BALAD

(Beginners Assembly Language and Debugger)

1 INTRODUCTION

BALAD is an assembly-level programming language for an emulated virtual computer with a 15-bit
word length. It is combined with a comprehensive debugging system that allows online program
assembly, execution of programs and the insertion of breakpoints to allow suspension of programs
during execution.

Instructions are machine-oriented, using integer and logical operations only. As a concession to the
beginner, extra input/output instructions are provided for automatic Decimal to Binary conversion
and the printing of Text Strings. These facilities will enable students to obtain a reasonable printout
of their results quickly while concentrating their efforts on developing algorithms.
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2 THE BALAD COMPUTER
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Fig. 1.

The BALAD computer is a one accumulator machine with an arithmetic unit for performing logical
operations and 15 bit two's complement arithmetic. The Memory has 512 15 bit words with
addresses 0 to 777 (octal numbering). Memory words may contain instructions, addresses of other
memory words or data.

At the start of every instruction cycle, the address in the Program Counter register (PC) is used by
the computer to fetch an instruction from memory into the Instruction Decoder. The Program
Counter is normally incremented by 1 at the end of an instruction cycle so that the next instruction
is fetched from the next location in Memory. Only a jump instruction can break this sequence by
loading the Program Counter with a new address which points to some arbitrary point in the
memory from where the next instruction will then be fetched.

The Instruction Decoder isolates bits 1 to 5 of the instruction and uses this as a number to
distinguish between one of the 32 possible instructions. The instruction that has been identified is
then executed. In a hardwired computer, this process involves setting various switches to allow data
to flow from various registers to other registers.

For illustration two such switches are shown in the schematic above, which guide the result and
carry values of an operation from the arithmetic unit either to the Accumulator and Carry for double
operand instructions, ignore them for compare instructions or back to Memory and Carry for single
operand instructions. The last 10 bits of the instruction are used to determine a memory reference
address. This can again be thought of as setting a big switch that connects one data path to one of
512 words in memory.

2.1 THE INSTRUCTION FORMAT
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Instructions are stored in 15-bit memory registers. Bits 1 to 5 are the operation code, which selects
32 possible operations. Bit 6 is the Indirect bit. If it is zero (0) the value in bits 7 to 15 is taken as
the address of the operation of the instruction. If the Indirect bit is a one (1), the address in bits 7 to
15 is used to locate another word whose value in bits 7-15 is used as the address of the first operand
of the instruction. Before this is done the Indirect bit of this new word is first checked, and if it is a
one (1) the process is repeated. Normally only one level of indirect addressing is used. If more than
four levels of indirect address are attempted the computer will stop. This is to break up infinite
indirect addressing chains which can happen accidentally if an indirect reference points to itself.

Of the 32 instructions, 4 are double operand arithmetic or logical operations, 2 are data moving
operations, 10 are single operand operations, 8 are conditional or unconditional jump operations and
the remaining 8 are Input/Output operations. Each instruction has a memory reference part, which
addresses a word in memory.

2.1.1 Double Operand Operations ; @l
For double operand operations, the 1st operand is RESULT
taken from the addressed memory location, while the
second operand is the Accumulator. | ARITHMETIC UNIT
The result of the operation is stored in the / MEMORY
Accumulator and the Jump Tester as described later.
One exception is the compare (CMP) operation for
. . . ACCUMULATOR
which the result is only stored in the Jump Tester. L‘?—-
The result in the Jump Tester is used by conditional
jump instructions which follow an operation. Fig. 3.
2.1.2 Single operand operations [JUMP_TESTER |
For single operand operations, the one operand is RESULT

taken from the addressed memory location and the
result is stored back in that same location. The result
is also stored in the Jump Tester.

Six different conditions of the result in the Jump / | MEMORY
Tester can be tested and if the condition is True a

jump to the memory reference address in the jump :

instruction is executed. If False, the next instruction
is executed. Note that the result used in the test is the Fig. 4.

result of the last operation executed before the test in the following jump instruction. It does not

matter whether this result was also stored in the Accumulator, a memory location, or not stored at
all, as in a CMP or TST instructions.

ARITHMETIC UNIT

Most arithmetic operations are characterized by the fact that information is carried from one-bit
position to the next. All computers have an arithmetic unit of limited length (15 bits in this
machine). Therefore arithmetic operations will sometimes overflow. So that this case can be catered
for, the output of the most significant bit (bit 1) is available to the programmer. The arithmetic unit
is extended by one bit to 16 bits, and for practical purposes, the 1st operand is also extended by 1
bit. Storage for this bit is in the "Carry" register. The value of the Carry register also serves as input
for most arithmetic operations, and the output of the "Carry" position of the arithmetic unit is stored
back in the Carry register for both single and double operand operations. Only for the compare
operation (CMP) and the test operation (TST) is the new Carry not stored. The output of the Carry
position is also stored in the jump tester for all instructions, including CMP and TST for subsequent
conditional jump tests for the state of "Carry".



For programmer convenience, the Accumulator and the Carry register are both addressable by a
memory reference. This means that all the single operand operations can also be carried out on the
Accumulator and Carry. Since Carry is only a one-bit register some of the operations may not be
very significant. The Accumulator has memory address 0 and the predefined label ACC; the Carry
register has address 777, the highest address and the predefined label C.

2.2 THE INSTRUCTIONS
2.2.1 Double Operand Operations
AND MR with Accumulator (OP CODE 20)

The logical and function of each bit of the contents of the Memory Reference and each bit of the
Accumulator is stored in the Accumulator and the Jump Tester. Carry is not affected.

ADD MR to Accumulator (OP CODE 22)

Add the contents of the Memory Reference and Carry to the Accumulator and store the Result in the
Accumulator. If the unsigned sum is > 2%, set the Carry register, else reset it. Accumulator and
Carry are also stored in the Jump Tester.

SUB MR from Accumulator (OP CODE 24

Subtract by adding the two's complement of the contents of the Memory Reference and Carry to the
Accumulator and store the Result and Carry-out in the Accumulator, Carry and the Jump Tester.

CMP  Accumulator with MR (OP CODE 26)

The same operation as SUB except that Carry-in is set to zero and the Result and Carry-out are only
stored in the Jump Tester. Accumulator, Carry and Memory Reference are left unmodified.

2.2.2 Move data instructions

LDA Load Accumulator from MR. (OP CODE 30)

Load the contents of the Memory Reference into the Accumulator and the Jump Tester. The contents
of the Memory Reference and Carry are unaffected. The original contents of the Accumulator are
lost.

STA  Store Accumulator at MR. (OP CODE 32)
Store the contents of the Accumulator at the Memory Reference location and the Jump Tester. The
contents of the Accumulator and Carry are unaffected. The original MR contents are lost.

2.2.3 Single Operand Instructions

CLR Clear MR (OP CODE 34)
Zero is stored in the Memory Reference location and the Jump Tester. Carry is not affected.
TST Test MR (OP CODE 36)

Move the contents of the memory reference to the jump tester without changing the MR. Carry is
not affected.

COM Complement MR  (OP CODE 40)

Store the logical complement of the contents of the Memory Reference in the Memory Reference
location and the Jump Tester. Carry is not affected. The logical complement is also the bitwise
complement or the One’s complement.



NEG Negate MR (OP CODE 42)

Store the Two's complement of the contents of the Memory Reference in the Memory Reference
location and the Jump Tester. If the original contents were zero, complement Carry.

INC  Increment MR (OP CODE 44)

Add 1 to the contents of the Memory Reference and store the result at the Memory Reference
location and the Jump Tester. If the original contents were 2'°-1 (signed -1), complement Carry.

DEC Decrement MR (OP CODE 46)

Subtract 1 from the contents of the Memory Reference and store the result at the Memory Reference
location and the Jump Tester. If the original contents were 0, complement Carry.

2.2.4 Rotate and shift instructions

These are single operand operations for bit manipulation, scaling data by factors of 2 and byte
manipulation. Rotates are used for testing sequential bits of a word. In each, the Carry register and
the contents of the Memory Reference are manipulated in different ways, and the result is stored in
the Memory reference location, Carry and the Jump Tester.

ROL Rotate left MR and Carry (OP CODE 50)  Fig. 5.
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Rotate the contents of the Memory Reference and the Carry Register one bit left as shown in
Fig. 5.
ROR Rotate Right MR and Carry  (OP CODE 52)  Fig. 6.
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Rotate the contents of the Memory Reference and the Carry Register one bit right as shown in
Fig. 6.

ASR Arithmetic Shift Right MR and Carry. (OP CODE 54) Fig. 7.
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The sign bit (bit 1) is replicated and also shifted right. All other bits are also shifted right and bit 15
is shifted into Carry. The old value of Carry is lost.

SWP Swap Bytes in MR. (OP CODE 56) Fig. 8.
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Bits 1 to 7 and bits 9 to 15 of the contents of the Memory Reference are Swapped. Bit 8 is set to
zero. Carry is not affected. The process is illustrated in Fig. 8. A 7-bit BYTE is normally used to
store a 7 bit ASCII character. The SWP operation allows 2 7 bit ASCII characters to be stored and
retrieved from one word. NOTE: no 8 bit extended ASCII characters can be used in BALAD.

2.2.5 Jump Instructions

These instructions allow the alteration of the normal program sequence by jumping to an arbitrary
location in memory. Conditional jump instructions also test the copy of the last result or Carry
stored in the Jump Tester. If the condition tested is True, a jump is performed If the condition is
False, the next instruction in the word sequence is executed. No registers, except the Program
Counter, are modified in the operations.

A special case is a jump to location 0, which is also the Accumulator. This instruction is interpreted
as a HALT (HLT) instruction and execution of a program stops and control is returned to the calling
OS or the Debugging System. (A conditional halt can be implemented by making the memory
reference of one of the conditional jump instructions 0 although this is deprecated).

JMP  Unconditional Jump. (OP CODE 00)

Load the Memory Reference of the instruction (not its contents, unless the memory reference is
indirect) into the Program Counter (PC). This has the effect, that the next instruction is fetched from
the new location now pointed to by the PC

JZR  Jump if Zero Result. (OP CODE 04)
JEQ Jump if equal. jump if ACC == MR following a CMP instruction

Load MR into PC if the last Result stored in the jump tester was zero. Otherwise, execute the next
instruction.

JNR  Jump if Non-Zero Result. (OP CODE 06)
JNE  Jump if not equal. jump if ACC != MR following a CMP instruction

Load MR into PC if the last Result stored in the jump tester was non-zero. Otherwise, execute the
next instruction.

JZC  Jump if Zero Carry. (OP CODE 10)
JLT  Jump if less than. jump if ACC < MR following a CMP instruction

Load MR into PC if the last Carry stored in the Jump Tester was Zero. Otherwise, execute the next
instruction.

JNC Jump if Non-Zero Carry. (OP CODE 12)
JGE Jump if greater than or equal. jump if ACC >= MR following a CMP instruction

Load MR into PC if the last Carry stored in the Jump Tester was One. Otherwise, execute the next
instruction.

JEZ  Jump if ether zero. (OP CODE 14)
JLE  Jump if less than or equal. jump if ACC <= MR following a CMP instruction

Load MR into PC if either the Result or the Carry stored in the Jump Tester were Zero. Otherwise,
execute the next instruction.

JBN  Jump if both non-zero (OP CODE 16)
JGT  Jump if greater than. jump if ACC > MR following a CMP instruction



Load MR into PC if both the Result and the Carry stored in the Jump Tester were Non-zero.
Otherwise, execute the next instruction.

JMS  Jump to Subroutine. (OP CODE 02)

Load the contents of the incremented Program Counter (PC) into the Memory Reference location.
This is the address of the next instruction in the normal program sequence. Then load MR + 1. (not
its contents) into the PC. Thus a jump has been made to the location MR + 1.

Subroutines are written in this system with the first location free to store the "Return Address"
(PC+1 as above). The first instruction in the subroutine follows this location. To return from a
subroutine, an indirect jump is made via the first location of the subroutine. Then control is
transferred to the location following the one from which the call was made. Indirect Memory
references are written in the assembler language by preceding a location number by the symbol "@"
e.g. JMP @400, which is jump indirect contents of location 400 for a subroutine at LOC 400.

2.2.6 Input instructions
KDN Key Decimal Number to MR (OP CODE 60)

When this instruction is executed the string Enter a short number: is output to indicate to the
operator that a single-precision decimal number is to be typed on the keyboard. The first character
may be "+" or "-" or a decimal digit. If no sign is typed the number is assumed to be positive. A
number is terminated by the Enter key and execution of the program continues. The number that
was typed is converted to a 15-bit binary number and stored at the Memory Reference location. If
the number is to be interpreted as signed the absolute magnitude must be less than 8,192 (2'). If
unsigned, the input must be positive and less than 16,384 (2%). If input exceeds these limits, the
converted number will be reduced modulo 2.

KDD Key Double Decimal to MR and MR+1. (OP CODE 62)

When this instruction is executed the string Enter a long number: is output to indicate to the
operator that a double-precision decimal number is to be typed on the keyboard. The first character
may be "+" or "-" or a decimal digit. If no sign is typed the number is assumed to be positive. A
number is terminated by the Enter key and execution of the program continues. The number that
was typed is converted to a 30-bit binary number and stored at MR and MR+1. If the number is to
be interpreted as signed the absolute magnitude must be less than 536,870,912 (2%). If unsigned, the
input must be positive and less than 1,073,741,824 (2*). If input exceeds these limits, the converted
number will be reduced modulo 2.

KCH Key Character to MR. (OP CODE 64)

When this instruction is executed the first character that is typed on the keyboard is stored at the
memory reference location as a 7 bit ASCII character in bits 9 to 15. Bits 1 to 8 are made zero. This
is normally the only form of input from a keyboard on a simple computer. The character is not
echoed. All the other input instructions echo the characters typed.

KCS Key Character String to MR+. (OP CODE 66)

Key in characters and store them two bytes to a word starting at MR. The Enter key terminates
entry and stores a NULL to terminate the string. Care is taken not to overflow memory.

When q or Ctrl-D is entered at the keyboard when executing any of the Key input instructions
KDN, KDD or KCS, this will stop the running BALAD program and return to the debug input >>
if it was started from the debugger. Otherwise, the program will terminate. KCH will only stop with
Ctrl-D. Ctrl-C will always terminate a BALAD program.



2.2.7 Output Instructions
Print and Type are the same in BALAD

PDN Print Decimal Number at MR. (OP CODE 70)
TDN Type Decimal Number at MR.

Convert the contents of Memory Reference, interpreted as a 15 bit two's complement number, to a
decimal character string and type this string on the screen.

PDD Print Double Decimal at MR and MR+1. (OP CODE 72)
TDD Type Double Decimal at MR and MR+1.

Convert the contents of MR and MR+1, interpreted as a 30 bit two’s complement number, to a
decimal character string and type this string on the screen.

PCH Print Character at MR. (OP CODE 74)
TCH Type Character at MR.

Type the character corresponding to the ASCII code represented by bits 9 to 15 of the contents of
the Memory Reference Bits 1 to 8 are ignored.

PRF  Print Character String starting at MR. (OP CODE 76)
TCS  Type Character String starting at MR.

A Character String is a sequence of characters terminated by a NULL character (ASCII 0). A
convention for this machine and many other computers is that character strings are stored 2
characters per word in the following format:

BIT
1 7 9 15
CH2 CH1
LOCATION 40 =i E Stringl
41
42 NULL CHb
43 CH2 Ll String2
G CH4 CH3
L5 NULL NULL
46

Fig. 9

Character strings may contain page formatting characters of the ASCII alphabet, such as a NEW
LINE entered as \n, or a TAB entered as \ t. A real \ must be entered as \\. In practice, character
strings are entered into the memory by the Debugging system during Program Assembly as “a
character string in parenthesis”. The address of the first character in each string is then known and
an instruction PRF for that address will cause that character string to be printed at execution time.
This facility can be used to provide spaces between numbers, to start printing on a new line, and to
precede key number instructions with a printout of a short message to indicate what the number
represents. Printout of results can also be preceded or followed by messages to produce a
reasonably workmanlike output of a program and to aid in the identification of results, which is
very important.
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The PRF instruction has been extended so that the parameter string pointed to by MR is interpreted
like the format string of a printf instruction in the Perl or C language. The % character in such a
string starts a conversion defined as follows:

%d word at next ADR n after the PRF is output as short signed decimal.

%u word at next ADR n after the PRF is output as short unsigned decimal.

%0 word at next ADR n after the PRF is output as short unsigned octal.

%X word at next ADR n after the PRF is output as short unsigned hexadecimal.
%b word at next ADR n after the PRF is output as a short unsigned binary.

%S string starting at next ADR n after the PRF is output as an embedded string.
%C character at next ADR n after the PRF is output as an embedded character.

o°
o°

print a single %.

When the letters d, u, o, x and b are preceded by a letter ‘1°, the word ADR n after the PRF is
interpreted as a long double precision word at ADR n and ADR n+1. The letters D, U and O are
aliases for 1d, 1u and lo. Field width numbering follows printf conventions in Perl or C.

ADR is a pseudo instruction, which tells the assembler that the following MR is an address.

2.3 THE ASSEMBLY LANGUAGE

Computer programs are stored in the computer Memory as binary numbers. This is the way a
computer reads instructions. As human beings, we devise shortcuts to make what is often referred to
as a binary machine language program more tractable. The first step is to divide every binary
number mentally into several groups of three bits. In our case for a 15-bit machine, we would have
five 3 bit groups.

61 01 1 B 0 0111 B111310 = 26156
——— N
2 6 1 5 6

Fig. 10

Then each group of 3 bits can easily be converted into a number between 0 and 7. The 5 numbers
together constitute the OCTAL representation of the binary number. OCTAL representations can be
used for instructions or data. Certain sub-fields of a Memory location, e.g. the 9 bit Memory
reference can be expressed as a 3 digit OCTAL number.

OCTAL representations are easier to handle in the long run than DECIMAL representations because
they preserve the regularity of binary groups. OCTAL counting is easy as long as you remember
that, you always stop at 7 and then go to the next highest position say 10 or 17 to 20, etc. The main
use for OCTAL numbers in this machine is for addressing Memory locations’.

Another simplification is to break up a binary number into arbitrary fields and to give each possible
combination of bits in a field a label. This is a little like labelling 3-bit fields with digits 0 to 7 for
the 8 possible bit combinations. In this assembly language, the OP CODE field of instructions has
been treated this way. The OP CODE field is bits 1 to 5 and there are 32 labels each of 3 characters
to distinguish these 32 codes. The characters are chosen to convey the name of the operation
mnemonically eg. ADD for add, SUB for subtract etc.

1 NOTE: in modern assembly languages it is more common to break up binary numbers into 4-bit fields, which are
expressed as HEXADECIMAL digits, which are 0-9 and a-f for 10-15. This is appropriate for word lengths of 16,
32 and 64 bits, which do not divide neatly by 3. In 1970, when BALAD was first implemented word lengths of 12
and 18 bits were more common.
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The indirect bit of an instruction, bit 6, is expressed with the symbol "@" if the bit is a 1. No
character implies bit 6 is 0. Numerical Memory references in an instruction may be written as
OCTAL numbers. Memory locations can also be labelled with an arbitrary text, which is an alias for
that numerical address. These labels can then be used instead of absolute OCTAL addresses
anywhere in the assembly code, where a Memory reference address is required. The advantage of
labels is, that code and data can be moved in memory without changing that code. Simply the value
expressed by a label is changed automatically in the symbol table during program assembly.

An address can also be defined as the address of the current instruction with the symbol “.” (FULL
STOP). The . or a label can be followed by + or — followed by a decimal displacement to evaluate
an address.

To write a program or data block, the address of the first location must be defined. This is done with
the LOC or BLK pseudo instructions. LOC followed by an OCTAL, symbolic or relative address
defines the starting address of the block to follow. BLK followed by a DECIMAL displacement will
leave a block of memory locations initialized to 0. The next location follows the end of the block.

When typing program code into the computer follow an address defined by LOC or BLK with the 3
character mnemonic of the operation code followed by at least one space and/or the @ symbol if the
memory reference is indirect. Lastly type the memory reference of the instruction, either as an
absolute OCTAL address, a symbolic address or a relative address using “.” optionally followed by
a simple displacement. If no memory reference is typed 0 is assumed which means the operation
refers to the Accumulator. Lastly type Enter, which will cause analysis of the instruction and cause
the next address to be typed on the screen, ready for more program input, unless the instruction
contained an error, in which case an appropriate error message will be output on the screen and the
previous address is output on the screen again, ready for correct input. This ensures that only

syntactically correct programs or data can be entered”.

Alternatively to writing a block of program statements, we can initialize a block of numerical data.
If the first character of a new entry is numeric the rest of the word must be filled by a single
number. For convenience, this number may be expressed as decimal, octal, hexadecimal or binary.
The convention for modern programming languages is that a number starting with 1 to 9 is a
decimal integer. A number starting with O is interpreted as octal with only digits O to 7. A number
starting with Ox followed by digits 0 to 9 and a to f is interpreted as hexadecimal. A number starting
with Ob followed by digits 0 or 1 only is interpreted as binary. Only decimal numbers may be
preceded by an optional + or — sign. A number followed immediately by the letter 1 or L is
considered to be a 30-bit double-precision number using up two consecutive words.

Character strings are another form of constant that may be initialized during assembly. A character
string is entered into memory by typing a parenthesis symbol # as the first character instead of a
statement or a number. Any character following except another parenthesis # is regarded as another
character in the string. Strings may contain two control characters written as \n for new-line and
\ t for tab (space to the next column of 8). A real # character in a string is written as \” and a real
\ as \\. A closing parenthesis terminates the string with a NULL byte. The following ENTER key
sets the next address to the word address after the end of the string.

2.3.1 Comments

In all cases, before typing ENTER, zero or more spaces followed by “; “ or “#“ followed by any
text is a comment. For other variations, see the Debugging System.

2 This does not mean a program is semantically correct — the algorithm may not do what it is intended to do.
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Here is a small BALAD program example:

HtHHtHH R R R H
# Comment block

HHHHHHHHH R R R

LOC 10 ; initialized data block
opl: 99
op2: 81
sum: BLK 1 ; uninitialized data block

LOC 100 ; code block
main: CLR C ; clear Carry before addition
LDA opl
ADD op2
STA sum
PDN sum
HLT

This produces the following assembler listing when run with balad -1

####HHHH R
# Comment block

HERRHHEHARH AR IR HHEHR AR R AR

LOC 10 ; initialized data block

010 00143 opl: 99
011 00121 op2: 81
012 00000 sum: BLK 1 ; uninitialized data block?

LOC 100 ; code block

100 34777 main: CLR C ; clear Carry before addition
101 30010 LDA opl

102 22011 ADD op2

103 32012 STA sum

104 70012 PDN sum

105 00000 HLT

The first two columns are the 3 digit octal memory address and the 5 digit octal memory contents,
which may be code instructions or data numbers or strings.

3 Any memory not specifically initialized by the assembler is set to 00000
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2.3.2 List of instructions in op code order

OP CODE @ MEMORY REFERENCE
£ A "

| ADR

| JEQ

o
N
o
eNeoRole]

JLT
JGE
JLE

|
l JGT
|
|
|
|

o0 O OoF o O

2
Q
— b

L

=]

o
MMM

[eaP ol S @] o O

o FENn O

=]
=
Q
o-ONONON | T\ B e e W W Wwiw

o O OO

TDN
TDD
TCH
TCS.

|
l
|
|
|
|
|
I
|
l
|
|
l_
|
|
I
|
|
l
I
|
l
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
l
|
|
|
|
|

g
Q
o
~N~1-1~3
[exful SH @]

Y
.0

3 45 6 78 9 1011 12 13 14 15
Table 1

Each 15-bit binary word can be expressed as a 5 digit OCTAL number. For instructions, the first
two digits are the OP CODE, which is written in assembler code as a three upper case letter
mnemonic shown in the left-hand column. A 1 is added to the second digit if MR is indirect (@).
The Memory Reference is the remaining 3 OCTAL digits. Some op codes have alternate
mnemonics useful for unsigned numerical comparisons with the CMP instruction.

CMP dest
JLT .+2 ; jump to .+2 if ACC < contents of location dest
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2.3.3 Data Formats

UNSIGNED 1. 2 8k 5.6 7 B Y f098 32 439043
Integer Number ' : d )
or Logical Unit
15 Bits
SIGNED Number t 2 3. 4 5 6.7 8 910 91 12 13 1), 18
S L T L
15 Bits
DOUBLE 1 2.3 A 5 6 4 B 8 84§ 30 18 14 4%
PRECISION 3
SIGNED Number v T v J
30 Bits
7 BIT ASCII 910N 1213 14 15
CHARACTER FeT T T ‘ '
or BYTE ————— —= :
7 Bits
CHARACTER 1 2 3 04 5 6 7 8 9 1811 42 13 14 15
STRING Cher 2 ( Char 1!
A NULL character ok 1 T |
marks the end of ,h:ar b : . as 31
the string Char 6 | _ Char 5
NULL : ' Char 7'

Variable Length,
Other Data formats can be devised and these are only limited by the programmers' ingenuity.

2.4 HISTORY

The Balad system was developed in 1970 as an aid for teaching electronics technicians and their
teachers the basics of how a computer works internally. Even at that time, the RISC instruction set
and the use of 4 Accumulators in the Data General NOVA computer available to them in hardware
were confusing the fundamental simplicity of a computer based on the original von Neumann
architecture.

This is a much greater problem in the 21* century, with CPUs with very extended instructions sets
and a much greater reliance on higher-level languages, which hide what is happening inside the
computer. This very simple BALAD virtual computer should give students some insights into
how the very core of a computer works. The details can easily be taught in one 45 minute
lesson and from then on students can test their skills in manipulating machine instructions to
develop higher-level functionality, like a multiply routine, which is not part of the basic
instructions set. HINT: a very simple multiply algorithm is to add the multiplicand to the
accumulator and decrement the multiplier in a loop. Terminate the loop when the multiplier is zero.
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3 THE BALAD ASSEMBLER

The BALAD assembler is always executed first in two-pass mode when BALAD is called with one
or more source file arguments. Two-pass mode means that the source(s) are read once to identify all
symbolic labels followed by a colon “:”, which builds a Symbol Table. Then the files are read a
second time and all instructions, numeric data and strings are converted into 15-bit machine code
and stored in the correct memory locations, ready to run. Any errors in the program are reported on
the console and in an optional listing file. If there are errors or the call is made with the -c option the
file(s) are only assembled. Otherwise, the assembled program is started at main: if there is a label
main — else the debugger is entered to allow starting the program manually with the r command.

balad george.bl
Linux and Unix operating systems allow automatic starting of a BALAD program when the
following line is the first line of a program:

#!/usr/bin/balad
The file location /usr/bin/balad must contain the BALAD executable or a link to it. For this to
work your BALAD application source must first be made executable with:

chmod +x george.bl
Then the following simple call will assemble and start the program automatically without
mentioning balad:

george.bl
Any listing, help or debugging switches can follow that direct call.
3.1.1 BALAD Help

When BALAD is called with the -h option a Usage help output on the console describes all the
command line switches and file parameters. This is followed by a detailed description of the
Debugger commands.
balad -h
Usage: balad[-1lt[doxb]cmh
[ -L[ <1list_file>]] [ -O <out_file>]

[ -B[ <batch_file>]] [ <file> ..]
-1 1list code output during assembly

The user can also add his own help output to a BALAD program by terminating the normal code
and data with a line starting with ___END___. Any text following this terminator is interpreted as a
help text, which can be displayed on the console with the BALAD call of the program followed by
the -h switch. The following program has such a help text:

george.bl -h

Reverse Polish Notation Calculator 'GEORGE'
0-9 Enter a number terminated by white space or an operator,
at which point the number is pushed on the stack.

3.1.2 Interactive Input Mode

If BALAD is called without any parameters at all, interactive input mode is entered, which allows
direct entry of BALAD labels, instructions and data from the keyboard. Each line is assembled as
soon as the Enter key is typed. This is a quick way to try out a short program. This program entry is
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terminated with g on a line by itself, which causes entry into the debugger from where the newly
entered program can be run. Care must be taken to terminate code with an unconditional JMP or
HLT instruction before entering data, going to a new memory location with LOC or BLK or quitting
interactive entry with q. Not doing so causes an Error message. Interactive input mode can also be
entered from the debugger with the e command. This makes it possible to change existing code or
enter extra code while debugging if the semantics of the program is not correct. The debugger also
allows single memory locations to be modified directly with the < command.

A program entered in interactive mode can be output to a file from the debugger with the 0 <file>
command. If the <file> chosen already exists you will be asked if you want to overwrite it. You
can also create a list file from the debugger with the L. <file> command. Interactive mode is a
quick and easy way for students to try their hand with BALAD code, without having to learn to
enter code in a text editor. It was the only way that was available with the original 1970°’s BALAD
version, which had a teleprinter as a terminal on a Data General NOVA minicomputer. Programs
could only be printed and saved on paper tape at 10 characters/second — there was no disc.

3.1.3 Listing Options

Calling BALAD or a BALAD application with the -1 switch will produce a complete listing of the
program. Each line of the program which generates a value for a memory location will be preceded
by the 3 digit octal address of that memory location and the 5 digit octal contents generated for that
location. The listing of the main part of the program george.bl starts as follows:

balad -1 george,bl

LOC 100
100 30023 main: LDA stackA ; top of stack - clear the stack
101 32014 STA stackP ; stack grows downwards towards 'expr'

HHHH R R R R R R R R R
# Get a new RPN expression string

HEHHE R

102 66700 loop: KCS expr grow expression upwards towards stack

103 30022 LDA expADR ; expr[] address

104 32013 STA expPTR ; word pointer first

105 02373 JMS iniDig ; clear digits, hexFl -1, decimal base, C

106 00110 JMP .+2 ; skip first ROR - start with even byte of expr[0]

The listing output is useful for debugging. It correlates with the tracing output at breakpoints and
normal tracing.

The listing can also be stored in a file specified with the -L switch. Normally a <listing_file> name
follows the -L switch. If no <listing_file> is specified the base name of the <source_file> with the
extension .bl1 is used. The -L switch should be put at the end of the command line, because if it is
put just before the <source_file> name that is assumed to be the listing file. The -- switch before the
<source_file> marks the end of all switches and fixes this also. The following calls are all
equivalent:

balad -1 george.bl -L

balad -1 george.bl -L george.bll
balad -1 -L george.bll george.bl
balad -1 -L -- george.bl

A listing file can also be generated from the debugger with the L <file> command.
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4 THE BALAD DEBUGGER

The debugger is an integral part of the system, which is invoked with one of five command-line
switches, either alone or in combination. The -t switch starts the debugger in instruction tracing
mode. The normal debugger prompt is the current octal debugger location followed by >>.

balad -t george.bl
100 >>

The debugger can be in one of three modes with different prompts and individual commands:

* program is not running 100 >> r or e command allowed
* is stopped at a breakpoint 100 B> n s u coracommand allowed
* is stopped at a watchpoint 100 wW> n s u coracommand allowed

The following additional commands work in all modes:

o output the source text to STDOUT

0 <file> output the source text to <file>

L output the listing text to STDOUT

L <file> output the listing text to <file>

S output the Symbol Table (sorted by symbols)
Ssi output the inverse Symbol Table (sorted by address)
H output the application Help text if any

h output the BALAD debugger help text

a QUIT balad

* set a BREAK or watch point at current location
<n>* set a BREAK or watch point at location <n>

<n>,<m>* set BREAK or watch points at locations <n> to <m>

# CLEAR all break or watch points

H CLEAR a break or watch point at current location
<n># CLEAR a break or watch point at location <n>
<n>,<m>f CLEAR break or watch points at locations <n> to <m>
= list all break or watch points

<n>,<m>= 1list break or watch points in range <n> to <m>

<data> at current location
<data> at location <n>
of single locations possible

< <code|data> assemble <code> or
<n> < <code|data> assemble <code> or
this makes the modification
List commands show an octal memory address and the contents
/c list current location as code
<n>/c list location <n> as code
<n>,<m>/c list locations <n> to <m> as code
Similarly list data in different list modes

/d short signed decimal /D long signed decimal

/u short unsigned decimal /U long unsigned decimal

/o short unsigned octal /0 long unsigned octal

/x short unsigned hexadecimal /X long unsigned hexadecimal
/b short unsigned binary /B long unsigned binary

/s text string up to next NULL

/ or enter

these apply to all other commands starting at * (set a BREAK)
list location(s) in current list mode

-t trace code during execution.
-d additionally trace C, ACC and MR in decimal
-0 alternatively trace C, ACC and MR in octal
-x alternatively trace C, ACC and MR in hexadecimal
-b alternatively trace C, ACC and MR in binary

In each case trace
Without

values before

and after execution.

-t trace only at break or watch points.

stop tracing code and data during execution.
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Memory addresses shown as <n> or <m> above can be entered in several ways:

* An octal number. The BALAD memory is only 512 words long, which makes 0 — 777 the
only valid addresses.

* A defined symbolic address followed by an optional + or — decimal offset. If the command
following a symbolic address is a letter it must be separated from the address by a space.

e The symbol “.“, which stands for the current location, followed by an optional + or —
decimal offset.

* Any of the above, preceded by the symbol @, which means the address is the contents of the
chosen location.

4.1.1 Running a program

A program is started from the debugger with the r command. Without a preceding address, the
program is started at the label main:. If there is no such label the program is started at location
100, which is the default location where code is normally started. But it is safer to start with a
specific location preceding the ¥ command in this situation.

100 >> 155r

Specifically start execution at location 155. The r command can only be called when a program has
not been running and stopped at a break or watch point.

4.1.2 Instruction Tracing

When a program is run after starting with the -t switch, every instruction that is executed is traced
by printing the address and then the instruction code as an octal number and as a symbolic
assembler instruction.

balad -t george.bl
100 >> r
100 ***x**x run *****x

main: 100 30023 LDA stackA

101 32014 STA stackP
loop: 102 66700 KCS expr
RPN:
Other switches which start the debugger are -to, -td, -tx and -tb or without the tracing option as -o,
-d, -x and -b. Calling the program with -te or -o additionally traces the contents of the Carry and
Accumulator as well as the Memory Reference address of the current instruction [in square
brackets] and the contents of the Memory Reference - all before and after the instruction is
executed. Lastly, the binary values of the Jump Tester Carry register jC and Result register jR are
traced. The Jump Tester registers are the only output of the CMP and TST instructions. The values
of jC and jR influence subsequent conditional Jump instructions.
balad -to george.bl

100 >> r
100 ***%%x pyun *kkk*

main: 100 30023 LDA stackA C 0 ACC 00000 [023] 00776 ==> C 0 ACC 00776 [023] 00776 JjC 0 jrR 1
101 32014 STA stackP C 0 ACC 00776 [014] 00000 ==> C 0 ACC 00776 [014] 00776 JjC 0 jrR 1

loop: 102 66700 KCS expr C 0 ACC 00776 [700] 00000

RPN:

The example shows how the first instruction LDA stackA loads the stack address 00776 from
location [023] into the Accumulator, which was previously 00000 and stores it with the STA
stackP instruction in the stack pointer, location [014], which was also previously 00000. Any
trace will stop when encountering an input instruction, which is the KCS instruction in this example
with the prompt RPN: . Entering a value at the prompt and typing Enter will continue the trace.
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Note: only the data before the instruction is shown for an input instruction, because the instruction
has not been fully executed yet. The trace data after execution is shown after typing Enter.

When tracing instructions in an arithmetic algorithm the contents of the Accumulator and the
memory reference can be shown as decimal numbers with the -td switch. For completeness these
contents can also be traced in hexadecimal with the -tx switch and binary with the -tb switch. The
tracing modes can be changed from within the debugger using the same mnemonics -to, -td, -tx and
-tb. In the debugger, the mnemonic - switches tracing off altogether. The tracing modes -o, -d, -x
and -b only output trace data just before and just after the occurrence of a breakpoint or
watchpoint, which will be covered next.

4.1.3 Breakpoints

Locations in a block of program code can be marked as a breakpoint. For this debugger, any number
of breakpoints can be set. Breakpoints are set with the * command. The following sets the current
location 100 as a breakpoint:
100 >> *

100 * 30023 main: LDA stackA
100 >>
Setting the breakpoint echoes the listing line of that instruction with a * symbol after the memory address to
show that a breakpoint has been set at that location. All subsequent listings will show that star until the
breakpoint has been cleared with the # command, which will clear all breakpoints:

100 >> #
100 30023 main: LDA stackA
100 >>
A list of all breakpoints can be output with the = command. Most debugger commands can be preceded by
an address or a range of addresses. The following sets breakpoints on 2 consecutive locations:

100 >> 103,104*

103 * 30022 LDA expADR
104 * 32013 STA expPTR
100 >>

Ranges are two addresses separated by a comma. The example shows the use of octal addresses but symbolic
addresses can also be used. One gets pretty used to octal addresses, which are available from any listing.

Breakpoints come into play when a program is executed. When the instruction at location 103, marked as a
breakpoint, is about to be executed the instruction and trace data (if one of the data-trace switches -o -d -x or
-b is set) is output followed by the prompt 103 B>

100 >> r
RPN: 5 6 +
103 30022 LDA expADR C 0 ACC 00776 [022] 00700
103 B>
This shows that we are about to execute the LDA expADR instruction at location 103 with the value
00700 in location [022]. The most common command at a breakpoint is to continue execution to

the next breakpoint, which is the ¢ command:

103 B> c
==> C 0 ACC 00700 [022] 00700 3jC 0 jrR 1
104 32013 STA expPTR C 0 ACC 00700 [013] 01601

104 B>

The first output after the ¢ command is the trace values after execution of the just-completed
breakpoint instruction. That shows that the value 00700 from location [022]has indeed been loaded
into the Accumulator. The next breakpoint is at location 104, which again shows the appropriate
trace information before executing that instruction. If no breakpoint had been set at location 104,
the same effect would have been achieved with the step command s, which causes a break at the
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very next instruction, even if that instruction steps into a subroutine. Alternatively, the n command
breaks at the next instruction but will step over subroutine calls — treating the JMS instruction as if
it were just one machine instruction. Once inside a subroutine, the u command will continue
execution in that subroutine until it leaves that subroutine. The abort command a will take the
system from a breakpoint to the not running state with the >> prompt, effectively stopping the
program and returning to normal debug mode.

4.1.4 Watchpoints

Watchpoints are very similar to breakpoints, but their operation during the execution of a program is
slightly different. Watchpoints are also set with the * command, but instead of marking an
instruction, a data location is marked. Such a data location is normally not executed as an
instruction, which means it is not a breakpoint. Instead, data locations are read and sometimes
modified by different instructions. Each time this happens for data at a watchpoint location (marked
by a *) a trace line for the instruction referencing that data is output with the word watch appended.
When the data is modified, execution of the program stops and the debugger is re-entered with the
watchpoint prompt 502 B>. The address shown is the address of the instruction whose memory
reference location is being watched. Unlike with a breakpoint, the instruction must be fully
executed before it can be determined that a modification of the data has occurred. The following
example shows a watchpoint in operation on a variable sign:

100 >> sign*
012 * 00000 sign: 0

100 >> r

RPN: 3 4n +
502 32012 STA sign C 0 ACC 00000 [012] 00000 ==> C 0 ACC 00000 [012] 00000 jC 0 jR 0 watch
505 26012 CMP sign C 0 ACC 40000 [012] 00000 ==> C 0 ACC 40000 [012] 00000 jC 1 jrR 1 watch
507 44012 1INC sign C 0 ACC 40000 [012] 00000 ==> C 0 ACC 40000 [012] 00001 jC 0 jrR 1 watch

012 wW>

For the first two instructions at 502 and 505, the value at sign [012] has not changed. The INC
sign instruction at location 507 does change sign from 00000 to 00001, thus causing a
watchpoint break. Intermediate instructions operating on other memory reference locations are not
traced unless in full tracing mode with the -t switch.

This particular watchpoint on the variable sign allowed me to find a subtle bug during the
development of the Reverse Polish Notation Calculator GEORGE. sign is used in four different
subroutines add, sub, mul and div, which execute the arithmetic operations in the calculator.
sign is used to adjust the result of these double-precision operations. I had forgotten that I also
called sub in the div routine. This led to the value of sign for the div result being altered by the
embedded call to sub, leading to erroneous results. The use of a watchpoint on sign showed the
change in sign in the routine sub during the execution of div very clearly.

To continue from a watchpoint the same commands n s u or ¢ as for breakpoints are used.

The way breakpoints and watchpoints work in BALAD are similar to their functionality in other
assembler and higher level-language Debuggers and Integrated Development Environments. In
particular, these other Debuggers all use the letters n, s, c and u as keyboard accelerators for the
next, step, continue and until operations. Thus learning to debug simple programs or algorithms in
BALAD should be a good learning experience for using Debuggers with other language systems.
The main skill in debugging is seeing how variables vary by setting appropriate breakpoints and
interpreting the values in the accumulator and the instruction memory reference locations. Other
locations can be listed at any time in different list modes, which will be discussed next.
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4.1.5 Listing or viewing memory locations

Memory locations or groups of memory locations in any computer are fixed-length bytes or words,
which are identified by an address. In BALAD the word length is 15 bits. The interpretation of
memory words depends on which part of the computer is accessing a particular memory location.
There are three main ways of interpreting computer memory and several sub-categories:

1. Instructions. In BALAD these are very regular consisting of a three upper-case letter op-

code followed by an optional ‘@’ symbol and then an octal or symbolic memory reference.

. Numbers. These may be 15-bit single-precision integers or 30-bit double-precision integers.
BALAD instructions can only work directly on single-precision numbers, but many function
algorithms deal with double-precision numbers, which makes it useful to be able to list pairs
of memory locations as double-precision numbers while debugging. Numbers may be
interpreted as signed or unsigned. The ‘-’ can only be displayed with a decimal output.
Numbers can also be displayed as octal numbers, which are identified by a leading ‘0’,
hexadecimal numbers with a leading ‘Ox’ and binary numbers with a leading ‘Ob’. All octal,
hexadecimal and binary numbers are displayed as unsigned. If signed the first bit of these
numbers is the sign bit. Other computers also have floating-point numbers, which are not
supported by BALAD. In principle a group of functions to carry out floating-point
arithmetic is feasible, but the amount of memory available in this implementation of
BALAD is not sufficient to do it. So the debugger does not support them either.

. Strings. In BALAD strings are stored two 7 bit ASCII characters per word, terminated by a

zero or NULL byte. Strings are variable-length data structures.

The debugger command to start a list of one or more memory locations is /. The / is optionally
preceded by a memory address (octal, symbolic or relative). The / is optionally followed by a
single letter list mode, which determines how this location or group is to be interpreted:

/c list current location as code

/d single-precision or short signed decimal

/u single-precision or short unsigned decimal

/o single-precision or short unsigned octal

/x single-precision or short unsigned hexadecimal
/b single-precision or short unsigned binary

/D double-precision or long signed decimal

/U double-precision or long unsigned decimal

/0 double-precision or long unsigned octal

/X double-precision or long unsigned hexadecimal
/B double-precision or long unsigned binary

/s text string up to next NULL

A subsequent / command or an Enter without a command — either optionally preceded by an
address or address range will list memory locations in the most recently used list mode.

100 >> main,loop /c

100 30023 main: LDA stackA

101 32014 STA stackP

102 66700 loop: KCS expr
103 >> /

103 30022 LDA expADR

104 >>
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Here we inspect the contents of stackP, which is a memory address where double precision
numbers are stored in the GEORGE RPN calculator:

776 >> stackP/o
014 00774 stackP: 0774
015 >> @stackP/O

774 04000 025004000
775 00250

776 >> @stackP/D
774 04000 5507072
775 00250

776 >>

The @stackP address uses the contents of stackP as the location to display the two-word octal
number. The next display shows the number as a decimal. As with all listing modes, the 5 digit octal
memory value for each word is also shown as well as any labels.

4.1.6 Modifying memory locations

An important aspect of debugging is being able to modify the contents of memory locations, either
before a program is run or at a break or watchpoint. The debugger command to do this is <. Any
text after the < command is passed to the assembler to interpret and convert the input to a correct
binary value to store in the memory location preceding the < command. That location may be the
current location if no new address is typed, an octal or symbolic address or a range, which will all
be modified with the same value. Values passed may be BALAD instructions if modifying code,
numerical short or long numbers (double precision numbers have a trailing 1 or L) in any of the
input bases — decimal, octal, hexadecimal or binary. When modifying a string with a new “string”
several words may be involved, which can be tricky. In all cases, the first line of output shown after
the < command is a listing of the previous contents, which is followed by the assembly line of the
new contents. No listing mode letter may follow a < command. The temporary listing mode is
determined by the type of value to be assembled — code, number or string.

111 >> 103<LDA expPTR
103 30022 LDA expADR
103 30013 LDA expPTR
104 >> 770<55
770 00041 33
770 00067 55
771 >> 772<1234567L

772 00041 1081377L
773 00041
772 53207 1234567L
773 00045
774 >> 720<"Hello world\n"
720 00000 wn
720 62510 "Hello world\n"
721 66154
722 20157
723 67567
724 66162
725 05144
726 00000
727 >>

5 “GEORGE" aReverse Polish Notation Calculator

To show the power of the BALAD computer, I developed the program GEORGE (george.bl),
which is a complete implementation of a Reverse Polish Notation (RPN) Calculator for double-
precision integer arithmetic (30-bit precision). I did this with two aims in mind:
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1. To demonstrate what can be done with a minimal Turing complete instruction set computer
and limited memory of 512 words (1024 bytes). Most of the demonstration programs I have
supplied are toy programs to demonstrate various aspects of the instruction set. george.bl is
a full application with many of the capabilities of the calculator dc developed for early
UNIX systems and still available for Linux (dc is a reverse-polish desk calculator which
supports unlimited precision arithmetic). Other well-known RPN calculators are the HP-
428 Scientific calculator introduced in 1988 and PCalc available on iPads and other mobile
devices, which has an RPN mode. The main limitation of george.bl compared with these
systems is the lack of floating-point arithmetic and the ability to use named variables. Only
the lack of memory stops one from adding these capabilities.

2. To show 21%-century students how computer languages developed in the early days of
computing and the importance of the stack concept in computer languages. Charles Leonard
Hamblin was the professor of philosophy at the NSW University of Technology, which later
became the University of NSW in 1955. Among his most well-known achievements in the
area of computer science was the introduction

some sources also say invention) of Reverse " 1 1= T

%olish Notation and theyinvention o)f the stack in UTECOM .
computing. This was arguably independent of and e Men o

about the same time as the work of Friedrich University af NSW

Ludwig Bauer and Klaus Samelson on the
invention of the push-pop stack. In the second half
of the 1950s, he became active with UTECOM, the
third computer available in Australia, which was a
DEUCE computer produced by the English
Electric company. DEUCE was based on the ACE
computer which Alan Turing had designed. For %8
UTECOM Charles Hamblin sketched one of the .
first programming languages, GEORGE, which = |
was based on Reverse Polish Notation, including
the associated compiler (language translator),
which translated the programs formulated in GEORGE into the machine language of the
computer. In 1957 the GEORGE compiler was operational and I had the pleasure of
attending Charles Hamblin’s philosophy lectures during the early part of my Electrical
Engineering studies at UNSW. He explained the workings of GEORGE to us and the use of
Reverse Polish Notation. I wrote my first computer program in this language and had it run
on this very large machine. An incidental memory I have of that computer run was being
allowed to take a pocket full of vacuum tubes out of a bucket — they had been discarded as
being below specs. I used them to make radios at the time.

About a year later Friedrich Ludwig Bauer, Klaus Samelson and Peter Naur specified the
computer language ALGOLS58, which also used push-pull stacks for variable manipulation
and subroutine nesting — a strategy which has been maintained via PASCAL and C through
to all modern computer languages.

Here are some extracts from the original GEORGE Programming and Operation Manual.

GEORGE, or the ‘General Order Generator’, is a program for DEUCE permitting mathematical
problems to be presented to the machine in a simple “address-less” instruction language, here
called “G-Code”. To use this code the programmer must learn a special method of writing
mathematical formulae, known as “reverse Polish” notation. Once this is mastered, however,
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programming is considerably easier and quicker than by other methods. “G-Code” is a highly
simplified and condensed instruction language. The program in G-Code in fact resembles a
mathematical formula for the result required more than it does an orthodox machine program. In
particular, the programmer never has to specify any “addresses” for numbers or instructions inside
the machine.

As written, a program in G-Code is a sequence of mathematical symbols such as numerals,
variables and arithmetical and other special signs; the symbols are transcribed to cards in a
numerical code (on today’s computers a program is stored in a file in ASCII code — which is also a
numerical code). Broadly, each symbol may be regarded as an individual “instruction” of the
program.

5.1 PROGRAMMING GEORGE

5.1.1 Reverse Polish Notation
The majority of the symbols used in programming are those normally used in mathematics, but the

order in which they occur is different from the usual order: formulae are written in “reverse Polish”
notation. This notation has several advantages which fit it for use with machine computation.

In this preliminary description let us take for granted that we can use the letters “a”, “b”, “c”, ... as
ordinary algebraic variables. A mathematical formula is a prescription for operating on the numbers
such variables represent.

IMPORTANT NOTE for the BALAD implementation george.bl: variables in formulae have
not been implemented because of lack of memory. Integer numbers are put directly into the
formulae, which are then executed just like the 1957 version of GEORGE.

We can classify the operators involved as:
i. monadic operators, or operators on a single number, such as the minus-sign in “-a”.

ii. dyadic operators, or operators on a pair of numbers, such as the operators for addition,
subtraction, multiplication and division.

In ordinary mathematical notation, a monadic operator is most frequently written in front of the
number concerned, as in “-5”, and a dyadic operator between two numbers, as in “7 + 9”.
Because the sign “-” is used indifferently for subtraction and as a minus-sign (subtraction from
zero), brackets are needed to distinguish, say, “-4 + 6”and “- (4 + 6)”.

In reverse Polish notation the operator-signs, whether monadic or dyadic, are written after the
numbers concerned, as follows:

For 7+ 9 write 79 +

u 7 -9 " 79 -

u 7 * 9 “ 79 *

u 774 / 9 " 774 9 /

" -5 " 5 n and so on.

One result of this is that brackets are never needed: any of the above expressions may be used
directly and without ambiguity as an element in a longer expression. For example:
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For -(7 + 9) write 7
" 7+ 9 + 15 " 7

or 7
" (7 + 9) * 15 “ 7
" 7 + 9*%15 " 7
" 7*9 + 15/3 " 7

(oI Vo Ju Vo B Vo I Vo]

9

+ n

+ 15
15 +
+ 15
15 =*
* 15

+
+
*
+
3/ +

In understanding the use of this notation in GEORGE it will be of assistance to have in mind a
picture of the internal logic of operation. The pseudo-machine into which DEUCE (BALAD in our
case) is converted by the basic GEORGE program can be envisaged as equipped with a “running
stack™: this is a set of storage locations (known as “cells”) arranged in linear order and operated on
the “last-in-first-out” principle. When a number occurs in a program, its “value”, as a binary
number, is placed in the first vacant cell of the stack, i.e. in cell 1 if this does not already contain a
number, otherwise in cell 2 etc.: and when an operator-symbol occurs, the specified operation is
carried out on the contents of the last occupied cell or the last two occupied cells, depending on

whether the operator is monadic or dyadic. The operation of the formula “a b +” may for example
be pictured as follows: (I am using variables “a” “b” “c” of the original GEORGE handbook,

which have to be numerals for the BALAD version george.bl)

: [IPE IR
1.

a”: number is transferred to cell 1.

il. “b”: number is transferred to cell 2.

iii. “+”” contents of last two occupied cells added together; cells cleared and result replaced.

L a+b

The result is exactly the same as if a single number, the sum of a and b, had been specified. In

consequence, this number is available for further operations if required. For example to calculate
“(a + b) * c¢”wecanwrite “a b + ¢ *”. The first three steps are as above, after which:

[{P1IN

iv. “e”: number c is transferred to cell 2.

v. “*m: contents of last two cells multiplied; cells cleared and result replaced.

(a+b)xc

Alternatively, this calculation could have been
carried out in the form “c¢ a b + *”. In this case, three cells would first have been filled with
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numbers before any calculations were carried out: the result of the addition would go into cell 2,
and the final result as before into cell 1.

Quite generally, the overall effect of any calculation of a number is to place the number concerned
in the first vacant cell of the stack.

5.1.2 Other Operators

There are two special operators which, although not strictly necessary, are frequently useful:

i. “dup” this “duplicates” the contents of the last cell of the stack in the next cell. In george.bl
duplication is executed by “E” the Enter operation in conformity with HP-42S and PCalc.

For (a + b)? write a b + dup * orfor georgebl 9 7 + E *

ii. “rev” this “reverses” (i.e. interchanges) the contents of the last two occupied cells. In
george.bl “rev” is executed by “S” for Swap in conformity with HP-42S and PCalc.

For a + b + ¢ / (a + Db) write a b + dup ¢ rev / +
or for georgebl 9 7 + E 100 S / +

({3 l)

iii. “n” is negate in george.bl instead of “neg” in GEORGE.

iv. “(a)” in GEORGE means store the contents of the last cell in variable a. Since george.bl
has no variables, it has no such operator.

The following useful stack manipulation operators from HP-42S and PCalc were not available in
GEORGE but have been implemented in george.bl:

v. “R” for Roll. Move the last cell on the stack to the first cell of the stack after moving all
other cells across one position.

vi. “D” for Drop. Free the last cell on the stack, making it available for a new number.
vii. “C” for Clear the whole stack. This allows starting a new set of calculations.

White space, which is a SPACE, a TAB or a CR (enter) character, as well as any other operator
(including E) immediately after entry of a new number, will push that number on the stack. Only
then is the operation executed if it was an operator. After that white space is ignored until a new
number is entered and further operators carry out their function on numbers already on the stack.

Numbers in george.bl can be input and output in different bases, namely decimal, octal (base 8),
hexadecimal (base 16) and binary (base 2). This is a very useful feature for supporting machine-
level programming to do address arithmetic. Assemblers (including the BALAD assembler) present
memory addresses and their contents either in octal or hexadecimal. Binary presentation is useful
for bit manipulation. All the calculators which served as a model for george.bl, namely dc, HP-42S
and PCalc have input and output in the four number bases.

For george.bl the format of different base numbers follow the strategy of modern computer
languages like C and Perl:
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* A number starting with 1-9 followed by digits 0-9 is decimal.

* A number starting with 0 followed by up to 10 digits 0-7 is octal.

* A number starting with 0x followed by up to 8 digits 0-9 and a-f is hexadecimal.
* A number starting with Ob followed by up to 30 digits 0 and 1 only is binary.

Numbers may only be integers. Therefore no decimal point is allowed. The result of a calculation is
shown in decimal at the end of a reverse Polish expression string. Normally there is only one result,
but some expression strings leave values on the stack. For this reason, the whole of the current stack
is output at the end of the expression string. For debugging your reverse Polish expression this
information is very useful. Most calculators only show the last value on the stack or at most the last
two values. The ability to see the whole stack was a feature I always wanted.

george.bl has four extra operators to output numbers in the different bases. These are 4 for decimal,
o for octal, x for hexadecimal and b for binary. These operators can be put at the end of an
expression, in which case the result will be shown in the requested number base. The operators d, o,
x and b serve a dual purpose. They can also be placed more than once in the middle of a reverse
Polish expression. This has the effect that each time one of these display operators occur in the
expression the stack, as it is at that point of the expression evaluation, will be output in the
requested base. On top of that, if the display operator is not at the end of the expression the
remainder of the expression will be output after the stack results. The net result is a tracing feature
for debugging more complicated reverse Polish expressions. Let me demonstrate this feature with
an example taken from the original GEORGE handbook:

To evaluate e = ay2 + by + c,onewrotea y dup x x by x + ¢ + (e).
Forvaluesofa = 15,y = 30,b = 12 and ¢ = 45 the george.bl RPN expression is:

15 30 EER * * R 12 * + 45 + which evaluates as follows:
RPN: 15 30 EE R * * R 12 * + 45 +
13905
With extra trace output & before every value input and operator the output is as follows:
RPN: 15 d30 dE dE dR d* d* dR dl12 d* d+ d45 d+

15 30 dE dE dR d* d* dR d12 d* 4+ d45 d+
15 30 E dE dR d* d* dR dl12 d* d+ d45 d+
15 30 30 E dR d* d* dR dl2 d* d+ d45 4+

15 30 30 30 R d* d* dR dl12 d* 4+ d45 d+

30 15 30 30 * d* dR d12 d* d+ d45 d+

30 15 900 * dR dl2 d* d+ d45 4+

30 13500 R d12 4* d+ d45 4+

13500 30 12 4* d+ d45 4+

13500 30 12 * d+ d45 d+

13500 360 + d45 d+

13860 45 4+

13860 45 +

13905

A similar effect can of course be achieved by entering every input value and operator on a separate
line, but the output is not quite as compact and informative:
RPN: 15

15
RPN: 30
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15 30
RPN: E

15 30 30
RPN: E

15 30 30 30
RPN: R

30 15 30 30
RPN: *

30 15 900
RPN: *

30 13500
RPN: R

13500 30
RPN: 12

13500 30 12
RPN: *

13500 360
RPN: +

13860
RPN: 45

13860 45
RPN: +

13905

5.2 The overall strategy of GEORGE

It is important to remember that computers in the ‘50s like UTECOM were mainly seen as Number
Crunchers — in other words evaluating numerical formulae. Up till then, the word computer had
been a job description for workers, whose job it was to compute numbers for such projects as the
dimensions of beams for building sites or statistical projections for businesses using pencil and
paper with mechanical calculators as the only aid.

I did such a project with my father, who was a lecturer in Mechanical Engineering at UNSW. He
had undertaken to produce a chart for selecting suitable steel tubes from those produced by the
company Tubewrights in Port Kembla for use as columns for building projects. It was known that
long columns fail by buckling. A Swiss mathematician named Leonhard Euler (1707 —1783) was
the first to investigate the buckling behaviour of slender columns within the elastic limit of the
column’s material. Euler’s equation shows the relationship between the load that causes buckling of
a (pinned end) column and the material and stiffness properties of the column. The critical buckling
load can be determined by the following equation.

_ 2 2
Pcritical =TT EImin/L
where

Paiiical = critical axial load that causes buckling in the column (pounds or kips)
E = modulus of elasticity of the column material (psi or ksi)
Imin = smallest moment of inertia of the column cross-section (in?)
(Most sections have Iyand Iy; angles have 1,1, and L,.)
L = column length between pinned ends (inches)
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The char