{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "major-scott", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from lets_plot import *\n", "\n", "LetsPlot.setup_html()" ] }, { "cell_type": "code", "execution_count": 2, "id": "parallel-constraint", "metadata": {}, "outputs": [], "source": [ "from ipywidgets import widgets\n", "from IPython.display import display\n", "\n", "flavors = [\"default\", \"darcula\", \"solarized_light\", \"solarized_dark\",\"high_contrast_light\", \"high_contrast_dark\"]\n", "\n", "dropdown_flavors = widgets.Dropdown(options = flavors, description = \"Theme flavor:\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "foster-potter", "metadata": {}, "outputs": [], "source": [ "from IPython.display import Javascript, display\n", "\n", "def run_all(ev):\n", " display(Javascript('IPython.notebook.execute_cells_below()'))\n", "\n", "button = widgets.Button(description=\"Run all with flavor\")\n", "button.on_click(run_all)\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "adjacent-jaguar", "metadata": {}, "outputs": [], "source": [ "def withFlavor():\n", " if (dropdown_flavors.value == \"darcula\"):\n", " return flavor_darcula()\n", " if (dropdown_flavors.value == \"solarized_light\"):\n", " return flavor_solarized_light()\n", " if (dropdown_flavors.value == \"solarized_dark\"):\n", " return flavor_solarized_dark()\n", " if (dropdown_flavors.value == \"high_contrast_light\"):\n", " return flavor_high_contrast_light()\n", " if (dropdown_flavors.value == \"high_contrast_dark\"):\n", " return flavor_high_contrast_dark()\n", " return theme()\n", "\n", "def show(p):\n", " return p + ggsize(450, 300) + withFlavor()" ] }, { "cell_type": "markdown", "id": "completed-andrews", "metadata": {}, "source": [ "### Data" ] }, { "cell_type": "code", "execution_count": 5, "id": "devoted-pioneer", "metadata": {}, "outputs": [], "source": [ "mpg_df = pd.read_csv('https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/mpg.csv')\n", "\n", "class_df = mpg_df.groupby('class').hwy.agg(['min', 'median', 'max', 'count']).reset_index()" ] }, { "cell_type": "code", "execution_count": 6, "id": "requested-imagination", "metadata": {}, "outputs": [], "source": [ "from scipy.stats import multivariate_normal\n", "def generate_random_data(size=50, mean=[0, 0], cov=[[1, .5], [.5, 1]], seed=42):\n", " np.random.seed(seed)\n", " x = np.linspace(-1, 1, size)\n", " y = np.linspace(-1, 1, size)\n", " X, Y = np.meshgrid(x, y)\n", " Z = multivariate_normal(mean, cov).pdf(np.dstack((X, Y)))\n", " return pd.DataFrame({'x': X.flatten(), 'y': Y.flatten(), 'z': Z.flatten()})\n", "\n", "random_df = generate_random_data()" ] }, { "cell_type": "code", "execution_count": 7, "id": "undefined-horizon", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The geodata is provided by © OpenStreetMap contributors and is made available here under the Open Database License (ODbL).\n" ] } ], "source": [ "midwest_df = pd.read_csv('https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/midwest.csv')\n", "pop_df = midwest_df.groupby('state').poptotal.sum().to_frame('population').reset_index()\n", "\n", "from lets_plot.geo_data import *\n", "states_df = geocode('state', pop_df.state, scope='US').get_boundaries(9)" ] }, { "cell_type": "markdown", "id": "satisfactory-algeria", "metadata": {}, "source": [ "### ↓ Run all with selected flavor ↓" ] }, { "cell_type": "code", "execution_count": 8, "id": "southeast-angle", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5c4d777f62d04534a931654c24a2a376", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='Theme flavor:', options=('default', 'darcula', 'solarized_light', 'solarized_dark', 'hig…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "efc76bdbff6041afb84ad2460f6253ad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Button(description='Run all with flavor', style=ButtonStyle())" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(dropdown_flavors)\n", "display(button)" ] }, { "cell_type": "markdown", "id": "apart-relation", "metadata": {}, "source": [ "### Geoms" ] }, { "cell_type": "code", "execution_count": 9, "id": "downtown-minneapolis", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# POINT\n", "\n", "show(\n", " ggplot(mpg_df, aes('cty', 'hwy')) + geom_point()\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "id": "lyric-palestine", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# POINT + shape\n", "\n", "show(\n", " ggplot(mpg_df, aes('cty', 'hwy')) + geom_point(shape=22)\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "id": "adjusted-command", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# JITTER\n", "\n", "show( ggplot(mpg_df, aes('fl', 'drv')) + geom_jitter() )" ] }, { "cell_type": "code", "execution_count": 12, "id": "gross-spell", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# PATH\n", "\n", "t = np.linspace(0, 2 * np.pi, 100)\n", "show(\n", " ggplot({'x': t * np.sin(t), 'y': t * np.cos(t)}, aes(x='x', y='y')) + geom_path()\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "unnecessary-premiere", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# LINE\n", "\n", "x = np.linspace(-4 * np.pi, 4 * np.pi, 100)\n", "y = np.sin(x)\n", "\n", "show( ggplot({'x': x, 'y': y}, aes(x='x', y='y')) + geom_line() )" ] }, { "cell_type": "code", "execution_count": 14, "id": "pending-investor", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# SEGMENT\n", "\n", "show( ggplot() + geom_segment(x=0, y=0, xend=1, yend=1, arrow=arrow()) )" ] }, { "cell_type": "code", "execution_count": 15, "id": "rural-example", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# ABLINE\n", "\n", "show( ggplot() + geom_abline(slope=.5))" ] }, { "cell_type": "code", "execution_count": 16, "id": "angry-education", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# HLINE\n", "\n", "show( ggplot() + geom_hline(yintercept=0) )" ] }, { "cell_type": "code", "execution_count": 17, "id": "baking-structure", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# VLINE \n", "\n", "show( ggplot() + geom_vline(xintercept=0) )" ] }, { "cell_type": "code", "execution_count": 18, "id": "sexual-exploration", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# CONTOUR\n", "\n", "show( ggplot(random_df, aes('x', 'y')) + geom_contour(aes(z='z')) )" ] }, { "cell_type": "code", "execution_count": 19, "id": "plain-mathematics", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DENSITY2D\n", "\n", "show( ggplot(mpg_df, aes('cty', 'hwy')) + geom_density2d() )" ] }, { "cell_type": "code", "execution_count": 20, "id": "public-theme", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# FREQPOLY\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_freqpoly() )" ] }, { "cell_type": "code", "execution_count": 21, "id": "aboriginal-plaza", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# STEP\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_step(aes(y='..count..'), stat='bin') )" ] }, { "cell_type": "code", "execution_count": 22, "id": "second-fleet", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DENSITY\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_density() )" ] }, { "cell_type": "code", "execution_count": 23, "id": "manufactured-tennessee", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# SMOOTH\n", "\n", "np.random.seed(42)\n", "n = 50\n", "x = np.arange(n)\n", "y = x + np.random.normal(scale=10, size=n)\n", "show(\n", " ggplot({'x': x, 'y': y}, aes(x='x', y='y')) + geom_smooth() \n", ")" ] }, { "cell_type": "code", "execution_count": 24, "id": "forty-hello", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# LOLLIPOP\n", "\n", "show(\n", " ggplot({\n", " 'x': [-3, -2, -1, 0, 1, 2, 3],\n", " 'y': [2, 3, -2, 3, -1, 0, 4],\n", " }, aes('x', 'y')) + geom_lollipop()\n", ") " ] }, { "cell_type": "code", "execution_count": 25, "id": "numeric-conversion", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DOT_PLOT\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_dotplot() )" ] }, { "cell_type": "code", "execution_count": 26, "id": "convenient-millennium", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Y_DOT_PLOT\n", "\n", "show(\n", " ggplot(mpg_df, aes('class', 'hwy')) + geom_ydotplot()\n", ")" ] }, { "cell_type": "code", "execution_count": 27, "id": "fatty-technician", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# BAR\n", "\n", "show( ggplot(mpg_df, aes('hwy')) + geom_bar() )" ] }, { "cell_type": "code", "execution_count": 28, "id": "underlying-pocket", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# HISTOGRAM\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_histogram() )" ] }, { "cell_type": "code", "execution_count": 29, "id": "speaking-crisis", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# PIE\n", "\n", "show(\n", " ggplot({'name': ['a', 'b', 'c'], 'value': [40, 90, 10]}) + \n", " geom_pie(aes(slice='value'), stat='identity')\n", ")" ] }, { "cell_type": "code", "execution_count": 30, "id": "million-recorder", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# BIN_2D\n", "\n", "show( ggplot(mpg_df, aes('cty', 'hwy')) + geom_bin2d() )" ] }, { "cell_type": "code", "execution_count": 31, "id": "mysterious-castle", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# TILE\n", "\n", "show( ggplot(mpg_df, aes('cty', 'hwy')) + geom_tile() )" ] }, { "cell_type": "code", "execution_count": 32, "id": "located-horse", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# RASTER\n", "\n", "show( ggplot(random_df, aes('x', 'y')) + geom_raster() )" ] }, { "cell_type": "code", "execution_count": 33, "id": "infectious-submission", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# ERROR_BAR\n", "\n", "show(\n", " ggplot(class_df, aes(x='class')) + geom_errorbar(aes(ymin='min', ymax='max'))\n", ")" ] }, { "cell_type": "code", "execution_count": 34, "id": "built-morris", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# CROSSBAR\n", "\n", "show(\n", " ggplot(class_df, aes(x='class')) + geom_crossbar(aes(ymin='min', middle='median', ymax='max'))\n", ")" ] }, { "cell_type": "code", "execution_count": 35, "id": "valid-universal", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# LINERANGE\n", "\n", "show( ggplot(class_df, aes(x='class')) + geom_linerange(aes(ymin='min', ymax='max')) )" ] }, { "cell_type": "code", "execution_count": 36, "id": "proper-workstation", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# POINTRANGE \n", "\n", "show(\n", " ggplot(class_df, aes(x='class')) + geom_pointrange(aes(ymin='min', y='median', ymax='max')) \n", ")" ] }, { "cell_type": "code", "execution_count": 37, "id": "advance-favorite", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# BOXPLOT\n", "\n", "show( ggplot(mpg_df, aes('class', 'hwy')) + geom_boxplot() )" ] }, { "cell_type": "code", "execution_count": 38, "id": "liquid-kenya", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# VIOLIN \n", "\n", "show( ggplot(mpg_df, aes('class', 'hwy')) + geom_violin() )" ] }, { "cell_type": "code", "execution_count": 39, "id": "massive-integration", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# AREA_RIDGE\n", "\n", "show( ggplot(mpg_df, aes('hwy', 'class')) + geom_area_ridges() )" ] }, { "cell_type": "code", "execution_count": 40, "id": "polished-highway", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# AREA\n", "\n", "show( ggplot(mpg_df, aes(x='hwy')) + geom_area(stat='bin') )" ] }, { "cell_type": "code", "execution_count": 41, "id": "classified-content", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# CONTOURF\n", "\n", "show( ggplot(random_df, aes('x', 'y')) + geom_contourf(aes(z='z')) )" ] }, { "cell_type": "code", "execution_count": 42, "id": "executed-sculpture", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# POLYGON\n", "\n", "show( ggplot() + geom_polygon(data=states_df) )" ] }, { "cell_type": "code", "execution_count": 43, "id": "lonely-allah", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# RECT\n", "\n", "show( ggplot() + geom_rect(xmin=-1, xmax=1, ymin=-1, ymax=1) )" ] }, { "cell_type": "code", "execution_count": 44, "id": "complex-category", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# RIBBON\n", "\n", "n = 10\n", "np.random.seed(42)\n", "x = np.arange(n)\n", "ymin = np.random.randint(-5, 0, size=n)\n", "ymax = np.random.randint(1, 6, size=n)\n", "show(\n", " ggplot({'x': x, 'ymin': ymin, 'ymax': ymax}, aes(x='x')) + geom_ribbon(aes(ymin='ymin', ymax='ymax'))\n", ")" ] }, { "cell_type": "code", "execution_count": 45, "id": "failing-julian", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DENSITY2DF\n", "\n", "show( ggplot(mpg_df, aes('cty', 'hwy')) + geom_density2df() )" ] }, { "cell_type": "code", "execution_count": 46, "id": "designing-litigation", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# MAP\n", "\n", "show( ggplot() + geom_map(data=states_df) )" ] }, { "cell_type": "code", "execution_count": 47, "id": "recovered-attraction", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# TEXT\n", "\n", "show( ggplot() + geom_text(x=0, y=0, label='Lorem ipsum'))\n", "#ggplot(mpg_df, aes('cty', 'hwy')) + geom_text(aes(label='fl'))" ] }, { "cell_type": "code", "execution_count": 48, "id": "boring-deficit", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# LABEL\n", "\n", "show( ggplot() + geom_label(x=0, y=0, label='Lorem ipsum') )\n", "#ggplot(mpg_df, aes('cty', 'hwy')) + geom_label(aes(label='fl'))" ] }, { "cell_type": "code", "execution_count": 49, "id": "equipped-connection", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# QQ\n", "\n", "show( ggplot(mpg_df, aes(sample='hwy')) + geom_qq() )" ] }, { "cell_type": "code", "execution_count": 50, "id": "caring-feature", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# QQ2\n", "\n", "show( ggplot(mpg_df, aes(x='cty', y='hwy')) + geom_qq2() )" ] }, { "cell_type": "code", "execution_count": 51, "id": "educational-rover", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# QQ_LINE\n", "\n", "show( ggplot(mpg_df, aes(sample='hwy')) + geom_qq_line() )" ] }, { "cell_type": "code", "execution_count": 52, "id": "august-tennessee", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# QQ2_LINE\n", "\n", "show( ggplot(mpg_df, aes(x='cty', y='hwy')) + geom_qq2_line() )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "143a4fd4c8c84773a047d813c9cc9ab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "description": "Run all with flavor", "layout": "IPY_MODEL_c11f32f151b34bb5b0a9d9d9cacd250c", "style": "IPY_MODEL_ca12e08e2c81489fa57785752a21d9e4" } }, "1472e7044d0943c587b342b6e56432c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "2070b83619554b5886a855b68ea586e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "default", "darcula", "solarized_light", "solarized_dark", "high_contrast_light", "high_contrast_dark" ], "description": "Theme flavor:", "index": 0, "layout": "IPY_MODEL_229661185d874185b7585fa809bb4224", "style": "IPY_MODEL_21789ede06734cec978494c86412adea" } }, "21789ede06734cec978494c86412adea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "229661185d874185b7585fa809bb4224": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "23257a47dc6f44819cb4f46ad78c5320": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": {} }, "30e4bc4b0f294ce58ed9931ef84d8a2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "default", "darcula", "solarized_light", "solarized_dark", "high_contrast_light", "high_contrast_dark" ], "description": "Theme flavor:", "index": 0, "layout": "IPY_MODEL_4b2fabee5d8b44149c159cc0053352d5", "style": "IPY_MODEL_1472e7044d0943c587b342b6e56432c2" } }, "433cc72fc7e1489e9cab83e490cfaf6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "4b2fabee5d8b44149c159cc0053352d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "5ccd76e3de1f419aa869b5a3c4a1093c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "default", "darcula", "solarized_light", "solarized_dark", "high_contrast_light", "high_contrast_dark" ], "description": "Theme flavor:", "index": 5, "layout": "IPY_MODEL_8e5e9040c438409c8f856d19f5ca2729", "style": "IPY_MODEL_7f4542ba6eca47b29c56859807f471d7" } }, "7290135744734581b594cced985743b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": {} }, "739d6e09b7994cc18c3d0773500eb090": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "761e0f9de1314701b2fd1c50d79d25ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "description": "Run all with flavor", "layout": "IPY_MODEL_d1968025a5ed4a6f8e2242ea90c703aa", "style": "IPY_MODEL_23257a47dc6f44819cb4f46ad78c5320" } }, "7f4542ba6eca47b29c56859807f471d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "815126df007545b19fe4a7658909717b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": {} }, "8e5e9040c438409c8f856d19f5ca2729": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "90f0f8b0644540b8a9288f84aea6e104": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "a7e28c9a5f99425fa8605af1ca3a5059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "default", "darcula", "solarized_light", "solarized_dark", "high_contrast_light", "high_contrast_dark" ], "description": "Theme flavor:", "index": 0, "layout": "IPY_MODEL_bdbe4b8c0297434e99423e7f45a4fb84", "style": "IPY_MODEL_433cc72fc7e1489e9cab83e490cfaf6a" } }, "bc26e92f049048e38a5ee4a18a90caf3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "description": "Run all with flavor", "layout": "IPY_MODEL_739d6e09b7994cc18c3d0773500eb090", "style": "IPY_MODEL_7290135744734581b594cced985743b2" } }, "bdbe4b8c0297434e99423e7f45a4fb84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "c11f32f151b34bb5b0a9d9d9cacd250c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "ca12e08e2c81489fa57785752a21d9e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": {} }, "d1968025a5ed4a6f8e2242ea90c703aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "fa1d855ac9f04681bac5c23b3b8f382b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "description": "Run all with flavor", "layout": "IPY_MODEL_90f0f8b0644540b8a9288f84aea6e104", "style": "IPY_MODEL_815126df007545b19fe4a7658909717b" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }