{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Use this notebook to obtain \"expected\" values for \n", "```\n", "test_geom_imshow_nan_values.py\n", "```\n", "test suite." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from lets_plot import *\n", "\n", "LetsPlot.setup_html()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "LetsPlot.set_theme(flavor_solarized_light())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "arr = np.array([\n", " [50., 150., 200.],\n", " [200., 100., 50.]\n", " ])\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalization: 0.00015306472778320312\n", "Clipping: 7.295608520507812e-05\n", "image_2d: 0.00016307830810546875\n", "png.Writer: 0.00023698806762695312\n", "base64: 0.00018596649169921875\n" ] }, { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ggplot() + geom_imshow(arr)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# With NaN values\n", "\n", "arr_nan = np.array([\n", " [50., np.nan, 200.],\n", " [np.nan, 100., 50.]\n", " ])\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LA add alpha: 5.1021575927734375e-05\n", "Normalization: 0.0002892017364501953\n", "Clipping: 5.698204040527344e-05\n", "image_2d: 6.29425048828125e-05\n", "png.Writer: 0.00018787384033203125\n", "base64: 2.7179718017578125e-05\n" ] }, { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ggplot() + geom_imshow(arr_nan)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NaN values + cmap" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalization: 0.0001461505889892578\n", "Clipping: 0.00010395050048828125\n", "image_2d: 3.528594970703125e-05\n", "png.Writer: 0.00505375862121582\n", "base64: 0.00016117095947265625\n" ] }, { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ggplot() + geom_imshow(arr_nan, cmap=\"magma\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'mapping': {},\n", " 'data_meta': {},\n", " 'theme': {'flavor': 'solarized_light'},\n", " 'kind': 'plot',\n", " 'scales': [],\n", " 'layers': [{'geom': 'image',\n", " 'mapping': {},\n", " 'data_meta': {},\n", " 'href': '',\n", " 'xmin': -0.5,\n", " 'ymin': -0.5,\n", " 'xmax': 2.5,\n", " 'ymax': 1.5}],\n", " 'metainfo_list': []}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_.as_dict()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 4 }