{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "transparent-accent", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "from lets_plot import *" ] }, { "cell_type": "code", "execution_count": 2, "id": "elect-president", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "LetsPlot.setup_html()" ] }, { "cell_type": "code", "execution_count": 3, "id": "linear-console", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0manufacturermodeldisplyearcyltransdrvctyhwyflclass
01audia41.819994auto(l5)f1829pcompact
12audia41.819994manual(m5)f2129pcompact
23audia42.020084manual(m6)f2031pcompact
\n", "
" ], "text/plain": [ " Unnamed: 0 manufacturer model displ year cyl trans drv cty hwy \\\n", "0 1 audi a4 1.8 1999 4 auto(l5) f 18 29 \n", "1 2 audi a4 1.8 1999 4 manual(m5) f 21 29 \n", "2 3 audi a4 2.0 2008 4 manual(m6) f 20 31 \n", "\n", " fl class \n", "0 p compact \n", "1 p compact \n", "2 p compact " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpg = pd.read_csv (\"https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/mpg.csv\")\n", "mpg.head(3)" ] }, { "cell_type": "code", "execution_count": 4, "id": "checked-nelson", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "subaru = mpg.loc[mpg['manufacturer'] == 'subaru'] \n", "\n", "p = ggplot(mpg, aes('displ', 'hwy')) \\\n", " + geom_point(data=subaru, color='orange', size = 5) \\\n", " + geom_point()\n", "p" ] }, { "cell_type": "code", "execution_count": 5, "id": "formal-appreciation", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p \\\n", " + geom_text(x=5.05, y=35, label='subaru', hjust='left', color='#d76e00', size=10) \\\n", " + geom_curve(x=5, y=35, xend=2.62, yend=27, \n", " curvature=0.2, arrow=arrow(length=6),\n", " color='#d76e00')" ] }, { "cell_type": "code", "execution_count": 6, "id": "naughty-snake", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p \\\n", " + geom_text(x=4.2, y=25, label='subaru', hjust='left', color='#d76e00', size=10) \\\n", " + geom_curve(x=4.5, y=26.2, xend=2.62, yend=27, \n", " curvature=0.5, angle=60, arrow=arrow(length=6),\n", " color='#d76e00')" ] }, { "cell_type": "code", "execution_count": 7, "id": "peaceful-train", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p \\\n", " + geom_text(x=3, y=12, label='subaru', hjust='left', color='#d76e00', size=10) \\\n", " + geom_curve(x=2.95, y=12, xend=2.5, yend=22, \n", " curvature=-0.3, arrow=arrow(length=6),\n", " color='#d76e00')" ] }, { "cell_type": "code", "execution_count": null, "id": "separate-dance", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 8, "id": "ruled-reception", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpg_cyl5 = mpg.loc[mpg['cyl'] == 5]\n", "\n", "\n", "ggplot(mpg, aes('displ', 'hwy')) \\\n", " + geom_point(data=mpg_cyl5, color='#de77ae', size=5) \\\n", " + geom_point() \\\n", " + geom_text(label=\"Five-cylinder engine\", x=4,y=37, hjust=0, color='#c51b7d', size=10) \\\n", " + geom_curve(x=3.95, y=37, xend=2.6, yend=29,\n", " curvature=0.1, arrow=arrow(length=6),\n", " color='#c51b7d')" ] }, { "cell_type": "code", "execution_count": 9, "id": "domestic-trigger", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ggplot(mpg, aes('displ', 'hwy')) \\\n", " + geom_point(data=mpg_cyl5, color='#de77ae', size=5) \\\n", " + geom_point() \\\n", " + geom_text(label=\"Five-cylinder engine\", x=4, y=37, hjust=0, color='#c51b7d', size=10) \\\n", " + geom_curve(data=mpg_cyl5, xend=3.95, yend=37,\n", " size_start=5,\n", " curvature=0.1, arrow=arrow(length=6, ends='first'),\n", " color='#c51b7d')" ] }, { "cell_type": "code", "execution_count": 10, "id": "agricultural-frederick", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dodge 37\n", "toyota 34\n", "volkswagen 27\n", "ford 25\n", "chevrolet 19\n", "audi 18\n", "hyundai 14\n", "subaru 14\n", "nissan 13\n", "honda 9\n", "jeep 8\n", "pontiac 5\n", "land rover 4\n", "mercury 4\n", "lincoln 3\n", "Name: manufacturer, dtype: int64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpg['manufacturer'].value_counts()" ] }, { "cell_type": "code", "execution_count": 11, "id": "gentle-medicare", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "brand = 'pontiac'\n", "brand_df = mpg.loc[mpg['manufacturer'] == brand] \n", "\n", "ggplot(mpg, aes('displ', 'hwy')) \\\n", " + geom_point(data=brand_df, color='#bd423f', size=5) \\\n", " + geom_point() \\\n", " + geom_text(label=brand, x=6, y=37, hjust=1, color='#bd423f', size=10) \\\n", " + geom_curve(data=brand_df, xend=5.95, yend=35,\n", " size_start=5,\n", " curvature=-0.1, arrow=arrow(length=6, ends='first'),\n", " color='#bd423f') \\\n", " + xlim(3,6)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 5 }