104037Z", "iopub.status.busy": "2025-12-03T16:08:39.103474Z", "iopub.status.idle": "2025-12-03T16:08:39.131245Z", "shell.execute_reply": "2025-12-03T16:08:39.131126Z" } }, "outputs": [ { "data": { "text/plain": [ "Lets-Plot Kotlin API v.4.12.0. Frontend: Notebook with dynamically loaded JS. Lets-Plot JS v.4.8.1.\n", "Outputs: Web (HTML+JS), Kotlin Notebook (Swing), Static SVG (hidden)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "LetsPlot.getInfo()" ] }, { "cell_type": "code", "execution_count": 3, "id": "f858a20f", "metadata": { "execution": { "iopub.execute_input": "2025-12-03T16:08:39.132807Z", "iopub.status.busy": "2025-12-03T16:08:39.132687Z", "iopub.status.idle": "2025-12-03T16:08:39.745258Z", "shell.execute_reply": "2025-12-03T16:08:39.745384Z" } }, "outputs": [ { "data": { "application/kotlindataframe+json": "{\"nrow\":5,\"ncol\":5,\"columns\":[\"sepal_length\",\"sepal_width\",\"petal_length\",\"petal_width\",\"species\"],\"is_formatted\":false,\"kotlin_dataframe\":[{\"sepal_length\":5.1,\"sepal_width\":3.5,\"petal_length\":1.4,\"petal_width\":0.2,\"species\":\"setosa\"},{\"sepal_length\":4.9,\"sepal_width\":3.0,\"petal_length\":1.4,\"petal_width\":0.2,\"species\":\"setosa\"},{\"sepal_length\":4.7,\"sepal_width\":3.2,\"petal_length\":1.3,\"petal_width\":0.2,\"species\":\"setosa\"},{\"sepal_length\":4.6,\"sepal_width\":3.1,\"petal_length\":1.5,\"petal_width\":0.2,\"species\":\"setosa\"},{\"sepal_length\":5.0,\"sepal_width\":3.6,\"petal_length\":1.4,\"petal_width\":0.2,\"species\":\"setosa\"}]}", "text/html": [ " \n", " \n", " \n", " \n", " \n", "DataFrame: rowsCount = 5, columnsCount = 5
\n", "| sepal_length | sepal_width | petal_length | petal_width | species |
|---|---|---|---|---|
| 5.100000 | 3.500000 | 1.400000 | 0.200000 | setosa |
| 4.900000 | 3.000000 | 1.400000 | 0.200000 | setosa |
| 4.700000 | 3.200000 | 1.300000 | 0.200000 | setosa |
| 4.600000 | 3.100000 | 1.500000 | 0.200000 | setosa |
| 5.000000 | 3.600000 | 1.400000 | 0.200000 | setosa |