{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Use this notebook to obtain \"expected\" values for \n", "```\n", "test_geom_imshow_nan_values.py\n", "```\n", "test suite." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from lets_plot import *\n", "\n", "LetsPlot.setup_html()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "LetsPlot.set_theme(flavor_solarized_light())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "arr = np.array([\n", " [50., 150., 200.],\n", " [200., 100., 50.]\n", " ])\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalization: 0.00015306472778320312\n", "Clipping: 7.295608520507812e-05\n", "image_2d: 0.00016307830810546875\n", "png.Writer: 0.00023698806762695312\n", "base64: 0.00018596649169921875\n" ] }, { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "