
Master Thesis

On Scalable Deep Learning and Parallelizing Gradient Descent

Joeri R. Hermans

Master Thesis DKE 17-11

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science of Artificial Intelligence

Thesis Committee:
Dr. Gerasimos Spanakis

Dr. Rico Möckel

Maastricht University
Faculty of Humanities and Sciences

Department of Data Science & Knowledge Engineering
Maastricht, The Netherlands

July 6, 2017



Preface

This thesis is submitted as a final requirement for the Master of Science degree at the Department of
Data Science & Knowledge Engineering of Maastricht University, The Netherlands. The subject of
study originally started as a pilot project with Jean-Roch Vlimant, Maurizio Pierini, and Federico
Presutti of the EP-UCM group (CMS experiment) at CERN. In order to handle the increased data
rates of future LHC runs, the CMS experiment is exploring several Machine Learning concepts to
decrease the processing time. However, they would like to significantly decrease the training time of
the models as well. This would allow them to tune the neural networks more frequently. As a result,
we started to experiment with various state of the art distributed optimization algorithms. Which
resulted in the achievements and insights presented in this thesis.

I would like to express my gratitude to several people. First and foremost, I would like to thank
my promotors, Gerasimos Spanakis, and Rico Möckel for their expertise and suggestions during my
research, which drastically improved the quality of this thesis. Furthermore, I would also like to
thank my friends, colleagues and scientists at CERN for their support, feedback, and exchange of
ideas during my stay there. Especially, Valentin Kutsnesov which introduced me to the problem of
track reconstruction. It was a very motivating and inspiring time in my life. Especially the support
and experience of my CERN supervisors, Zbigniew Baranowski, and Luca Canali, was proven to be
invaluable on multiple occasions. I would also like to thank them for giving me the personal freedom
to conduct my own research. Finally, I would like to thank my parents and grandparents who always
supported me, and who gave me the chance to explore the world in this unique way.

Joeri R. Hermans
Geneva, Switzerland 2016 - 2017

i



Abstract

Speeding up gradient based methods has been a subject of interest over the past years with many prac-
tical applications, especially with respect to Deep Learning. Despite the fact that many optimizations
have been done on a hardware level, the convergence rate of very large models remains problematic.
Therefore, data parallel methods next to mini-batch parallelism have been suggested [4, 6, 5, 16, 12,
8, 18] to further decrease the training time of parameterized models using gradient based methods.
Nevertheless, asynchronous optimization was considered too unstable for practical purposes due to a
lacking understanding of the underlying mechanisms.

Recently, a theoretical contribution has been made [14] which defines asynchronous optimization
in terms of (implicit) momentum due to the presence of a queuing model of gradients based on
past parameterizations. This thesis mainly builds upon this work, and [18] to construct a better
understanding why asynchronous optimization shows proportionally more divergent behavior when the
number of parallel workers increases, and how this affects existing distributed optimization algorithms.

Furthermore, using our redefinition of parameter staleness, we construct two novel techniques for
asynchronous optimization, i.e., agn and adag. This work shows that these methods outperform
existing methods, and are more robust to (distributed) hyperparameterization contrary to existing dis-
tributed optimization algorithms such as downpour [4], (a)easgd [18], and dynsgd [8]. Additionally,
this thesis presents several smaller contributions. First, we show that the convergence rate of easgd
derived algorithms is impaired by an equilibrium condition. However, this equilibrium condition makes
sure that easgd does not overfit quickly. Finally, we introduce a new metric, temporal efficiency, to
evaluate distributed optimization algorithms against each other.

ii



Contents

Preface i

Abstract ii

Abbreviations and Notation v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Synchronous Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Elastic Averaging SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Asynchronous Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 DOWNPOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Dynamic SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Asynchronous Elastic Averaging SGD . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Stale Synchronous Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Accumulated Gradient Normalization 32
3.1 Concept and intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Asynchronous Distributed Adaptive Gradients 48
4.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Algorithm & Update Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Experimental Setup 58
5.1 Distributed Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Use-case: CMS Event Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 62
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



CONTENTS iv

References 67

A MNIST Dataset & Model 69
A.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Abbreviations and Notation

η Static learning rate

ηt Learning rate with respect to time t.

λ Communication period, or frequency of commits to the parameter server.

L(θ ; x ; y) Loss function with respect to parametrization θ, input x, and expected output y.

τ Staleness

θkt Parametrization of worker k at time t.

θ̃t Center variable, or central parametrization maintained by the parameter server.

, Is defined as

J(θ) Loss with respect to parameterization θ.

m Mini-batch size

n Number of parallel workers.

ADAG Asynchronous Distributed Adaptive Gradients

ASGD Asynchronous Stochastic Gradient Descent

CERN European Organization for Nuclear Research

CMS Compact Muon Solenoid

EASGD Elastic Averaging Stochastic Gradient Descent

GD Gradient Descent

HE Hardware Efficiency

HEP High Energy Physics

HL-LHC High Luminosity Large Hadron Collider

LHC Large Hadron Collider

MNIST Mixed National Institute of Standards and Technology database

PS Parameter Server

SE Statistical Efficiency

SGD Stochastic Gradient Descent

TE Temporal Efficiency

v



Chapter 1

Introduction

In this chapter we introduce the main concept, and problems surrounding the parallization of gradient
descent. We familiarize the reader with the topic and some notation by providing some context why
someone would like to apply said technique. Furthermore, in Section 1.4, we summarize the problem
statement and state several research questions which will guide the research in this work. Finally, we
close this chapter in Section 1.5 with a brief outline of the thesis.

1.1 Motivation
In recent years it has been shown that being able to train large and deep neural networks result in
state-of-the-art performance [17, 4], especially regarding unsupervised feature learning and image
recognition. However, consider the required time, and cost of the infrastructure that would be required
to train a large model in a reasonable amount of time. Furthermore, it is not only the training time
and cost of the infrastructure which need to be taken into consideration, but also the volume of the
data. The amount of information that will be gathered will be an increasing important factor in the
next few years. Not only with respect to big technology companies and government organizations, but
also scientific surveys with limited budgets. These scientific surveys will generate more experimental
data than ever [1, 7], and will have to process and analyze that data. To solve the problem of increased
computational workloads and budget freezes, the High Energy Physics (HEP) community is exploring
and researching machine learning approaches to fit physics problems [2, 15, 13] with the intention to
improve detection quality, or reduce computational constraints.

However, the sheer size of these datasets severely impacts the training time of the models. In order
to resolve this issue, one could sample some representative subset of the data to reduce the training
time. The disadvantage of this approach is that some instances, i.e., data points, might not appear in
the final training set. This is especially a problem in Deep Learning, where models usually benefit
from having access to a lot of training data due to the high dimensionality of the parametrization [4].
To resolve this issue, Jeff Dean [4] introduces two new paradigms to decrease the training time of a
large model. The two paradigms, Model Parallelism, briefly discussed in Section 1.2, and Data Par-
allelism, discussed in Section 1.3, are inherently different ways of decreasing the training time of a model.

The first paradigm, Model Parallelism, is intuitively the most straightforward since it deals with the
parallelization of the computations within a single model, i.e., how to parallelize the computations of a
single model over multiple machines, or multiple processes. The second paradigm, which will be the
main focus of this thesis, is Data Parallelism. As stated above, the main concept of data parallelism is
discussed in detail in Section 1.3. However, for completion, think of Data Parallelism as a technique to
parallelize gradient descent. This is done by allocating n processes over possibly n different machines,
and splitting the training set into n partitions, or data shards. For further convenience, we will call
such a process a worker. In the next step, we assign a single distinct partition to a worker. Meaning,
the worker is not able to fetch training data from other partitions since those have been assigned to

1



CHAPTER 1. INTRODUCTION 2

different workers. However, in certain data parallel settings, it is beneficial to actually consume data
from other partitions, once a worker has finished its partition. Finally, the goal of these workers is to
work together, and optimize the parameters of a central model.

A lot of different distributed optimization schemes have been suggested in recent years [18, 4, 5].
Most of the recent contributions try to push the limits of asynchronous data parallelism, discussed
in Section 2.3, by simply annealing the gradients with respect to some hyperparameter to improve
the convergence when the number of workers increases. This suggests that there is an intrinsic limit
to asynchronous data parallelism, as suggested by [14]. As a result, why don’t we simply reduce the
number of parallel workers if we reduce the impact of the gradient updates by means of annealing
anyway? The approach of reducing the number of parallel workers in such a situation has been
suggested by [5], where they perform a grid-search of the training hyperparameters (this includes the
number of workers) in order to provide the optimal hyperparameterization within a training epoch.
However, the disadvantage of this technique is that after every epoch, or a specific number of iterations,
a grid-search of the hyperparameters has to be performed to obtain the optimal configuration of the
hyperparameters to ensure convergence.

This brings us to the main motivation behind this work. We intent to obtain a better understanding
of asynchronous Data Parallism by building upon earlier work, and combine it with novel insights to
construct a new distributed optimization scheme without introducing new hyperparameters, or relying
on grid-searches to optimize the configuration of existing hyperparameters.

1.2 Model Parallelism
In model parallelism, a single model is distributed over multiple machines [4]. The performance benefits
of distributing a deep network across multiple machines mainly depends on the structure of the model.
Models with a large number of parameters typically benefit from access to more CPU cores and memory,
up to the point where communication costs, i.e., propagation of weight updates and synchronization
mechanisms, dominate [4].

Let us start with a simple example to illustrate this concept more clearly. Imagine having a
perceptron, as depicted in Figure 1.1. In order to parallelize this efficiently, we can view a neural network
as a dependency graph, where the goal is to minimize the number of synchronization mechanisms,
assuming we have unlimited resources. Furthermore, a synchronization mechanism is only required
when a node has more than 1 variable dependency. A variable dependency is a dependency which can
change in time. For example, a bias would be a static dependency, because the value of a bias remains
constant over time. In the case for the perceptron shown in Figure 1.1, the parallelization is quite
straightforward. The only synchronization mechanism which should be implemented resides in output
neuron since y , σ(

∑
i wixi + b) where σ is the activation function of the output neuron.

x0 x1 x2 x3 x4

y

Figure 1.1: A perceptron partitioned using the model parallelism paradigm. In this approach every
input node is responsible for accepting the input xi from some source, and multiplying the input with
the associated weight wi. After the multiplication, the result is sent to the node which is responsible
for computing y. Of course, this node requires a synchronization mechanism to ensure that the result
is consistent. The synchronization mechanism does this by waiting for the results y depends on.



CHAPTER 1. INTRODUCTION 3

1.3 Data Parallelism
Data parallelism is an inherently different methodology of optimizing parameters. As stated above, it
is a technique to reduce the overall training time of a model. In essence, data parallelism achieves
this by having n workers optimizing a central model, and at the same time, processing n different
shards (partitions) of the dataset in parallel over multiple workers1. The workers are coordinated in
such a way that they optimize the parameterization of a central model, which we denote by θ̃t. The
coordination mechanism of the workers can be implemented in many different ways. Nevertheless, a
popular approach to coordinate workers in their task to optimize the central objective, is to employ
a centralized Parameter Server (PS). The sole responsibility of the parameter server is to aggregate
model updates coming from the workers (worker commits), and to handle parameter requests (worker
pulls). In general, there are several approaches towards data parallelism, where some do not require a
parameter server. However, all approaches can be categorized into two main groups, i.e., Synchronous
Data Parallelism, and Asynchronous Data Parallelism.

Synchronous Data Parallelism can be usually identified by the presence of one or multiple locking
mechanisms. As in Software Engineering, the purpose of these locking mechanisms is to preserve the
consistency of the state of a model. As an example, let us consider mini-batch parallelism in Figure 1.2
for a moment. Despite it is trivial to implement locally, one could view mini-batch parallelism as an
instance of synchronous data parallelism. First and foremost, mini-batch parallelism is a data parallel
technique because we split the mini-batch into several partitions where every partition is consumed
by its own worker to produce the sum of the gradients, or accumulated gradient, as a result. Finally,
mini-batch parallelism is synchronous in nature because in order to compute θt+1, we need to obtain
the averaged gradients

∑
i∇θL(θt;xi;yi)

m , which is actually the sum of the accumulated gradients of all
workers, divided by the number of training instances m in the original mini-batch. As a result, the
synchronization barrier is present right before the averaging of the accumulated gradients, since these
are the intermediary results we have to wait for before applying a gradient update

mini-batch

Single training instance

∑
i∇θL(θt;xi;yi)

∑
j ∇θL(θt;xj ;yj)

θt+1 = θt − ηt �
∑
i∇θL(θt;xi;yj)+

∑
j ∇θL(θt;xj ;yj)

m

Figure 1.2: Mini-batch parallelism could be viewed as an instance of synchronous data parallelism
without a centralized parameter server. Given a mini-batch size of m, we split the mini-batch into
several partitions, where a specific worker is responsible for the computation of its own partition. The
synchronous nature of this approach lies within the aggregation of the computed gradients, i.e., the
results of all workers need to be aggregated, and afterwards averaged in order to integrate the current
gradient into the model.

1As stated in Section 1.1, a worker is a process on a single machine. However, it is possible that multiple workers
share the same machine. Nevertheless, one could construct the distribution mechanism (even manually) in such a way
every worker will be placed on a different machine.



CHAPTER 1. INTRODUCTION 4

However, consider what happens when the computational resources on your machine are constrained,
or even fully utilized? That is, due to the limited amount of available CPU cores (or even GPU’s)
your parallization of the mini-batch computation doesn’t scale very well on your machine. The most
straightforward solution would be to purchase more performant hardware, but this is not always
possible, not only from a financial perspective, but also from a physical one. An alternative approach
would be to solve the problem like a distributed system. In order to make this particular approach work,
we need a parameter server to coordinate the workers. Since this still is a synchronous approach, the
locking mechanism in this particular case is the parameter server itself, since the parameter server will
not be able to send the next parameterization θt+1 of the model to the workers because the parameter
server can only compute the θt+1 once it received, and processed all accumulated gradients as shown in
Figure 1.3. Yet, if one or multiple machines encounter some unmodeled load, for example, because an
other user is running a CPU intensive program, then the synchronization mechanism might actually
be a serious bottleneck, because during that time the reserved resources on other machines are not
being utilized. This effect becomes even more prominent when the infrastructure is non-homogeneous,
i.e., multiple machines with different hardware in the same computing cluster cause the workers to be
out-of-sync (on top of the unmodeled system behaviour), which in turn results in more waits enforced
by the parameter server as it acts as a locking mechanism in synchronous data parallelism.

Parameter Server

θ̃t+1 = θ̃t − ηt �
∑n
i

(∑
j ∇θL(θt;xj ;yj)

)
i

m

Result of worker i

θ̃t+1

∑
j ∇θL(θt;xj ;yj)

Figure 1.3: Distributed mini-batch data parallelism with n parallel workers, with a total mini-batch
size of m. At the start, the data is split into n partitions, and all workers get a copy of the central
model with parameterization θ̃0. When the training starts, every worker i computes the accumulated
gradient

∑
j ∇θL(θt;xj ;yj) based on its part of the mini-batch, which is then commited (send) to the

parameter server. After the parameter server receives all accumulated gradients, it averages them, and
then applies the batched gradient to the model in order to produce θ̃t+1. After the new parametrization
is available, the workers will be able to pull (download) θ̃t+1, and repeat the procedure described
above.

This of course begs the question, can we eliminate the need for a locking mechanism to prevent
unnecessary waits of the workers? There are some significant initial counter-arguments against removing
the synchronization barrier. The most profound issue by removing the synchronization barrier, and
thus obtaining Asynchronous Data Parallelism, is that the parameter server will incorporate gradients
using a simple queuing model (FIFO) based on older parameterizations of the central variable, as
shown in Figure 1.4.



CHAPTER 1. INTRODUCTION 5

t

w1 w2

θ̃t

∇θL1(θ̃t)

w1

θ̃t+1 = θ̃t − ηt �∇θL1(θ̃t)

∇θL2(θ̃t)

w2

θ̃t+2 = θ̃t+1 − ηt �∇θL2(θ̃t)

Updating θ̃t+1 with gradient ∇θL2(θ̃t) based on θ̃t

Figure 1.4: In Asynchronous Data Parallelism workers compute and commit gradients to the parameter
server asynchronously. This has as a side-effect that some workers are computing, and thus committing,
gradients based on old values. These gradients are called stale gradients in literature. In this particular
example there are 2 workers w1, and w2. At the start optimization process, the pull the most
recent parameterization from the parameter server θ̃t. Now all workers start computing the gradients
asynchronously based on the pulled parametrization. However, since the parameter server incorperates
gradients into the center variable asynchronously as a simple queuing (FIFO) model, other workers
will update the center variable with gradients based on an older value, as shown in the figure above.
Finally, assuming that the computing cluster is homogeneous, we can derive from this figure that the
expected staleness of a gradient update is E[τ ] = (n− 1).

However, experiments have shown that removing the synchronization barrier actually allows models
to converge [4, 18, 5], even when most workers update the central variable using a gradient based on
an outdated parameterization of the central variable. An other issue, which only has been formalized
recently, is Implicit Momentum or Asynchrony Induced Momentum [14]. The main reasoning behind
implicit momentum, is based on a very simple but powerful idea. The idea states that memory arizes
from asynchrony. Intuitively, this implies that “memory” of earlier gradients is preserved due to stale
gradient updates. This can be observed directly from Figure 1.4, where the update of w2 is actually
updating the central variable with a gradient identical to ∇θL1(θ̃t) if we assume that both workers
computed the gradient based on the same input data. This is a clear indication that asynchronous data
parallelism is implicitly (because of the asynchronous nature of the approach) adding momentum which
is proportional to the number of workers, since adding more workers actually adds more “memory”
about previous parameterizations. The authors formalize this by probabilistically estimating the
expected change between θ̃t+1 and θ̃t. Using some additional assumptions, such as the expected
staleness E[τ ] = (n− 1), and geometrically distributed staleness, the authors are able to formalize the
expected update in an asynchronous setting between update t and t+1, which is shown in Equation 2.1.

E[θ̃t+1 − θ̃t] =

(
1− 1

n

)
E[θ̃t − θ̃t−1]− η

n
E∇θL(θ̃t;x;y) (1.1)

Using Equation 2.1, we can immediately derive the term which describes the implicit momentum
induced by asynchrony, which is

(
1 − 1

n

)
. This result actually suggests that there is a limit to

asynchronous optimization: since every problem has some optimal momentum term, which implies that
there is an optimal number of asynchronous workers for a specific problem. In order to push the limits
of asynchronous optimization, the authors propose various techniques to reduce the abundant amount of
implicit momentum. One approach is to apply a grid-search to find the optimal hyperparameterization
for a given epoch, this also includes the number of workers. Despite that this technique finds the
optimal hyperparameterization for a given epoch, the disadvantage is that after every fixed number of
iterations, a grid-search of the hyperparameters has to be performed to ensure (optimal) convergence.
This is actually in accordance with training in non-data parallel settings, where one starts with a
smaller momentum hyperparameter because the gradients at the start will be relatively large compared
to the gradients near an optimum, where usually one benefits from a larger momentum hyperparameter.
From this intuition we can actually deduce that when the gradient updates are large compared to
the gradients close to an optimum, an optimizer does not benefit from high parallelism because the
workers are committing gradients which were based on a parameterization which is “far” from the



CHAPTER 1. INTRODUCTION 6

current central variable, thus obtaining implicit momentum. Furthermore, one could eliminate the
need for the gridsearch by constructing a distributed optimization scheme which is based on the idea
described in Hypothesis 1.

Hypothesis 1 (H1): Workers only contribute efficiently to the central objective when they commit
gradients which are based on variables close to the central variable.

This implies that in the presence of high parallelism, only gradient updates which are based on
variables close to the current central variable matter. This intuition is strengthened in Figure 1.5,
where a straggler is causing the central variable to converge to a different solution as opposed to
the one it was heading to first. A lot of methodologies have been suggested to handle the straggler
problem, however, most approaches suggest a synchronous bounded staleness approach [3, 6]. As a
result, the error introduced by staleness is limited [6]. Nevertheless, in gradient-based approaches, the
straggler problem can be approached from a different perspective. By incorporating Hypothesis 1, we
could eliminate additional engineering efforts since stale updates, and thus stragglers, are built in the
optimization procedure.

Figure 1.5: Asynchronous optimization procedure applied to Beale’s function. In this experiment we
introduce a straggler programatically (square) at the start of the optimization process. Despite the fact
that this is a low probability event (large staleness compared to the number of workers) in real-world
situtations, the effect we describe here is present in any form of asynchronous optimization. When the
straggler in this figure commits its gradient update to the parameter server, the central variable θ̃t
will be updated using −ηt �∇θL(θ̃t−τ ) with staleness τ to form θ̃t+1. This update causes the central
variable to converge to a different optimum, and additionially, increases the error of the central variable
(green circle). Furthermore, to actually converge to the other optimum, additional computational work
has to be performed. This situation drives our intuition presented in Hypothesis 1.

One could of course argue, why not use a smaller number of workers since we are annealing the
gradients which are based on non-local variables anyway, thus wasting computational resources on
those machines? This is certainly a valid argument. However, let us first consider the hyperparameter
grid-search approach suggested by [14]. As mentioned above, despite the fact that the grid-search
technique will find the optimal hyperparameters for the current parameterization, it doesn’t mean that
these hyperparameters are still optimal during the duration of the training process. Furthermore, to
actually obtain the optimal hyperparameters, some certain amount of time needs to be spent in order
to find them. This is actually quite problematic, since one actually wishes to reduce training time by
applying data parallel techniques. In our approach, which is discussed extensively in Chapter 4, this is
not the case since gradients are annealed dynamically based on the curvature of the error space and
current parameterization of the central variable, i.e., there is no need for a hyperparameter grid-search
during the training process.



CHAPTER 1. INTRODUCTION 7

Now some general approaches and important issues regarding data parallelism have been addressed,
and the reader has gained some intuition on the subject, we can formalize data parallelism and use the
notation in the following chapters. In order to formalize data parallelism, let us assume we have a
dataset D, which contains our training data, and that we are able to distribute dataset D over n differ-
ent workers W = {w1, . . . , wn}. Where every worker wi ∈ W holds a copy of the central model, thus, a
copy of the parameterization of the central model θ̃0. Furthermore, we denote the parameterization of
a particular worker k at time t by θkt . Of course, if a worker wants to contribute to the optimization of
the central model, the worker needs to be able to relay update information and retrieve the most recent
parameterization of the central model. This is done by instantiating a parameter server, where workers
will be able to commit their updates, and pull the most recent parameterization of the central model.
The parameterization of the central model is called the central variable, which we denote by θ̃t. In the
final preparation step, before the actual training starts, D will be split into roughly n equally sized par-
titions P = {p1, . . . , pn}, where |pi| ≈ 1

|D| , and where pi will be assigned to the corresponding worker wi.

In general, all data parallel approaches share a similar training procedure, i.e., every worker
computes some variable which is communicated with the parameter server to update the central model.
In most cases, this variable represents some change ∆θ which needs to be applied to the central variable
θ̃t. However, some approaches such as [18], actually require that the complete worker parametrization
θkt is sent to the parameter server. To abstract this specific optimizer detail, we denote the variable
that is sent to the parameter server by v. This procedure is described in Algorithm 1 and 2.

Parameter Server

θ̃t+1 = Commit(v)

θ̃t+1v

Figure 1.6: Schematic representation of a data parallel approach. In this methodology we spawn n
workers (not necessarily on different machines), and assign a data shard (partition) of the dataset
to every worker. Using this data shard, a worker i will iterate through all mini-batches to produce
a gradient, ∇θLi(x), for every mini-batch m. Next, a variable v is constructed on the worker which
is send to the parameter server. The parameter server will incorperate the variable using a Commit
mechanism to produce the next central parametrization θ̃t+1.

Nevertheless, the most common and one of the earliest asynchronous optimization algorithm is
downpour [4]. In this Master Thesis, we use downpour as a baseline performance indicator for all
our experiments with other distributed optimization algorithms. In essence, workers are continuously
committing gradients to the parameter server using Equation 2.11. After a gradient has been committed
to the parameter server, the worker will pull the most recent parameterization from the parameter
server in order to be consistent with the updates of other workers, as described in Algorithm 1 and 2.

∆θk = −ηt �∇θL(θ̃t−τ ;x;y) (1.2)



CHAPTER 1. INTRODUCTION 8

Once the parameter server received the update ∆θk from worker k, the parameter server will simply
add (since the worker already negated the gradient) the update to the current central variable in order
to produce θ̃t+1, this is described by Equation 1.3.

θ̃t+1 = θ̃t + ∆θk (1.3)

Furthermore, to examine the scaling abilities of the optimization algorithms we discuss in the
following chapters, we need a measure to express how well they are performing in a given scenario.
To measure this, one could use more traditional metrics such as statistical efficiency and hardware
efficiency [5, 14].

Statistical efficiency (SE) describes the number of iterations that are required to obtain a desired
result. In the context of Machine Learning, statistical efficiency describes the number of model updates
that have to be performed in order to acquire a desired accuracy. However, in order to obtain some
metric about a specific optimization algorithm, we need a baseline to compare against. As stated
above, the baseline algorithm we use in this work is downpour. Once we evaluated an algorithm ε,
we compute the statistical efficiency of ε compared to downpour, as described by Equation 1.4.

SE(downpour)

SE(ε)
(1.4)

Hardware efficiency (HE) on the other hand, describes the amount of time it takes to execute
a single iteration of a loop. In our work, this denotes the time it takes to complete a single epoch.
Nonetheless, during this work, we experimented with several optimization algorithms which actu-
ally compute several gradients locally, and preprocess them before transmitting the update to the
parameter server [18]. In these cases, if someone would employ statistical or hardware efficiency to
obtain a performance indicator compared to an other algorithm, they will have a clear advantage
since a significantly smaller number of central variable updates occur. Furthermore, usually these
algorithms also spend less time consuming all the data since parameter server updates occur less
frequent. Moreover, the network is also less saturated due to the reduced number of parameter
server updates. In order to have a non-biased metric among different distributed optimization algo-
rithms, we should look at the time it takes to obtain a desired accuracy. We call this temporal efficiency.

Temporal efficiency (TE) characterizes the amount of time a process, or a collection of processes,
requires in order to obtain a desired accuracy. Temporal efficiency is in effect propertional to statistical
efficiency, i.e., SE(ε) ∝ TE(ε). However, this is only the case when algorithm ε actually transmits an
update to the parameter server after a worker computed a gradient (in an asynchronous setting). This
is in contrast with algorithms such as [18], where some additional samples are evaluated locally, before
an update is transmitted to the parameter server.



CHAPTER 1. INTRODUCTION 9

Algorithm 1 Describes the general asynchronous optimization procedure of a worker in a data parallel
setting. The worker will be identified with a certain index k, the other parameter pk ∈ P, is the data
partition which has been assigned to worker k.

1: procedure Worker(k, pk)
2: θk0 ← Pull()
3: t← 0
4: while not converged do
5: m← FetchNextMiniBatch(pk)
6: θkt+1 ← θkt − ηt �∇θL(θkt ;m) . Optimization step, could be [10], or other optimizer.
7: v ← PrepareCommit()
8: Commit(v)
9: θkt ← Pull()

10: t← t+ 1
11: end while
12: end procedure

Algorithm 2 Intialization and variable handling procedures of a parameter server. Before the
distributed optimization starts, the IntializeParameterServer procedure is called to initialize the
local parameters, given the parametrization θ of the specified model. We would like to note that t
maintained by the parameter server, is different from the t variable specified in Algorithm 1.

1: procedure IntializeParameterServer(θ)
2: θ̃0 ← θ
3: t← 0
4: end procedure
5:
6: procedure Commit(v)
7: θ̃t+1 ← ApplyCommit(v)
8: t← t+ 1
9: end procedure

10:
11: procedure Pull()
12: return θ̃t
13: end procedure



CHAPTER 1. INTRODUCTION 10

1.4 Problem Statement
In recent years it has been shown that being able to train large deep neural networks on vasts amount
of data yield state-of-the-art classification performance. However, training these models usually takes
days, or in some cases, even weeks. In order to significantly reduce the training time of these models,
Jeff Dean (Google) introduced a new paradigm to train neural networks in a distributed fashion, i.e.,
model – and data parallelism, which is an initial attempt to tackle this problem.

Despite the relatively old research (2012), few efforts have been made to fully understand the
implications, or to significantly improve the parallel gradient descent algorithm (downpour) proposed
by Dean et al. Furthermore, most research focusses on limiting the error introduced by staleness by
introducing some synchronization barrier, and thus limiting the amount of asynchrony. Despite this,
only recently a sound theoretical argument has been made to understand asynchronous data paral-
lelism [14]. Using this, and understanding this contribution, we try to push the limits of asynchronous
data parallelism even further.

As stated above, being able to train a model on a vast amount of data generally improves the
statistical performance of a model since the model will have access to many (different) examples to
train on. This is in particular the case at CERN, where the experiments collected in the order of 100
petabytes of particle collisions in the past years. Machine Learning approaches, and Deep Learning in
particular, could potentially help in data reconstruction in the upcoming runs of LHC where particles
will generate a huge amount of hits in the detector where it would be infeasible to reconstruct the
particle tracks using traditional techniques (combination of a Kalman filter and Runge–Kutta methods).
However, due to the petabyte scale of the data, current data parallel techniques will not be able to
train the model in a reasonable amount of time. Therefore, we think it is important to push the current
limits of data parallelism even further in order to reduce the overall training time even further.

(a) Front-view of the CMS detector. (b) Side-view of the CMS detector.

Figure 1.7: Reconstructed particle hits in the CMS detector. The collision point (vertex) is originated
at (0,0,0). The inner part of the detector is called the pixel silicon detector. This is a high resolution
tracking mechanism which is able to handle the highly saturated environment of the inner part of the
detector. The more outward part in this particular figure is the silicon strip detector. The silicon strip
detector basically consists out of blocks with orthogonally positioned silicon strips which activate when
a particle passes through them. Toghether, the strips produce a 3-dimensional coordinate. We would
like to note that the hits do not actually represent the track of the particle, but it is rather a set of
hits which will be used to compute the helix (track) parameters using the Runge–Kutta method.



CHAPTER 1. INTRODUCTION 11

Finally, to guide our study of parallelizing gradient descent, we propose the following research
questions:

Research Question 1.
When do workers contribute positively to the central variable during training?

Research Question 2.
Why does asynchronous easgd diverge when a small communication frequency is used, and converges
with a large communication frequency?

Research Question 3.
What is the nature of staleness in parameterized settings?

1.5 Thesis Outline
In this chapter we introduced the main concept, and problems surrounding the parallization of gradient
descent. We familliarized the reader with the topic and some notation by providing some context why
someone would like to apply said technique.

Chapter 2 will discuss several distributed optimization methods, i.e., their strenghts, and pitfalls.
Furthermore, we give some context in order to understand why some of these methods have been
proposed, and how they perform in these situations.

Accumulated Gradient Normalization, our first contribution, appears in Chapter 3. We propose said
technique to allow for local exploration in the error space to provide better updates to the parameter
server. In general, this technique reduces the communication overhead, thus taking into account
communication constraints which other techniques try to solve in a different way. Furthermore, in
contrast to previous approaches, our approach is not sensitive to hyperparametrization.

In Chapter 4 we introduce our optimizer adag, or Asynchronous Distributed Adaptive Gradients,
which is an asynchronous data parallel approach which uses the contributions from Chapter 3, and
implements Hypothesis 1. We examine how Accumulated Gradient Normalization is assisting the
optimization process to check for potential synergies.

When all theory has been presented and validated, the experimental setup is described. Further-
more, we also show how our experimental can be utilized in production systems, and how it relates to
CERN-specific problems, such as track reconstruction as mentioned in Section 1.4.

Finally, we conclude the thesis in Chapter 6 by summarizing the contributions that have been
made, and the empirical results from our experiments.



Chapter 2

Related Work

In this chapter, we introduce several concepts and techniques related to Distributed Deep Learning on
which this works builds upon. We start in Section 2.1 with a recap of all methods and techniques we
have discussed in Chapter 1. Afterwards, we continue with a discussion of synchronous data parallelism
followed by an examination of asynchronous optimization methods such as downpour and closely
related extensions. Furthermore, we address several issues such as asynchrony induced momentum
which are related to asynchronous optimization. We also consider several approaches which provide a
possible solution to these issues.

2.1 Introduction
For all practical applications, Stochastic Gradient Descent (sgd) and derivatives are the best tools
from the numerical optimization toolbox for neural networks. However, applying sgd in its pure form,
that is, updating the parameters after evaluating a training sample, is a computationally intensive
process. An initial approach for speeding up sgd in terms of convergence with respect to training
time was to compute the gradients of several samples, a mini-batch, and average them. This approach
has several advantages, the first being that a larger mini-batch will result in less noisy updates, as
more “evidence” of the surrounding error space will provide a better gradient update. The second
advantage being the increased computational parallelism, since all sub-gradients (gradients of the
training samples in the mini-batch) are based upon the same parameterization of the model. As
a result, the parallelization of the gradient computation is quite straightforward. For instance, for
every training sample in a mini-batch, one could allocate a thread, a process, or even a different
machine (see Figure 1.3) to compute the gradients in parallel. However, a blocking mechanism is
required to sum all gradients, average them, and finally update the parameterization of the model.
This process is depicted in Figure 1.2. As discussed in Chapter 1, mini-batch parallelism is an instance
of synchronous data parallelism. Although many synchronous optimization schemes share a similar
structure, we discuss other instances of synchronous data parallelism in particular in Section 2.2
since these optimization schemes incorporate gradients and worker parameterizations into the central
variable differently compared to mini-batch parallelism.

Nevertheless, a significant, but albeit technical issue in synchronous optimization is when a single
or multiple workers are slowed down for some reason, e.g., due to high CPU load, or bandwidth
consumption, other workers will have to wait before they can continue with step t+ 1. As a result, the
allocated resources are not fully utilized. This particular issue is known in literature as the straggler
problem. However, this problem can be mitigated with by using a homogeneous hardware configuration.
For instance, when one would employ 2 different GPU’s running at different clock speeds, a heteregenous
hardware configuration, then the CPU will always have to wait for a particular GPU since it runs at a
lower clock speed causing the complete training procedure to be slowed down1. Furthermore, we could
argue that there is a limit to synchronous data parallelism because simply adding more workers to the

1A chain is only as strong as its weakest link.

12



CHAPTER 2. RELATED WORK 13

problem implicitly increases the size of the mini-batch. As a result, when applying synchronous data
parallelism, one is not parallelizing gradient descent in a typical sense, but rather parallelizing the
computations within a step. Of course, one could even increase the parallelism within synchronous data
parallelism even further by applying model parallelism as discussed briefly in Section 1.2. Nevertheless,
while such an implementation is definitely possible, it might be more cost-aware from an economical
perspective to just let the model train for a longer period of the compared to actually implementing
the training procedure described above. Furthermore, even with if one would implement said training
method, there is still a limit to the amount parallelism due to the structure of the computation graph,
and communication cost between devices which have to be taken into account. This of course begs the
question if it is actually possible to push the limits of asynchrony, and thereby reducing the training
time even further. Or from a different perspective, is there a more trivial method besides implementing
the above training procedure to reduce the training time.

Several approaches [4, 6, 3, 16, 18, 12, 8] have been suggested over the past years which accomplish
exactly this. All these methods are instances of asynchronous data parallelism, discussed in Section 1.3.
In contrast to synchronous data parallelism, asynchronous methods can be identified by the absence of
a blocking mechanism which is present in synchronous data parallelism. Despite the fact that this
method resolves the waiting time induced by stragglers, it introduces a closely related but persistent
issue. More formally, the staleness issue is due to the fact that all n workers update the central variable
in an asynchronous fashion. Meaning, from the moment a worker k is done computing an update ∆θk

based upon parameterization of the central variable θ̃t, it will commit ∆θk to the parameter server,
and afterwards continue with the next mini-batch. Because of this behaviour, it is possible that a
number of central variable updates τ occurred during the time worker k was computing ∆θk. As a
result, instead of obtaining θ̃t+1 by applying ∆θk, worker k is actually applying ∆θk to θ̃t+τ . Which is
not ideal, since ∆θk is based on parametrization θ̃t. From [14] we know that increasing the number
of workers actually increases the amount of staleness τ since E[τ ] = (n − 1) under a homogeneous
hardware configuration and a simple queuing model2. This result is validated empirically in one of our
experiments, shown in Figure 2.1.

A side-effect of updating the central variable with stale updates in an asynchronous fashion, is that
stale updates carry information about previous states of the central variable. Which is to be expected
since worker updates are based on older parameterizations of the central variable. Using this intuition,
the authors in [14] show formally that in a regular asynchronous sgd setting, like downpour, stale
updates behave like momentum. Furthermore, their formalization can even describe the amount of
implicit momentum, described in Equation 2.1, which is present in an asynchronous optimization
procedure. Furthermore, when applying (Nesterov) momentum in a traditional optimization setting,
i.e., sequential parameter updates, one needs to specify the amount of momentum. This is usually
denoted by a hyperparameter µ. However, we would like to note that in an asynchronous setting, the
hyperparameter µs from Equation 2.1, is not explicitly defined in the optimizer, but arises from the
number of asynchronous workers. As a result, Equation 2.1 is merely descriptive.

µs =

(
1− 1

n

)
(2.1)

In a previous paragraph we said that there is a limit to mini-batch parallelism, since adding more
workers to the problem implicitly increases the size of a mini-batch. However, we observe in Figure 2.1
in accordance with [14], that there might be a limit to asynchronous optimization as well. However, the
authors in [14] assume that gradients coming from the workers are not adaptive3, as can be deducted
from their proof. The question begs, can we push asynchronous optimization even further? We answer
this question in Chapter 3, and Chapter 4, by introducing new techniques using a better, and more
intuitive understanding of parameter staleness.

2With a simple queuing model we intent that updates ∆θk are incorporated into the central variable in a queuing
fashion.

3Meaning, they are not modified with respect to some (hyper)parameter.



CHAPTER 2. RELATED WORK 14

(a) n = 10 (b) n = 20

(c) n = 30 (d) n = 60

Figure 2.1: These figures show the staleness distribution during a training procedure using a differing
number of parallel workers. For every central variable update, we record the staleness τ , and increment
the number of occurences of this particular staleness by 1. Thus effectievely building a histogram
showing the staleness distribution during the training. With this, we experimentally validate the
observations of [14] that E[τ ] = (n − 1). Furthermore, the claim that staleness is geometrically
distributed during training also holds (right half of the distribution).



CHAPTER 2. RELATED WORK 15

2.2 Synchronous Data Parallelism

2.2.1 Model Averaging
As the name suggests, model averaging optimizes the central variable by simply averaging the parame-
terizations of the workers after λ (which could be the amount of data in a single epoch) steps until
all data has been consumed. As mentioned before, hyperparameter λ denotes the number of local
steps that have to be performed before the results are communicated with the parameter server. The
optimization procedure in the worker and parameter server are quite straightforward, and are described
in Equation 2.2 and Equation 2.3 respectively. However, Equation 2.2 has the disadvantage that a
lot of communication with the parameter server has to be performed, since after every local worker
update all parameters have to be shipped to the parameter server to apply Equation 2.3. Furthermore,
this approach has several other issues that will be discussed later. But for now we can resolve this
issue by delaying a commit to the parameter server by doing several local (λ) updates before sending
θkt to the parameter server, this is shown in Algorithm 3.

θkt+1 = θkt − ηt �∇θL(θkt ;xkt ;ykt ) (2.2)

θ̃t+1 =
1

n

n∑
i=1

θit (2.3)

Contrary to other synchronous methods, model averaging does not reduce the training time in
general. In fact, it requires more resources to achieve the same results since the central variable is
set to be the average of all workers. This is shown in Figure 2.2 (a) since all workers follow the same
first-order path, synchronize, and average the parameters after λ steps to start again from the averaged
parameterization, which is in this case the central variable. However, what happens if we initialize
the parameterizations of the workers randomly? At first, all workers will do some work locally, but
after λ steps, the parameterizations of the workers are averaged. As a result, all workers share the
same parameterization in the next step, which brings us again to our initial scenario as shown in
Figure 2.2 (b). Furthermore, when applying random initialization, we could say a “warmup” period is
required since all workers need to converge a particular solution before convergence can take place.
This intuition is strengthened in Figure 2.3.

(a) Identical initialization (b) Random initialization

Figure 2.2: In this Figure we show the difference between identical initialization (a), and random
initialization (b). In essence, both methods require roughly the same amount of time as a sequential
optimization algorithm, i.e., not distributed, while using more resources. However, the difference here
is that using random initialization requires a “warmup” period (a single parameter server update),
before the actual optimization process can start. In order to simulate the stochastic noise of mini-batch
gradient descent, we added a noise term to our gradient computations which was sampled from
X ∼ N (µ = 0, σ2 = 10.0) to ensure that some deviation from the central variable was possible.



CHAPTER 2. RELATED WORK 16

Algorithm 3 Describes the worker procedure with local worker exploration. The worker will be
identified with a certain index k and will be initialized by assigning the central variable (θ̃t) to
the worker, or the worker variable can be randomized at the start of the optimization procedure.
Furthermore, we introduce a hyperparameter λ, which is the number of local updates that have to be
performed in order the worker parameterization θkt is communicated with the parameter server.

1: procedure ModelAveragingWorker(k)
2: θk0 ← Pull() or Random() . Worker variable θk0 can be randomized.
3: t← 0
4: while not converged do
5: i← 0
6: for i < λ do
7: x, y← FetchNextMiniBatch()
8: θkt+1 ← θkt − ηt �∇θL(θkt ;x;y) . Optimization step, could be [10], or other optimizer.
9: i← i+ 1

10: t← t+ 1
11: end for
12: Commit(θkt )
13: WaitForOtherWorkers()
14: θkt ← Pull()
15: end while
16: end procedure

θ

J(θ)

1
∆θ1

2
∆θ2

3
∆θ3

4
∆θ4

θ

J(θ)

1 2 3 4C

θ

J(θ)

1, 2, 3, 4
∆θ1−4

Figure 2.3: This figure explains the intuition behind model averaging. In the first state, all workers, w1,
w2, w3, and w4, are uniformly initialized over the hypothesis space. Using the local parametrizations,
every worker obtains an update ∆wi, and applies it locally. Afterwards, all workers send their
parametrizations to the parameter server which will average them to obtain a central variable, which is
depicted by C in this particular figure. Finally, all workers fetch the most recent central variable, and
start computing new gradients based for the following iteration. Furthermore, what can be observed
directly from this figure, is that when the workers do not agree on a local neighborhood, the central
variable will not be able to converge. This is additional support for Hypothesis 1.



CHAPTER 2. RELATED WORK 17

(a) λ = 1 (b) λ = 100

Figure 2.4: Probability distribution extracted from several Monte-Carlo simulations under different
conditions. We find that the probability of reaching the optimum (Beale’s function) increases when the
number of random initialized workers increases. Despite the fact that we observe that more exploration
(λ) yiels a better statistic, we believe that this result is not significant due to the relatively low number
of simulations (1000 per worker per hyperparameter).

Nevertheless, what is interesting about the random initialization of workers, is that when we
increase the number of workers, the probability that we will find a better solution (minima) compared
to a sequential optimization process increases. However, this also depends on the curvature of the
error space. For example, in Figure 2.4 we use Beale’s function to obtain our statistic. However, from
the plots we can deduce that the curvature of the error space is slightly biased towards the global
minimum if first-order gradients are used. If the error space was not biased towards a specific minima,
the statistic for a single worker under different hyperparameterizations should be 50%.

Furthermore, what is the role of the exploration parameter λ? Does it contribute to to the
optimization process besides reducing the amount of communication with the parameter server by
increasing the amount of local work? In principle this would help to optimization process since more
exploration of the parameter space occurs, and as a result, better updates are applied. Furthermore,
remember what we said in Section 2.1 on synchronous data parallelism, that effectively increasing the
number of workers implicitly increases the size of the mini-batch. Yet, in this particular case there
is a subtle difference, i.e., local exploration of the parameter space. As a result, it is not implicitly
increasing the size of the mini-batch since some form of local exploration occurs. As a result, the
averaged central variable will produce a less-noisy consensus based on the (local) exploration of the
error space. However, the problem lies in the fact when different sets of workers enter different minima,
possibly because of too much exploration of the error space, as depicted in Figure 2.3. Because if this
happens, then the averaging step could potentially reset the situation instead of continuing exploring a
single minima.

(a) λ = 1 (b) λ = 5 (c) λ = 100 (d) λ = 1000

Figure 2.5: Workers which have been randomly initialized (experiments use same initialization) with
different values for λ (communication frequency, or number of local worker iterations). Since the
workers are initially randomized of the hypothesis space, the central variable in the first averaging step
will be shifted towards the global minima because of the amount of local exploration, and due to the
bias of the error space as shown in Figure 2.4.



CHAPTER 2. RELATED WORK 18

2.2.2 Elastic Averaging SGD
Elastic Averaging SGD, or easgd [18], is a distributed optimization algorithm designed with communi-
cation constraints in mind. In essence, easgd could be viewed as an extension of model averaging
described in Section 2.2.1 with the difference that the workers, and the central variable are coordinated
using an elastic force [18] instead of averaging the workers after a fixed amount of steps. This means that
instead of simply transmitting the parameterization or a gradient to the parameter server, the workers
commit an elastic difference which is defined as ηtρ(θkt − θ̃t) where ρ is the elasticity hyperparameter.
Intuitively, ρ describes the amount of exploration that can be performed by the workers with respect
to the central variable θ̃t.

Assuming λ = 1, the worker update and central variable update are described in Equation 2.4,
and Equation 2.5 respectively. What is different compared to most other optimization schemes, is
that the worker update described in Equation 2.4 has a second component, i.e., the elastic difference.
Furthermore, note that compared to other distributed optimization schemes, the workers in easgd do
not synchronize their parameterization with the central variable as shown in Algorithm 4, but rather
update the central variable using the elastic difference, and then use the new central variable as a new
reference point to compute the following elastic differences.

θkt+1 = θkt − ηt �∇θL(θkt ;xkt ;ykt )− ηtρ(θkt − θ̃t) (2.4)

θ̃t+1 = θ̃t + ηt

n∑
i=0

ρ(θit − θ̃t) (2.5)

θ

J(θ)

θ̃ θw
−∇θLw

−ηρ(θw − θ̃) (small ρ)

−ηρ(θw − θ̃) (large ρ)
ηρ(θw − θ̃)

Figure 2.6: In this example we would like to make the intuition behind Elastic Averaging SGD
clear by describing it as a classical physics problem. In this particular figure we have 1 worker, θw
(n = 1, λ = 1), and a central variable θ̃. The y-axis represents the error with respect to a certain
parameterization θ. Using Algorithm 4, the worker performs λ steps to compute the next value of
θw using Equation 2.4. As stated before in Section 2.2.2, Equation 2.4 holds 2 components, i.e., the
regular negated first-order gradient (−ηt∇θLw), and the negated elastic difference (−ηtρ(θw − θ̃)). As
always, the negated first-order gradient represents the steepest slope with respect to the current error
(loss), and parameterization. However, the negated elastic difference actually points towards the central
variable. The magnitude of the elastic difference is controlled by hyperparameter ρ. This implies that
a large value of ρ strongly limits the amount of exploration a worker can perform with respect to
the central variable since the magnitude of the elastic difference vector will be proportionally larger
compared to a small ρ. Finally, the central variable is updated using Equation 2.5 and the elastic
difference coming from all workers. Furthermore, we would like to note that the elastic difference
during the central variable update is not negated. Meaning that the central variable is optimized with
respect to the “pull” of all workers, with the effect that workers whichare ahead in the optimization
process, will have a larger elastic force, causing the central variable to be influenced more strongly by
distant workers. Nevertheless, at the same time, distant workers are pulled towards the central variable
using an equal but opposite force and the negated gradient, i.e., the net force of the elastic difference
and the negated gradient combined results either in a step towards a minimum, a null-operation, or a
step in the direction of the central variable.



CHAPTER 2. RELATED WORK 19

Algorithm 4 Worker procedure of synchronous easgd. This algorithms accepts several hyperparame-
ters, the first being the number of local computations λ, the exploration hyperparameter ρ, and the
dynamic learning rate ηt.

1: procedure EASGDWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: i← 0
6: for i < λ do
7: x, y← FetchNextMiniBatch()
8: θkt+1 ← θkt − ηt �∇θL(θkt ;x;y)
9: i← i+ 1

10: t← t+ 1
11: end for
12: E = ηtρ(θkt − θ̃)
13: θkt+1 = θkt − E
14: Commit(E)
15: WaitForOtherWorkers()
16: θ̃ ← Pull()
17: t← t+ 1
18: end while
19: end procedure

However, there is an interesting property about the elastic difference which is rather problematic for
the communication frequency λ. Using the intuition from Figure 2.6, we can deduce that Equation 2.4
has an additional solution for 0 besides when ∇θL(θkt ;xkt ;ykt ) = 0. This solution has profound
implications on λ, and as a result, on the allocated computing resources. Because if this situation
occurs, then all additional computations are wasted. Since during that time, the central variable is not
updated, and the worker are not updated. In order to describe this formally, let us consider the cases
for which the easgd worker update rule is 0, as shown in Equation 2.6.

− ηt �∇θL(θkt ;xkt ;ykt )− ηtρ(θkt − θ̃t) = 0 (2.6)

Since we know that when a worker evaluates a 0-gradient, i.e., ∇θL(θkt ;xkt ;ykt ) = 0, then the easgd
worker update rule is also 0. Since no change in the parameterization of the worker took place, and
as a result, there is no change in the value of the elastic difference. Unless λ > 1, and in step t− 1,
∇θL(θkt ;xkt ;ykt ) 6= 0. In this case, a net force will be applied in the direction of the central variable,
that is, the worker will move back towards the central variable.

Nevertheless, let us focus our efforts on the case when Equation 2.6 is satisfied. First, let us assume
that ∇θL(θkt ;xkt ;ykt ) 6= 0. As a result, the only way that the condition described in Equation 2.6
can be satisfied is when the non-negated elastic difference equals the gradient update as shown in
Equation 2.7.

− ηt �∇θL(θkt ;xkt ;ykt ) = ηtρ(θkt − θ̃t) (2.7)

Using Equation 2.7, we can derrive a condition, described in Equation 2.8, where the amount of
computational work is not wasted, and introduce an early-stopping mechanism to prevent such waste.∥∥−ηt �∇θL(θkt ;xkt ;ykt )

∥∥ > ∥∥∥ηtρ(θkt − θ̃t)
∥∥∥ (2.8)

One might ask why the elastic difference in Equation 2.8 needs to be smaller than the gradient
term in order for the worker to move towards a minima? Remember from Figure 2.6 that the worker
only moves (backwards or forwards) whenever Equation 2.6 is not satisfied. As a result, we can deduce
that a worker only moves towards a minima when Equation 2.8 is met until the equilibrium condition



CHAPTER 2. RELATED WORK 20

in Equation 2.7 is satisfied. At this point, a worker could stop any further local computations since
additional computations would be wasted anyway. Of course, assuming the mini-batch size m is
sufficiently large to eradicate any noise originating from the gradients. In order to proof this result
emperically, we conducted several experiments with ordinary hyperparameters (λ = 30, η = 0.00001,
n = 5) for different values of ρ summarized in Figure 2.7 and Figure 2.8. What we observe in both
cases is that the workers initially perform a large amount of exploration due to the relatively large
value of λ. Since λ has a large value, the workers do not often synchronize with the central variable
causing them to reach the equilibrium condition described in Equation 2.7 because the gradients are
nog large enough to satisfy Equation 2.8.

To summarize, if the gradients produced by the workers are not large enough to produce a net force
in the direction of a minima, then the workers are in an equilibrium with the elastic difference causing
additional computational work to be wasted since the elastic difference will only lower if the distance
between the worker and the central variable gets smaller. An obvious solution to this problem would be
to lower the value of λ or ρ. However, lowering the value of λ causes the worker to communicate more
frequently with the parameter server, even if the equilibrium condition is not met. Since easgd is
designed with communication constraints in mind, this is not an ideal solution. Furthermore, lowering
ρ is also not ideal since this would reduce the equilibrium condition even further, causing workers to
deviate further from the central variable. As mentioned before in Section 2.2.1 this is not desired
because the possibility exists that different sets of workers will fall into different minima. This is
especially problematic in easgd since the parameterizations of the workers are not synchronized with
the central variable, but are coordinated using the elastic difference. For example, imagine the case
when two sets of workers (equal in number) are in two different minima with the central variable being
in the middle of these two sets. Furthermore, assume that the elastic difference in these two sets of
workers are identical and Equation 2.7 is satisfied. This implies that the central variable and the
workers are not able to move, even after a synchronization step, which in turn results in the fact that
the central variable is not able to converge.

Figure 2.7: In this experiment we use ρ = 5, as suggested by the authors [18]. We observe that at some
point the elastic difference is starting to the influence the first-order gradients causing the workers
to bend downwards, which is not present in Figure 2.8. This “bend” is due to a significant elastic
force pointing in the direction of the central variable. If we would decompose the vector in its main
components, i.e., θ1 and θ2, we would find that the θ2 component is significant enough to cause to
worker to bend downwards since the elastic force is getting stronger proportional to the distance
between the worker and the central variable and hyperparameter ρ. Furthermore, the equilibrium
plot shows that the worker does a lot of initial exploration, while the central variable slowly follows
the workers based on the averaged elastic difference. After 40000 steps, we see that the workers
reach the equilibrium condition. As a result, any computational work done by the workers within
a communication window is wasted since the distance between the workers and the central variable
needs to grow smaller for the elastic force to shrink. However, because the elastic force is shrinking
proportionally to the distance between the workers and the central variable, it allows the workers to
explore slightly more of the hypothesis space since the workers already met the equilibrium condition.



CHAPTER 2. RELATED WORK 21

Figure 2.8: In this experiment we reduce the value of the exploration hyperparameter ρ while all other
hyperparameters from our experiment in Figure 2.7 remain the same. After running the experiment we
do not observe the “bend” which we initially observed in Figure 2.7. However, this was expected since
the elastic force is not that prominent due to the reduced value of hyperparameter ρ. Nevertheless,
we still observe that the workers reach the equilibrium condition, with the difference that the central
variable shows slower convergence behavior compared to Figure 2.7.

To improve convergence of the central variable in easgd, and reduce the amount of wasted
computational resources, we implemented Equation 2.9 based on Equation 2.8 as a measure to stop
wasting further computations.∥∥−ηt �∇θL(θkt ;xkt ;ykt )

∥∥ ≤ ∥∥∥ηtρ(θkt − θ̃t)
∥∥∥ (2.9)

However, we observed from our experiments that this exact condition is rarely satisfied. Of course,
we made the assumption in Equation 2.7 that the parameterization of a worker does not change if a
worker settles in an equilibrium. Of course, before reaching the equilibrium, the gradient is non-zero,
this implies that there is a change in the parameterization of a worker causing the elastic difference to
be modified. With the result that the net force applied to the worker is approaching the equilibrium.
As a result, the net force applied to a worker is gradually becoming smaller.

In order to anticipate for a declining net force, and as a result, the gradually approaching equilibrium,
we communicate the elastic difference with the parameter server if Equation 2.10 is met.(∥∥−ηt �∇θL(θkt ;xkt ;ykt )

∥∥− ∥∥∥ηtρ(θkt − θ̃t)
∥∥∥) < ηt (2.10)

Using the same experimental configuration as in Figure 2.7, with the difference that Equation 2.10
has been implemented as an early-stopping mechanism to communicate the elastic difference with the
parameter server. Using Equation 2.10, we can see that the proposed early stopping mechanism benefits
the central variable in terms of convergence with respect to the default experimental configuration in
Figure 2.7.

What is remarkable about the equilibrium plot in Figure 2.9 is the precense of a sudden drop in the
norm of the elastic difference vector which is abscent in Figure 2.7 despite the fact that the workers
follow similar paths. This is due to the early stopping mechanism which pulling the central variable
closer towards the workers causing the decline in the norm of the elastic difference. Furthermore, since
at this point the gradients are relatively small, a lot of local work can be done while at the same time
the central variable will be able to keep the elastic distance small.



CHAPTER 2. RELATED WORK 22

Figure 2.9: easgd using the early stopping mechanism described in Equation 2.10. Compared to
Figure 2.7, which uses the same experimental configuration, we observe that the central variable
benefits in terms of convergence from increased communication when the early stopping condition is
met.

Since the early stopping condition effectively communicates the elastic difference with the parameter
server, is it not in essence increasing the communication frequency, i.e., lowering λ? In effect it isn’t, since
communication only takes place when the workers and the central variable approach an equilibrium
condition. To show this, we conducted several experiments with and without the early stopping
mechanism shown in Figure 2.10 and Figure 2.11.

(a) No early stopping (b) Early stopping

(c) Equilibrium condition is not met (lines do not
meet). As a result, early stopping is not applied.

Figure 2.10: λ = 10



CHAPTER 2. RELATED WORK 23

(a) No early stopping (b) Early stopping

(c) Equilibrium condition is met. Early stopping
is applied.

Figure 2.11: λ = 50

An other interesting phenomena is when easgd is approaching a minima. Compared to other
synchronous optimizers such as mini-batch parallelism, or model averaging, easgd requires a significant
amount of additional steps to actually converge to the minima because of the equilibrium condition as
shown in Figure 2.12. Remember, if the workers are approaching the equilibrium condition, a small
net force is applied to the worker because the negated elastic difference counter-acts the advances of
the workers to minimize the variance of the workers with respect to the central variable.

Figure 2.12: Slow converge of easgd at minima due to the equilibrium condition. In this figure we
apply early stopping but due to the small gradients close to the minima it does not have any significant
effects.



CHAPTER 2. RELATED WORK 24

2.3 Asynchronous Data Parallelism

2.3.1 DOWNPOUR
Waits induced by blocking mechanisms in synchronous data parallelism significantly reduce the
hardware utilisation during training, especially in non-homogeneous hardware configurations. As
mentioned in Section 2.1, this can be resolved by simply removing the synchronization barriers, as
suggested by [4]. The algorithm the authors proposed is called downpour, and is shown in Algorithm 5.

downpour is an intuitively a very simple algorithm. As before, we have n different workers
optimizing a central variable θ̃t with the difference that every worker will commit a gradient after
every mini-batch in an asynchronous fashion, and after a commit has been performed, the worker
will synchronize with the parameter server by pulling the most recent parameterization of the central
variable.

θkt+1 = θkt − ηt �∇θL(θkt ;xkt ;yk) (2.11)

θ̃t+1 = θ̃t − ηt �∇θL(θkt ;xkt ;yk) (2.12)

As mentioned in Chapter 1, due to the asynchronous optimization one does not have the issue with
idle workers due to synchronization mechanisms. Instead, there is a more severe problem related to
the parameterizations of the workers. Since workers will commit gradients to the central variable in
an asynchronous manner, other workers will commit gradients based on older parameterizations of
the central variable. As a result, the gradients of these workers are stale as shown in Figure 1.4 and
Figure 2.13. An additional, but related issue to parameter staleness, is that increasing the amount of
asynchronous workers, increases the staleness in the system as shown in Figure 2.1.

Algorithm 5 Worker procedure of downpour, which is a parallelized extension of sgd.

1: procedure DOWNPOURWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: x, y← FetchNextMiniBatch()
6: g ← −ηt �∇θL(θkt ;x;y)
7: Commit(g)
8: θkt+1 ← Pull()
9: t← t+ 1

10: end while
11: end procedure

Nevertheless, contrary to easgd, downpour is not designed with communication constraints in
mind. As a result, increasing the number of workers in an already saturated environment will not
reduce the training time since whenever a worker computes a gradient, it will commit the result to the
parameter server. To illustrate this, imagine having several workers committing highly dimensional
gradients to the parameter server. Since it takes some time to incorporate these gradients into the
central variable, other workers will have to wait for their turn in the queue. To reduce the side-effects
(waits) in this particular situation, [12] proposes to before committing the gradient, a worker should
send a small control message to check if the queue is currently occupied, i.e., gradients of other workers
are being incorporated into the central variable. If this is the case, do not commit the gradient, but
fetch the next mini-batch, compute the gradient, and accumulate the computed gradient with the
previously computed gradient, and send a new control message

An obvious problem with this method is that the possibility exists that after x number of re-
tries, the central variable queue is still occupied by other workers. Following the naive procedure,
the zealous method should keep accumulating new gradients. However, this is problematic at step



CHAPTER 2. RELATED WORK 25

x + 1, when the queue is available. Imagine the possibility that other workers, and the central
variable converged to a different minima. If our worker would commit the accumulated gradient
in this particular situation, then the central variable would not be close to its minima as it was
before. In order to reduce the amount of staleness in such a situation, one could introduce a limit
to the amount of local steps that can be made in an attempt to reduce staleness as shown in Algorithm 6.

However, this technique introduces an additional hyperparameter. Several other approaches which
handle this problem in a different way without introducing new hyperparameters, and additionally
giving some intuition and insight into parameter staleness in Deep Learning are discussed in detail in
Chapter 3 and Chapter 4.

Algorithm 6 Zealous worker procedure of downpour, inspired by [12].

1: procedure ZealousDOWNPOURWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: i← 0
6: g ← 0
7: while i < λ do
8: x, y← FetchNextMiniBatch()
9: g ← g − ηt �∇θL(θkt ;x;y)
10: if not QueueOccupied( ) or i = (λ− 1) then
11: Commit(g)
12: θkt+1 ← Pull()
13: i← λ . Satisfy stopping condition.
14: end if
15: t← t+ 1
16: i← i+ 1
17: end while
18: end while
19: end procedure

(a) n = 10 (b) n = 20

Figure 2.13: Divergence due to number (n = 20) of asynchronous workers in the optimization process [14]
and not dealing with parameter staleness in a more intelligent way. Lowering the number workers
(n = 10) causes the central variable to converge.



CHAPTER 2. RELATED WORK 26

2.3.2 Dynamic SGD
The intrinsic reason that asynchronous methods like downpour cannot guarantee convergence is
that these method directly incorporate local updates (good) and stale updates (bad) in the central
variable [8]. To combat this, one could incorporate staleness information of a worker to have a
per-worker learning which decays proportionally stale gradients proportional to the staleness [8]. As a
result, Equation 2.13 will better cope with parameter staleness in contrast to downpour.

θ̃t+1 = θ̃t −
ηt
τi
�∇θL(θkt ;xkt ;ykt ) (2.13)

However, we would like to note that in a homogeneous hardware configuration the gradients will be
scaled down proportional to the number of asynchronous workers as E[τ ] = (n− 1) [14]. As a result,
the expected scalar that will be applied to a worker gradient in a homogeneous setting is summarized
in Equation 2.14.

E

[
1

τ

]
=

(
1

n− 1

)
(2.14)

Furthermore, as we will see in Chapter 4, this technique scales down gradients with respect to the
number of stale steps, while the issue of staleness mainly arrises from the distance between parameteri-
zations. For example, imagine a plateau where the workers have to pass through in order to converge
to a minima. Since progress is slow in a plateau, thus the distance between the workers and the central
variable will remain relatively small, it is non-sensical to scale down the gradients with respect to the
number of stale steps, since these gradients provide good information because they are close to the
“old” central variable.

Nevertheless, in order to capture the staleness information, some additional engineering is required
to keep track of worker staleness since the worker themselves to not possess this information. Contrary
to [8], we propose a different architecture to capture the staleness information. In our approach we
exchange messages between the parameters server and workers. These messages can obtain additional
information beside the parameterization of a worker or the central variable. During the initialization
phase of the training procedure, we keep track of a parameter server clock. Basically, this clock holds
the number of updates that have been applied to the central variable. Furthermore, in order to
obtain the staleness of every worker, and apply the scaling factor described in Equation 2.13, the
parameter server needs to keep track of the last clock tick when a worker i sent an update. It does so
by maintaining a hashmap, or a different datastructure, to associate the last update clock tick with a
particular worker. Furthermore, we scale the parameterizations on the parameter server since this will
ensure the consistency of the staleness information because it is possible that an other worker might
commit an update in the meantime (CAP theorem), and reduce the amount of blocking mechanisms.
Nevertheless, for (very) large networks there might be an issue when insufficient processing power is
allocated to preprocess the queue in an efficient manner.

An additional requirement of this architecture, is that the parameter server needs to update the
worker datastructure whenever a worker pulls the central variable (because the worker will compute
a gradient based on the parameterization of the central variable it just pulled, and this is required
to compute the number of updates that happened in between). Then, whenever a worker commits a
gradient to the central variable, the parameter server just needs the compute the difference between the
last recorded clock time of this particular worker and the current value of the parameter server clock.
Where the last recorded clock tick of a particular worker can be retrieved from the data structure
mentioned above. The complete pseudo-code for these procedures can be found in Algorithm 7 and
Algorithm 8. However, an alternative approach which does not require an additional data structure
to be maintained by the parameter server, is to simply send the current clock tick together with the
parameterization of the central variable to the worker during a pull. Similar to our previous technique,
the scaling will still happen at the side of the parameter server in order to preserve staleness consistency.
However, when the worker commits a gradient to the parameter server, the parameter server does not
have to do additional searches in the worker dictionary since the value of the parameter server clock



CHAPTER 2. RELATED WORK 27

at the time of the central variable pull is added to the commit message. As a result, the difference
between the current clock value and the given clock value, thus the number of stale updates, can
be derived easily. However, this requires the worker procedure to be slightly modified whereas the
worker procedure described in Algorithm 7 does not contain any modifications to extract staleness
information.

Algorithm 7 Worker procedure of dynsgd.

1: procedure DynSGDWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: i← 0
6: a← 0
7: while i < λ do
8: x, y← FetchNextMiniBatch()
9: g ← ηt �∇θL(θkt ;x;y)

10: a← a− g
11: θkt+1 ← θkt − g
12: t← t+ 1
13: i← i+ 1
14: end while
15: Commit(a)
16: θkt+1 ← Pull()
17: end while
18: end procedure

Algorithm 8 Parameter server procedures of dynsgd.
1: procedure DynSGDParameterServer
2: c̃← 0 . Parameter server clock
3: m̃← c̃ . Initialize staleness datastructure
4:
5: procedure HandlePull(k) . k denotes the worker identifier
6: m̃[k] = c̃
7: return θ̃c̃
8: end procedure
9:

10: procedure HandleCommit(k, ∆θk)
11: τ ← c̃− m̃[k]
12: θ̃c̃+1 = θ̃c̃ + 1

τ+1 �∆θk . +1 to prevent division by 0
13: c̃← c̃+ 1
14: end procedure
15:
16: end procedure

Experimental Validation of Dynamic SGD

To validate the claims made by [8], we conducted several experiments on the MNIST [11] dataset with
different hyperparameterizations. Using an equivalent experimental configuration as with downpour
in Section 2.3.1, and identical hyperparameterizations, we confirm that dynsgd is able to cope
with with an increased amount of staleness due to asynchrony compared to downpour as shown
in Figure 2.14. Furthermore, due to the high communication frequency in Figure 2.14, a significant
amount of communication took place which reduced the throughput of the workers. To combat this,
we decreased the communication frequency (thus increasing λ) which allows for more local work to be



CHAPTER 2. RELATED WORK 28

done before incorporating the accumulated gradient into the central variable, as shown in Figure 2.15.
As expected, the training time was reduced significantly. However, due to the increased amount of
local work, the gradients that were submitted to the parameter server became proportionally larger as
well. Contrary to the expectations of the authors in [8], dynsgd is not able to handle this amount of
staleness. As a result, this is an indication that staleness is a more “deeper” problem, especially in the
context of Deep Learning, which will be addressed in Chapter 4.

Figure 2.14: In this experiment we applied 20 asynchronous workers on equally shared 5 epochs worth
of MNIST training data. Since this is an identical experimental configuration for which downpour
was used, this experiment verfies the claims of the authors that dynsgd is able to handle staleness
better.

(a) 5 epochs (b) 40 epochs

Figure 2.15: Since network-communication is a blocking factor in terms of CPU usage, we decided to
test several iterations of local exploration before committing the accumulated gradient to the parameter
server. In our first experiment (a), we copied the experimental configuration from Figure 2.14, with
the difference that we decreased the communication frequency. Due to the decreased communication
frequency, more local work was done, which had the result that the norm of the committed gradients
to the parameter were larger. This had profound implications on convergence stability of the central
variable, which only reached 90% training accuracy while using the same amount of data, but,
spending less time. In order to have a “fair” comparison with Figure 2.14 in terms of training time,
we increased the total amount of training data to 40 epochs, which resulted in a training accuracy of
99.7%, compared to 98.1% in Figure 2.14.



CHAPTER 2. RELATED WORK 29

2.3.3 Asynchronous Elastic Averaging SGD
In Section 2.2.2 we discussed the synchronous version of easgd. To reduce the effect of blocking
mechanisms, which is profound in synchronous data parallelism, the authors proposed [18] an asyn-
chronous extension of easgd which is called aeasgd, or Asynchronous Elastic Averaging SGD. In
essence, nothing changed for the worker procedure shown in Equation 2.15 with the exception of the
blocking mechanism. However, contrary to other optimization algorithms discussed in this chapter
(which commit first-order gradients), aeasgd is optimizing the central variable by incorporating the
elastic differences of the workers in an asynchronous fashion, as shown in Equation 2.16 (for intuition,
see Figure 2.6).

θkt+1 = θkt − ηt �∇θL(θkt ;xkt ;ykt )− ηtρ(θkt − θ̃t) (2.15)

θ̃t+1 = θ̃t + ηtρ(θkt − θ̃t) (2.16)

Since easgd and its variants are designed with communication constraints in mind, and allow for
more exploration of the local hypothesis space [18], we can significantly reduce the communication
frequency, and thus further reducing the training time. However, as in any asynchronous optimizer,
aeasgd mitigates staleness by pulling the most recent central variable in order to compute a more
up-to-date elastic difference as shown in Algorithm 4.

Algorithm 9 Worker procedure of aeasgd. Note how the pull of the central variable occurs before
the computation of the elastic difference.

1: procedure AEASGDWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: i← 0
6: for i < λ do
7: x, y← FetchNextMiniBatch()
8: θkt+1 ← θkt − ηt �∇θL(θkt ;x;y)
9: i← i+ 1

10: t← t+ 1
11: end for
12: θ̃ ← Pull()
13: E = ηtρ(θkt − θ̃)
14: θkt+1 = θkt − E
15: Commit(E)
16: t← t+ 1
17: end while
18: end procedure

What is interesting about aeasgd in our experiments, is that given identical hyperparameterizations
as other optimizers in this chapter aeasgd is not able to get closer to a minima as can be seen in
Figure 2.16. This could potentially be due to the equilibrium condition described in Section 2.2.2.
Nevertheless, the claim the authors make that easgd benifits from more exploration is validated in
Figure 2.16 as well. Furthermore, during our experiments we have encountered several interesting
observations on aeasgd. The first being when a high communication frequency is used, i.e., λ = 1,
aeasgd shows sign of divergence. However, this effect is not always present, and our suspicions are that
a numerical error might be the root cause of this issue. In order to better understand the properties
of the divergence in aeasgd, we conducted several simulations which show similar behaviour. To
this date, we do not really have an idea why this is exactly happening, and is subject to further
investigation. Furthermore, we would like to declare the following observations, as a result of these
simulations:



CHAPTER 2. RELATED WORK 30

• Asynchronous optimizers which commit gradients: central variable is “pushed” by workers towards
a minima.

• easgd: central variable is “pulled” by the workers towards a minima as described in Section 2.2.2.

• aeasgd: central variable acts as a “mean” of a distribution of workers, where the variance of the
workers is controlled by ρ.

The final remarkable observation, shown in Figure 2.17, was that in almost all tests, the validation
accuracy of the optimizer was consistently better than the training accuracy. According to us, this is
because of the observation mentioned above, i.e., because aeasgd behaves like a moving distribution
(more like a particle filter), it will tend to find a flat minima which generalizes better than the training
accuracy of the central variable. However, this is pure speculation and is subject to further research.

(a) λ = 15 (b) λ = 30

Figure 2.16: Accuracy plots which show the training accuracy of the central variable for different
communication frequencies. These results validate the claims of the authors that in general, the central
variable benefits from more exploration. However, we would argue that this is true only when sufficient
amount of data is available. Furthermore, we would like to note that compared to other optimizers
discussed in this Chapter, easgd seems to converge slowly close to a minima, this might be due to the
equilibrium condition described in Section 2.2.2. However, further evidence is required to confirm this.

(a) λ = 1 (b) λ = 15 (c) λ = 30

Figure 2.17: Results of a small experiment to show the consistently higher validation accuracy compared
to the training accuracy in aeasgd for different values of λ.



CHAPTER 2. RELATED WORK 31

2.4 Hybrids

2.4.1 Stale Synchronous Optimizers
Other approaches to deal with staleness in asynchronous optimization have been suggested in the
past years [3, 6]. These approaches, typically called Stale Synchronous Optimizers, are based on the
concept that staleness needs to be limited within a system. In order to limit the amount of staleness
within a system, asynchronous workers can only be a certain number of steps ahead compared to the
slowest worker. Hence the name stale synchronous optimizers, since they allow for a limited amount of
staleness, and if this particular condition is not met by some workers, then these workers will have to
wait until the slower workers caught up. However, as mentioned before, we know from [14] that the
expected staleness in a homogeneous system is E(τ) = (n− 1). As a result, adding more workers to
the problem in stale synchronous optimizers is non-sensical, since adding more workers to the problem
implicitly increases the amount of staleness. As a result, the limit which is specified will have to be
changed whenever a couple of workers are added to the optimization process. For this reason, we will
not consider stale synchronous optimizers in this thesis.



Chapter 3

Accumulated Gradient Normalization

This chapter addresses the first contribution of this thesis, which is accumulated gradient normalization,
or agn in short. We start by laying out the concept and intuition behind accumulated gradient
normalization, and show why agn provides the central variable with more efficient updates. Finally,
to show our claims, we provide several experiments where we compare agn with different distributed
optimizers such as donwpour [4], aeasgd [18], and dynsgd [8].

3.1 Concept and intuition
The main issue with downpour [4] is the requirement of constant communication with the parameter
server after every gradient computation. Furthermore, as the number of parallel workers increases,
downpour fails to converge due to the amount of implicit momentum [14], as shown in Figure 2.13. To
reduce the amount of communication with the parameter server, one could take ideas from easgd [18],
and perform several iterations of local exploration before committing the gradients to the parameter
server. However, in the case of algorithms like downpour, that is, where gradients are committed to
the parameter server in an asynchronous fashion, more local exploration results in proportionally larger
gradients, and as a result, complicate the staleness and the implicit momentum problem even further
as will be addressed in Chapter 4. To intuitively show why this is an issue, let us consider Figure 3.1.
In a regular downpour setting, first-order gradients such as in Subfigure (a) are committed to the
parameter server. However, when an algorithm allows for a certain amount of local exploration, such
as Algorithm 6, the gradient that is committed to the parameter server is an accumulated gradient as
shown in Subfigure (b).

(a) No Gradient Accumulation (b) Gradient Accumulation

Figure 3.1: This figure shows the difference between regular first-order gradients (a), and accumulated
gradients (b). We observe that accumulated gradients are proportionally larger to the number of
exploration steps. However, they do provide a better direction compared to first-order gradients.

32



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 33

Now, imagine two asynchronous environments, in the first no gradient accumulation is performed,
and in the last gradient accumulation takes place. In the environment where no gradient accumulation
is performed, as in regular downpour, first-order gradients are committed to the parameter server.
However, as we have seen in Chapter 2, and in particular Figure 2.13, we saw that downpour diverges
when the number of asynchronous workers is too high due to the amount of implicit momentum [14].
As a result, careful tuning is required when no adaptive methods are applied. Nevertheless, given
the fact that downpour converges with n = 10 workers in Figure 2.13 and our knowledge about
gradient accumulation, i.e., accumulated gradients that are committed are proportional to the number of
exploration steps for every worker, and provide better directions to a minimum, we would expect that
for some amount of local exploration while using the same hyperparameterization (with the exception
of local exploration steps λ) downpour would diverge again due to the magnitude of the accumulated
gradients. This behaviour is illustrated in Figure 3.2.

(a) λ = 1 (b) λ = 5

(c) λ = 10 (d) λ = 20

Figure 3.2: Illustration of divergence due to gradient accumulation in downpour. In Figure 2.13, we
say that for n = 10 downpour converged to a good solution. In order to reduce the training time, we
decrease the communication frequency (increasing λ). However, due to the larger gradients that are
committed to the parameter server, which increases the amount of implicit momentum, the central
variable is not able to converge as before.

To reduce the magnitude of the accumulated gradients, and thereby reducing the amount of implicit
momentum, while at the same time preserving the better direction that has been provided due to
the amount of local exploration, we propose to normalize (average) the accumulated gradient with



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 34

the amount of local steps that have been performed by the workers (λ), shown in Equation 3.11. We
call this technique of normalizing the accumulated gradient Accumulated Gradient Normalization or
agn. An initial critique of this technique would be that by normalizing the accumulated gradient, agn
would in effect be undoing the work that has been done by a single worker. This seems at first a valid
criticism, however, one needs to take into account that agn is actually using the worker exploration
steps to compute a better gradient based on first-order gradients.

∆θ = − 1

λ

λ∑
i=0

ηt
1

m

m−1∑
j=0

∇θL(θi;xij ; yij) (3.1)

Since agn is using local steps to compute a better gradient compared to first order gradients, it can
also be used under communication constraints like easgd since less communication with the parameter
server is required. In Figure 3.3, we show how a Normalized Accumulated Gradient is obtained and
applied to the central variable using Equation 3.1 as described in Algorithm 10.

Figure 3.3: After pulling the most recent parameterization of the central variable from the parameter
server, the worker starts accumulating λ first order gradients, and applies those gradients locally
to explore the surrounding error space. Finally, after λ exploration steps have been performed, the
accumulated is normalized w.r.t. λ and send to the parameter server.

Algorithm 10 Worker procedure of agn.

1: procedure AGNWorker(k)
2: θk0 ← θ̃ ← Pull()
3: t← 0
4: while not converged do
5: i← 0
6: a← 0
7: while i < λ do
8: x, y← FetchNextMiniBatch()
9: g ← −ηt �∇θL(θkt ;x;y)

10: a← a+ g
11: θkt+1 = θkt + g
12: i← i+ 1
13: t← t+ 1
14: end while
15: a← a

λ . Accumulated Gradient Normalization step.
16: Commit(a)
17: θkt ← Pull()
18: end while
19: end procedure

1Note if λ = 1, agn is in essence equivalent to downpour.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 35

An interesting thought experiment would be what would happen in the case that the workers
would not communicate with the parameter server at all, that is, λ =∞. How would the normalized
accumulated gradients look like in such a situation, described by Equation 3.2?

lim
λ→∞

−
∑λ
i=0 ηt

1
m

∑m−1
j=0 ∇θL(θi;xij ; yij)

λ
(3.2)

In order to completely understand how the worker deltas would look like after λ =∞ steps, one
first needs to understand the individual components of Equation 3.2. The most inner component,
ηt

1
m

∑m−1
j=0 ∇θL(θi;xij ; yij), is just the computation of a mini-batch using m−1 samples, where index i

denotes the current step in the gradient accumulation. Please note that a mini-batch can differ for differ-
ent values of i as training samples are randomly retrieved from the dataset. After computing the gradient
based on the mini-batch, the local model will be updated as θi+1 = θi − ηt 1

m

∑m−1
j=0 ∇θL(θi;xij ; yij).

This process goes on for λ steps, while at the end, the accumulated is normalized with respect to λ.

Let us assume we have a smooth convex error space, or a smooth non-convex error space with
at least a single minima. Due to the existence of a minima in both cases, first order gradients will
eventually converge to, or in the neighbourhood of said minima. Furthermore, we make the assumption
that the hyperparameterization during the training procedure will not change. For instance, no learning
rate decay after x number of steps. Under these assumptions, it is trivial to realize that applying
gradient descent for ∞ steps will cause the parameterization to converge in a minima. Of course,
given that the hyperparameterization, and the data allow for convergence to occur. As a result, the
term

∑λ
i=0 ηt

1
m

∑m−1
j=0 ∇θL(θi;xij ; yij) is finite, even after applying ∞ steps of mini-batch updates.

To simplify our problem, let us denote ~c as the finite result of the top term in Equation 3.2 for λ =∞.
Therefore, we can write Equation 3.2 as Equation 3.3. Furthermore, since ~c is finite, Equation 3.3 can
be treated as an instance of 1

∞ , which approaches 0. Subsequently, Equation 3.3 is 0 in the limit to
infinity.

lim
λ→∞

−~c
λ

= ~0 (3.3)

This implies that due to the infinitely low communication frequency, the normalized accumulated
gradients will basically be ~0. However, what is interesting is that the normalized accumulated gradients
directly point towards a minima due to the infinite amount of exploration steps that have been
performed. Subsequently, one can view a normalized accumulated gradient when λ =∞ as a point,
but with a direction. Therefore, if we would allow for infinite steps until convergence, the path the
central variable would traverse is a straight line towards the minima, as shown in Figure 3.4.

(a) λ = 15 (b) λ =∞

Figure 3.4: agn for different values of λ. This small experiment shows that when λ =∞, the path the
central variable traverses is equal to a straight line towards the minima.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 36

The thought experiments described above helps us in several ways if make make several additional
assumptions. The first assumption assumes that normalized accumulated gradients with λ =∞ can be
computed immediately, that is, without a delay. This is of course an unrealistic assumption. However,
one needs to consider realistic communication constraints. Given a certain network throughput, what is
the amount of local communication that needs to be performed in order for a parameter commit to be
“worth it”. As mentioned above, λ =∞ is not a very good solution since the normalized accumulated
gradient will converge to ~0 in the limit. Nevertheless, if the normalized accumulated gradient could
be computed immediately, as we assumed, the central variable would traverse the shortest path to a
minima, in contrast to first order gradients. Of course, this is not a realistic assumption. Furthermore,
this issue is quite similar to stochastic gradient descent vs. mini-batch gradient descent, since in agn we
also have to make the decision between more frequent parameter updates, and more “local” iterations
to compute a better gradient, where better in the case of mini-batch gradient descent means less-noisy.

In most settings, the size of a mini-batch is determined empirically, and is dependent on the noise
of the gradients. Furthermore, when using mini-batch gradient descent, a trade-off is made between
more frequent parameter updates, i.e., a smaller mini-batch, or more robust and consistent gradients
by increasing the size of a mini-batch which results in a more accurate approximation of the first order
curvature. This is similar to our situation. Yet, in mini-batch gradient descent you are basically trying
to estimate a hyperparameter based on several unknowns, i.e., convergence based on error space and
noise of individual gradients. However, agn is balancing the amount of local computation to produce a
better gradient, with the throughput of the network, which is a known variable. For instance, imagine
a hypothetical communication infrastructure which is able to apply the commits of the workers directly
into the workers with no delay. In this situation, one could apply downpour. However, remember
from Figure 3.2 that downpour does not handle an increased amount of asynchronous parallelism
(n = 20). As a result, even in an ideal situation downpour will not be able to converge due to the
amount of implicit momentum.

Nevertheless, the situation in agn is different as will become apparent in Section 3.2. Contrary
to downpour, agn does not commit first order gradients to the parameter server, but rather a
normalized sequence of first order gradients which result in better directions towards a minima, as
discussed above. Because of this, workers will produce a better gradient in terms of direction with
respect to first order gradients using the amount of local computation available to them to handle
the communication constraints. Therefore, agn worker deltas will therefore point more or less in the
same direction, and are normalized with respect to the number of exploration steps, which reduces the
amount of implicit momentum since first order gradients are not applied to the central variable.

3.2 Experimental Validation
In this Section we evaluate agn against different distributed optimization algorithms. As before,
MNIST [11] is used as a benchmark dataset, and all optimizers use the model described in Appendix A.2
with identical parameterization of the weights. Furthermore, we will set the mini-batch size to m = 128
in all optimizers, and use 40 epochs worth of training data that will be equally distributed over all n
workers with the exception for downpour, which will only use 5 epochs, since downpour can not
handle accumulated gradients. Our computing infrastructure consists a relatively small cluster of 15
nodes with a 10Gbps interconnect, most of them in the same rack, each having 2 Intel R© Xeon R© CPU
E5-2650 v2 @ 2.60GHz CPU’s, where every CPU has 8 cores and 2 threads. No GPU’s are used during
training, and no learning rate decay is applied.

Our initial experiment, shown in Figure 3.5, shows the training accuracy of agn, aeasgd, and
dynsgd over time. In this experiment, we use a near-optimal hyperparameterization for all optimizers
to ensure convergence. Furthermore, we also report the validation accuracy of every trained model
based on the validation set that is provided by MNIST. Looking at Figure 3.5, we observe a significant
increase in training performance for agn, both in training accuracy, and in training time when
compared to current state-of-the-art algorithms such as aeasgd and dynsgd. Furthermore, the claim



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 37

we made in Chapter 2 that dynsgd scales the gradients down with respect to staleness τ , which in
effect is E[τ ] = n − 1, and thereby not addressing the staleness problem since the expected scaling
factor is (n− 1)−1 and not the distance between the parameterization of the central variable, and the
parameterization of the worker, can be derived from Figure 3.5 and Figure 3.5 (b). Since gradient
accumulation is performed in both figures, i.e., λ > 1, we can tell that dynsgd has difficulties converging
when λ is larger because the gradients that are committed to the parameter server are proportionally
larger, as is the case in Figure 3.5 (a). Furthermore, due to the relatively high communication frequency
(λ = 10), dynsgd will take longer to process all data since more communication with the parameter
server is required. However, in the case of Figure 3.5 (a), we see that dynsgd is equally temporal
efficient to aeasgd, since dynsgd takes the same amount of time to reach the final training accuracy
of aeasgd.

(a) dynsgd λ = 10 (b) dynsgd λ = 3

Figure 3.5: In this experiment we train all optimizers on 40 epochs worth of data with a mini-batch
of m = 128. Due to staleness-handling method of dynsgd, the optimizer is not able to handle
accumulated gradients which results in non-stale accumulated gradients being incorperated directly
into the central variable with the disadvantage that other workers are even more stale in terms of
parameter distance. Which is the root cause of this divergent behaviour. In Subfigure (b) we reduce
the amount of local exploration steps, which in turn reduces the length of the accumulated gradient.
Therefore causing other workers to be less stale, and consequently reducing the divergent effects we
observed in Subfigure (a). Furthermore, in Chapter 2, we made that claim that aeasgd will not be
able to get close to a minima due to the existence of an equilibrium. This behaviour is confirmed as
aeasgd is not able to surpass agn in terms of training accuracy. However, as mentioned in Chapter 2,
the validation accuracy of aeasgd is usually higher than the training accuracy. This results further
strengthens our suggestion that due to the presence of the equilibrium condition, aeasgd will not
overfit the data since the optimizer will not be able to come “close” to a minima.

Furthermore, let us consider the case for dynsgd when λ = 15. In this situation, dynsgd closely
resembles agn since, as mentioned above, the worker deltas in dynsgd are scaled down with respect
to the staleness τ , which results in an expected scaling factor of (n − 1)−1. Whereas in agn, the
deltas are always scaled (on worker level) with respect to the communication frequency λ. As a result,
the scaling of worker deltas will be on average similar to agn. This begs the question, why do we
see such divergent, and noisy behaviour in Figure 3.5, and especially in Figure 3.6? The reason for
the lies in the combined effect how dynsgd deals with staleness, and due to the precense of gradient
accumulation. To illustrate this behaviour, consider the case when a dynsgd worker w is committing
an accumulated gradient, with staleness 0, i.e., τw = 0. In this situation, the parameter server will scale
down the gradient with respect to (0 + 1)−1, which is 1. As a result, the accumulated gradient that
worker w sent to the parameter server will not be scaled down. Of course, this is perfectly reasonable,
since there the accumulated gradient that worker w sent was not stale. However, what happens when



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 38

the other n− 1 workers have to commit a gradient? Remember from Equation 2.13 that dynsgd scales
the gradients down with respect to the number of stale steps τw. As we will show in Chapter 4, this
method is rather naive, because what really matters is the distance between updates as suggested in
Hypothesis 1. Since the delta worker w committed was not stale, the full accumulated gradient was
incorperated into the central variable, causing it to shift with the full magnitude of the delta. Since
the length of an accumulated gradient is proportional to the number of local exploration steps, the
deltas of other workers will be proportionally more stale in terms of distance, and therefore causing
the divergent behaviour shown in Figure 3.5 and Figure 3.6.

Figure 3.6: Shows the similarity between agn and dynsgd by using identical communication frequencies
in both optimizers. As a result, dynsgd worker deltas are expected to be similar to agn deltas since
E[τ ] = n− 1. However, due to dynsgd’s staleness handling mechanism, which is basically scaling the
deltas down by the number of stale steps, dynsgd is not able to prevent divergent behaviour. Contrary
to dynsgd, agn is not staleness aware. However, agn does provide more stable and direct gradient
updates since the optimizer normalizes the accumulated gradients proportionally to the amount of
local exploration.

An additional observation from Figure 3.5 and Figure 3.6, one we made before in Chapter 2,
is that the validation accuracy of aeasgd is in accordance with the training accuracy, meaning,
the optimizer does not seem to overfit. The reason for this lies, according to us, with the easgd
equilibrium condition, described in Section 2.2.2. The equilibrium condition will prevent the cen-
tral variable moving too close to a minima, preventing the central variable from overfitting. Since
aeasgd and agn are clearly outperforming dynsgd in terms of training time and validation accuracy
for this particular experiment, the following experiments will only consider aeasgd and agn. To
evaluate the performance of these optimizers under different conditions, we will conduct several
experiments using the same hyperparameterizations we mentioned at the start of this Section, which
will evaluate the performance of agn and aeasgd with respect to different (distributed) hyperparame-
ters, i.e., number of workers, and communication frequency. As before, no learning rate decay is applied.

Initial observations from our results, summarized in Table 3.2, indicate that agn performes better in
terms of validation accuracy when a low communication frequency is used (which is a design requirement
of (a)easgd), and a high number of asynchronous workers are deployed (n ≥ 20). However, looking at
the overall training accuracy of both optimizers, we observe that agn is significantly outperforming
aeasgd in all configurations of the distributed hyperparameters. The reason for this might be due to
the equilibrium condition of easgd described in Chapter 2. Furthermore, increasing the number of
asynchronous workers results in a significant drop in both training, and validation accuracy in aeasgd.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 39

Figure 3.7: Decline of the training accuracy of both agn and aeasgd as the number of asynchronous
workers increases. From these experiments, we observe that agn is more rebust to an increased amount
of asynchrony as the training accuracy only starts to decrease from n = 25 workers, while the validation
accuracy remains stable even with 40 workers.

Contrary to aeasgd, agn is able to cope more effectively with an increased amount of parallelism,
as its training accuracy only starts to decline from n = 25 asynchronous workers, while the validation
accuracy is barely fluctuating (because agn is still slightly overfitting), as shown in Figure 3.7. An
obvious follow-up question to this result would be to question the fact whether increasing the amount
of asynchronous workers really improves the temporal efficiency optimizer, i.e., the amount of time it
takes to reach a certain training accuracy. In fact, it does reduce the training time to reach a certain
training accuracy, as shown in Figure 3.8. However, several factors have to be taken into account.

(a) Varying λ (b) Static λ

Figure 3.8: Training accuracy plots for different configurations of the distributed hyperparameters. In
the case of a varying λ with respect to the number of workers (to minimize the noise of the commits),
we observe that optimizers with a higher communication frequency (small λ), is actually benifitting
from the more frequent updates with the parameter server. However, as the number of asynchronous
workers grows, a low communication frequency increases the noise in the commits due to parameter
staleness. Furthermore, if the lambda is too large, less frequent parameter server updates occur, which
results in a slower convergence rate since more time is spent locally. As a result, a balance is required
similar to determining the size of a mini-batch.

The first being an increased amount of staleness that is inserted into the system as the number of
asynchronous workers increase. This effect is difficult to mitigate. Previous approaches [8] propose
to scale gradient commits down proportionally to the number of stale steps. However, as previously
shown, this is not an effective solution since accumulating gradients locally, is in effect making the
gradients larger, and as a result, committing accumulated gradients increases the distance between the



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 40

central variable and other workers2. The second and final issue is the balance between updating the
central variable with a certain frequency, and the amount of local work to effectively reduce the training
time due to high communication costs. In effect, this resembles the situation usually one has when
selecting a mini-batch size m, i.e., do we allow for more frequent parameter updates (small m), or do we
compute a less noisy first order gradient by increasing m, thereby reducing the frequency of parameter
updates and the convergence of a model? To show that this is the case, let us consider Figure 3.10 and
Figure 3.11. In Figure 3.10, we evaluate varying values of λ for a specific number of asynchronous
workers n. In all cases, we observe configurations using λ = 40 usually have the slowest convergence
rate with respect to other configurations with higher communication frequencies. Furthermore, an
additional interesting observation, one which is in accordance with the theory we discuss in Chapter 4,
is the fact that high communication frequencies and a larger number of asynchronous workers causes
divergent behaviour due to parameter staleness.

Nevertheless, what is really interesting, is why configurations with low communication frequencies
actually do converge, in contrast to configurations with high communication frequencies (with respect
to the number of workers). Since our definition of staleness relates to the distance between the current
parameterization of a worker, and the current parameterization of the central variable. One can
imagine that increasing the number of asynchronous workers, effectively increases the distance between
the parameterizations of the workers and the current central variable due to the queueing model
discussed before, i.e., worker deltas are incorporated in the central variable in a queueing fashion. Yet,
parameter staleness still does not explain why configurations with low communication frequencies
converge, as opposed to configurations with higher communication frequencies. The question begs,
is convergence guaranteed due to the amount of local exploration, thus providing the parameter
server with a better “direction”, as shown in Figure 3.3. Or, is it due to limit condition described in
Equation 3.3, which eventually scales the worker deltas down to 0 as the communication frequency
decreases (λ increases)? This is a rather difficult question to answer. However, we are definitely not
dealing with the limit condition since one expects this to be the case when agn approaches a minima,
or when λ approaches infinity. As a result, the convergence property of agn is largely dedicated
to the amount of local exploration, which in turn provides the central variable with a more stable,
and direct gradient towards a minima. Alternatively, consider the case when no normalization of the
accumulated gradient proportional to the amount of local exploration takes place, and thereby pushing
large gradients to the parameter server. We showed that this approached has the tedency to diverge
despite the fact it provides a better direction, as is the case in agn. However, due to the magnitude of
the worker delta, a lot of staleness (in terms of distance) is induced causing other workers to commit
(also large) gradients in an already very stale central variable, which in turn causes the divergence we
observe in a non-normalized setting.

Now the argument on convergence rates of agn with respect to the communication frequency
has been made, let us focus on the influence on the amount of asynchronous workers. For this, we
turn to Figure 3.11, which shows the accuracy plots for several training configurations with a static
communication frequency, and a varying number of asynchronous workers. Initial observations indicate
that increasing the number of workers with respect to a static communication frequency, speeds up
the training procedure. Of course, given the fact that the right communication frequency has been
selected in order to ensure convergence. Again, as stated before, lower communication frequencies yield
more stable gradients in the precense of more asynchronous workers. However, from Figure 3.10 and
Figure 3.11, can be deduced that configurations with a lower number of asynchronous workers, and
with a high communication frequency actually reach a certain benchmark accuracy faster. Therefore,
why spent double the amount of computational resources to achieve the same results?

Of course, in such a case one is able to process a lot more training data in a shorter amount of
time. However, this is detrimental to the accuracy of the central variable, as more staleness is induced
when a larger number of workers is used. Nevertheless, we make this observation for the MNIST [11]
dataset. However, if we would use a more challenging dataset such as CIFAR-10(0) or ImageNet,

2Which is our definition of staleness, see Chapter 4



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 41

one might actually benefit from an increased amount of parallelism (workers) due to the relatively
small parameter updates, which reduces the amount of staleness that workers induce into the central
variable.

To compare agn against aeasgd, we could take our temporal efficiency metric which is described
in Chapter 1. However, since it basically assumes some benchmark accuracy (see Figure 3.8), the
metric might be biased because it requires a person to define a benchmark accuracy. To prevent this
issue, we redefine temporal efficiency in terms of the surface described by a training metric (be it
training accuracy, or training loss). This means that for some optimizer a, we have a function fa(t)
which describes the performance of a model at time t, e.g., fa(t) describes the training accuracy of
the model at time t. If we integrate over t, we obtain a surface representing the performance of a
model over time. If we would do this for an other optimizer b, and divide the surface of optimizer a by
the performance surface of optimizer b, we get a ratio which describes how optimizer a is performing
compared to optimizer b. If this ratio is larger then 1, it means that optimizer a is outperforming
optimizer b, else, it is the other way around (unless the surfaces are equal of course). However, in order
to compute a fair surface area, we have to limit the computation to the minimum m of both training
times. This is done to prevent that optimizers with a longer training time have a significant advantage,
since they have more time to produce a better model. To summarize, we define the temporal efficiency
E of two optimizers a and b as the ratio of their performance surface, as stated in Equation 3.4. Using
this new definition of temporal efficiency, we can make a more qualitative judgement which optimizer
is performing better in different scenarios.

E(a, b) =

∫ m

0

fa(t) dt∫ m

0

fb(t) dt

(3.4)

Finally, we apply the new definition of temporal efficiency to compare agn against aeasgd and
summarize the results in Table 3.1. However, from Figure 3.12 and Figure 3.13, we make the rather
strange observation that increasing the amount of asynchrony results in a deterioration of the training
accuracy (which is expected since more staleness is induced). However, the rather unexpected property
is that increasing the amount of asynchronous workers results in an early flattening of the training
accuracy. Again, this is due to the equilibrium condition described earlier. Since we increase the
amount of asynchrony in the optimization procedure, workers will reach the equilibrium condition
faster because the elastic difference is computed based on the most recent parameterization of the
central variable. Meaning, as soon as aeasgd is done computing λ iterations, the central variable
is pulled to the worker where the elastic difference is computed based on the recently pulled central
variable, which is very stale (again, using our definition of staleness) due to the low communication
frequency and high number of asynchronous workers. As a result, aeasgd has troubles reaching a
better training accuracy.

(a) E(agn,aeasgd) = 0.964 (b) E(agn,aeasgd) = 0.999 (c) E(agn,aeasgd) = 1.044

Figure 3.9: Several accuracy plots of agn and aeasgd. All subfigures show the computed temporal
efficiency of agn, which were obtained by applying Equation 3.4.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 42

n λ Temporal Efficiency AGN
10 10 1.009
10 15 1.012
10 20 1.003
10 25 0.999
10 30 0.988
10 35 0.990
10 40 0.990
15 10 1.008
15 15 1.015
15 20 1.009
15 25 1.005
15 30 1.000
15 35 0.997
15 40 0.994
20 10 0.983
20 15 1.018
20 20 1.022
20 25 1.009
20 30 1.007
20 35 1.002
20 40 0.997
25 10 0.954
25 15 1.021
25 20 1.017
25 25 1.014
25 30 1.008
25 35 1.003
25 40 0.999
30 10 0.926
30 15 1.017
30 20 1.045
30 25 1.015
30 30 1.012
30 35 1.005
30 40 1.005
35 10 0.881
35 15 0.997
35 20 1.017
35 25 1.020
35 30 1.016
35 35 1.027
35 40 1.012
40 10 1.044
40 15 0.964
40 20 1.027
40 25 1.025
40 30 0.997
40 35 1.009
40 40 1.009

Table 3.1: Temporal efficiency of agn and aeasgd compared to different distributed hyperparameters.
Using this information, we can deduce that agn is outperforming aeasgd in 69.73% of the cases,
which is significantly better. Furthermore, this statistic includes cases which are known where agn is
performing worse, i.e., small amount of asynchrony, low communication frequency, and high amount of
asynchrony, and high communication frequency.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 43

n λ AGN t AGN Acc. AGN Val. AEASGD t AEASGD Acc. AEASGD Val.
10 10 1066.08s 100.00% 98.43% 953.61s 99.22% 98.64%
10 15 864.01s 99.53% 98.54% 846.86s 99.38% 98.69%
10 20 886.34s 99.38% 98.61% 804.07s 98.91% 98.67%
10 25 855.51s 98.75% 98.52% 784.46s 98.91% 98.74%
10 30 886.01s 99.22% 98.50% 930.73s 98.91% 98.64%
10 35 850.87s 98.44% 98.42% 798.74s 99.22% 98.62%
10 40 845.21s 98.75% 98.43% 791.04s 97.66% 98.58%
15 10 979.72s 99.67% 98.61% 813.32s 99.11% 98.67%
15 15 638.13s 99.89% 98.58% 721.47s 98.66% 98.65%
15 20 562.72s 99.89% 98.49% 564.92s 99.00% 98.60%
15 25 580.71s 98.77% 98.50% 542.28s 98.33% 98.62%
15 30 544.97s 98.44% 98.44% 660.58s 98.55% 98.58%
15 35 562.93s 98.66% 98.45% 573.54s 98.33% 98.45%
15 40 561.17s 99.22% 98.42% 566.00s 98.88% 98.52%
20 10 839.94s 99.26% 98.36% 821.12s 97.90% 98.52%
20 15 571.17s 100.00% 98.45% 610.88s 98.52% 98.49%
20 20 432.93s 99.38% 98.47% 510.72s 97.78% 98.39%
20 25 479.72s 99.63% 98.45% 421.50s 97.86% 98.34%
20 30 433.36s 99.42% 98.49% 429.16s 98.36% 98.33%
20 35 418.83s 98.52% 98.44% 409.86s 98.19% 98.33%
20 40 434.86s 98.44% 98.34% 420.46s 97.66% 98.28%
25 10 768.45s 98.62% 97.87% 753.27s 98.26% 98.40%
25 15 524.85s 99.76% 98.57% 540.20s 98.32% 98.32%
25 20 455.92s 99.70% 98.52% 401.17s 97.66% 98.23%
25 25 351.30s 99.10% 98.44% 372.74s 98.44% 98.26%
25 30 365.58s 98.56% 98.48% 364.29s 98.20% 98.14%
25 35 364.04s 98.32% 98.46% 371.01s 97.54% 98.02%
25 40 373.22s 98.05% 98.35% 346.99s 97.72% 98.04%
30 10 778.42s 97.92% 97.25% 764.59s 99.17% 98.28%
30 15 507.43s 99.72% 98.51% 527.42s 98.12% 98.13%
30 20 428.09s 99.74% 98.48% 461.58s 97.92% 98.03%
30 25 341.44s 99.01% 98.48% 334.52s 98.59% 97.96%
30 30 318.41s 99.17% 98.39% 310.19s 97.66% 97.77%
30 35 312.96s 99.17% 98.35% 305.48s 98.28% 97.86%
30 40 316.68s 98.65% 98.30% 343.07s 98.28% 97.73%
35 10 691.38s 96.65% 96.74% 785.00s 98.09% 97.96%
35 15 511.17s 99.01% 98.18% 515.88s 97.91% 98.06%
35 20 390.05s 99.61% 98.51% 405.90s 97.77% 98.01%
35 25 314.71s 99.52% 98.37% 324.66s 97.82% 97.81%
35 30 273.62s 98.67% 98.43% 379.93s 97.63% 97.82%
35 35 276.11s 99.29% 98.13% 357.71s 97.50% 97.84%
35 40 284.50s 98.69% 98.17% 543.86s 97.79% 97.59%
40 10 748.94s 94.17% 95.55% 1256.09s 96.57% 97.99%
40 15 506.25s 95.99% 97.25% 534.42s 96.88% 97.89%
40 20 383.51s 99.24% 98.40% 412.37s 96.65% 97.83%
40 25 308.15s 98.86% 98.39% 347.50s 96.65% 97.67%
40 30 351.54s 98.66% 98.45% 305.50s 96.47% 97.67%
40 35 279.30s 98.73% 98.32% 252.70s 96.32% 97.60%
40 40 257.62s 97.88% 98.18% 250.74s 96.65% 97.45%

Table 3.2: Summary of agn and aeasgd experiments using different distributed hyperparameters (n
and λ). From these experiments we find that agn performs better in terms of training, and validation
accuracy in the precense of a higher number of asynchronous workers, and a reduced communication
frequency.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 44

(a) n = 10 (b) n = 15 (c) n = 20

(d) n = 25 (e) n = 30 (f) n = 35

(g) n = 40

Figure 3.10: This Figure shows several experiments were we fixed the number of workers, but vary the
communication frequency. From this we observe that agn performs well when a relatively equal high
communication frequency is used with respect to the number of workers, and derrive the following
heuristic λ ≈ n+layers in network

2 . Furthermore, increasing the amount of workers, and maintaining a
high communication frequency deteriorates the performance of the central variable as well. As a result,
a balance between the communication frequency, and the number of asynchronous workers is required.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 45

(a) λ = 10 (b) λ = 15 (c) λ = 20

(d) λ = 25 (e) λ = 30 (f) λ = 35

(g) λ = 40

Figure 3.11: In this experiment we clamp the communication frequency, but vary the number of
asynchronous workers. Due to the equal communication frequency, we can observe good scaling
properties of agn. In most cases doubling the number of workers, reducing the training time by half
and is more temporally efficient. However, for larger number of workers n > 30 we do not observe a
reduction of training time. This is due to the implementation of our parameter server, which is based
on Python threads instead of Python processes, as will be dicussed in Chapter 5. Furthermore, note
that reducing the amount of computational resources might actually benifit the training accuracy of
the central variable, as a smaller number of asynchronous workers reduces the amount of staleness that
can be incorperated in the central variable.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 46

(a) n = 10 (b) n = 15 (c) n = 20

(d) n = 25 (e) n = 30 (f) n = 35

(g) n = 40

Figure 3.12: aeasgd fixed worker, with varying communication frequency experiments. As suggested by
the author, aeasgd usually benifits from an increased amount of local worker (large λ). Furthermore,
we observe that initially, aeasgd is quite robust to hyperparameterization (n = 10). However, as the
number of asynchronous workers increases, and the communication frequency is further reduced, the
accuracy plots start to deviate to the point that they flatten at a suboptimal training accuracy. Meaning,
a lower training accuracy compared to other configurations, where aeasgd reached a significantly
higher training accuracy.



CHAPTER 3. ACCUMULATED GRADIENT NORMALIZATION 47

(a) λ = 10 (b) λ = 15 (c) λ = 20

(d) λ = 25 (e) λ = 30 (f) λ = 35

(g) λ = 40

Figure 3.13: In this experiment we clamp the communication frequency, but vary the number of
workers. As in Figure 3.12, we do similar observations regarding the flattening of the training accuracy
in the precense of a low communication frequency, and a large amount of asynchrony. However, an
additional interesting observation which escaped our eye in Figure 3.12, is the large “bump” in training
accuracy for n = 10. Nevertheless, this bump is always followed up by a significant reduction in
training accuracy. Usually one would expect such behaviour in a configuration with a large amount of
asynchrony, but this behaviour is not present is said configurations. Furthermore, the reason why we
do not observe significant fluctuations in training accuracy, contrary to agn, is due to hyperparameter
ρ, which controls the amount of exploration that can be done in terms of distance, as discussed in
Chapter 2.



Chapter 4

Asynchronous Distributed Adaptive
Gradients

In this chapter we introduce a novel optimizer called adag. adag, or Asynchronous Distributed
Adaptive Gradients, is an optimization process designed with data parallel methods in mind. We
build upon previous work [4, 5, 10, 18, 8] and incorperate new insights backed up by theory and
experimental evidence. We start in Section 4.1 by formalizing the problem setting. Section 4.2
describes our algorithm in detail, supported by intuition and theory. Finally, we experimentally show
the effectiveness of our approach in Section 4.3 and give some points for future work in Section 4.4.

4.1 Problem setting
Currently, staleness τ is defined in literature as the number of steps between the current time step t
of the central variable, and the time step of the central variable which a worker based its gradients
upon, which is t − τ . However, as shown in Chapter 2 and Chapter 3, this particular definition
of staleness is problematic when one tries to mitigate parameter staleness. To illustrate this, we
showed in Chapter 3 that dynsgd [8], which uses the above definition of staleness, is not able to
solve the staleness problem if the learning rate is too high or gradient accumulation takes place,
i.e., if the magnitude of the worker deltas is too large. Since dynsgd fails to deal with staleness
efficiently in those situations, one can deduce that using the number of stale steps is a rather naive
approach. As a result, the problem of parameter staleness in Deep Learning has an additional dimension.

A step forward in understanding the staleness problem is by gaining intuition on what mechanism
is exactly causing the central variable to diverge, or converge more slowly. As mentioned in Chapter 1,
divergent behaviour of the central variable is caused by stale workers committing gradients which
are based on old parameterizations of the central variable. Again, in this definition we use the term
“old”. However, we argue in the following sections that an old central variable is not problematic as
long as the distance between the old, and the current central variable is small. To strengthen this
intuition, let us consider Figure 1.5 from Chapter 1.5. Clearly, the reason why the central variable
diverges is because the straggler commits a gradient which was based on a completely different loss
(position). Hypothetically, let us consider that only a single other worker committed a gradient causing
the central variable to be close to a minima. If one would employ an optimizer like dynsgd, which uses
a definition of staleness based on the number of stale steps, the stale gradient would be scaled down by
half, causing significant divergent behaviour in the central variable. However, if one would use the
distance between the current, and the old central variable, and scale the workers deltas proportionally
to this distance, one is able to simply ignore the result of the straggler thus preventing divergent
behaviour. This intuition is shown in Figure 4.1, which incorporates the delta from the straggler into
the central variable using Equation 4.1.

48



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 49

Figure 4.1: Correction of the stale worker delta using Equation 4.1. Contrary to Figure 1.5, the
gradient is scaled down significantly in a way it does not deteriorate the performance of the central
variable.

An interesting observation from Chapter 3, is that contrary to agn, aeasgd does not show any
divergent behaviour for most configurations, i.e., in terms of distributed hyperparameterizations. This
is rather interesting, because it tells us that aeasgd has an intrinsic mechanism to deal with parameter
staleness. If we review Equation 2.15, which describes the worker update rule for λ = 1, we see
the that the elastic difference, defined as ηtρ(θkt − θ̃t), incorperates the distance between the worker
parameterization θkt and the current parameterization of the central variable θ̃t. aeasgd uses the
elastic difference as an opposing force of the worker exploration, meaning, it limits the amount of
exploration that can be done. As a result, the elastic difference of aeasgd in effect limits the distance
that can be covered by the worker (unless the gradients suddenly become larger). As a result, aeasgd
serves as additional evidence for our notion that staleness should be defined in terms of distance, and
not in terms of stale steps, as formalized in Defination 4.1.1.

Definition 4.1.1 Staleness Given a parameterization for worker k at time t, θkt , based on the central
variable θ̃t−τ where τ is the number of stale steps, and a central variable at time t, θ̃t. Then, staleness
is defined as the difference (distance) between θ̃t and θ̃t−τ .

Using Definition 4.1.1, we can make the deduction that staleness is not really a problem as long
as workers commit gradients based on older parameterization of the central variable, which are close
to the current central variable. This is again additional support for Hypothesis 1, which states that
workers only contribute efficiently to the central variable as they remain close to each other, i.e., the
variance of the workers amount the parameter space is small.

4.2 Algorithm & Update Rule
This Section fully describes the adag update rule, and several architectural decisions that can be
made when implementing this technique. Furthermore, using Definition 4.1.1, we show how adag can
push the limits of asynchronous optimization further, while at the same time eliminating the need for
(distributed) hyperparameter gridsearches to ensure convergence.

To describe the adag update rule, we use the same terminology and notation used in Definition 4.1.1
to further strengthen the intuition in parameter staleness, and how parameter staleness is used in
Equation 4.1. Let us consider the case when τ = 0. In this situation, a worker k computes the gradient
based on θ̃t−τ which is equal to θ̃t. As a result, the distance between these two parameterizations
will be 0, which results in the worker delta ∆θk to be incorporated into the central variable as is,
and thereby causing the adag update rule to generalize to sgd. In the next step, we add more
asynchronous workers to the optimization problem. By doing so, we implicitly increase the staleness as
E[τ ] = (n − 1). As a result, parameter staleness in terms of stale steps, τ , is expected to be larger
than 0. Consequently, the distance between θ̃t and θ̃t−τ is expected to be non-zero causing the worker
delta to be scaled down proportionally to the difference of these parameterizations. However, since



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 50

parameter changes in Deep Learning usually consist of very small updates, we use the inverse learning
rate (η−1t ) to get a sense of the scale at which these updates operate at. Using the inverse learning rate
in Equation 4.1, and due to the fact that staleness (in terms of distance) is usually relatively small in
Deep Learning since the gradients are scaled with respect to ηt, we find that adag scales the gradients
more realistically. Since without the inverse learning rate, the scaling would be very small.

θ̃t+1 = θ̃t +
1

η−1t ‖θ̃t − θ̃t−τ‖2 + 1
�∆θk (4.1)

Nevertheless, one could view the inverse learning rate from a different perspective. Fist let us
denote the set of workers as W . Then, the staleness term in Equation 4.1 can be written as a sequence
of gradients from different workers w, as shown in Equation 4.2.

θ̃t − θ̃t−τ =

τ∑
i=0

∃!w ∈ W : ηt∇θLw(θ̃t−τw) (4.2)

Furthermore, assuming a static learning rate η, Equation 4.2 can be simplified by moving the
learning rate ηt before the summation sign, obtaining Equation 4.3.

θ̃t − θ̃t−τ = η

τ∑
i=0

∃!w ∈ W : ∇θLw(θ̃t−τw) (4.3)

Remember that the scaling of the worker deltas are proportional to Equation 4.4.

η−1‖θ̃t − θ̃t−τ‖2 (4.4)

Substituting the staleness term in Equation 4.4 for Equation 4.3 gives us:

η−1‖η
τ∑
i=0

∃!w ∈ W : ∇θLw(θ̃t−τw)‖2 (4.5)

Earlier, the assumption was made the learning rate is static. As a result, we can cancel the learning
rate terms, and thus obtaining Equation 4.6.

�
�η−1‖�η

τ∑
i=0

∃!w ∈ W : ∇θLw(θ̃t−τw)‖2 (4.6)

This result indicates that the scaling term in Equation 4.1 is proportional to a unitless sequence of
worker gradients, i.e., not scaled down by a learning rate. As a result, Equation 4.1 is not sensitive
to the hyperparameterization of η. Therefore, the scaling term will work at any scale, and still be
proportional to the magnitude of the worker gradients.

An additional, but important aspect that needs to be considered is how adag keeps track of θ̃t−τ .
For this we foresee two possible implementations. The first, described in Algorithm 11, keeps track of
θ̃t−τw for a particular worker w at a worker level. Meaning, worker w keeps track of its local copy θwt ,
and the original central variable θ̃t−τ . Next, when worker w is done computing ∆θwt , w will commit
both ∆θwt and θ̃t−τ to the parameter server. Since the parameter server already holds θ̃t, the parameter
server can now compute the next central variable using Equation 4.1.



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 51

Algorithm 11 Implementation of adag where the workers are responsible for keeping track of θ̃t−τ .
1: procedure ADAGParameterServer
2: t← 0 . Parameter server clock
3: θ̃t ← Random()
4:
5: procedure HandlePull(k) . k denotes the worker identifier
6: return θ̃t
7: end procedure
8:
9: procedure HandleCommit(k, ∆θw, θ̃t−τk)

10: θ̃t+1 = θ̃t + 1
η−1t ‖θ̃t − θ̃t−τk‖2 + 1

�∆θkt

11: t← t+ 1
12: end procedure
13:
14: end procedure

However, an obvious limitation of Algorithm 11 is the increased network usage since two param-
eterizations have to be shipped to the parameter server, i.e., the worker delta ∆θkt and the original
central variable parameterization θ̃t−τ . To reduce the network usage of Algorithm 11, and thereby
reducing the waiting time of the workers, we propose to let the parameter server keep track of worker
pulls, i.e., whenever a worker pulls the central variable, the parameter server copies the central variable
into a datastructure (for example, a hashmap), and associates the the parameterization of the central
variable with the worker which requested the pull at that time. This procedure is roughly described in
Algorithm 12. However, we would like to note that despite the fact that Algorithm 12 reduces the
communication costs, it increases the memory requirements proportional to the number of concurrent
workers, which might be problematic as the number of asynchronous workers is high.

Algorithm 12 Network efficient implementation of adag.
1: procedure ADAGParameterServer
2: t← 0 . Parameter server clock
3: θ̃t ← Random()
4: m← Initialize() . Initializes a data structure which keeps track of worker pulls.
5:
6: procedure HandlePull(k) . k denotes the worker identifier
7: m[k] = θ̃t
8: return θ̃t
9: end procedure

10:
11: procedure HandleCommit(k, ∆θw)
12: θ̃t+1 = θ̃t + 1

η−1t ‖θ̃t −m[k]‖2 + 1
�∆θkt

13: t← t+ 1
14: end procedure
15:
16: end procedure

However, there is a practical problem in Algorithm 11 and Algorithm 12 which tends to be
overlooking when viewing adag from a theoretical perspective. that is, both Algorithm 11 and
Algorithm 12 put severe computational load on the parameter server to ensure consistency of the
staleness computation when computing the scaling factor. Remember that in order to ensure staleness
consistency, we lock any writes to the central variable during the time the parameter server computes
the scaling factor. This induces a significant wait in other workers due to relatively heavy computations
which need to be executed by the parameter server. However, taking inspiration from aeasgd [18],



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 52

we can make significant improvements regarding computational efficiency if we loosen the consistency
constraints. By doing so, we could let the workers compute the scaling factor locally, and then transmit
the scaled delta to the parameter server which only has to add the delta into the central variable.
Furthermore, to reduce the network usage even more, we only pull the central variable only once, as
shown in Algorithm 13. Despite the fact that Algorithm 13 is more computationally efficient because
the load is parallelized equally over all workers, it has several consistency issues. The first being
that the computed scaling factor might not reflect reality since other workers could have committed
their deltas to the parameter server between the time our worker pulled the central variable, and the
committed its scaled delta. Furthermore, if this occurs, the worker will start computing gradients
based on an already (slightly) stale central variable in the next iteration.

Algorithm 13 Network efficient, and more computational efficient implementation of adag. With
the side-effect that we loosen the staleness consistency constraints.

1: procedure ADAGWorker(k)
2: θ̃original ← Pull() . Keep a local copy of the central variable
3: θkt ← θ̃original
4:
5: procedure Commit(∆θw) . Redefine Commit operation.
6: θ̃t ← Pull()
7: ∆θk ← 1

η−1t ‖θ̃t − θ̃original|2 + 1
�∆θk

8: SendToParameterServer(∆θk)
9: θ̃original ← θ̃t

10: θkt ← θ̃original
11: t← t+ 1
12: end procedure
13:
14: end procedure

4.3 Experiments
To demonstrate the effectiveness of Definition 4.1.1, several experiments shall be conducted in the
following section regarding the convergence properties of adag. Looking back at Chapter 3, we
saw that staleness mitigation is critical in highly concurrent environments, as the staleness increases
proportionally to the number of workers, as shown in Figure 4.2. Furthermore, without adag, we
have to decrease the communication frequency even further to ensure that divergence does not occur.
However, as a result of the increased amount of local exploration, parameter updates occur less fre-
quently. Which again results in a slower convergence of the central variable, and thereby reducing the
temporal efficiency of those highly concurrent configurations compared to less concurrent configurations.

Let us start by considering several predictive scenarios to verify this novel understanding of
parameter staleness in Deep Learning, and how to deal with it, as shown in Equation 4.1. First and
foremost, at the start of any parameterized machine learning training procedure, a model is initialized
according to some initialization strategy. Since the probability is very low that a randomly initialized
parameterization will perform well in terms of classification accuracy, we can make the assumption that
the loss during the initial phase of the training will be relatively high. Furthermore, let us assume that
there are n workers trying to optimize the central variable in an asynchronous manner, and that adag
is applied before incorporating the worker deltas into the central variable, i.e., scaling proportional
to n−1‖θ̃t − θ̃t−τ‖2 is applied to the incoming worker delta. In this case, we can expect that during
the initial phase of the training procedure only a few workers will contribute efficiently to the central
variable. With this statement, we are implying that only the deltas of a small fraction of workers will
not be scaled down significantly because the loss, and thereby the gradients are quite large at the start
of the training procedure, in contrast to the situation when the central variable is close to an optimum.



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 53

As a result, other workers will be scaled down significantly, because the parameterization on which
they based their gradients on (which all workers started with), is too distant from the current central
variable.

Figure 4.2: Staleness distribution of n = 20. This is in accordance with the theory [14], which says
that E[τ ] = (n− 1). Note that the x-axis denotes the staleness in terms of stale steps.

The following prediction we make is related to the convergence of optimizers which employ adag.
First, we know that stale gradients will be scaled down significantly due to the update rule described
in Equation 4.1. Furthermore, since the loss is getting smaller as the training procedure goes on,
staleness, in terms of Definition 4.1.1, is implicitly getting smaller as well. As a result, if one would
plot the scaling term for every worker, we should observe (on average) a decline in the scaling factor.
This would imply that the distance between the central variables, and thereby the worker gradients are
small. As a result, worker deltas do not have to be scaled down as much as their gradients are relatively
local to the current central variable. Furthermore, in such a situation, the optimization process would
benefit from more asynchronous workers since the staleness is relatively small. An additional situation
where more asynchronous workers would be beneficial is on a plateau, where the losses are very small
which implies that the parameter updates are very small. In such a situation, adag would barely scale
down the gradients. Furthermore, as the workers would “leave” the plateau, worker updates which are
too stale would automatically be nullified.

To empirically validate these predictions, we conducted several experiments for which we know
agn has difficulties converging, i.e., high amount of asynchrony and a high communication frequency.
Furthermore, to show that Definition 4.1.1 is a better description of staleness compared to the number
of steps, we will show that staleness, in number of steps, in not necessarily proportional to the scaling
factor. This is a valid assumption to make since the scaling factor is proportional to the distance
between parameterizations.

(a) η = 0.001 (b) η = 0.0001 (c) η = 0.00001

Figure 4.3: Average scaling (of all weights) value of every worker in adag with respect to different
learning rates. In all Subfigures we observe a significant scaling at the start of the learning procedure
(loss is relatively high, as mentioned in our first prediction), while at the end of the training procedure,
scaling is not very prominent because the workers converged to a minima.



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 54

Figure 4.5 shows the stale steps (top row), together with the average scaling factor (bottom row) of
every worker. Since adag provides a per-weight scaling factor, we compute the average scaling factor
by averaging all scaling factors for every trainable weight. This allows us to get a general overview of
how the scaling term behaves under different values of staleness. Looking at Figure 4.5, we observe a
significant scaling at the start of the optimization procedure for most workers, thus providing evidence
for our initial prediction. Furthermore, to show that the number of stale steps is not necessarily
proportional to staleness in terms of distance, let us consider Worker 2 in Figure 4.5 for a moment.
Around parameter update step 12, a very stale update was committed to the parameter server, both
in distance as in number of steps. However, other updates of Worker 2 are also quite stale compared
to other workers. Yet, the scaling factor for these updates are almost equal to 0, thus indicating that
the number of stale steps is not necessarily proportional to the real staleness. Of course, this begs
the question why other workers for these particular update numbers have significantly lower scaling
factors, while their staleness is lower as well. This can be explained by the fact that Worker 2 was
significantly slower than other workers during the initial phase of the training procedure, which caused
the central variable to have moved significantly towards a minima during that time. Of course, since
gradients are relatively small in the neighbourhood of a minima, staleness is not actively playing a
role a in the divergence of the central variable. As a result, worker gradients are not scaled down.
This result can be validated by looking at Worker 8 as well, since Worker 8 behaves in a similar manner.

Furthermore, Figure 4.5 can serve as additional validation for the statement made in [14], which
says that E[τ ] = (n− 1). If we look at the average staleness of all workers, we can immediately see that
the expected staleness value of the optimization process is about 20, which is the number of workers
used in that particular experiment.

Finally, we apply adag to solve the instability issues of agn in Chapter 3 under highly concurrent
conditions with high communication frequencies, i.e., high number of asynchronous workers with
frequent parameter updates. As shown in Figure 4.4, we see that agn initially has some difficulties
converging to a minima due to the increased amount of staleness and implicit momentum [14]. However,
when adag is applied, this instability is gone because adag scales worker deltas proportional to the
distance of the old, and current central variable.

(a) agn without adag (b) agn with adag

Figure 4.4: In this experiment we apply agn to the MNIST problem using 30 asynchronous workers.
From Subfigure (a) we observe some divergent behaviour of the central variable during the initial phase
of the training procedure. However, if we apply adag to agn in these exact same conditions, the
divergent behaviour previously observed is absent due to the fact that stale worker deltas are scaled
down, or even nullified. Furthermore, since the divergent behaviour is not present in Subfigure (b),
agn with adag reaches convergence faster (in terms of updates).

However, scaling worker deltas according to Equation 4.1 might be rather simplistic. Nevertheless,
adag is effective despite the fact that there might be a better technique. Furthermore, during our



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 55

experimentation with adag, we found that especially in high staleness environments, Equation 4.8
is not really effective due to the relatively large learning rate, as shown in Figure 4.4. Therefore, we
introduce a hyperparameter γ, which controls the scale at which the gradients operate. As a result, we
can rewrite Equation 4.1 as Equation 4.7. In our experiments, γ is usually defined as 0.0001. However,
if the loss still shows significant divergent behaviour, we recommend to reduce the value of γ even
further.

θ̃t+1 = θ̃t +
1

γ−1‖θ̃t − θ̃t−τ‖2 + 1
�∆θk (4.7)

This indicates that there must to be a more intelligent way to define γ. However, due to the
time-constraints, this is not considered in this thesis.

4.4 Discussion
Using our knowledge from previous Chapters, we are finally able to construct a distributed gradient-
based optimization procedure which is able to handle practical constraints, such as communication costs).
Furthermore, by reducing the communication frequency, we increase the amount of computational time
that can be spent to produce a better gradient in contrast first order gradients. However, a reduced
communication frequency had a significant impact on the convergence rate of the central variable.
Therefore, two options are possible:

• Increase the communication frequency.

• Increase the number of asynchronous workers.

However, as discussed in Chapter 3, increasing the communication frequency causes divergent
behaviour when a relatively large number of asynchronous workers is present in the optimization
process due to the staleness that is inserted. Then, in Chapter 4, we introduced a novel understanding
of parameter staleness in terms of distance between the old, and the current central variable. Using
this understanding, a per-weight scaling term was constructed, adag, which automatically scales stale
worker deltas down, or even nullifies them proportional to the staleness of the old central variable, thus
preventing divergent behaviour of the central variable. Furthermore, since the scaling term is applied
dynamically, a training procedure would automatically benefit from increased parallelism in small loss
environments, as workers which were significantly scaled down initially due to the relatively higher
loss, will now commit gradients with a larger magnitude, which accelerates the training procedure.

∆θk = − 1

γ−1‖θ̃t − θ̃t−τ‖2 + 1
�
∑λ
i=0 ηt

1
m

∑m−1
j ∇θL(θki ;xi;yi)

λ
(4.8)

θ̃t+1 = θ̃t + ∆θk (4.9)

Using the intuition laid out above, we will now formalize the procedure described in Eqation 4.8
and Equation 4.9. To optimize the throughput of the training procedure, in terms of samples per
second. We recommend (in the most complex scenario), distributed mini-batch parallelism, followed by
an asynchronous approach using adag-agn to optimize a central variable. Nevertheless, this might be
a very complex system. However, this can be simplified significantly for other, less requiring use-cases.
For instance, one could simply perform mini-batch parallelism locally by, e.g., distributing the workload
over several CPU cores, or even GPUs. Then, once the agn gradient and adag scaling term from
Algorithm 13 are computed, the worker deltas can be sent asynchronously to the parameter server
using Equation 4.9.

As stated before, we are not comfortable with the fact that γ seems to be ill-defined, and requires
problem-dependent tuning which is not to our liking. Does this issue indicate a problem with Equa-
tion 4.7? According to our previous intuition, Equation 4.1 seems to be more elegant and intuitive.
However, we do not observe good results for all configurations of distributed hyperparameterizations.



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 56

(a) Worker 1 (b) Worker 2 (c) Worker 3 (d) Worker 4

(e) Scaling worker 1 (f) Scaling worker 2 (g) Scaling worker 3 (h) Scaling worker 4

(i) Worker 5 (j) Worker 6 (k) Worker 7 (l) Worker 8

(m) Scaling worker 5 (n) Scaling worker 6 (o) Scaling worker 7 (p) Scaling worker 8

(q) Worker 9 (r) Worker 10 (s) Worker 11 (t) Worker 12

(u) Scaling worker 9 (v) Scaling worker 10 (w) Scaling worker 11 (x) Scaling worker 12

Figure 4.5: Worker staleness and scaling factor of Worker 1 till Worker 12. In the top row, we show
the number of stale steps between every parameter update. Whereas in the bottom row, we show the
scaling factor corresponding to the same parameter update step.



CHAPTER 4. ASYNCHRONOUS DISTRIBUTED ADAPTIVE GRADIENTS 57

A possible cause for this issue could be the small gradient updates (< 0). To make this issue clear,
let us consider an average gradient update ∇θL(θt) = 2 in a downpour setting. After applying a
learning rate η = 0.001, we become η∇θL(θt) = 0.002. However, since E[τ ] = (n− 1), the expected
difference between θ̃t and θ̃t−τ would be 0.038 (0.002 · 19). Now, since Equation 4.1 and Equation 4.7
have a squared “punishment” term, the difference between the parameterizations before applying γ−1
will be 0.001444 (0.0342), which is less then a single gradient update. As a result, the scaling factor
applied by adag will be significantly smaller.

This result is a possible indication why Equation 4.1 needs to be rewritten as Equation 4.7 to
account for additional staleness. To preserve the distance, we could apply the squared punishment
term after applying γ−1 since this would result in the desired behaviour, as shown in Equation 4.10.
However, to validate this intuition, several additional experiments have to be conducted.

θ̃t+1 = θ̃t +
1[

γ−1
(
θ̃t − θ̃t−τ

)]2
+ 1
�∆θk (4.10)



Chapter 5

Experimental Setup

This chapter describes the experimental setup of our experiments in Chapter 3 and Chapter 4.
Furthermore, the architecture of dist-keras, which is our Distributed Deep Learning framework based
on Apache Spark and Keras, is also introduced.

5.1 Distributed Keras
Distributed Keras, or dist-keras in short, is a distributed Deep Learning framework built on top of
Apache Spark and Keras with the goal to significantly reduce the training using distributed machine
learning algorithms, and allow bigger than memory datasets. This project initially started as a
prototype with the CMS collaboration. However, the project has seen several iterations since its start
in August 2016, and is still undergoing active development [9]. Furthermore, dist-keras is designed
with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in
such a way that a new distributed optimizer could be implemented with ease, thus enabling a person
to focus on research. Several distributed methods are supported, such as, but not restricted to, the
training of ensembles and models using data parallel methods.

5.1.1 Architecture
Before we dive into the architecture of dist-keras, let us first discuss several concepts within Apache
Spark, since these are heavily used in the framework. First, Apache Spark is a general purpose cluster
computing framework using directed acyclic computation graphs to define a sequence of operations.
This graph is constructed by a driver program, which responsibilities are to send new instructions to
worker nodes, or receive results. However, the driver program does not execute any instructions from
the DAG (directed acyclic graph). The processes which are responsible for the execution of the DAG,
are called executors. Usually, executors are spawned dynamically using a cluster resource manager.
However, it is possible to spawn them manually on every cluster node with the disadvantage that
job-dependent configurations (e.g., memory) are not possible.

Nevertheless, an additional important aspect is the way data is handled. Spark usually benefits
from a large amount of memory, since it tries to fit as much as possible data in memory to increase
the processing throughput. However, if the data does not fit in memory, a flag has to be specified
to modify the persistance of the data, meaning, data is allowed to be serialized to disk, and read
back into memory when needed. Furthermore, since a computation is defined as a DAG, data can
be recomputed in the case of a potential loss due to, for example, data not fitting into memory, or
serialized data not fitting on a local disk, or even an unexpected shutdown. Furthermore, to prevent a
complete recomputation of data, one can cache the data at a specific point. Basically, calling cache
(checkpointing) on a dataset, tells the executors to keep track of the data in its current form, i.e., not
recomputing it. Furthermore, in order to apply modifications, or mapping functions to datasets in a
distributed manner, Spark provides an abstraction of data in terms of Resilient Distributed Dataset.
As discussed before, the term resilient implies that the data is able to recover from failures described

58



CHAPTER 5. EXPERIMENTAL SETUP 59

above. Furthermore, Spark also provides some syntactic sugar in terms of DataFrames and DataSets to
easily manipulate data in a tabular format. However, in contrast to regular tabular entries, data rows
are not limited to a specific schema, but can be customized if desired. As a result, we can construct
any particular dataset of interest in a Spark DataFrame, and preprocess it for Deep Learning, or other
analytical purposes. Furthermore, since Apache Spark provides several utilities to distribute the data
among the executors, and stream the data were needed, an architecture can be constructed to feed the
data to Deep Learning models in production, or during training.

In general, a dist-keras workflow proceeds as follows. Initially, a Keras model is constructed on the
machine were the Spark Driver will be allocated, this could be a personal laptop or desktop computer,
however, it is recommended that this machine is in nearby proximity of other cluster nodes and has
performant hardware including efficient networking capabilities because the parameter server will be
allocated on this machine. Nevertheless, despite the fact allocating a single parameter server creates a
significant bottleneck on this particular machine, especially when using large models, it proved to be
sufficient for our use-cases. However, in essence it should be possible to allocate parameter servers
dynamically on different machines since our current parameter server implementations does not have
any Spark dependencies. Next, the data is read from a raw datasource, e.g., csv, Apache Parquet, or
Apache Avro, or some other data format that is supported. However, at this point the data is spread
over several machines, but not all machines involved in the training procedure. To ensure fast delivery
of the data to the executor, we repartiton the data equal to the number of workers which will train the
model in parallel. However, due to Spark’s lazy-evaluation mechanism, the repartitioning (shuffling) of
the data is not triggered. To trigger this, we call a Spark action such as a count, to execute the DAG
computation.

Figure 5.1: Architecture of Distributed Keras and assigned roles during a distributed optimization
procedure. As stated before, the Spark Driver will spawn the parameter server on the same machine.
However, since our parameter server implementation does not have any Spark dependencies, it can in
principle be spawned on any cluster machine.

Before starting the training procedure, all relevant objects such as model weights, optimizer, input
column, output column, and so on, are serialized. After the serialization of the training configuration
is done, the configuration is transported to the Spark executors, where they can be deserialized and
reinstantiated. At this point, two concurrent threads will be spawned on every executor. The first
thread is responsible for the prefetching of the data, since it is possibly that the data needs to be



CHAPTER 5. EXPERIMENTAL SETUP 60

streamed from a different machine. Furthermore, this thread is also responsible for converting the
prefetched training samples into the expected format, i.e., numpy matrices. The second thread is
mainly responsible for the training procedure, shown in Figure 5.1. This thread will implement a
specific distributed optimization procedure such as adag-agn, aeasgd, or downpour. Nevertheless,
during the training procedure, every worker will collect a set of timestamped training metrics (batch
accuracy, batch loss). Meaning, after every computation of a mini-batch, the training metrics are
timestamped and yielded to Spark for later processing. After all data has been processed, training
metrics of all Spark executors are collected and processed to generate central variable accuracy and
loss over time.

Finally, when the DAG computation is completed, dist-keras fetches the most recent parameteri-
zation from the parameter server, and initializes a model with that parameterization. Afterwards, a
user can potentially compute validation accuracy in a distributed manner since several utility data
transformers and predictors are provided by dist-keras.

5.2 Use-case: CMS Event Identification
To reduce the computational load of collision reconstructions in future LHC runs, the CMS experiment
is exploring Machine Learning techniques as a possible approach for accomplishing this. In this
particular case, the experiment is evaluating Deep Learning techniques by fitting them to physics
problems. High-level problems such as deciding which data to keep in the High Level Trigger given
some physical attributes, and other inference problems, are possible applications. Not because of
a statistical perspective perce, but mostly to reduce computational complexity. In the following
experiments, we mainly occupy ourselves with the reconstruction of particle tracks, and identification
of track types from raw detector hits. A particle track, track denoted from this point on, is the path
that has been traversed by a particle through the detector. The track is reconstructed from a set of
hits, which have been triggered (detected) by parts of the detector. The reconstruction of these tracks
is a computationally intensive process, since given a set of hits, one needs to minimize the χ2 error of
the track with respect to the set of hits that have been associated with a particular track. However,
this is only one aspect of the problem, one first needs to obtain the set of hits which describe a track
given all hits within a collision, which also includes the background (false-positives) generated by the
detector itself. Currently, the set of hits related to a single track are extracted using a two-pass Kalman
filter and a iterative method to find the best fit, with the first pass of the Kalman filter starting on the
outer edges of the detector.

An additional problem of applying Deep Learning, or any other Machine Learning approach to the
problem of track reconstruction, or event identification, is the petabyte scale data that needs to be
dealt with. A simple, and more common solution would be to sample a more manageable fraction of
the dataset to train our models on. However, we want the model to be able to extract as many diverse
tracks as possible that have been reconstructed over previous years by reconstruction software. As a
result, a distributed (data parallel) approach is necessary. However, the data representation is also
an important aspect of the problem. Currently, all collisions are stored in the root format, where
every reconstructed track for a particular collision (or set of collisions), including the hits of the track,
and track parameters can be extracted from. This specific data format is quite problematic, especially
taking the petabyte-scale data into account. Furthermore, depending on the modelling, the data needs
to be preprocessed in a particular way. One could of course preprocess the complete physics data in
a format, shape the data accordingly, and simply copy the data to the machines which will be used
during training. However, this is not a very space efficient approach.

A more reasonable, and space efficient approach would be to deliver the preprocessed data to
the training procedure in a streaming manner. For example, every worker has a buffer in which it
will prefetch and preprocess data coming from the root format in a way the model will understand,
e.g., numpy arrays. This approach does not have the space inefficiencies the previous approach
had. However, there is an increased computational load on the worker nodes due to the prefetching,



CHAPTER 5. EXPERIMENTAL SETUP 61

preprocessing of the data, and duplicate processing of the same training samples if multiple epochs of
training are required. Nevertheless, compared to computation of gradients in large models, this load is
neglectable. An additional benefit of this approach is that the same architecture can be used during
model development, since data representations can be generated on-the-fly as in Apache Spark, shown
in Figure 5.2.

(a) Low pT (transverse momentum) (b) High pT , very dense point cloud.

Figure 5.2: Pixel-binned data representation of the hits which occurred in two different collisions.

Therefore, in a final system architecture, we could combine several ideas presented in this thesis to
build is system which is able to handle such a data-scale.



Chapter 6

Conclusion

This work presents a detailed outline of the current landscape in distributed optimization with an
application to Deep Learning. We started in Chapter 1 by giving a rough summary of different concepts,
how they are currently applied, and their pitfalls. Furthermore, we introduced our first hypothesis,
which states that workers optimize the central variable efficiently when they compute gradients based
on older central variables which are close to the current central variable, and was proved empirically on
several occasions throughout this thesis.

In addition, while researching other distributed optimization methodologies, we found that
easgd [18] and derivates, have very interesting properties. The first property, which is present
in all easgd derrived algorithms, is the presence of an equilibrium condition. Meaning, points exist
during the optimization process that any additional computations done by a worker are inconsequential.
Furthermore, this equilibrium is especially problematic if the central variable, and workers are close to a
minima, causing easgd to converge (very) slowly to the minima. However, this equilibrium has desired
side-effects in some cases, because it presents the optimizer from overfitting, as shown empirically in
our experiments. Furthermore, a second interesting observation was that in the asynchronous version
of easgd, i.e., aeasgd, the workers are not pushing the central variable towards a minima, as is the
case in settings similar to downpour. But the workers rather act as a normal distribution around
the central variable, i.e., the central variable as the mean of the distribution, with the variance of
the distribution being proportional to the exploration hyperparameter ρ. Afterwards, we considered
dynsgd [8], which is an attempt to deal with staleness in a non-stale-synchronous manner. However,
using our hypothesis, we showed that the way dynsgd deals with staleness, which is in terms of stale
steps, is a rather naive approach.

This resulted in the next contribution of this thesis, agn, which is described in Chapter 3. During
the development of agn, we made the same practical assumptions with respect to constraints as easgd,
i.e., high communication costs. However, it was desired that the optimizer did not have the equilibrium
issues easgd derrived algorithms had. As a result, we turned to downpour, and allowed for more local
exploration by sending accumulated gradients to the parameter server. However, this approach diverged
even quicker than regular downpour, with the difference that data was processed significantly faster
due to the reduced waits. As a result, agn was adapted to use the time between parameter updates
more efficiently by computing a better gradient based on a normalized sequence of first-order gradients.
Furthermore, we showed that agn outperforms all currently existing distributed optimizers in terms
of training, and validation accuracy in the presence of a large amount of concurrency and reduced
communication frequency. However, since stability is also important in distributed optimization, we
introduced a new metric called temporal efficiency, which basically is the ratio between the integrated
area of training metrics of two difference optimizers. As a result, not only the final training accuracy
is considered, but also the stability, and time it took to reach that accuracy.

In addition, as the number of asynchronous workers was increased in agn, divergent behaviour
started to occur. However, agn was able to stabilize in all situations. Nevertheless, this behaviour is

62



CHAPTER 6. CONCLUSION 63

not desired, as it impairs the convergence rate of the central variable. To combat this issue, staleness
had to be redefined in Chapter 4. Contrary to the old definition of staleness (in terms of stale steps),
staleness in parameterized settings is defined as the distance between the parameterization of the
central variable on which a worker bases its gradients, and the current parameterization of the central
variable. This new definition of staleness, together with implicit momentum [14], shows why other
asynchronous optimizers tend to divergence when committing accumulated gradient, or by simply
increasing the number of workers. Furthermore, it also shows why dynsgd had troubles converging,
since what really matters is not the stale steps, but rather the magnitude of the gradient updates.
Using this novel intuition, we constructed a new mechanism to deal with staleness, and further improve
the stability of distributed optimizers. The mechanism, adag, can in principle be combined with any
distributed optimization procedure. However, to efficiently compute the per-weight scaling factor, one
needs to consider the Algorithms described in Chapter 4, and evaluate their pros and cons.

Finally, we introduced and described the experimental setup [9] in Chapter 5. We constructed
the experimental framework, dist-keras, to serve several purposes. However, the main focus of this
framework is on distributed optimization. To accomplish this, the programming interface was simplified
with the purpose to easily implement new distributed optimizers. In addition, since validation and
other training metrics can be computed on different nodes in parallel with ease, because of the provided
utility classes, a better statistic of a model can be obtained by simply increasing the amount of
validation data.

6.1 Contributions
This Section summarizes the contributions of this work, and their empirical validation. First, we
examined existing distributed optimization algorithms such as downpour [4], easgd [18], and
dynsgd [8]. As previously shown, we validate the result that downpour [4] becomes very unstable
as the number of parallel workers increases [14, 5]. To combat this, and to solve the communication
constraints, [18] proposes (a)easgd. Again, we validate the claim of the authors that aeasgd performs
better when a low communication frequency is used. However, we showed in Chapter 2 that due
to the elastic difference mechanism an equilibrium condition occurs which impairs the convergence
rate of (a)easgd, shown in Figure 6.1. Furthermore, when (a)easgd approaches an equilibrium,
additional local computations are in essence wasted, since they won’t push the equilibrium boundary
any further because the elastic difference between the worker and the central variable is too large, i.e.,
worker and central variable are too distant. As a result, one could prevent the waste of computational
resources by implementing an early stopping mechanism whenever a worker approaches an equilibrium
condition. This means whenever Equation 2.10 is satisfied, or when the communication frequency
of the worker is expired, the elastic difference is communicated with the parameter server. This
has the desired effect that the convergence rate of the central variable is drastically improved, given
the fact that the network and the implementation is able to handle the increased bandwith consumption.

The second main contribution of this thesis is an attempt to solve the wasting of computational
resources in (a)easgd due to the equilibrium condition described above. We do this by adapting
downpour to perform gradient accumulation (exploration), and apply a normalization factor which
is proportional to the amount of local exploration steps that needs to be done (λ). As shown in
Chapter 3, this results in a gradient update which is normalized with respect to the amount of local
exploration steps. Meaning, whenever a worker computes a sequence of λ gradients, it will normalize
(average) those gradients with λ. This will cause a gradient update to be reduced in magnitude, but, it
will provide a better direction to a minima, and therefore is able to handle parameter staleness more
efficiently. We call this technique Accumulated Gradient Normalization, or in short, agn. Furthermore,
we show that for most configurations agn outperforms dynsgd and aeasgd in terms of training
accuracy, and thereby obtaining a state-of-the-art performance regarding distributed optimization
using gradient-based methods.

However, as we increase the number of asynchronous workers in the optimizers discussed above,



CHAPTER 6. CONCLUSION 64

stability issues occur during the optimization process. This instability is caused by parameter staleness.
An initial attempt to mitigate the staleness problem was to scale worker updates with respect to the
number of stale steps [8]. However, as shown in Chapter 2, this approach is quite naive and does not
address the underlaying issue. In Chapter 4, we introduced a novel definition of parameter staleness,
and constructed a mechanism (adag) which uses this definition to deal with parameter staleness
effectively contrary to existing methods. Furthermore, to compare different distributed optimization
algorithms against each other in terms of convergence rate and stability, we introduced a novel metric
called temporal efficiency, described in Equation 3.4. Summarized, the following main contributions
are made in this thesis:

• Equilibrium condition of (a)easgd [18], and early stopping mechanism to improve convergence
rate of (a)easgd.

• Redefinition of parameter staleness in terms of distance between two parameterizations.

• Two novel mechanisms, agn and adag, with state-of-the-art performance and robustness against
(distributed) hyperparameterization.

• A novel evaluation metric, temporal efficiency, which also takes the stability of the convergence
into account, which is important in distributed optimization due to the presence of parameter
staleness.

• Asynchronous optimization really benifits close to an minima, since our definition of parameter
staleness says that staleness is small.

6.2 Research Questions
In Section 1.4, we posed several Research Questions which guided the work conducted in this thesis.
Using the knowledge gained by researching this topic, those questions can now be answered.

Research Question 1.
When do workers contribute positively to the central variable during training?

Using our new definition of staleness in parameterized settings, and the fact that implicit momen-
tum [14] follows from parameter staleness, a worker contribution is positive when the distance between
the old central variable, which the worker used to compute its commit, and the current central variable
is small. However, as shown in Chapter 3, staleness in terms of parameter distance is not really an
issue if a better direction to a minima is provided.

To deal with parameter staleness in a highly concurrent configuration, we introduced adag to
construct a per-weight scaling factor which would scale a delta down proportional to the distance
of the old, and new central variable. Which resulted in a more stable convergence rate of the cen-
tral variable due to the automatic scaling of updates from stale workers. Furthermore, in the case
that staleness becomes less of an issue over time, possibly due to the existence of a plateau or a
minima, workers which were scaled significantly before due to staleness, will now contribute posi-
tively to the central variable. Thus, reaching the minima faster due to an implicit increase in asynchrony.

Research Question 2.
Why does asynchronous easgd diverge when a small communication frequency is used, and converges
with a large communication frequency?

Using dist-keras [9], and even in simulations, we sometimes observed divergent behaviour of aeasgd.
After several experiment, we concluded that this instability is induced by a numerical error when the
difference between the old central variable, and current central variable is relatively large (stale). In
addition, if an aeasgd worker commits a very stale elastic difference to the parameter server, it causes



CHAPTER 6. CONCLUSION 65

(a) Equilibrium, no early stopping.
(b) Equilibrium, no early stopping.

(c) Equilibrium, early stopping.
(d) Equilibrium, early stopping.

Figure 6.1: Equilibrium condition of (a)easgd described in Section 2.2.2. To improve the convergence
rate of easgd, we propose an early stopping mechanism which is triggered when a worker is approaching
an equilibrium condition.



CHAPTER 6. CONCLUSION 66

other workers to be very stale as well because workers in easgd do not synchronize with the central
variable. Thus, causing the divergent behaviour. However, this could be corrected with adag, with
the disadvantage of an increased computational cost.

Research Question 3.
What is the nature of staleness in parameterized settings?

According to Definition 4.1.1, staleness in parameterized settings can be defined as: Given a
parameterization for worker k at time t, θkt , based on the central variable θ̃t−τ where τ is the number
of stale steps, and a central variable at time t, θ̃t. Then, staleness is defined as the difference (distance)
between θ̃t and θ̃t−τ .

6.3 Future Work
To conclude this thesis, several interesting points came up during this work that could be addressed in
future work:

An initial point that could be addressed is to provide a better understanding how γ should be defined
in adag. A lower γ is usually correlated with a higher amount of concurrency in the optimization
procedure. Therefore it might be related to implicit momentum, as on average, per time-unit, the
central variable traversed a larger distance in the parameter space compared to a smaller amount of
concurrent workers.

To further improve adag, and possibly reduce to computational complexity, we could take inspira-
tion from the elastic difference in aeasgd, and modify it in such a way that the term could be used to
combat staleness in agn.

Practical and performant system architectures are also an important aspect that needs to be
addressed to improve the convergence rate of a central variable. Therefore, some work has to be done
to construct a performant system architecture which is able to deal with failures, and large datascales,
i.e., peta- or even exabyte scale. Data scale is also an additional issue that is mostly forgotten about,
or regarded as a technical issue. For example, consider a multi-epoch training procedure on petabyte
scale, do we congest the network by sending the training data multiple times over the network, or do
we cache some locally? Furthermore, in most cases the data has to be reshaped into a format a model
can work with. How do we accomplish this, do we transform the data on the fly (multiple epochs,
network cost, computation cost), or do we transform all data once, and store them elsewhere (storage
cost). However, to understand asynchronous gradient descent even better, working on such systems
might provide additional insights that can be used to solve other issues in non-distributed settings,
and even solve problems in computer engineering fields.



Bibliography

[1] G Apollinari et al. High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design
Report. Geneva: CERN, 2015. url: https://cds.cern.ch/record/2116337.

[2] Jianming Bian. “Recent Results of Electron-Neutrino Appearance Measurement at NOvA”. In:
arXiv preprint arXiv:1611.07480 (2016).

[3] James Cipar et al. “Solving the Straggler Problem with Bounded Staleness.” In: HotOS. 2013,
pp. 22–22.

[4] Jeffrey Dean et al. “Large scale distributed deep networks”. In: Advances in neural information
processing systems. 2012, pp. 1223–1231.

[5] Stefan Hadjis et al. “Omnivore: An optimizer for multi-device deep learning on cpus and gpus”.
In: arXiv preprint arXiv:1606.04487 (2016).

[6] Qirong Ho et al. “More effective distributed ml via a stale synchronous parallel parameter server”.
In: Advances in neural information processing systems. 2013, pp. 1223–1231.

[7] Zeljko Ivezic et al. “LSST: from science drivers to reference design and anticipated data products”.
In: arXiv preprint arXiv:0805.2366 (2008).

[8] Jiawei Jiang et al. “Heterogeneity-aware distributed parameter servers”. In: Proceedings of the
2017 ACM International Conference on Management of Data. ACM. 2017, pp. 463–478.

[9] CERN IT-DB Joeri R. Hermans. Distributed Keras: Distributed Deep Learning with Apache
Spark and Keras. https://github.com/JoeriHermans/dist-keras/. 2016.

[10] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[11] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits. 1998.

[12] Gilles Louppe and Pierre Geurts. “A zealous parallel gradient descent algorithm”. In: (2010).

[13] Gilles Louppe, Michael Kagan, and Kyle Cranmer. “Learning to Pivot with Adversarial Networks”.
In: arXiv preprint arXiv:1611.01046 (2016).

[14] Ioannis Mitliagkas et al. “Asynchrony begets momentum, with an application to deep learning”.
In: Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference
on. IEEE. 2016, pp. 997–1004.

[15] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. “Learning Particle Physics by
Example: Location-Aware Generative Adversarial Networks for Physics Synthesis”. In: arXiv
preprint arXiv:1701.05927 (2017).

[16] Benjamin Recht et al. “Hogwild: A lock-free approach to parallelizing stochastic gradient descent”.
In: Advances in Neural Information Processing Systems. 2011, pp. 693–701.

[17] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation”. In: arXiv preprint arXiv:1609.08144 (2016).

[18] Sixin Zhang, Anna E Choromanska, and Yann LeCun. “Deep learning with elastic averaging
SGD”. In: Advances in Neural Information Processing Systems. 2015, pp. 685–693.

67

https://cds.cern.ch/record/2116337
https://github.com/JoeriHermans/dist-keras/


Appendices

68



Appendix A

MNIST Dataset & Model

A.1 Dataset
The MNIST dataset [11], is a collection of labeled handwritten digits. Basically, the objective here is
to classificy a certain input image with associate it with the corresponding natural number. A data
instance consists of 768 gray-scaled pixels, each ranging between 0 and 255.

(a) No preprocessing (b) Preprocessed

Figure A.1: MNIST training instances. Subfigure (a) shows an unprocessed samples, meaning, their
pixel values range between 0 and 255. Whereas Subfigure (b) is preprocessed, i.e., every pixel value is
mapped to a range between 0 and 1.

A.2 Model
This Section describes the model that has been used in smaller experiments throughout this thesis.
In essence it is a very simple model, the model consists of several layers with relu activations, where
finally we apply softmax to the output layer.

mlp = Sequent i a l ( )
mlp . add (Dense (1000 , input_shape =(784 , ) ) )
mlp . add ( Act ivat ion ( ’ r e l u ’ ) )
mlp . add (Dense (2000) )
mlp . add ( Act ivat ion ( ’ r e l u ’ ) )
mlp . add (Dense (1000) )
mlp . add ( Act ivat ion ( ’ r e l u ’ ) )
mlp . add (Dense ( 10 ) )
mlp . add ( Act ivat ion ( ’ softmax ’ ) )

69


	Preface
	Abstract
	Abbreviations and Notation
	Introduction
	Motivation
	Model Parallelism
	Data Parallelism
	Problem Statement
	Thesis Outline

	Related Work
	Introduction
	Synchronous Data Parallelism
	Model Averaging
	Elastic Averaging SGD

	Asynchronous Data Parallelism
	DOWNPOUR
	Dynamic SGD
	Asynchronous Elastic Averaging SGD

	Hybrids
	Stale Synchronous Optimizers


	Accumulated Gradient Normalization
	Concept and intuition
	Experimental Validation

	Asynchronous Distributed Adaptive Gradients
	Problem setting
	Algorithm & Update Rule
	Experiments
	Discussion

	Experimental Setup
	Distributed Keras
	Architecture

	Use-case: CMS Event Identification

	Conclusion
	Contributions
	Research Questions
	Future Work

	References
	MNIST Dataset & Model
	Dataset
	Model


