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Abstract

Burchert, Decker and Wattenhofer introduced the idea of factories that allow multiple
two-party channels to be created and re-sized with a single on-chain transaction and they
created a protocol for a factory that can be closed unilaterally in O(log S) time using
O(log S) on-chain transactions, assuming the factory supports S states. This paper
presents protocols for factories that can be closed unilaterally in O(1) time using O(1)
on-chain transactions, thus further improving the scalability of Bitcoin and the Lightning
Network. No change to the underlying Bitcoin protocol is required.

1  Overview
Factories that allow multiple two-party Lightning [AOP21][BOLT][PD16] channels to be created, re-
sized and closed with a small number of on-chain transactions are essential to the scalability of Bitcoin 
[BDW18].  Let P denote the number of parties, C denote the number of channels created, and S denote 
the number of factory states supported. The most efficient previously-known factory, created by 
Burchert, Decker and Wattenhofer [BDW18], can be closed unilaterally in O(log S) time using O(log S)
on-chain transactions and O(C + log S) on-chain bytes1. For any given factory state, a single fixed 
transaction is used to instantiate the factory's channels when it is closed unilaterally, so the parties using
the factory can maintain just one version of each off-chain channel state. Performing a unilateral close 
with O(log S) on-chain transactions requires that the party closing the factory interact with the 
blockchain at O(log S) different blockheights (so a unilateral close is an O(log S)-shot procedure 
[Law22a]), which could be awkward for some users [Zmn22].

This paper presents two protocols for factories that can be closed unilaterally in O(1) time using O(1) 
on-chain transactions. The first protocol, called the Tunable-Penalty Factory (TPF) protocol, requires 
only O(C) on-chain bytes for a unilateral close, but it can use P different transactions to instantiate the 
factory's channels, thus forcing the parties using the factory to maintain P different versions of each 

1 See Appendix A of [Law22c] for an analysis of how the number of on-chain transactions and the factory close time can 
be traded-off. The byte analysis presented here assumes that Schnorr signatures are used.
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off-chain channel state. The second protocol, called the Single-Commitment (SC) protocol, requires 
O(C + log S) on-chain bytes for a unilateral close, but it uses only a single transaction to instantiate the 
factory's channels, so multiple versions of off-chain channel states are not required. The TPF protocol 
is particularly simple and allows a 2-shot unilateral close (that is, the party closing the channel only has
to perform actions at 2 different blockheights).

Both protocols are based on the Tunable-Penalty Channel (TPC) protocol [Law22b]2 and they share 
many of its properties, including:

• tunable penalties for putting old transactions on-chain, and

• watchtowers with storage that is logarithmic in the number of factory states supported (but 

linear in the number of parties in the factory).

No change to the underlying Bitcoin protocol is required.

The rest of this paper is organized as follows. The TPF protocol is presented in Section 2. Section 3 
describes how that protocol can be modified to obtain the SC protocol. Sections 4 and 5 give related 
work and conclusions. A proof of correctness for the SC protocol is given in Appendix A.

2  The Tunable-Penalty Factory (TPF) Protocol

2.1  Overview

The Tunable-Penalty Factory (TPF) protocol is a slight modification of the Tunable-Penalty Channel 
(TPC) protocol [Law22b].

Each party using the TPC protocol has their own on-chain Individual transaction, the output of which 
they spend with their State transaction. This State transaction is a control transaction and its first 
output's value is equal to the desired penalty for putting an old State transaction on-chain. This first 
output can be spent by the same party's Commitment transaction for the same state, but only after a 
relative delay equal to the maximum of the parties' to_self_delay parameters3. The relative delay gives 
the other party time to revoke an old State transaction by spending its first output and thus claiming the 
penalty. The TPC protocol's State transaction also has an HTLC control output for each HTLC that is 
active in that state. The TPC protocol revokes old State transactions with per-commitment keys that can
be known to all parties, rather than with revocation keys that cannot be known by the party putting the 
revocable transaction on-chain [Law22b].

The TPC protocol is modified to create the TPF protocol by:

2 The Tunable-Penalty Channel (TPC) protocol was called the Tunable-Penalty (TP) protocol in that paper. It is referred 
to here as the TPC protocol in order to distinguish it from the Tunable-Penalty Factory (TPF) protocol.

3 A party's to_self_delay parameter is a safety parameter that is the minimum relative delay before another party can 
claim the output of a revocable transaction that they put on-chain [AOP21][BOLT][PD16]. The delay is set to be 
large enough to guarantee that a revoked transaction can be detected and its output can be spent (thus revoking it) 
before being claimed by the party that put it on-chain.
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• eliminating the HTLC control outputs from the State transactions,

• modifying the Commitment transactions to have channel outputs, each of which is owned by 

two parties in the factory (rather than having two individually-owned outputs plus HTLC 
outputs), and

• supporting P > 2 parties by allowing each party to have their own Individual, State and 

Commitment transactions.

2.2  Protocol Specification

Protocol Transactions

The resulting TPF protocol is shown in Figure 1.
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Figure 1. The Tunable-Penalty Factory (TPF) Protocol. Each of the P parties has their own
Individual (In), State (St) and Commitment (Com) transactions. Old State transactions are revoked

using per-commitment keys that are known to all parties.

In Figure 1 (and throughout the paper):

• {A..Z} denotes {A..Z}'s signature (a single party's signature),

• A..Z denotes A..Z's signature (every party's signature),
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• pairs of capital letters indicate signatures from those two parties,

• pckey{A..Z}i denotes a signature using a per-commitment key for revoking {A..Z}'s state i 

transaction, and

• tsdAZ denotes the maximum of the to_self_delay parameters set by the P parties.

Shaded boxes represent transactions that are on-chain, while unshaded boxes represent off-chain 
transactions. Each box includes a label showing the transaction type, namely:

• F for the Funding transaction,

• CC for a Cooperative Close transaction,

• In for an Individual transaction,

• St for a State transaction, and

• Com for a Commitment transaction.

Subscripts denote which party can put the transaction on-chain (if only one party can do so) and which 
channel state the transaction is associated with (namely state i in the figure).

Bold lines carry factory funds and thin solid lines have value equal to the tunable penalty amount. 
When a single output can be spent by multiple off-chain transactions, those transactions are said to 
conflict, and only one of them can be put on-chain. A party will be said to submit a transaction when 
they attempt to put it on-chain.

Protocol Operation

The operation of the TPF protocol is based on that of the TPC protocol [Law22b].

In order to establish a new factory state, all parties:

1. calculate the State and Commitment transactions for the new state4,

2. exchange partial signatures for the new state's Commitment transactions, and

3. exchange per-commitment keys for the old state, thus revoking it.

All parties constantly look for old (revoked) State transactions put on-chain by other parties, and if they
find such a transaction they use the corresponding per-commitment key to spend its first output, thus 
obtaining the penalty funds and revoking the old state. Once a State transaction has been on-chain for 
tsdAZ without its first output being spent, the party that put the State transaction on-chain can attempt 
to put their corresponding Commitment transaction on-chain at any time5. Because old State 

4 This step requires that each party shares their per-commitment pubkey for the new state with each of the other parties.
5 Unlike the TPC protocol, the TPF protocol allows parties to arbitrarily delay putting their Commitment transaction on-

chain. This is because TPF protocol does not support HTLCs at the factory-level, so any party with an unrevoked State 
transaction can put their corresponding Commitment transaction on-chain.
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transactions are revoked before their corresponding Commitment transaction can be put on-chain, and 
because Commitment transactions require signatures from all parties, only current Commitment 
transactions can be put on-chain.

Analysis

Any party can close the factory unilaterally by putting their current State transaction on-chain, waiting 
until it has been on-chain for tsdAZ, and then submitting their corresponding Commitment transaction. 
Either that party's Commitment transaction, or a conflicting Commitment transaction from another 
party, will then appear on-chain. As a result, unilateral factory closes are 2-shot and require O(1) on-
chain transactions and time.

As was the case with the TPC protocol, per-commitment keys can use the Lightning protocol's compact
storage technique for revocation keys to consume only O(log S) storage to revoke a maximum of S old 
transactions that could be put on-chain by a single other party [Rus][Law22b]. Therefore, each party 
requires O(P*log S) storage to hold the per-commitment keys for all of the P parties.

Watchtowers

If desired, parties using the TPF protocol can choose to use an untrusted watchtower to monitor the 
blockchain and revoke old transactions put on-chain by other parties. Because the watchtower can 
know per-commitment keys for revoked transactions, each watchtower requires O(P*log S) storage to 
hold the per-commitment keys for all of the P parties.

However, note that the parties using the TPF protocol can set their to_self_delay parameters to 
extremely large values (such as 1-3 months in the case of a casual user [Law22a]), thus allowing them 
to be unavailable for long periods without having to rely on a watchtower. As long as the channels 
created by the TPF factory use factory-optimized protocols, such as the PFO, FFO or FFO-WF protocol
[Law22c], the large to_self_delay parameters will have no effect on the time to resolve HTLCs within 
the channels.

Off-Chain Control Outputs

As was the case for the TPC protocol [Law22b], a party that operates multiple factories using the TPF 
protocol can use a single UTXO to fund the inputs to the State transactions in all of their factories.

3  The Single-Commitment (SC) Factory Protocol

3.1  Overview

Note that the TPF protocol uses P conflicting Commitment transactions to establish the factory state 
and to instantiate the factory's channels. Therefore, a separate channel state must be maintained and 
updated for each of the P versions of the channel that could be instantiated, thus increasing the 
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computation, storage, and communication for channels by a factor of P. The result could be quite 
expensive if there are a large number of parties in the factory.

The SC protocol eliminates this factor of P blow-up by having all of the parties use a single shared 
Commitment transaction. Like the TPF protocol, the SC protocol uses revocable State transactions, 
each of which spends a single party's Individual transaction output, to ensure that only the current 
Commitment transaction can be put on-chain. The challenge is how to use a single shared Commitment
transaction that depends on the value of an unrevoked State transaction without actually spending any 
of the outputs of that State transaction (as spending a State transaction output would make the 
Commitment transaction's input dependent on which party's State transaction it spends, thus preventing
the use of a single shared Commitment transaction). This challenge is solved by introducing a shared 
Trigger transaction and a per-user Mold transaction, where the Commitment and Mold transactions 
compete for the Trigger transaction's outputs. The Mold transaction is put on-chain prior to the 
Commitment transaction, and it constrains the Commitment transactions that can be put on-chain 
somewhat like how a mold shapes a liquid that is poured into it.

3.2  Protocol Specification

Protocol Transactions

The SC protocol is shown in Figure 2, which includes the Trigger (Tr) and Mold transactions.

Page 7



Figure 2. The SC Factory Protocol. The Trigger transaction has log2 S control outputs that encode the
current state number, with the Mold and Commitment transactions competing to spend those outputs.
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The SC protocol takes a parameter S that determines the maximum number of factory states supported6,
where S is a power of 2. The Trigger transaction has one value output and log2 S control outputs, 
numbered 0 .. log2 S - 1. Commitment transaction i, 0 ≤ i ≤ S - 1, spends those Trigger control outputs 
b, 0 ≤ b ≤ log2 S - 1, such that bit position b of the binary representation of i is a 0. Each Mold 
transaction i, 0 ≤ i ≤ S - 1, spends the output of the same party's State i transaction, and Trigger control 
outputs b, 0 ≤ b ≤ log2 S - 1, such that bit position b of the binary representation of i is a 1. States 0 
through S - 1 are supported, with the exception of states of the form 2b where 1 ≤ b ≤ log2 S - 17.

Protocol Operation

The operation of the SC protocol is similar that of the TPF protocol.

In order to establish a new factory state, all parties:

4. calculate the State, Mold and Commitment transactions for the new state8,

5. exchange partial signatures for the new state's Commitment and Mold transactions (in that 
order), and

6. exchange per-commitment keys for the old state, thus revoking it.

All parties constantly look for old (revoked) State transactions put on-chain by any party, and if they 
find such a transaction they use the corresponding per-commitment key to spend its first output, thus 
obtaining the penalty funds and revoking the old state.

In order to put the factory on-chain, a party submits the Trigger transaction and their current 
(unrevoked) State transaction to the blockchain. As soon as their State transaction has been on-chain for
tsdAZ, that party submits their Mold transaction for the same state to the blockchain. Once the Trigger 
transaction has been on-chain for at least 3tsdAZ, that party submits to the blockchain the Commitment 
transaction for the same state as the on-chain Mold transaction.

Also, all parties constantly monitor the blockchain for the Trigger transaction, and if they find it on-
chain they use the above protocol for putting the factory on-chain9 as soon as possible.

Finally, whenever a party detects either the Trigger transaction or an unrevoked State transaction on-
chain, that party stops updating the factory state.

Correctness

The rules for how the Commitment and Mold transactions spend the Trigger transaction's control 
outputs guarantee that once a Mold transaction for state i is fixed on-chain, only a Commitment 

6 Specifically, S - log2S + 1 states are supported.
7 These exceptions exist in order to prevent Mold transactions for two consecutive states from both being put on-chain 

where they would prevent any current Commitment transaction from being put on-chain. When state i is supported but 
state i+1 is not, the next state after i is i+2.

8 This step requires that each party shares their per-commitment pubkey for the new state with each of the other parties.
9 Minus submitting the Trigger transaction to the blockchain, as it is already on-chain.
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transaction for the same state i, or for a later state, can be put on-chain. Because only Mold transactions
for unrevoked State transactions can be put on-chain, and because only the latest State transactions can 
be unrevoked, only the latest (and thus current) Commitment transactions can be put on-chain.

This reasoning is formalized in the proof of correctness in Appendix A.

Analysis

While the SC protocol requires O(1) time and O(1) on-chain transactions for a unilateral factory close, 
the Trigger transactions have O(log S) outputs, Mold transactions have O(log S) inputs, and 
Commitment transactions have O(log S) inputs and O(C) outputs and , so the total on-chain bytes 
required for a unilateral close is O(C + log S).

Also, note that if a Trigger transaction is detected on-chain, all parties put their State transactions on-
chain, thus adding O(P) on-chain transactions and on-chain bytes. In the case of a party that is closing 
the factory unilaterally according to the protocol, the race by all parties to put their State transactions 
on-chain is excessive.

One way to address this inefficiency is to increase the relative delay from the Trigger transaction to the 
Commitment transaction from 3tsdAZ to 6tsdAZ. When a party follows the protocol and closes the 
factory unilaterally, their current Mold transaction will be on-chain within 3tsdAZ of the Trigger 
transaction. The remaining parties can therefore wait until 3tsdAZ after the Trigger transaction is on-
chain before they put their State transactions on-chain. If no Mold transaction is on-chain within 
3tsdAZ of the Trigger transaction, the remaining parties realize that the party putting the Trigger 
transaction on-chain is not following the protocol, so they need to put their State and Mold transactions 
on-chain as quickly as possible in order to guarantee that only a current Commitment transaction can be
put on-chain.

4  Related Work
The concept of creating a Lightning channel factory, as well as the most efficient published protocol for
such a factory, was presented by Burchert, Decker and Wattenhofer [BDW18]. The protocols given 
here differ in only requiring O(1) time and O(1) on-chain transactions for a unilateral close.

A number of researchers have proposed changes to Bitcoin in order to support simpler and more 
efficient factories. The eltoo factory protocol [DRO18] has a particularly simple structure and it allows 
the parties to maintain only one version of each off-chain channel state. It requires O(1) time, O(1) on-
chain transactions and O(C) on-chain bytes for a unilateral close with C channels. However, a 
malicious party could delay the closing of the factory until O(S) transactions are put on-chain, if S 
states are supported and the malicious party is willing to pay the required fees. The eltoo protocol 
differs from the protocols presented here by requiring a change to Bitcoin, namely the support for BIP 
118 [BIP118].
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The TPF and SC protocols are based on the TPC protocol presented by Law [Law22b].

5  Conclusions
This paper presents new factory protocols that require O(1) time and O(1) on-chain transactions for a 
unilateral close. They are the first factory protocols known that achieve those bounds with the existing 
Bitcoin protocol. The ability to unilaterally close a factory with just two or three submissions to the 
blockchain, with a fixed delay between them, is quite a bit simpler than closing previously-published 
factories [BDW18]. As a result, it is hoped that TPF and SC factories will lead to the increased use of 
factories in practice, thus improving the scalability of Bitcoin and Lightning.
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Appendix A: Proof of Correctness of the SC Protocol
First, note that the Trigger and Commitment transactions in the SC protocol require signatures from all 
parties, so only valid Trigger and Commitment transactions can be put on-chain, provided at least one 
party follows the protocol.

The timing model from Appendix A of [Law22a], including its parameters R, S, G, B, U and L, can be 
used to set the timing parameters for the SC protocol and to prove its correctness.

The following Theorems are helpful in proving the correctness of the SC protocol.

Theorem 1: If 0 ≤ j < i ≤ S - 1 and 0 ≤ p ≤ P - 1, and if Moldpi and Comj are valid transactions as 
defined by the protocol, then Moldpi and Comj both spend at least one of the Trigger transaction's 
control outputs, and thus conflict.

Proof: Let b denote the most-significant bit position in which the binary representations of i and j 
differ. Because j < i, it follows that j has a 0 in bit position b and i has a 1 in bit position b, which 
implies that Moldpi and Comj both spend Trigger control output b, and thus conflict. □

Theorem 2: If at least one party follows the SC protocol and if Comj is fixed, where 0 ≤ j ≤ S - 1, then 
there exists a p, 0 ≤ p ≤ P - 1, and an i, 0 ≤ i ≤ j, such that Stpi has not been revoked10.

Proof: Assume for the sake of contradiction that Comj is fixed, but Stpi has been revoked for each party 
p, 0 ≤ p ≤ P - 1, and i, 0 ≤ i ≤ j. Let q denote the party that follows the protocol and let T denote the 
block containing the Trigger transaction. Because party q follows the protocol, they detect the Trigger 
transaction and their current State transaction is fixed before T + tsdAZ. They then submit their current 
Mold transaction and either that Mold transaction, or a conflicting Mold transaction, is fixed before T + 
3tsdAZ. There are two cases:

• Case 1: Party q's Mold transaction is fixed before T + 3tsdAZ. In this case, let Moldqi denote 

this fixed Mold transaction, and note that Moldqi is a valid transaction because q follows the 
protocol. Therefore, it follows from Theorem 1 that j ≥ i. Furthermore, party q's State i 
transaction was unrevoked when they detected the Trigger transaction on-chain, they stopped 
updating the factory state when they detected the Trigger transaction on-chain, and State 
transactions are revoked in increasing order, so it follows that their Stqi transaction is unrevoked,
which is a contradiction.

• Case 2: Party q's Mold transaction is not fixed before T + 3tsdAZ. In this case, let Moldri denote

the Mold transaction that is fixed, and note that Moldri spends at least one of the Trigger 

10 To make this statement precise, we need to define a State transaction as being revoked only when all parties know its 
per-commitment key and agree to revoke it.
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transaction's control outputs (because party q's Mold transaction is not fixed, so it must conflict 
with party r's Mold transaction that is fixed). Spending that Trigger transaction's control output 
requires party q's signature, which means that Moldri is a valid transaction that spent the output 
of State transaction Stri. Furthermore, Stri was unrevoked when it was first detected on-chain by 
party q (because otherwise party q would have revoked it by spending its output). Therefore, 
party q stopped updating the factory state when they detected Stri, so Stri remains unrevoked by 
party q, so Stri has not been revoked, which is a contradiction.

Thus in either case there is a contradiction. □

Theorem 2 shows that the Mold transactions guarantee that only current Commitment transactions can 
be fixed, provided at least one party follows the SC protocol.

Finally, in addition to this safety property, a party that follows the protocol can also guarantee that a 
current Commitment transaction will be fixed. They accomplish this by using the protocol to attempt to
put the Trigger transaction, their current State and Mold transactions, and the most recent Commitment 
transaction on-chain. They will either accomplish this themselves, or some other party will put a 
conflicting transaction on-chain first. Because the new state's Commitment transaction is fully-signed 
before any of the new state's Mold transactions is fully-signed, because at most two consecutive states 
can be current at one time, and because Mold transactions for consecutive current states either conflict 
or include a Mold transaction for state 0 (which does not spend any of the Trigger transaction's 
outputs), it is always possible to put the most recent Commitment transaction on-chain.
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