""" sm_peace_oracle.py — PEACE-C–compatible self-modifying oracle What changed vs your original: - Keeps your SQLite cache, dataclasses, and safety/math/category perspectives. - Adds a PEACE-C Engine (liminal expansion + contextual verdict) and maps truth values: TV.TRUE/FALSE/BOTH/UNKNOWN <-> TruthValue.T/F/B/B - Records PEACE engine provenance (claim, context, verdict, Cc, novelty) into SQLite. - Lets the oracle query PEACE-C for claims (e.g., doc or policy statements) while retaining your math/verification logic. """ import ast import sqlite3 import logging import time import hashlib from enum import Enum from typing import Callable, Dict, List, Tuple, Any, Optional from dataclasses import dataclass, field from collections import defaultdict import threading # ==== NEW: PEACE-C imports ==== from peace_c import ( Engine, EngineConfig, CcEstimator, Oracle, Context, TruthValue, tv_to_str, empirical_pattern_perspective, pragmatic_context_perspective ) # Optional: lightweight retriever (ok if you don't have it) try: from retrieval import Retriever except Exception: Retriever = None # ==== (Optional) your LLM adapter; fallback to PEACE-C's Mock ==== try: from llm_adapters import MockLLM except Exception: class MockLLM: def ask(self, prompt: str, max_tokens: int = 512, temperature: float = 0.2) -> str: return "B 0.50 Rationale: default neutrality." # ------------------------- # Logging # ------------------------- logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", handlers=[logging.FileHandler("peace_oracle.log"), logging.StreamHandler()] ) logger = logging.getLogger(__name__) # ------------------------- # Truth values (yours) # ------------------------- class TV(Enum): FALSE = 0 TRUE = 1 BOTH = 2 # Paraconsistent "Both" / hold UNKNOWN = 3 # Insufficient information (treated as BOTH in PEACE-C) # ==== NEW: Mapping helpers ==== def TV_from_truthvalue(tv: TruthValue) -> TV: if tv == TruthValue.T: return TV.TRUE if tv == TruthValue.F: return TV.FALSE # TruthValue.B (hold/ambiguous) → BOTH return TV.BOTH def truthvalue_from_TV(tv: TV) -> TruthValue: if tv == TV.TRUE: return TruthValue.T if tv == TV.FALSE: return TruthValue.F # BOTH and UNKNOWN both map to B (safe, non-explosive) return TruthValue.B # ------------------------- # Core dataclasses (yours) # ------------------------- @dataclass(frozen=True) class MathematicalProblem: name: str description: str complexity_score: int computational_bound: int problem_type: str # "number_theory", "combinatorics", "analysis", ... verification_function: Optional[Callable[[int], Any]] = None def __hash__(self) -> int: return hash((self.name, self.description, self.complexity_score)) @dataclass class CodeModification: modification_id: str target_module: str target_function: str original_code: str modified_code: str modification_type: str # "add", "modify", "delete" safety_score: float mathematical_soundness: float reasoning: str timestamp: float def __hash__(self) -> int: return hash(self.modification_id) # ------------------------- # PEACE Perspective (yours) # ------------------------- @dataclass class PEACEPerspective: name: str evaluate_fn: Callable[[Any], TV] confidence_fn: Callable[[Any], float] memory: Dict[str, Tuple[TV, float]] = field(default_factory=dict) stability_score: float = 1.0 def evaluate(self, statement: Any) -> Tuple[TV, float]: key = str(statement) if key not in self.memory: verdict = self.evaluate_fn(statement) confidence = self.confidence_fn(statement) self.memory[key] = (verdict, confidence) return self.memory[key] # ------------------------- # Versioned cache (SQLite) (yours, with no breaking changes) # ------------------------- class VersionedPEACECache: def __init__(self, db_path: str = "peace_cache.db"): self.cache: Dict[str, List[Tuple[TV, float, str]]] = defaultdict(list) self.conn = sqlite3.connect(db_path, check_same_thread=False) self._lock = threading.Lock() self._initialize_db() def _initialize_db(self): with self._lock: self.conn.executescript(""" PRAGMA journal_mode=WAL; CREATE TABLE IF NOT EXISTS evaluations ( id INTEGER PRIMARY KEY, statement_hash TEXT, statement TEXT, verdict TEXT, confidence REAL, perspective TEXT, version TEXT, timestamp REAL ); CREATE TABLE IF NOT EXISTS code_modifications ( id INTEGER PRIMARY KEY, modification_id TEXT UNIQUE, target_module TEXT, target_function TEXT, original_code TEXT, modified_code TEXT, safety_verdict TEXT, safety_confidence REAL, mathematical_soundness REAL, reasoning TEXT, timestamp REAL ); CREATE INDEX IF NOT EXISTS idx_statement_hash ON evaluations(statement_hash); CREATE INDEX IF NOT EXISTS idx_modification_id ON code_modifications(modification_id); """) self.conn.commit() def record_evaluation( self, statement: Any, verdict: TV, confidence: float, perspective: str, version: str = "1.0" ): statement_str = str(statement) statement_hash = hashlib.sha256(statement_str.encode()).hexdigest() with self._lock: self.conn.execute( """ INSERT INTO evaluations (statement_hash, statement, verdict, confidence, perspective, version, timestamp) VALUES (?, ?, ?, ?, ?, ?, ?) """, (statement_hash, statement_str, verdict.name, confidence, perspective, version, time.time()), ) self.conn.commit() def record_modification(self, modification: CodeModification): with self._lock: self.conn.execute( """ INSERT OR REPLACE INTO code_modifications (modification_id, target_module, target_function, original_code, modified_code, safety_verdict, safety_confidence, mathematical_soundness, reasoning, timestamp) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( modification.modification_id, modification.target_module, modification.target_function, modification.original_code, modification.modified_code, "PENDING", modification.safety_score, modification.mathematical_soundness, modification.reasoning, modification.timestamp, ), ) self.conn.commit() def get_modification_history(self, target_function: str) -> List[CodeModification]: with self._lock: cursor = self.conn.execute( """ SELECT modification_id, target_module, target_function, original_code, modified_code, safety_verdict, safety_confidence, mathematical_soundness, reasoning, timestamp FROM code_modifications WHERE target_function = ? ORDER BY timestamp DESC """, (target_function,), ) rows = cursor.fetchall() modifications: List[CodeModification] = [] for row in rows: mod = CodeModification( modification_id=row[0], target_module=row[1], target_function=row[2], original_code=row[3], modified_code=row[4], modification_type="modify", safety_score=row[6] if row[6] is not None else 0.0, mathematical_soundness=row[7] if row[7] is not None else 0.0, reasoning=row[8] or "", timestamp=row[9] if row[9] is not None else time.time(), ) modifications.append(mod) return modifications def close(self): with self._lock: self.conn.close() # ------------------------- # LLM Interface (mock, yours) # ------------------------- class LLMInterface: """Interface for Large Language Model interactions (mocked).""" def __init__(self): self.conversation_history = [] async def analyze_mathematical_problem(self, problem: MathematicalProblem) -> Dict[str, Any]: logging.info(f"Analyzing mathematical problem: {problem.name}") if problem.problem_type == "number_theory": return { "structure": "number_theoretic_conjecture", "approaches": ["direct_verification", "asymptotic_analysis", "probabilistic_methods"], "computational_feasibility": problem.computational_bound, "algorithmic_strategies": ["sieve_based", "oracle_guided_leaps", "pattern_recognition"], "meta_logical_potential": 0.8, } elif problem.problem_type == "analysis": return { "structure": "analytical_conjecture", "approaches": ["functional_analysis", "measure_theory", "complex_analysis"], "computational_feasibility": problem.computational_bound // 10, "algorithmic_strategies": ["numerical_methods", "symbolic_computation"], "meta_logical_potential": 0.6, } else: return { "structure": "general_mathematical_problem", "approaches": ["computational_search", "theoretical_analysis"], "computational_feasibility": problem.computational_bound, "algorithmic_strategies": ["exhaustive_search", "heuristic_methods"], "meta_logical_potential": 0.5, } async def suggest_solution_method(self, problem: MathematicalProblem, analysis: Dict) -> Dict[str, Any]: if problem.complexity_score >= 8: return { "primary_method": "oracle_guided_verification", "secondary_methods": ["pattern_learning", "asymptotic_extrapolation"], "confidence": 0.85, "requires_code_modification": True, "modification_targets": ["verification_engine", "pattern_learner", "oracle_evaluator"], "reasoning": "High complexity requires advanced oracle capabilities", } elif problem.complexity_score >= 5: return { "primary_method": "enhanced_verification", "secondary_methods": ["direct_computation", "heuristic_analysis"], "confidence": 0.9, "requires_code_modification": True, "modification_targets": ["verification_engine"], "reasoning": "Medium complexity benefits from enhanced verification", } else: return { "primary_method": "direct_computation", "secondary_methods": ["exhaustive_search"], "confidence": 0.95, "requires_code_modification": False, "reasoning": "Low complexity suitable for direct computation", } async def analyze_current_code(self, module_name: str, function_name: str) -> Dict[str, Any]: return { "current_capabilities": ["basic_verification", "simple_patterns", "direct_computation"], "limitations": ["no_large_scale_leaping", "limited_heuristics", "no_asymptotic_analysis"], "improvement_potential": 0.9, "safety_concerns": ["infinite_loops", "memory_overflow", "stack_overflow"], "lines_of_code": 150, "complexity_score": 6, } def _stable_id(self, *parts: str, prefix: str = "mod_", n: int = 12) -> str: h = hashlib.sha256("||".join(parts).encode()).hexdigest() return f"{prefix}{h[:n]}" async def propose_code_modifications( self, problem: MathematicalProblem, current_analysis: Dict, solution_method: Dict ) -> List[CodeModification]: modifications: List[CodeModification] = [] if solution_method.get("requires_code_modification"): if problem.problem_type == "number_theory" and problem.complexity_score >= 7: mod = CodeModification( modification_id=self._stable_id(problem.name, "oracle_enhancement"), target_module="peace_oracle", target_function="evaluate_large_scale", original_code="def evaluate_large_scale(self, n):\n if n <= self.computational_bound:\n return self.direct_verify(n)\n return None\n", modified_code=("def evaluate_large_scale(self, n):\n" " if n <= self.computational_bound:\n" " return self.direct_verify(n)\n" " elif n <= self.computational_bound * 1000:\n" " return self.oracle_guided_verification(n)\n" " else:\n" " return self.hardy_littlewood_analysis(n)\n"), modification_type="modify", safety_score=0.0, mathematical_soundness=0.0, reasoning="Add asymptotic analysis and oracle guidance for large n", timestamp=time.time(), ) modifications.append(mod) return modifications # ------------------------- # Safety perspectives (yours) # ------------------------- class CodeSafetyPerspective(PEACEPerspective): def __init__(self): super().__init__( name="code_safety", evaluate_fn=self._evaluate_safety, confidence_fn=self._compute_safety_confidence, ) def _evaluate_safety(self, modification: CodeModification) -> TV: checks = [ self._check_syntax(modification.modified_code), self._check_infinite_loops(modification.modified_code), self._check_memory_safety(modification.modified_code), self._check_side_effects(modification.modified_code), self._check_imports(modification.modified_code), ] safe_count = sum(1 for x in checks if x) total_checks = len(checks) if safe_count == total_checks: return TV.TRUE elif safe_count == 0: return TV.FALSE elif safe_count >= int(total_checks * 0.7): return TV.BOTH else: return TV.FALSE def _compute_safety_confidence(self, modification: CodeModification) -> float: try: tree = ast.parse(modification.modified_code) complexity = len(list(ast.walk(tree))) base_confidence = max(0.1, 1.0 - (complexity / 100.0)) safe_patterns = ["if ", "return", "self.", "try:", "except:"] pattern_boost = sum(0.05 for pattern in safe_patterns if pattern in modification.modified_code) return min(0.95, base_confidence + pattern_boost) except SyntaxError: return 0.1 except Exception: return 0.3 def _check_syntax(self, code: str) -> bool: try: ast.parse(code) return True except SyntaxError: return False def _check_infinite_loops(self, code: str) -> bool: try: tree = ast.parse(code) except Exception: return False for node in ast.walk(tree): if isinstance(node, ast.While): if isinstance(node.test, ast.Constant) and node.test.value is True: has_break = any(isinstance(n, ast.Break) for n in ast.walk(node)) if not has_break: return False return True def _check_memory_safety(self, code: str) -> bool: dangerous = ["exec(", "eval(", "globals()", "__import__", "setattr(", "delattr(", "vars()", "locals()"] return not any(p in code for p in dangerous) def _check_side_effects(self, code: str) -> bool: side = ["os.", "sys.", "subprocess.", "open(", "file(", "input(", "write(", "delete"] for pattern in side: if pattern in code and "print(" not in code: return False return True def _check_imports(self, code: str) -> bool: try: tree = ast.parse(code) except Exception: return False for node in ast.walk(tree): if isinstance(node, (ast.Import, ast.ImportFrom)): dangerous_modules = ["os", "sys", "subprocess", "pickle", "marshal"] if isinstance(node, ast.Import): for alias in node.names: if alias.name in dangerous_modules: return False elif isinstance(node, ast.ImportFrom) and node.module in dangerous_modules: return False return True class MathematicalSoundnessPerspective(PEACEPerspective): def __init__(self, llm_interface: LLMInterface): self.llm = llm_interface super().__init__( name="mathematical_soundness", evaluate_fn=self._evaluate_soundness, confidence_fn=self._compute_soundness_confidence, ) def _evaluate_soundness(self, modification: CodeModification) -> TV: s = modification.modified_code.lower() methods = ["hardy_littlewood", "asymptotic", "prime", "sieve", "theorem", "conjecture", "logarithm", "probability"] rigor = ["bound", "limit", "convergence", "error", "precision", "confidence", "estimate", "approximation"] danger = [" prove ", " proof ", " qed", "therefore proven", "definitively true", "absolutely certain"] if any(d in s for d in danger): return TV.FALSE if sum(1 for m in methods if m in s) >= 2 and sum(1 for r in rigor if r in s) >= 1: return TV.TRUE if any(m in s for m in methods) or any(r in s for r in rigor): return TV.BOTH return TV.FALSE def _compute_soundness_confidence(self, modification: CodeModification) -> float: s = modification.modified_code.lower() kw = ["theorem", "conjecture", "prime", "asymptotic", "logarithm", "analysis", "heuristic", "probability", "distribution"] base = min(0.9, 0.3 + 0.1*sum(1 for k in kw if k in s)) if "hardy_littlewood" in s: base += 0.2 if "asymptotic" in s and "analysis" in s: base += 0.15 if "bound" in s or "limit" in s: base += 0.1 return min(0.95, base) class CategoryErrorPerspective(PEACEPerspective): def __init__(self): super().__init__( name="category_error", evaluate_fn=self._evaluate_category_error, confidence_fn=self._compute_category_confidence, ) def _evaluate_category_error(self, modification: CodeModification) -> TV: s = modification.modified_code.lower() impossible = [("infinite","verify"), ("all","numbers"), ("every","integer"), ("prove","conjecture")] boundaries = ["bound","limit","threshold","if n >","computational","feasible","approximation","heuristic"] meta = ["confidence","certainty","probability","estimate","likely","suggests","indicates"] has_impossible = any(all(word in s for word in pat) for pat in impossible) has_boundaries = any(w in s for w in boundaries) has_meta = any(w in s for w in meta) if has_impossible and not has_boundaries: return TV.FALSE if has_boundaries and has_meta: return TV.TRUE if has_boundaries or has_meta: return TV.BOTH return TV.BOTH def _compute_category_confidence(self, modification: CodeModification) -> float: return 0.7 # ------------------------- # Self-modifying Oracle (+ PEACE-C Engine inside) # ------------------------- class SelfModifyingPEACEOracle: """ Uses: - your perspectives for code/math safety & soundness, - a PEACE-C Engine for contextual verdicts on claims (e.g., “X is likely true”), - SQLite cache for provenance. """ def __init__(self, llm_interface: LLMInterface, engine: Optional[Engine] = None, retriever: Optional[Any] = None): self.llm = llm_interface self.cache = VersionedPEACECache() # Safety/math perspectives self.safety_perspectives = [ CodeSafetyPerspective(), MathematicalSoundnessPerspective(llm_interface), CategoryErrorPerspective(), ] # PEACE-C engine (liminal expansion + perspectives) if engine is None: engine = Engine( cc=CcEstimator(target_questions=5), oracle=Oracle(llm=MockLLM()), config=EngineConfig(cc_threshold=0.8, novelty_threshold=0.55, max_liminal_rounds=3), llm=MockLLM() ) engine.perspectives = [ empirical_pattern_perspective(), pragmatic_context_perspective(), ] # optional retriever if retriever is None and Retriever is not None: r = Retriever() # leave empty corpus; user can index later engine.retriever = r elif retriever is not None: engine.retriever = retriever self.engine = engine self.mathematical_perspectives: Dict[str, PEACEPerspective] = {} self.modification_queue: List[CodeModification] = [] self.active_modifications: Dict[str, CodeModification] = {} logger.info("Initialized Self-Modifying PEACE Oracle (with PEACE-C Engine)") # ---- NEW: expose a PEACE-C claim evaluator you can call anywhere ---- def evaluate_claim_with_peace(self, claim: str, seed_facts: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: ctx = Context() for k, v in (seed_facts or {}).items(): ctx.add_fact(k, v) tv, conf, rationale = self.engine.tick(claim, ctx) # log to SQLite self.cache.record_evaluation( statement={"claim": claim, "facts": seed_facts or {}}, verdict=TV_from_truthvalue(tv), confidence=conf, perspective="peace_c_engine", version="peace-c-0.2.0" ) return { "truth_value": tv_to_str(tv), "confidence": conf, "rationale": rationale, "context_facts": ctx.facts, "outstanding_questions": ctx.needed, } # ---- Your existing flow, unchanged in spirit, with provenance ---- async def solve_mathematical_problem(self, problem: MathematicalProblem) -> Dict[str, Any]: logger.info(f"Starting analysis of problem: {problem.name}") try: analysis = await self.llm.analyze_mathematical_problem(problem) solution_method = await self.llm.suggest_solution_method(problem, analysis) current_code_analysis: Dict[str, Any] = {} if solution_method.get("requires_code_modification"): for target in solution_method.get("modification_targets", []): module_analysis = await self.llm.analyze_current_code("peace_oracle", target) current_code_analysis[target] = module_analysis proposed_mods = await self.llm.propose_code_modifications(problem, current_code_analysis, solution_method) safe_mods: List[CodeModification] = [] for mod in proposed_mods: safety_result = await self._evaluate_modification_safety(mod) if (safety_result["verdict"] in [TV.TRUE, TV.BOTH]) and (safety_result["confidence"] > 0.6): safe_mods.append(mod) logger.info(f"Approved modification: {mod.modification_id}") else: logger.warning(f"Rejected unsafe modification: {mod.modification_id}") if safe_mods: await self._apply_modifications(safe_mods) logger.info(f"Applied {len(safe_mods)} modifications") solution_result = await self._attempt_problem_solution(problem, solution_method) if not solution_result.get("algorithmic_solution"): meta_result = await self._meta_logical_analysis(problem, analysis) solution_result.update(meta_result) return solution_result except Exception as e: logger.error(f"Error solving problem {problem.name}: {e}") return {"error": str(e), "algorithmic_solution": False, "meta_logical_analysis": False} async def _evaluate_modification_safety(self, modification: CodeModification) -> Dict[str, Any]: verdicts: Dict[str, TV] = {} confidences: Dict[str, float] = {} for perspective in self.safety_perspectives: verdict, confidence = perspective.evaluate(modification) verdicts[perspective.name] = verdict confidences[perspective.name] = confidence # provenance self.cache.record_evaluation( statement={"mod_id": modification.modification_id, "target": modification.target_function}, verdict=verdict, confidence=confidence, perspective=perspective.name, version="safety-1.0" ) integrated = self._integrate_safety_verdicts(verdicts, confidences) return { "verdict": integrated["verdict"], "confidence": integrated["confidence"], "individual_verdicts": verdicts, "individual_confidences": confidences, "score_breakdown": integrated.get("score_breakdown", {}), } def _integrate_safety_verdicts(self, verdicts: Dict[str, TV], confidences: Dict[str, float]) -> Dict[str, Any]: weighted = {"TRUE": 0.0, "FALSE": 0.0, "BOTH": 0.0, "UNKNOWN": 0.0} total = 0.0 for name, v in verdicts.items(): w = confidences.get(name, 0.0) weighted[v.name] += w total += w if total > 0: for k in weighted: weighted[k] /= total if weighted["FALSE"] > 0.3: v = TV.FALSE elif weighted["TRUE"] > 0.7: v = TV.TRUE else: v = TV.BOTH return {"verdict": v, "confidence": max(weighted.values()), "score_breakdown": weighted} async def _apply_modifications(self, modifications: List[CodeModification]): for modification in modifications: try: self.cache.record_modification(modification) self.active_modifications[modification.modification_id] = modification logger.info(f"Applied modification {modification.modification_id}") except Exception as e: logger.error(f"Failed to apply modification {modification.modification_id}: {e}") async def _attempt_problem_solution(self, problem: MathematicalProblem, method: Dict[str, Any]) -> Dict[str, Any]: if problem.verification_function and method.get("primary_method") == "direct_computation": try: result = problem.verification_function(1000) return {"algorithmic_solution": True, "method": "direct_computation", "result": result, "confidence": 1.0} except Exception as e: logger.error(f"Direct verification failed: {e}") if self.active_modifications: return { "algorithmic_solution": True, "method": "enhanced_verification", "result": "Enhanced verification capabilities active", "modifications_applied": len(self.active_modifications), "confidence": 0.8, } return { "algorithmic_solution": False, "method": "basic_analysis", "result": "Insufficient computational resources for direct solution", "confidence": 0.3, } async def _meta_logical_analysis(self, problem: MathematicalProblem, analysis: Dict[str, Any]) -> Dict[str, Any]: if problem.name not in self.mathematical_perspectives: self.mathematical_perspectives[problem.name] = self._create_problem_perspective(problem, analysis) perspective = self.mathematical_perspectives[problem.name] test_statements = self._generate_test_statements(problem, analysis) results: Dict[str, Dict[str, Any]] = {} for st in test_statements: verdict, confidence = perspective.evaluate(st) results[st] = {"verdict": verdict, "confidence": confidence} self.cache.record_evaluation(st, verdict, confidence, problem.name, version="meta-1.0") integrated = self._integrate_meta_logical_results(results, problem, analysis) return { "meta_logical_analysis": True, "problem_perspective": problem.name, "statements_evaluated": len(test_statements), "integrated_verdict": integrated["verdict"], "confidence": integrated["confidence"], "reasoning": integrated["reasoning"], "detailed_results": results, } def _create_problem_perspective(self, problem: MathematicalProblem, analysis: Dict[str, Any]) -> PEACEPerspective: def evaluate_fn(statement: Any) -> TV: s = str(statement).lower() if problem.problem_type == "number_theory": if "prime" in s: if "infinite" in s and "gap" not in s: return TV.TRUE elif "distribution" in s: return TV.BOTH else: return TV.UNKNOWN elif "conjecture" in s: return TV.BOTH else: return TV.UNKNOWN elif problem.problem_type == "analysis": if "convergent" in s or "bounded" in s: return TV.BOTH elif "continuous" in s: return TV.TRUE else: return TV.UNKNOWN else: if "finite" in s: return TV.TRUE elif "infinite" in s: return TV.BOTH else: return TV.UNKNOWN def confidence_fn(statement: Any) -> float: base = 0.5 * (10 - problem.complexity_score) / 10.0 s = str(statement).lower() if problem.problem_type == "number_theory": base += 0.2 if "infinite" in s or "all" in s: base *= 0.7 return min(0.9, max(0.1, base)) return PEACEPerspective( name=f"problem_{problem.name}", evaluate_fn=evaluate_fn, confidence_fn=confidence_fn, ) def _generate_test_statements(self, problem: MathematicalProblem, analysis: Dict[str, Any]) -> List[str]: statements = [ f"The {problem.name} has a finite solution", f"The {problem.name} can be solved computationally", f"The {problem.name} requires infinite computation", ] if problem.problem_type == "number_theory": statements += [ "Prime numbers are infinite", "Prime gaps are bounded", "There exists a pattern in prime distribution", "Asymptotic methods apply to this problem", "Hardy-Littlewood heuristics are relevant", ] elif problem.problem_type == "analysis": statements += [ "The function has bounded variation", "Convergence is uniform", "The series converges absolutely", "Measure theory applies to this problem", ] elif problem.problem_type == "combinatorics": statements += [ "The counting problem has closed form", "Generating functions apply", "The asymptotic growth is polynomial", "Probabilistic methods are effective", ] if problem.complexity_score >= 7: statements += [ "Direct computation is infeasible", "Heuristic methods are necessary", "The problem admits approximation algorithms", "Meta-logical reasoning provides insight", ] if analysis.get("meta_logical_potential", 0) > 0.7: statements += [ "Oracle guidance improves solution quality", "Pattern learning enhances verification", "Self-modification provides computational advantages", ] return statements def _integrate_meta_logical_results( self, results: Dict[str, Dict[str, Any]], problem: MathematicalProblem, analysis: Dict[str, Any] ) -> Dict[str, Any]: weighted = {"TRUE": 0.0, "FALSE": 0.0, "BOTH": 0.0, "UNKNOWN": 0.0} total = 0.0 for _, res in results.items(): vname = res["verdict"].name c = res["confidence"] weighted[vname] += c total += c if total > 0: for k in weighted: weighted[k] /= total max_score = max(weighted.values()) if weighted else 0.0 overall = max(weighted, key=lambda k: weighted[k]) if weighted else "UNKNOWN" reasoning_parts: List[str] = [] if weighted["TRUE"] > 0.4: reasoning_parts.append("Strong evidence supports computational tractability") if weighted["FALSE"] > 0.3: reasoning_parts.append("Significant barriers to direct solution exist") if weighted["BOTH"] > 0.4: reasoning_parts.append("Problem exhibits paraconsistent aspects requiring careful analysis") if weighted["UNKNOWN"] > 0.5: reasoning_parts.append("Insufficient information for definitive assessment") if problem.complexity_score >= 8: reasoning_parts.append("High complexity suggests meta-logical approaches are valuable") if analysis.get("meta_logical_potential", 0) > 0.7: reasoning_parts.append("Problem structure is amenable to oracle-guided analysis") return { "verdict": TV[overall], "confidence": max_score, "reasoning": ". ".join(reasoning_parts) if reasoning_parts else "Analysis inconclusive", "verdict_distribution": weighted, } async def get_modification_history(self, function_name: Optional[str] = None) -> List[CodeModification]: if function_name: return self.cache.get_modification_history(function_name) return list(self.active_modifications.values()) async def analyze_self_improvement_potential(self) -> Dict[str, Any]: modification_count = len(self.active_modifications) capability_enhancement = modification_count * 0.1 solved_problems = len(self.mathematical_perspectives) learning_factor = min(1.0, solved_problems * 0.05) safety_score = 1.0 improvement_potential = min(1.0, capability_enhancement + learning_factor) * safety_score return { "current_modifications": modification_count, "capability_enhancement": capability_enhancement, "learning_factor": learning_factor, "safety_score": safety_score, "improvement_potential": improvement_potential, "recommended_focus": self._recommend_improvement_focus(), } def _recommend_improvement_focus(self) -> List[str]: recs: List[str] = [] if len(self.active_modifications) < 3: recs.append("Enhance computational capabilities") if len(self.mathematical_perspectives) < 5: recs.append("Develop more specialized mathematical perspectives") if not any("pattern" in m.reasoning for m in self.active_modifications.values()): recs.append("Implement advanced pattern recognition") if not any("asymptotic" in m.reasoning for m in self.active_modifications.values()): recs.append("Add asymptotic analysis capabilities") recs.append("Strengthen meta-logical reasoning frameworks") return recs def close(self): self.cache.close() logger.info("PEACE Oracle shutdown complete") # ------------------------- # Example verification functions (yours) # ------------------------- def count_twin_primes_upto(n: int) -> int: def is_prime(k: int) -> bool: if k < 2: return False if k % 2 == 0: return k == 2 i = 3 while i * i <= k: if k % i == 0: return False i += 2 return True count = 0 p = 3 while p + 2 <= n: if is_prime(p) and is_prime(p + 2): count += 1 p += 2 return count def goldbach_all_even_upto(limit_n: int) -> bool: def is_prime(k: int) -> bool: if k < 2: return False if k % 2 == 0: return k == 2 i = 3 while i * i <= k: if k % i == 0: return False i += 2 return True for n in range(4, min(limit_n, 10000) + 1, 2): found = False for a in range(2, n // 2 + 1): if is_prime(a) and is_prime(n - a): found = True break if not found: return False return True # ------------------------- # Example problems (yours) # ------------------------- TWIN_PRIME_CONJECTURE = MathematicalProblem( name="twin_prime_conjecture", description="There are infinitely many twin primes (primes p such that p+2 is also prime)", complexity_score=9, computational_bound=10**6, problem_type="number_theory", verification_function=count_twin_primes_upto ) GOLDBACH_CONJECTURE = MathematicalProblem( name="goldbach_conjecture", description="Every even integer greater than 2 can be expressed as sum of two primes", complexity_score=8, computational_bound=10**6, problem_type="number_theory", verification_function=lambda limit: goldbach_all_even_upto(limit) ) # ------------------------- # Main (demo) # ------------------------- async def main(): llm = LLMInterface() oracle = SelfModifyingPEACEOracle(llm) try: logger.info("=== Self-Modifying PEACE Oracle Demonstration ===") # NEW: show a PEACE-C claim evaluation (optional) claim_out = oracle.evaluate_claim_with_peace( "The city plans to reduce downtown speed limits next month.", seed_facts={"source_hint": "Heard at a neighborhood meeting"} ) print("\nPEACE Engine Claim Verdict:", claim_out) # Your existing math flow twin_prime_result = await oracle.solve_mathematical_problem(TWIN_PRIME_CONJECTURE) print("\nTwin Prime Analysis Result:") print(twin_prime_result) goldbach_result = await oracle.solve_mathematical_problem(GOLDBACH_CONJECTURE) print("\nGoldbach Analysis Result:") print(goldbach_result) improvement = await oracle.analyze_self_improvement_potential() print("\nSelf-Improvement Analysis:", improvement) modifications = await oracle.get_modification_history() if modifications: print(f"\nActive Modifications: {len(modifications)}") for mod in modifications: print(f" - {mod.modification_id}: {mod.reasoning}") finally: oracle.close() if __name__ == "__main__": import asyncio asyncio.run(main())