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Abstract

Before discussing the general aim of this thesis and giving some preview of the results, we
first explain some words in the title more carefully.

Types are a tool present in a lot of programming languages and they prevent pro-
grammers from making some kinds of errors. For instance a type checker will complain
when a function that expects an argument of type int is invoked with a value of type
string. Of course type systems vary in strength and some languages provide types that
can depend on other types. Java for example provides a generic type ArrayList<T> of
lists with elements of type T. The advantage of such a type is that information on the
type of elements in a list is stored in the type of that list, but at the same type list
operations such as isEmpty() can be implemented once and work for all lists, irrespective
of the type T. Moreover, the implementation of an operation such as isEmpty() does not
inspect the type T and hence applies the same algorithm for every list. In this thesis, we
will call functions such as isEmpty() that work for any type T polymorphic and if they
additionally apply the same algorithm for any type, they are called parametric.

When we know of a certain polymorphic function that it is parametric, that informa-
tion strongly restricts its possible behaviour and we can wonder whether there are some
results that can be deduced from it. This is exactly what Philip Wadler did for System F,
a theoretical programming language with support for parametric polymorphism [Wad89].
He developed a procedure to derive from a given type of parametric polymorphic functions
a theorem that is satisfied by all functions of that type. This is a powerful feature for
reasoning about programs.

The purpose of any practical computer program is to cause some effect (also called a
side effect) in the world outside of that program. It could for instance write some output
to the screen, read a file or send information over a network. Functions that do not
cause any side effect are called pure and they can only take some arguments as input and
produce some value as output. In this thesis we are mainly interested in purely functional
programming languages, such as Haskell and Agda, in which every regular function is
required to be pure. To write practically useful programs that cause side effects in such
a language, we can use monads, a concept that originated in category theory. Different
monads will give rise to different kinds of side effects.

It is then interesting to consider effect polymorphic functions, which are functions
that are polymorphic not in the sense that they work for any type but in the sense that
they work for any monad. In other words, these are functions that take some effectful
computations as argument but for which the kind of side effect in those computations does
not matter. An example of such an effect polymorphic function is the Haskell function
sequence that takes a list of effectful computations and performs them sequentially. Just
as for ordinary polymorphic functions, an effect polymorphic function is called parametric
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if its implementation does not inspect the monad it is instantiated with and hence applies
the same algorithm for any monad. Effect parametricity is then a procedure similar to
Wadler’s that allows us to deduce a theorem from a type of effect polymorphic functions
that is satisfied by all functions of that type.

We already gave an example of a type that depends on another type. In type systems
with dependent types, it is also allowed for a type to depend on a value of another type.
We could for instance consider the type Vec<T,n> of lists of length n with elements of type
T. Here n is a value of another type int. The introduction of dependent types makes our
type system so expressive that we can formalize mathematics in it, using a principle called
the Curry-Howard correspondence. Under this correspondence, mathematical statements
correspond to types and proofs of these statements correspond to values of their cor-
responding types. In this way, it is possible to write programs in a dependently-typed
language and prove properties of these programs in the same language.

In [NVD17], Nuyts, Vezzosi and Devriese describe a dependent type system ParamDTT
which has support for parametricity. This means that they provide tools to prove para-
metricity theorems such as Wadler’s internally in the system. Additionally, there is
an extension of the dependently-typed programming language Agda that implements
ParamDTT and that is called Agda parametric.

The general objective of this thesis is to study monads and in particular effect para-
metricity in the type system ParamDTT. We want to investigate how monads and (para-
metric) effect polymorphic functions can be defined and whether it is possible to prove
theorems that follow from effect parametricity internally in the system. Additionally,
we intend to take effect parametricity as a specific use-case to evaluate the type system
ParamDTT and its implementation Agda Parametric as a tool for practical computer-
verified reasoning about parametricity.

In chapter 1 and the first part of chapter 2, we present background material on type
systems and parametricity. We also give an introduction to the type system ParamDTT.
The last section of chapter 2 contains some examples of parametricity results involving
functors and how they can be proved in ParamDTT.

Subsequently, chapter 3 provides both an introduction to the theory of monads and an
implementation of this theory in the type system ParamDTT. We will see two different
(but almost equivalent) formulations of a monad and we investigate whether there are
some interesting results that follow from parametricity of the monad operations.

In chapter 4 we then explore how to implement effect polymorphic functions in the
type system ParamDTT and how to prove effect parametricity results. We describe a more
or less general procedure in section 4.2 and apply it to concrete examples of parametricity
results in the subsequent sections.

Finally, in chapter 5 we present some related work and chapter 6 contains the conclu-
sion and some directions for further research.

Our own contributions in this thesis consist of the formulation of Wadler’s discussion
on parametricity (see [Wad89]) in a concrete term model instead of an abstract term
model in section 2.1, the formalization of the parametricity results about functors in
section 2.3, the formalization of monads and the corresponding theory in chapter 3 and
the formalization of the effect parametricity results in chapter 4. The results in section 3.3
about the independence of the monad laws were probably known already (in the absence
of parametricity), but we could not find any reference stating or proving those results.



List of Symbols

T Set of terms in a formal system.
V Set of variables in a formal system.
λx . t Lambda abstraction.
t[s/x] Substitution in of a variable x in a term t by a term s.
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JT K Relational interpretation of the type T .
] Parametric modality.
¶ Pointwise modality.
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Some Preliminary Remarks

The results of this thesis have been formalized in the proof assistant Agda parametric,
which is an extension of the dependently-typed programming language Agda implement-
ing the type system ParamDTT. All code can be found in the GitHub repository accom-
panying the thesis.1 More information on how to install Agda parametric can also be
found there. The code is an integral part of this thesis, and we will sometimes refer to it
in the text when writing out all details on paper would become very cumbersome.

The following sections and chapters contain results that are formalized in Agda para-
metric.

• Section 2.3 about functors and corresponding parametricity results. The code for
this section can be found in the file Functors.agda.

• Chapter 3 about the theory of monads. The code for this chapter is contained in
the folder Monads.

• Chapter 4 about effect parametricity. For this chapter, the code is in the folder
EffectParametricity. Every section of this chapter has a corresponding file in
this folder containing formalizations of material of that section.

The reason why we do not show any Agda code in this text, is that in our opinion
code is easier to understand when one can navigate inside it. Moreover, this gives us the
opportunity to be somewhat sloppy in our notation and for instance write F for not only
a functor, but also its action on types and its action on functions (see section 2.3 for the
definition of a functor), which is better for human understanding but is not allowed in a
proof assistant.

An extended abstract on the results of this thesis has been submitted to the TyDe 2019
workshop on Type-Driven Development2 and is under review at the time of writing.

1See https://github.com/JorisCeulemans/effect-param-agda.
2See https://icfp19.sigplan.org/home/tyde-2019.
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Chapter 1

Type Systems

This chapter provides background information on the formal systems that will be used
in the subsequent chapters. We start in section 1.1 by introducing the untyped lambda
calculus, which is a very simple formal system and theoretical functional programming
language. Despite the title of this chapter it does not contain any types, but it will serve
as the basis of the typed systems that will follow. Adding types to the untyped lambda
calculus in the simplest possible way gives rise to the simply typed lambda calculus, which
is the subject of section 1.2. Section 1.3 then introduces System F, which is an extension of
the simply typed lambda calculus that allows us to define polymorphic functions. Finally,
we will consider dependent types, another extension of the simply typed lambda calculus
(and in some sense also of System F), in section 1.4.

1.1 Untyped Lambda Calculus

Alonzo Church introduced the (untyped) lambda calculus in 1936 to provide a negative
solution to the so-called Entscheidungsproblem or decision problem in mathematical logic
[Chu36]. That problem was formulated by David Hilbert and Wilhelm Ackerman in 1928
and it was concerned with the existence of a procedure that would take a set of axioms and
a logical formula as input and would then provide an answer to the question whether the
formula is provable from the axioms. Initially, a major difficulty in solving the Entschei-
dungsproblem was the absence of a precise notion of algorithm or computable procedure,
and that was exactly what Church intended to provide with his lambda calculus. Using
this definition of an algorithm, he proved that a procedure as required by the decision
problem cannot exist.

The lambda calculus is, however, not only interesting to logicians and mathematicians.
As it was developed to provide a precise definition of an algorithm, it is not surprising that
the lambda calculus is nowadays also a subject of study in theoretical computer science.
There, it serves as a theoretical programming language that is simple enough so that
theorems about it can be rigorously proved. At the same time the lambda calculus (or
in most cases some extension of it) serves as the basis for many functional programming
languages.

We include in this thesis an introductory section on the lambda calculus because it is
the basis of the other systems, such as System F and dependent type theory, that we will
need in the next chapters. This section is based on [Pie02, chapter 5].

1



2 CHAPTER 1. TYPE SYSTEMS

1.1.1 Syntax

The central notion of the lambda calculus is that of a function. Contrary to the standard
mathematical definition of a function as a set of pairs representing its graph, we will
think of a function as a procedure that takes some input and consequently produces
some output (more or less like a function in a programming language). A function that
produces output e for the input x will be denoted by λx . e, where e is an expression that
probably, but not necessarily, contains x. In fact, the only operations that are available
in the untyped lambda calculus are function definition and function application. Data
like booleans, natural numbers or lists can then be encoded in terms of these functions,
see for instance example 1.12.

More formally, we will define the set Tλ of all valid programs of the untyped lambda
calculus. Such a program is called a lambda term or simply a term. We assume that we
have a countably infinite set V of variables at our disposal, and that x, y, z, xi, yi, zi ∈ V
for all i ∈ N.

Definition 1.1. The set Tλ of terms of the untyped lambda calculus is defined as the
smallest set that satisfies the following conditions.

• If x ∈ V then x ∈ Tλ.

• If x ∈ V and t ∈ Tλ then λx . t ∈ Tλ.

• If t1, t2 ∈ Tλ then t1 t2 ∈ Tλ.

From now on, we will replace inductive definitions as this one by saying that the
symbol x ranges over variables and the symbol t ranges over lambda terms and that the
set of lambda terms is given by the following grammar.

t ::= x
| λx . t
| t t

A term of the form λx . t is called a lambda abstraction and a term of the form t1 t2 for
terms t1 and t2 is called an application (of t1 to t2).

There can be some ambiguity in the interpretation of a lambda term, so parentheses
should be added whenever necessary. To avoid writing too many parentheses, we will
adopt two conventions, which are also common in the literature.

• Application associates to the left. This means that an expression of the form
t1 t2 . . . tn will be interpreted as ((t1 t2) . . .) tn.

• A lambda abstraction stretches as far to the right as possible. The term λx . xy will
for instance be interpreted as λx . (xy) and not as (λx . x) y.

Example 1.2. The following lambda terms give some idea about what kind of functions
can be described in the untyped lambda calculus. The additional explanation is only
based on the intuition that a lambda abstraction denotes a function. These statements
will be precise when we have introduced semantics for the untyped lambda calculus in
section 1.1.2.
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• The term id = λx . x represents a function that takes an argument x and returns x,
so it is the identity function.

• The term pr1 = λx . λy . x takes an argument x and maps it to the function that
takes another argument and returns x. As a consequence, if we apply pr1 to two
arguments, it will return the first one. Hence we can see pr1 as a (projection) function
that takes two arguments and produces a result. The procedure of representing a
function that takes multiple arguments as a higher order function, is called currying
after the American logician Haskell Curry.

• The lambda abstraction comp = λg . λf . λx . g (f x) represents a composition oper-
ator taking as its arguments two functions g and f and returning the composition
g ◦ f 1.

We can now define bound and free variables of a lambda term.

Definition 1.3. Let x ∈ V be a variable. We define by induction on a lambda term
t ∈ Tλ the free and bound occurrences of x in t.

• If t = y is a variable and y 6= x, then x (obviously) does not occur in t.

• If t = x, then the occurrence of x in t is free.

• If t = λy . t′ and y 6= x, then every free (bound) occurrence of x in t′ is a free (bound)
occurrence of x in t.

• If t = λx . t′, then every occurrence of x in t′ is a bound occurrence of x in t. The
free occurrences of x in t′ are said to be bound by this abstraction.

• If t = t1 t2, then the free (bound) occurrences of x in t are the free (bound) occur-
rences of x in t1 and t2.

A free (bound) variable of a lambda term t is a variable with at least one free (bound)
occurrence in t. A term with no free variables is called closed .

Example 1.4. In the term x (λy . y w (λz . z)) the occurrences of the variables x and w
are free and those of y and z are bound. As this term contains free variables, it is not
closed. All terms from example 1.2 are closed.

1.1.2 Semantics

Now that we know the syntactically valid programs of the untyped lambda calculus, we
must specify how these programs are evaluated. As the lambda calculus only provides
mechanisms for function definition and function application, the only interesting situation
in the evaluation of a lambda term is the presence of an application where the left hand side
is a lambda abstraction. Such a term of the form (λx . t) s is called a β-redex or simply
a redex (from reducible expression). Following our intuition that λx . t is a function
that maps x to t, the term (λx . t) s should be evaluated to the term t in which every

1Note that we are using here the mathematical notation g ◦ f , but we emphasize that f and g are
lambda terms and not mathematical functions.
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free occurrence of x is substituted by s. However, giving a precise definition of such
a substitution that corresponds to our intuition is not completely trivial. Hence we
present in this section a precise definition of substitution and subsequently we introduce
an evaluation relation for the untyped lambda calculus.

Consider the lambda terms λx . x and λy . y. They are not syntactically equal, but
they both represent the identity function. It is in general clear that, when t′ is the term
obtained from t by replacing all free occurrences of the variable x by y, then λx . t and λy . t′

represent the same function.2 We say that these lambda terms are α-equivalent . Terms
that are equal up to some α-equivalent subterms are also defined to be α-equivalent. As an
example λx . λy . y and λx . λz . z are α-equivalent. From now on we will consider lambda
terms up to α-equivalence and hence we should verify that all definitions and results are
invariant under α-equivalence.3 However, this verification will usually be straightforward
and therefore omitted, as is common in the literature.

Definition 1.5. Let x ∈ V be a variable and s ∈ Tλ a term. Then we define by induction
on a term t ∈ Tλ the substitution of x by s in t, written as t[s/x].

• If t = y is a variable and y 6= x, then t[s/x] = y.

• If t = x, then t[s/x] = s.

• If t = λy . t′ with y 6= x and y not a free variable of s, then t[s/x] = λy . t′[s/x].

• If t = t1 t2, then t[s/x] = t1[s/x] t2[s/x].

The above definition appears to be incomplete because it does not cover the cases
t = λx . t′ or t = λy . t′ where y is a free variable of s. However, using an α-equivalent
lambda abstraction, we can convert these cases into the lambda abstraction case that is
covered in the definition. In order for this to work, it is important that the set of variables
V is infinite so that we can always find a variable not appearing in t or s.

The reason why we use the above definition and not the naive idea of replacing all
free occurrences of x in t by s, is to avoid the capture of free variables in s. Suppose for
instance that t = λx . y and that s = x. Then t represents some function mapping an
argument x to a free variable y. If we calculated the substitution of y by s in t naively
by replacing all free occurrences of y in t by s, we would get the identity function λx . x,
which is clearly not the intended behaviour of substitution. Using the above definition,
however, we first convert t to an α-equivalent term λz . y and then get t[s/x] = λz . x.
The definition of substitution as in Definition 1.5 is therefore called capture-avoiding.

Using our definition of substitution, we can define an evaluation relation (sometimes
also called a reduction relation) for the untyped lambda calculus. This will be a binary
relation on the set of lambda terms Tλ, denoted by the symbol  and expressing the
semantics of the untyped lambda calculus. For any two terms t, s ∈ Tλ we intuitively say
that t  s if and only if a reduction step or computation step can be performed on the

2Actually this is not true. Consider for instance the case in which t = λy . y x so that t′ = λy . y y.
Then λx . λy . y x and λy . λy . y y do not at all represent the same function. However, it will be intuitively
clear when two terms are α-equivalent.

3This is strictly speaking not true for the definition of free and bound variables. However, using the
intuition that variable names are unimportant, it can be made correct by appropriately changing those
variable names.
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t1  t′1
E-App1

t1 t2  t′1 t1

t2  t′2
E-App2

v1 t2  v1 t
′
2

(λx . t) v  t[v/x]
(E-AppAbs)

Figure 1.1: Evaluation rules for the untyped lambda calculus.

term t, yielding the term s. Formally, the evaluation relation is given by the inference
rules of Figure 1.1. In order to interpret these inference rules, we need to introduce a
concept called value.

When specifying the semantics of a formal system, we must choose which terms will be
considered as possible final results of computations. Those terms will in general be called
the values of that formal system. In the specific case of the untyped lambda calculus,
the set of values is defined to be the subset of Tλ consisting of all lambda abstractions.
This means that we will consider a lambda abstraction as the valid final result of the
evaluation of a lambda term and it implies that lambda abstractions cannot be reduced.
We will use the symbol v to range over values.

The first inference rule now states that if a term t1 can be reduced to a term t′1, then
the application t1 t2 can be reduced to the application t′1 t2. Similarly, the second inference
rule states that an application whose left subterm is a value (i.e. a lambda abstraction)
and whose right subterm is reducible, can be reduced by reducing the right subterm. The
last rule, having no premises, is strictly speaking not an inference rule, but an axiom. It
states that an application of a lambda abstraction to a value can be reduced to the body
of the lambda abstraction, substituting the value for the variable bound by the lambda
abstraction. This kind of reduction of a redex is called β-reduction.

The statement that the evaluation relation  is determined by the inference rules in
Figure 1.1 means that we can conclude t s if and only if it is an instance of the axiom
E-AppAbs, or it is the conclusion of an instance of one of the inference rules E-App1 or
E-App2 whose premise was already established. More concretely the statement t  s is
derivable if and only if it is the conclusion of a finite derivation tree built up from the
inference rules.

Example 1.6. We will prove the evaluation statement
(
(λx . x)

(
(λy . y) z

))
(λw .w)  (

(λx . x) z
)
(λw .w) by constructing a derivation tree.

E-AppAbs
(λy . y) z  z

E-App2
(λx . x)

(
(λy . y) z

)
 (λx . x) z

E-App1(
(λx . x)

(
(λy . y) z

))
(λw .w) 

(
(λx . x) z

)
(λw .w)

In the first and second derivation steps (involving the inference rules E-AppAbs and E-

App2) we used the fact that λw .w and λx . x are a lambda abstractions and hence a
values.

Proposition 1.7. The evaluation relation is deterministic, meaning that for any terms
t, t′, t′′ ∈ Tλ if t t′ and t t′′, then t′ = t′′.

Proof. The proof uses induction on a derivation of t  t′. This means that for every
inference rule of the evaluation relation we prove that if the statement of the theorem
holds for all of its premises, then it also holds for its conclusion. As t t′ holds, it must
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be in the conclusion of a derivation tree of this fact, and hence this proves the theorem.
See [Pie02] for more details.

Definition 1.8. A lambda term t ∈ Tλ is said to be in normal form if it cannot be
reduced, or in other words if there is no t′ ∈ Tλ such that t t′.

From the inference rules in Figure 1.1 one can easily see that all lambda abstractions
are in normal form. More generally, the fact that that values are normal forms will be
true in all systems that follow, which is not surprising as values are valid results of a chain
of reductions.

Definition 1.9. One defines the multi-step evaluation relation  ∗ as the reflexive, tran-
sitive closure of  . This intuitively means that t ∗ s if and only if t can be reduced to
s in zero or more steps.

A term t ∈ Tλ is said to have a normal form if there exists a term t′ ∈ Tλ that is in
normal form and such that t ∗ t′.

Proposition 1.10. Every term t ∈ Tλ has at most one normal form, so if t  ∗ t′ and
t ∗ t′′ and t′ and t′′ are in normal form, then t′ = t′′.

Proof. This follows straightforwardly from Proposition 1.7.

It is however not the case that every term has a normal form. The lambda term
(λx . x x) (λx . x x) for instance will reduce to itself and hence there is no finite sequence
of evaluation steps leading to a normal form.

Remark 1.11. The semantics that we introduced in this section using an evaluation re-
lation is one of many alternatives. First, the evaluation relation  represents one com-
putation step. This is kind of semantics is called small-step style, as opposed to big-step
semantics with an evaluation relation describing the reduction of a term to its final result.
An evaluation relation in the big-step style is a bit like our relation  ∗ when the right-
hand side is a normal form, but in our case the relation  ∗ is not the primitive relation
defining the semantics but is rather defined in terms of  .

Furthermore, the inference rules in Figure 1.1 determine a particular evaluation order
in which the redexes in a lambda term should be reduced, namely first reduce the left-
hand side of an application until it is a value, then reduce the right-hand side until it is a
value and then reduce the obtained application using E-AppAbs. This order is called the
call-by-value evaluation order. Other evaluation strategies exist such as call-by-reference,
normal order and full β-reduction. The last two strategies also allow reduction within a
lambda abstraction so that the definition of values should be adjusted (only those lambda
abstractions with an irreducible body will then be values). Moreover those strategies will
have different normal forms than the call-by-value order presented here. See [Bar85] and
[Pie02, chapter 5] for more details.

Example 1.12. Although the untyped lambda calculus is very simple as a programming
language, providing only function definition and function application as primitive con-
structs, data such as booleans and numbers can be encoded as lambda terms. This is
called the Church encoding of these data. In this example, we will consider the Church
encoding of booleans.
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The essential feature of the booleans is that there are two values, true and false. Hence
the encoding of the booleans must consist of two closed lambda terms, one encoding true
and one encoding false. The traditional Church encoding of the booleans is

ctrue := λx . λy . x

cfalse := λx . λy . y.

These two terms are particularly useful for encoding booleans because the booleans are
mostly used for choosing between two alternatives and that is exactly what ctrue and
cfalse allow us to do. Using this Church encoding, one can also start defining logical
operations such as

and := λb . λc . b c cfalse

not := λb . b cfalse ctrue.

Working out definitions then gives us that for instance and ctrue cfalse ∗ cfalse and that
not cfalse ∗ ctrue.

1.2 Simply Typed Lambda Calculus

A practical functional programming language based on the lambda calculus usually has
primitives for booleans, natural numbers, lists, etc. instead of relying on their Church
encodings (among others for efficiency reasons). Consider for the moment the untyped
lambda calculus extended with primitive support for natural numbers. It then becomes
possible to write nonsensical programs such as the application of a number to some other
term. Such a term that is not a value, but cannot be reduced either, is called stuck
and it represents an erroneous program. A lot of programming languages have a type
system that prevents us from evaluating nonsensical programs like the one above. In this
section, we will add a type system to the untyped lambda calculus, giving rise to the
simply typed lambda calculus (sometimes abbreviated to STLC). This section is based
on [Pie02, chapter 9].

1.2.1 The Typing Relation

The idea of a type system is to assign types to certain terms indicating what kind of
information those terms represent. In a language containing primitives for the natural
numbers, there could be for instance a type of natural numbers and every natural number
would have that type. However, we would not be able to assign a type to an application
in which the left-hand side is a natural number because for the typing of an application
the left-hand side will be required to have a function type. If we then restrict ourselves
to the execution or evaluation of programs that can be assigned a type, the nonsensical
program from the introduction to this section will be rejected by the type system.

When providing typing for the lambda calculus, we should first determine what are the
possible types that lambda terms can have. As the only values of the lambda calculus are
lambda abstractions representing functions, these types will be function types indicating
that a term is a function. Moreover, it will turn out to be useful (and even necessary) to
include in these function types the type of the argument that is expected and the type of
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result that is returned. More concretely, for any types A and B we will have a type A→ B
of functions that take an argument of type A and return a result of type B. Furthermore,
we will also introduce a base type ι. We will not assign this type to any closed term, but
as the construction of a function type A → B already requires two existing types A and
B, we need some type to start from.

Formally, the symbol T will range over types and the set T→ of types of the simply
typed lambda calculus is given by the following grammar.

T ::= ι
| T → T

Again parentheses should be added whenever necessary to resolve ambiguity, but we adopt
the convention that → associates to the right. This means for instance that A→ B → C
will be interpreted as A→ (B → C).

It is clear that the identity function λx . x is not an erroneous term and should therefore
not be rejected by the type system. As a consequence, we should be able to assign a type to
it. Furthermore, it is also clear that the identity function is a function taking an argument
of a certain type A and returning a result of the same type A. The problem is to determine
what the type A should be because the identity function can take an argument of any
type. In fact, in the simply typed lambda calculus there will be infinitely many identity
functions, one for every type A ∈ T→. In order to tell what type of argument a function
expects, we alter the syntax of lambda abstractions to include the argument type. The
identity function for the type A will for example be written as λ(x : A) . x. The set T→ of
terms of the simply typed lambda calculus is then given by the following grammar.

t ::= x
| λ(x : T ) . t
| t t

All definitions from section 1.1 such as free and bound variables, α-equivalence, substitu-
tion, evaluation, etc. carry over to the simply typed lambda calculus.

Consider now two types A,B ∈ T→ and their respective identity functions λ(x : A) . x
and λ(x : B) . x. In the body of the first abstraction, the variable x represents a term
of type A whereas in the body of the second abstraction it represents a term of type
B. From this we can see that the type of a variable depends on the context it lives in
and therefore, we will introduce the concept of a typing context . A typing context is a
sequence of distinct variables with for each variable the type it is assumed to have in that
context. For instance, in the context x : ι, y : ι → ι the variable x is assumed to be of
type ι and the variable y to be of type ι → ι. Formally the symbol Γ will range over
typing contexts and the set of all typing contexts is given by the following grammar.

Γ ::= ∅
| Γ, x : T

Here the symbol ∅ denotes the empty context containing no assumptions about variables.
Furthermore, we require all variables in a typing context to be distinct (which is strictly
speaking not enforced by the grammar). We write (x : T ) ∈ Γ if and only if the assumption
x : T is contained in the typing context Γ.

Now we can define the typing relation for the simply typed lambda calculus. It is a
ternary relation written · ` · : · between the set of typing contexts, the set T→ of terms
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(x : T ) ∈ Γ
T-Var

Γ ` x : T

Γ, x : A ` t : B
T-Abs

Γ ` λ(x : A) . t : A→ B

Γ ` t1 : A→ B Γ ` t2 : A
T-App

Γ ` t1 t2 : B

Figure 1.2: Typing rules for the simply typed lambda calculus.

and the set T→ of types of the simply typed lambda calculus. Intuitively we say that
Γ ` t : T if and only if in the context Γ (i.e. under the assumptions of the context Γ)
the term t has type T . Formally, the typing relation is given by the inference rules in
Figure 1.2. In a typing statement involving the empty context, we will write ` t : T rather
than ∅ ` t : T .

The typing rule T-Var tells us that if the assumption x : T is contained in the context
Γ, then the variable x has type T in that same context. The rule T-Abs states that a
lambda abstraction λ(x : A) . t has a function type A→ B if, assuming that the variable
x has type A, the term t has type B. Finally the inference rule T-App says that an
application of a term with function type A→ B to a term with type A has type B.

Just like with the evaluation relation in section 1.1.2, the fact that the typing relation
is determined by the inference rules in Figure 1.2 means that Γ ` t : T if and only if this
is the conclusion of a derivation tree that can be built using the typing rules. Such a
derivation tree is also called a typing derivation for the typing statement.

Definition 1.13. A term t ∈ T→ is said to be typable or well typed if there exists a
context Γ and a type T ∈ T→ such that Γ ` t : T .

Example 1.14. We will show that `
(
λ(x : ι→ ι) . x

)
(λ(y : ι) . y) : ι→ ι by constructing

a typing derivation.

(x : ι→ ι) ∈ x : ι→ ι
T-Var

x : ι→ ι ` x : ι→ ι
T-Abs

` λ(x : ι→ ι) . x : (ι→ ι)→ ι→ ι

(y : ι) ∈ y : ι
T-Var

y : ι ` y : ι
T-Abs

` λ(y : ι) . y : ι→ ι
T-App

`
(
λ(x : ι→ ι) . x

)
(λ(y : ι) . y) : ι→ ι

Example 1.15. We continue example 1.12 about the Church encoding of the booleans.
There the intuition was that the terms ctrue and cfalse let us easily choose between two
alternatives. However, in the simply typed lambda calculus a lambda abstraction must
be annotated with the type of argument it expects. Hence, just like with the identity
function above, we now have for any type A ∈ T→ the Church booleans

ctrueA := λ(x : A) . λ(y : A) . x

cfalseA := λ(x : A) . λ(y : A) . y

and these closed terms are well typed since ` ctrueA, cfalseA : A→ A→ A. This situation
is however rather unsatisfactory, as our basic intuition of booleans tells us there are only
two boolean values and not infinitely many. Moreover the term ctrueT behaves exactly
the same for every type T (picking the first of two arguments), the type annotation is
only present for type checking. We will see in section 1.3 how to resolve these problems
in System F.
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1.2.2 Properties of the Simply Typed Lambda Calculus

We start this section with a simple proposition about uniqueness of types.

Proposition 1.16. If for any typing context Γ, term t ∈ T→ and types T, T ′ ∈ T→ we
have that Γ ` t : T and Γ ` t : T ′, then T = T ′

Proof. Very simple induction on a typing derivation of Γ ` t : T , using the convention
that all variables in a typing context should be distinct.

In the introduction to this section we mentioned that one of the reasons to introduce a
type system is to prevent us from writing erroneous programs. Such an erroneous program
is more more concretely defined as a term that evaluates to a stuck term (which is a term
in normal form that is not a value). It is now possible to prove that any well-typed
closed term of the simply typed lambda calculus will not evaluate to a stuck term. This
property is known as the type safety of the simply typed lambda calculus and it is a
precise formulation of the fact that a type system prevents us from writing erroneous
programs.

Theorem 1.17 (Type safety for STLC). The following two statements hold.

1. Progress: If a closed term t ∈ T→ is well typed, then it is either a value, or there
exists a term t′ ∈ T→ such that t t′.

2. Preservation: If Γ ` t : T and t t′ then Γ ` t′ : T .

This theorem indeed tells us that the evaluation of a well-typed closed term will never
reach a stuck term. More concretely, by the progress statement a well-typed closed term
t is either a value (and then the result follows immediately), or it can be reduced. The
preservation statement tells us that in the latter case, the term to which t is evaluated is
also well-typed and hence we can apply the same argument again. Note that Theorem 1.17
does not tell us that every well-typed closed term can be reduced in a finite number of steps
to a normal form as it does not exclude the possibility of infinite evaluation sequences.

Proof of Theorem 1.17. 1. The proof of the progress statement is by induction on a
typing derivation for the term t. See [Pie02, p. 105] for more details.

2. This proof can be carried out by induction on a derivation of t t′ (or alternatively
on a typing derivation of Γ ` t : T ). It makes use of the following substitution
lemma. See again [Pie02, p. 107] for more details.

Lemma 1.18 (Substitution lemma for STLC). If Γ, x : S ` t : T and Γ ` s : S then
Γ ` t[s/x] : T .

Proof. Again by induction on a typing derivation of Γ, x : S ` t : T . See [Pie02, pp. 106-
107] for more details.

In the discussion after Proposition 1.10 we saw an example of a term in the untyped
lambda calculus that does not have a normal form. However, in the simply typed lambda
calculus, we can prove that every well-typed term can be reduced in a finite number of
steps to a normal form. One says that the simply typed lambda calculus is normalizing.
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Theorem 1.19 (Normalization of STLC). If t ∈ T→ is a well-typed closed term, then
there is a term t′ in normal form such that t ∗ t′.

Proof. Proving this theorem requires more than just induction on a typing derivation, but
involves a technique called logical relations. The complete proof is the subject of [Pie02,
chapter 12].

Together with the translation of Proposition 1.10 to the simply typed lambda calculus,
this theorem tells us that every well-typed closed term has a unique normal form and from
Theorem 1.17 it follows that this normal form is a value.

1.3 System F

In the previous section we saw that the simply typed lambda calculus has infinitely many
identity functions, namely λ(x : A) . x for every type A ∈ T→. The behaviour of all these
functions with respect to evaluation is however identical and the type annotation is only
used for type checking. The idea of this section is to introduce polymorphic functions that
work for any type. In this way we can introduce a single polymorphic identity function
that can be instantiated with a type A and will then reduce to the identity function for
the type A. The formal system that lets us define such polymorphic functions is called
System F or the polymorphic lambda calculus.4

System F is an extension of the simply typed lambda calculus, developed independently
by Jean-Yves Girard [Gir72] and John Reynolds [Rey83]. This section is based on [Pie02,
chapter 23].

1.3.1 Syntax and Semantics

The main new feature of System F is the possibility to abstract a type out of a term. In
other words, we can define a function that takes a type as argument and then returns
a term. This new kind of abstraction is called a type abstraction and it is written as
ΛX . t, where X is a type variable and t is a term. We can then define the polymorphic
identity function as ΛX .λ(x : X) . x, so it is a function taking a type X as argument
and returning the identity function for that type X. System F also allows us to apply a
polymorphic function to a concrete type T , which we write as t [T ] and which is called a
type application.

As System F is a typed language, we should assign types to well-behaved polymorphic
functions such as the polymorphic identity function. For this purpose, System F provides
us with a new type constructor ∀. The polymorphic identity function will for instance
have type ∀X .X → X because for any type X it yields a function from X to X.

Having discussed the intuition about System F, we can now consider its syntax and
semantics more formally. In System F we distinguish between type variables like the
variable X in the previous paragraphs and ordinary variables that serve the same purpose
as the variables we used in the previous sections. We assume that we have countably
infinite sets VT of type variables and VO of ordinary variables. The symbol X will range
over type variables and x over ordinary variables. The set TF of System F types is then
defined by the following grammar.

4According to Girard [Gir86, p. 160] the letter F for the name System F was chosen by chance.
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T ::= X
| T → T
| ∀X .T

Note that we do not include a base type any more because we can now start building
types using type variables.

Subsequently, the set TF of the terms in System F is defined by the following grammar.

t ::= x
| λ(x : T ) . t
| t t
| ΛX . t
| t [T ]

A term of the form ΛX . t is called a type abstraction and a term of the form t [T ] is called
a type application (of t on T ).

Similar to the definition of free and bound ordinary variables of a term, we can also
define free and bound type variables of a term where a type variable gets bound by a
type abstraction. For instance the term

(
ΛX .λ(x : X → Y ) . x

)
[Z] has X as a bound

type variable and Y and Z as free type variables. Furthermore, we can now also define
the notion of free and bound type variables of a type where a type variable gets bound
by the ∀ type constructor. As an example the type ∀X .X → Y → X has X as a bound
type variable and Y as a free type variable.

The notion of α-equivalence for terms must also be extended to type variables. It
is clear that when t′ is the term obtained by replacing in t all free occurrences of X by
Y , then the terms ΛX . t and ΛY . t′ represent the same polymorphic functions. These
terms will therefore also be called α-equivalent. In the same way, we can also talk about
α-equivalent types, like ∀X .X → X and ∀Y . Y → Y . Just like in the previous sections,
we consider terms and types up to α-equivalence.

Another concept from section 1.1 that can be extended to type variables is that of
substitution. In System F we can also substitute in a type T a type variable X by a type
S, written as T [S/X], where we pay attention to avoid the capture of free type variables
in S by a ∀ constructor in T (by taking another type that is α-equivalent to T ). Similarly,
we can define the capture-avoiding substitution of a type variable X by a type S in a
term t, written as t[S/X].

The semantics of System F is now given by the evaluation relation that is determined
by the inference rules in Figure 1.3. The rules E-App1, E-App2 and E-AppAbs are identical
to the evaluation rules of the simply typed lambda calculus. Note however that the
values of System F are defined to be the lambda abstractions and the type abstractions.
In addition to the known evaluation rules, we now also have the rule E-Tapp stating
that a type application of a term to a type can be reduced if that term can be reduced,
and E-TappTabs which is the counterpart of E-AppAbs for type abstractions and type
applications.

To introduce the typing relation for System F, we will modify the definition of typing
contexts a little bit. Such a typing context is still a sequence of typing assumptions on
ordinary variables, but we will now also keep track of the type variables that appear
free in the types of the ordinary variables and in the type of the typing statement under
consideration. Hence a typing context will now have the form Θ; Γ where Θ is a sequence
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t1  t′1
E-App1

t1 t2  t′1 t1

t2  t′2
E-App2

v1 t2  v1 t
′
2

(λ(x : T ) . t) v  t[v/x]
(E-AppAbs)

t t′
E-Tapp

t [T ] t′ [T ]
(ΛX . t) [T ] t[T/X] (E-TappTabs)

Figure 1.3: Evaluation rules for System F.

(x : T ) ∈ Γ
T-Var

Θ; Γ ` x : T

Θ; Γ, x : A ` t : B
T-Abs

Θ; Γ ` λ(x : A) . t : A→ B

Θ; Γ ` t1 : A→ B Θ; Γ ` t2 : A
T-App

Θ; Γ ` t1 t2 : B

Θ, X; Γ ` t : T
T-Tabs

Θ; Γ ` ΛX . t : ∀X .T

Θ; Γ ` t : ∀X .T
T-Tapp

Θ; Γ ` t [A] : T [A/X]

Figure 1.4: Typing rules for System F.

of type variables and where Γ is a sequence of typing assumptions on ordinary variables,
just as in section 1.2. The typing relation is then given by the inference rules in Figure 1.4.
We will write ` t : T rather than ∅; ∅ ` t : T .

Example 1.20. This example is a continuation of examples 1.12 and 1.15 about the
Church encoding of the booleans. We saw in example 1.15 that in the simply typed
lambda calculus we need separate terms encoding true and false for every type A ∈ T→.
Moreover, the semantic behaviour of these terms does not depend on the type A. In
System F we can abstract the type out of these terms to get the Church Booleans

ctrue := ΛX .λ(x : X) . λ(y : X) . x

cfalse := ΛX .λ(x : X) . λ(y : X) . y.

Hence we see that System F is well suited to the Church encoding of data. Both terms
ctrue and cfalse are also of the same type, so we can define in System F the type of Church
booleans

CBool := ∀X .X → X → X.

The question is now of course whether this type CBool really only contains the two terms
ctrue and cfalse as we would expect of a type encoding the type of booleans. This question
will be answered in chapter 2.

1.3.2 Properties of System F

Just like for the simply typed lambda calculus, one can prove type safety and normaliza-
tion for System F.

Theorem 1.21 (Type Safety for System F). The following two statements hold.

1. Progress: If a closed term t ∈ TF is well typed (i.e. ` t : T for some type T ), then t
is either a value, or there exists a term t′ ∈ TF such that t t′.
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2. Preservation: If Θ; Γ ` t : T and t t′ then Θ; Γ ` t′ : T .

Proof. Just like in Theorem 1.17 by induction on a typing derivation or derivation of an
evaluation statement.

Theorem 1.22 (Normalization of System F). For any well-typed closed term t ∈ TF there
is a term t′ ∈ TF that is in normal form and such that t ∗ t′.

Contrary to the normalization of the simply typed lambda calculus, the normalization
of System F is very difficult to prove. It is one of the results of Girard’s doctoral thesis
[Gir72].

It is easy to show that the evaluation relation of System F is deterministic (just like
Proposition 1.7 for the untyped lambda calculus). In combination with Theorem 1.22,
this implies that any well-typed closed term t in System F has a unique normal form
which we will denote by nform(t). By the preservation property of System F this normal
form has the same type as t and as it is well-typed and in normal form, it must be a value
by the progress property.

1.4 Dependent Type Theory

So far we have considered two type constructors → and ∀. The former takes two types A
and B and produces the type A → B and the latter takes a type variable X and a type
T to produce the type ∀X .T . As we can see, the function types and polymorphic types
we can construct in this way depend on other types, for instance A→ B depends on the
types A and B. Dependent type theory will allow us to construct types that depend not
only on other types, but also on terms (of some other type).

One of the reasons why considering dependent types is useful, is that a dependent type
can contain more information than an ordinary simple type. For example, in a language
with support for natural numbers (providing a type N), one could define a type VecnA of
lists of length n with elements of type A. Here n is a value of type N, in other words it is a
natural number, and hence VecnA is a dependent type that depends on this value n. The
type VecnA does not only indicate that its values are lists, but it also gives information
about the length of such a list. This can for instance be useful when implementing a
function that would not be well defined for the empty list (such as the function head
mapping a list to its first element).

Another reason why dependent types are important involves the Curry-Howard cor-
respondence, which will be the subject of section 1.4.3. The essence is that using a de-
pendently typed programming language, one cannot only write programs but also prove
properties about these programs within the same language.

There are many type systems that provide dependent types. In this section we present
a well-known system called Martin-Löf type theory (sometimes abbreviated as MLTT),
after the Swedish logician Per Martin-Löf.5 In section 2.2, we will discuss another system
with dependent types called ParamDTT. This section is based on [DP16] and [Hof97,
sections 1-2].

5In fact Martin-Löf also designed multiple dependent type systems and what we will present here is a
system that is nowadays called MLTT and which resembles the system in [Mar82].
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1.4.1 Judgements

Martin-Löf type theory provides inference rules that allow us to derive judgements . A
judgement is a statement that has a very specific form and in this section we will in-
troduce the different kinds of judgements present in MLTT. These judgements are the
only meaningful statements that can be expressed in the formal system of MLTT, but in
section 1.4.3 we will see that this gives us enough expressiveness to do predicate logic.
Just as in the previous sections, we will say that a judgement can be derived if and only
if it is the conclusion of a derivation tree that is built using the inference rules. Again we
will assume throughout this section that we have infinitely many variables at our disposal
(we will not need type variables like those in System F anymore, so there will be only
ordinary variables).

The Different Kinds of Judgements

The first kind of judgements we will consider are judgements stating that a certain object
Γ is a well-formed context. Such a judgement will be written as

` Γ context.

Note that the notion of a well-formed context will be defined using inference rules, rather
than using a certain grammar like in our description of the simply typed lambda calculus or
System F. This is due to the fact that with the introduction of dependent types, the well-
formednes of a type can depend on the well-typedness of a term and the well-typedness
of a term depends in its turn on the context. As we will only consider typing contexts
that contain typing assumptions on variables involving well-formed types, there will be an
interplay between the different kinds of judgements and hence the notions of well-formed
context, well-formed type and well-typed term must be introduced simultaneously (by
means of the inference rules that we will discuss later).

Another kind of judgement, at which we already hinted in the previous paragraph, is
a judgement stating that in a context Γ an object T is a well-formed type, written as

Γ ` T type.

Just as for well-formed contexts, it is this judgement that will say that T is a (well-formed)
type that can be used in our type system and we will not define a set of types using a
grammar, as we did in sections 1.2 and 1.3.

Furthermore, there are judgements stating that in a context Γ a certain object t is a
well-formed term of type T , written as

Γ ` t : T.

This notation is reminiscent of the typing relation introduced in section 1.2.1, but we
emphasize that in this presentation of MLTT there is no relation expressing typing on a
certain predefined set of terms. There is even no set of terms defined by a grammar as
was the case in sections 1.1 to 1.3. A judgement of this form is the only way to express
that t is a term that can be used in our type system. Note that in this way, we cannot
introduce a term in MLTT without mentioning its type.
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Remark 1.23. When we write a judgement like Γ ` T type, we implicitly assume that Γ
is a well-formed context, so we assume that ` Γ context can be derived. Similarly, when
we write Γ ` t : T , we implicitly assume that we can derive ` Γ context and Γ ` T type.

Apart from the three judgement forms for introducing contexts, types and terms dis-
cussed above, there will also be judgements expressing definitional equality or judgemental
equality between those objects. For terms, there is the judgement

Γ ` t = s : T

expressing that t and s are definitionally equal terms of type T in the context Γ. For
instance, if we would add natural numbers to our type system and define addition for
these numbers, we would be able to derive Γ ` 2 + 2 = 4 : N. Again, in this kind of
judgements we implicitly assume that t and s are well-formed terms of type T in the
context Γ.

Since types can depend on terms, we then also need judgemental equality for types.
Indeed, if we again consider the addition of natural numbers, it is clear that the types
Vec2+2A and Vec4A should be equal. Hence we have judgements of the form

Γ ` T = S type

expressing that T and S are definitionally equal types in the context Γ. Of course, here
we again implicitly assume that T and S are well-formed types in the context Γ.

Finally, we can also consider definitional equality for contexts. Hence there will be a
judgement stating that Γ and ∆ are definitionally equal contexts, written as

` Γ = ∆ context.

Here, we also assume that Γ and ∆ are well-formed contexts. In fact, a judgement
expressing definitional equality of contexts is not strictly necessary as it can be defined
in terms of the other judgements [Hof97, section 2] but we include it for completeness.

Structural Inference Rules

In section 1.4.2 we will introduce a variety of different types and terms that are present in
Martin-Löf type theory by giving several inference rules. Before we start doing that, we
will discuss some structural inference rules that have no connection with a specific type,
but that take care of some general aspects like how to construct well-formed contexts.

First, we provide inference rules stating that definitional equality (for contexts, types
and terms) is an equivalence relation.

` Γ context
ctx-=-ref

` Γ = Γ context

` Γ = ∆ context
ctx-=-sym

` ∆ = Γ context

` Γ1 = Γ2 context ` Γ2 = Γ3 context
ctx-=-tra

` Γ1 = Γ3 context

Γ ` T type
type-=-ref

Γ ` T = T type

Γ ` T = S type
type-=-sym

Γ ` S = T type
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Γ ` T1 = T2 type Γ ` T2 = T3 type
type-=-tra

Γ ` T1 = T3 type

Γ ` t : T
term-=-ref

Γ ` t = t : T

Γ ` t = s : T
term-=-sym

Γ ` s = t : T

Γ ` t1 = t2 : T Γ ` t2 = t3 : T
term-=-tra

Γ ` t1 = t3 : T

We will also need inference rules allowing us to construct well-formed contexts. Just
like in the simply typed lambda calculus, a context will be a sequence x1 : A1, . . . , xn : An
of typing assumptions on variables. However, we will now also require that in this sequence
every type Ai is well-formed in the context x1 : A1, . . . , xi−1 : Ai−1. The following inference
rules make this intuition precise.

ctx-empty
` ∅ context

` Γ context Γ ` T type
ctx-ext

` Γ, x : T context

The rule ctx-empty tells us that the empty context is a well-formed context. A judgement
of the form ∅ ` J involving the empty context will also be written as ` J .6 Further-
more, the rule ctx-ext states that we can extend a well-formed context Γ by adding the
assumption that a variable x has a certain type T that is well formed in the context Γ. In
this rule we assume that x is a variable that does not occur in Γ so that all variables in a
context are distinct. We can now see that if Γ and ∆ are two well-formed contexts with
the property that no variable of Γ occurs in ∆ and vice versa, then the combination of all
assumptions in Γ and ∆ is also a well-formed context, which we will denote by Γ,∆. To
conclude our discussion about contexts, we introduce a rule from which we can deduce
that two contexts that assign to each variable equal types, are equal themselves.

` Γ = ∆ context Γ ` T = S type
ctx-=-ext

` Γ, x : T = ∆, x : S context

Again we assume in this inference rule that x does not occur in Γ or ∆.
The following rule tells us how the assumptions in a context can be used. More

concretely, it states that in a context in which a variable x is assumed to have type T this
variable x is a well-formed term of type T .

` Γ, x : T,∆ context
var

Γ, x : T,∆ ` x : T

Furthermore, we introduce inference rules expressing the intuition that the judgements
of the different kinds we have seen, respect definitional equality. The inference rule term-

conv for instance states that if a term t has type T (in a certain context) and if the types
T and S are definitionally equal, then t also has type S (in a context that is definitionally
equal to the first context).

` Γ = ∆ context Γ ` T type
type-conv

∆ ` T type

6Note that this is only the case for judgements about types or terms, so we will not write ` context
to express that ∅ is a well-formed context.
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` Γ = ∆ context Γ ` T = S type
type-=-conv

∆ ` T = S type

` Γ = ∆ context Γ ` T = S type Γ ` t : T
term-conv

∆ ` t : S

` Γ = ∆ context Γ ` T = S type Γ ` t = s : T
term-=-conv

∆ ` t = s : S

Finally, we also add the following two general inference rule schemes where J is of
the form T type, T = S type, t : T or t = s : T (so we do not consider judgements of the
form ` Γ context or ` Γ = ∆ context).

Γ,∆ ` J Γ ` T type
weaken

Γ, x : T,∆ ` J
Γ, x : T,∆ ` J Γ ` t : T

subst
Γ,∆[t/x] ` J [t/x]

The rule weaken tells us that any judgement J remains valid if we extend the context.
Here we assume that x does not appear in Γ or ∆ (otherwise Γ, x : T,∆ would not
be a well-formed context). The inference rule subst says that if we have a judgement
J depending on a variable x of type T and if we have a term t of type T , then we can
substitute t for x in this judgement J . Note that like in sections 1.1 to 1.3 the substitution
is here assumed to be capture-avoiding so that free variables in t do not become bound
by some constructs in J .

Remark 1.24. In fact, we do not need to explicitly mention the last two inference rules
weaken and subst. It follows from the other rules discussed in this section that if the
hypotheses of one of these two rules can be derived, then also the conclusion can be
derived. Inference rules with this property are called admissible.

1.4.2 Typical Constructions in Martin-Löf Type Theory

In this section we will introduce various types and type constructors of Martin-Löf type
theory together with their terms and some rules concerning judgemental equality. For the
creation of each new type, we will provide the following inference rules.

• A formation rule that indicates how the new type we are introducing must be formed
and on what data it depends.

• An introduction rule, giving us a way to construct terms of the newly created type.

• Congruence rules ensuring that the types and terms constructed using the formation
and introduction rules respect definitional equality.

• An elimination rule that allows us to use a term of the newly constructed type in
other terms or types. This is sometimes also called an induction principle because
for the type of natural numbers, it will correspond to mathematical induction (or
recursive definition).

• A computation rule (sometimes also called β-rule) telling how the elimination inter-
acts with the terms constructed using the introduction rule.
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This type creation scheme is not strict and some of the above rules may be missing or
there may be more than one rule of some sort in the introduction of certain types. For
some types there will be an additional uniqueness rule (or η-rule) expressing that a term
of that type is completely determined by its behaviour with respect to the elimination
rule.

Universe Types

Universe types are special types and their creation will not follow the scheme outlined in
the introduction to this section. Nevertheless, they are an essential part of Martin-Löf
type theory. The idea is to make the distinction between types and values less strict by
considering types as values of some other type, called a universe type and denoted by U .
Such a universe type is therefore a type of types. It is then natural to wonder of what
type this universe U should be. An early version of Martin-Löf’s type theory contained
an axiom stating that U is a value of itself (so it is of type U), but Jean-Yves Girard
showed that this leads to a contradiction in the sense that he could provide a term of the
empty type described below (see [Gir72], and also [Hur95] for a simplified version of the
paradox). Hence in the version of MLTT we are discussing here, there is a hierarchy of
universes U0,U1,U2, . . . and every universe has the subsequent universe as its type. Note
that the integers 0, 1, 2, . . . that appear as the index in a universe type are metatheoretic
and hence they will be different from the natural numbers we will introduce in one of the
following paragraphs.

To make the above discussion more precise, we will have the following inference rules.

` Γ context
univ-intro

Γ ` U` : U`+1

Γ ` T : Uk k ≤ `
univ-cumul

Γ ` T : U`

Γ ` T : U`
univ-type

Γ ` T type

Γ ` T = S : U`
univ-type-=

Γ ` T = S type

The rule univ-intro holds for all natural numbers `, so we have that U0 has type U1,
which in its turn has type U2, etc. Likewise the inference rule univ-cumul holds for all
numbers k and `, however we have here the hypothesis k ≤ `, which is strictly speaking
not a judgement as defined in section 1.4.1. To be extremely precise, we could modify
this rule so that it has only one hypothesis (requiring that T has type U` in a context
Γ) and state as a side condition that this rule only holds for all natural numbers k and `
with k ≤ `. This rule expresses the fact that the universes are cumulative, so every value
of for instance U0, will also have the types U1,U2, . . ., and hence we clearly see that typing
is not unique. Types in the universe U0 are sometimes called small types .

Dependent Products

We will now start to apply the type creation scheme discussed in this section’s introduction
and we begin with dependent product types , also called dependent function types. These
types are a generalization of the function types from the simply typed lambda calculus
or System F. The main difference is that the output type of a dependent function (i.e. a
value of a dependent product type) may depend on the actual argument that is passed to
this function. Suppose that we have a type B depending on a variable x of type A. Then
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the type Π(x : A).B is the dependent product type of functions that take an argument x
of type A and produce a result of type B (depending on the argument x).

The formation rule for dependent products tells us that Π(x : A).B is a well-formed
type living in the same universe as the types A and B.

Γ ` A : U` Γ, x : A ` B : U`
Π-form

Γ ` Π(x : A).B : U`

Note that the variable x gets bound by the type constructor Π, so every occurrence of x
in Π(x : A).B will be bound. We also extend α-equivalence, so the types Π(x : A).B and
Π(y : A).B[y/x] will be considered definitionally equal. In the following paragraphs, we
will see more examples of structures that bind variables and the notion of α-equivalence
will always be extended appropriately without explicitly mentioning it.

Just as with function types, we can construct terms of a dependent product type by
giving a lambda abstraction.

Γ, x : A ` t : B
Π-intro

Γ ` λ(x : A) . t : Π(x : A).B

Example 1.25. Although we have not yet introduced natural numbers and we will not
formally introduce the type constructor Vec described in the introduction on page 14,
we can use these constructs intuitively to consider an example of a dependent function.
If we denote by zerolistn the list of length n containing only zeroes, then the function
λ(n : N) . zerolistn is a dependent function of type Π(n : N).VecnN.

There are two congruence rules stating that the type constructor Π and the term
constructor λ respect definitional equalities.

Γ ` A = A′ : U` Γ, x : A ` B = B′ : U`
Π-cong-type

Γ ` Π(x : A).B = Π(x : A′).B′ : U`

Γ ` A = A′ : U` Γ, x : A ` t = t′ : B
Π-cong-term

Γ ` λ(x : A) . t = λ(x : A′) . t′ : Π(x : A).B

From now on we will not explicitly mention these congruence rules anymore, but we
assume that all constructors respect definitional equality.

The elimination rule for dependent product types must tell us how we can use terms
of such a type, or in other words how we can use a dependent function. This will be the
familiar application of a function to some other term.

Γ ` f : Π(x : A).B Γ ` a : A
Π-elim

Γ ` f a : B[a/x]

We indeed see that the output type of a dependent function depends on its argument,
because if we apply f to a the result is of type B where we substitute the variable x by the
supplied argument a. Note that in the rule Π-elim we do not assume that f is a lambda
abstraction, it can be any term of the dependent product type involved in the inference
rule (for instance a variable that is assumed to have this type). The computation rule for
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dependent products will then tell us what happens if we have an application in which the
dependent function is a lambda abstraction.

Γ, x : A ` t : B Γ ` a : A
Π-comp

Γ ` (λ(x : A) . t) a = t[a/x] : B[a/x]

This corresponds to the β-reduction in section 1.1.2 and explains why the computation
rule is sometimes also called a β-rule.

For dependent products we will also have a uniqueness principle or η-rule stating that
every term of a dependent product type is definitionally equal to a lambda abstraction.
This principle of η-expansion can also be introduced in the untyped or simply typed
lambda calculus, giving rise to another kind of semantics than the one we presented in
this chapter (see for instance [Bar85]).

Γ ` f : Π(x : A).B
Π-uniq

Γ ` f = λ(x : A) . f x : Π(x : A).B

A side condition for this inference rule is that the variable x must not appear free in the
term f .

Remark 1.26. If the type B does not depend on the variable x of type A, we abbreviate
the dependent product type Π(x : A).B as A → B. Indeed, in this case the elements of
this type are ordinary non-dependent functions.

Dependent Sums

Dependent sums are types of pairs whose first component determines the type of the
second component. More concretely, if B is a type depending on a variable x of type A,
then Σ(x : A).B is the type of pairs with a first component x of type A and a second
component of type B. The formation rule is similar to that of dependent products.

Γ ` A : U` Γ, x : A ` B : U`
Σ-form

Γ ` Σ(x : A).B : U`

Again the variable x gets bound by the type constructor Σ.
The introduction rule tells us that we can construct pairs as values of a dependent

sum type.
Γ ` a : A Γ ` b : B[a/x]

Σ-intro
Γ ` (a, b) : Σ(x : A).B

Example 1.27. In the same style as example 1.25 we can see that the pair (3, [0, 0, 0]) is
a value of type Σ(n : N).VecnN.

The elimination rule for dependent sums looks a bit more complicated.

Γ, z : Σ(x : A).B ` C type Γ, x : A, y : B ` c : C[(x, y)/z] Γ ` p : Σ(x : A).B
Σ-elim

Γ ` indΣ(z.C, x.y.c, p) : C[p/z]

This rule allows us to construct, given a type C depending on a variable z of type Σ(x :
A).B and given a value p of type Σ(x : A).B, a value of type C[p/z]. More concretely, the
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rule says that for this purpose, it is enough to specify a value c of type C[(x, y)/z] where
x : A and y : B are variables. In other words the elimination principle more or less tells
us that in order to use a dependent pair p, we may assume that it has the form (x, y) for
some x and y. The computation rule for dependent sums will then say what happens if
p is indeed of this form.

Γ, z : Σ(x : a).B ` C type Γ, x : A, y : B ` c : C[(x, y)/z]
Γ ` a : A Γ ` b : B[a/x]

Γ ` indΣ(z.C, x.y.c, (a, b)) = c[a/x, b/y] : C[(a, b)/z]
Σ-comp

Note that in indΣ(z.C, x.y.c, p) the variables z, x and y become bound, which is denoted
by writing for instance z.C instead of just C.

For any dependent sum type Σ(x : A).B we can now define the projection functions
fst : (Σ(x : A).B)→ A and snd : Π(p : Σ(x : A).B).B[fst p/x] as

fst := λ(p : Σ(x : A).B) . indΣ(z.A, x.y.x, p)

snd := λ(p : Σ(x : A).B) . indΣ(z.B[fst z/x], x.y.y, p).

To conclude, there will also be an η-rule stating that every term of a dependent sum
type is definitionally equal to a pair.

Γ ` p : Σ(x : A).B
Σ-uniq

Γ ` p = (fst p, snd p) : Σ(x : A).B

Remark 1.28. If the type B does not depend on the variable x : A, then the dependent
sum type Σ(x : A).B will be abbreviated as A × B. Furthermore, we could also have
chosen to formulate the elimination rule for dependent sums in terms of the first and
second projection functions fst and snd and subsequently define the induction principle
indΣ in terms of these projections.

The Unit Type

The unit type is a very simple non-dependent type, denoted by >. It contains only one
value that will be written as tt. The formation and introduction rules are very simple.

` Γ context
>-form

Γ ` > : U0

` Γ context
>-intro

Γ ` tt : >

The elimination rule for the unit type is similar to the induction principle for dependent
sums, making precise the intuition that tt is the only interesting value of type >.

Γ, x : > ` A type Γ ` a : A[tt/x] Γ ` t : >
>-elim

Γ ` ind>(x.A, a, t) : A[t/x]

Again the variable x is bound by ind>. The computation rule will tell us what happens
when ind> is used with the value tt instead of a general term t : >.

Γ, x : > ` A type Γ ` a : A[tt/x]
>-comp

Γ ` ind>(x.A, a, tt) = a : A[tt/x]

We do not have an η-rule for the unit type.
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The Empty Type

The empty type is, as its name suggests, a type with no elements. Hence there will be no
introduction or computation rules. The elimination rule for the empty type allows us to
construct an element of any type in the hypothetical case that we are able to provide a
value of the empty type (which is in fact possible if the context contains a variable that
is assumed to have the empty type).

` Γ context
⊥-form

Γ ` ⊥ : U0

Γ ` A type Γ ` t : ⊥
⊥-elim

Γ ` ind⊥(t) : A

Natural Numbers

The natural numbers can also be formally introduced in MLTT by following the type
creation scheme outlined on page 18. There will be two introduction rules, one defining
the element 0 and one providing the successor function succ : N → N. For the sake of
readability, we will adopt the usual notation for natural numbers as 0, 1, 2, . . . instead of
0, succ 0, succ (succ 0), . . .

` Γ context
N-form

Γ ` N : U0

` Γ context
N-intro-0

Γ ` 0 : N
Γ ` n : N

N-intro-succ
Γ ` succn : N

The elimination principle states that in order to construct a term of some type A de-
pending on a natural number n, we must provide an element for the case n = 0 and
provide a procedure to advance from the case n to succn. Therefore, this rule formalizes
the principle of recursive definition (which under the Curry-Howard correspondence will
correspond to proofs by induction). Using these rules, we can define the usual operations
on natural numbers like addition and multiplication.

Γ, n : N ` A type Γ ` z : A[0/n]
Γ ` m : N Γ, k : N, a : A[k/n] ` s : A[succ k/n]

Γ ` indN(n.A, z, k.a.s,m) : A[m/n]
N-elim

Γ, n : N ` A type Γ ` z : A[0/n] Γ, k : N, a : A[k/n] ` s : A[succ k/n]
N-comp-0

Γ ` indN(n.A, z, k.a.s, 0) = z : A[0/n]

Γ, n : N ` A type Γ ` z : A[0/n]
Γ ` m : N Γ, k : N, a : A[k/n] ` s : A[succ k/n]

Γ ` indN(n.A, z, k.a.s, succm) = s[m/k, indN(n.A, z, k.a.s,m)/a] : A[succm/n]
N-comp-succ

Identity Types

Besides definitional equality, MLTT provides another way to express that two things are
equal, called propositional equality . Unlike definitional equality, which can be derived
using special kinds of judgements, propositional equality is expressed using types, the
so-called identity types . These identity types are an essential part of MLTT and they will
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play an important role in the Curry-Howard correspondence. For any type A and any
two terms a, b : A there will be an identity type a ≡A b living in the same universe as A.

Γ ` A : U` Γ ` a, b : A
id-form

Γ ` a ≡A b : U`

The identity type a ≡A b can be thought of as the type of proofs that a and b are equal.
Hence we will only provide a way to construct an element of the type a ≡A b if a and b
are the same. More concretely, the introduction rule for identity types gives us for any
a : A a reflexivity proof that a is equal to itself.

Γ ` a : A
id-intro

Γ ` refl a : a ≡A a

From the congruence rule for identity types, which we have not explicitly written out, it
follows that if a, b : A are definitionally equal, then so are the types a ≡A a and a ≡A b.
Using the constructor refl and the rule term-conv, we can then construct an element of
the type a ≡A b, so in some sense definitional equality implies propositional equality.7

The elimination rule for identity types is also called the J-rule.

Γ ` a, b : A Γ, y : A,w : a ≡A y ` C type
Γ ` e : a ≡A b Γ ` c : C[a/y, refl a/w]

Γ ` J(a, b, y.w.C, e, c) : C[b/y, e/w]
id-elim

It tells us that if we have values a, b : A and a proof e : a ≡A b that a and b are equal
and if we have a type C depending on variables y : A and w : a =A y, then in order to
construct a value of type C[b/y, e/w] it suffices to give a value c of type C[a/y, refl a/w].
In other words, if we want to construct a value of a type depending on y and w and we
know there is a value e : a ≡A b, then we must only consider the case where a and b are
the same and where w is the reflexivity proof that a is equal to itself. The computation
rule for identity types tells us what happens if a and b are indeed the same and w is
indeed the reflexivity proof.

Γ ` a : A Γ, y : A,w : a ≡A y ` C type Γ ` c : C[a/y, refl a/w]
id-comp

Γ ` J(a, a, y.w.C, refl a, c) = c : C[a/y, refl a/w]

Other Types

There are many more types that can be defined using the type creation scheme from
page 18. For instance for any types A and B we can consider the coproduct type A+ B
that behaves as a kind of disjoint union of A and B. Its values are of the form inl a
for some a : A or inr b for some b : B. As another example, one can also define a type
constructor List such that the values of ListA are the lists whose elements are of type A.
In the same way, the type VecnA as described on page 14 could be defined for any n : N
and any type A.

7The statement that definitional equality implies propositional equality is meant to be informal and we
emphasize that definitional and propositional equality are expressed using different kinds of judgements.
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1.4.3 The Curry-Howard Correspondence

There is a connection between type theory and logic called the Curry-Howard correspon-
dence. The general philosophy is that a proposition or mathematical statement can be
regarded as the type of its proofs. So under the Curry-Howard correspondence, propo-
sitions will correspond to types and a proof of a proposition will correspond to a value
of the type corresponding to that proposition. The interpretation of the identity type
a ≡A b as the type of proofs that a and b are equal fits exactly into this picture. In the
following paragraphs we will see that not only identity types but also most of the other
type constructors described in the previous section have such a logical interpretation.

Let us first consider logical conjunctions. Suppose that we have propositions P and
Q corresponding to types A and B respectively. Then proving the conjunction P ∧ Q
amounts to giving both a proof of P and a proof of Q. As A is the type of all proofs of
P and B the type of proofs of Q, giving a proof of P ∧Q is therefore equivalent to giving
a value of A and a value of B, or in other words giving a value of A × B. Hence we see
that the proposition P ∧Q corresponds to the type A×B.

In the same way, logical implication corresponds to non-dependent function types.
Indeed, proving P ⇒ Q is the same as giving a procedure for transforming a proof of P
into a proof of Q. Translated into type theory, we get a procedure that transforms values
of type A into values of type B, which is exactly what a function of type A→ B does.

Similarly, logical disjunction P ∨Q corresponds to the coproduct type A+B.
Finding a type-theoretic equivalent for negation is less straightforward. Proving the

negation of a proposition P amounts to showing that there is no proof of P . This corre-
sponds to proving that the type A is empty. We can do this by giving a function of type
A→ ⊥. Indeed, if there were a value of type A, we could then pass it as an argument to
this function to obtain a value of the empty type ⊥, which is a contradiction.

Suppose now that we have a type A and let B be a type depending on a variable
x : A. Using the interpretation of propositions as types, B corresponds to a proposition
depending on a value of type A, so it is a predicate on the type A. Now universal
quantification over A, saying that all values of type A have property B, corresponds to
the dependent product type Π(x : A).B. Indeed, a function of this type maps every
element a : A to a value of type B[a/x], which can be seen as a proof that a has property
B. Clearly, a function that maps any a : A to a proof that a has property B is itself a
proof that every a has property B.

In the same way, existential quantification, saying that there exists a value of type A
having property B, corresponds to the dependent sum type Σ(x : A).B. Indeed, a value
of this sum type is a pair (a, b) where a : A and b : B[a/x], so it is a pair of a value a of
type A together with a proof that this a has property B.

See Table 1.1 for a summary of the Curry-Howard correspondence.

Example 1.29. Translating the proposition that for any natural number n the sum n+n
is even gives us the type

Π(n : N).Σ(m : N).n+ n ≡N 2 ∗m

and proving the proposition is equivalent to giving a value of the above type (which the
inference rules for natural numbers allow us to do).
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Proposition Type
true >
false ⊥

equality a = b identity a ≡A b
conjunction P ∧Q product A×B
disjunction P ∨Q sum A+B

implication P ⇒ Q function A→ B
negation ¬P function A→ ⊥

universal quantification ∀x ∈ A : Q dependent product Π(x : A).B
existential quantification ∃x ∈ A : Q dependent sum Σ(x : A).B

Table 1.1: Summary of the Curry-Howard correspondence.

Example 1.30. The statement that equality for a certain type A is symmetric corre-
sponds to the following type.

Π(a, b : A).(a ≡A b)→ (b ≡A a)

A function of this type will take values a and b of type A and a proof that a is equal to b
and it transforms this into a proof that b is equal to a. The J-rule allows us to construct
such a dependent function. Similarly, the proposition that equality is transitive translates
to the type

Π(a, b, c : A).(a ≡A b)→ (b ≡A c)→ (b ≡A c)
and the J-rule also provides a way to construct a dependent function of this type.

Example 1.31. We can also use the J-rule to construct a term that proves that proposi-
tional equality is a congruence. More specifically, for any types A and B we can construct
a function of type

Π(f : A→ B).Π(a, b : A).(a ≡A b)→ (f a ≡B f b).

Indeed, application of the J-rule to the term of type a ≡A b tells us that it is sufficient
to provide a term of type f a ≡B f a and for that we can take refl (f a). Hence we can
construct a function

congA,B := λ(f : A→ B) . λ(a, b : A) . λ(e : a ≡A b) . J
(
a, b, y.w.(f a ≡B f y), e, refl (f a)

)
which has the type that was given above.

Remark 1.32. An important remark is that at the logic side of the Curry-Howard cor-
respondence we do not have classical logic but constructive logic. This means that we
cannot use the law of excluded middle stating that P ∨ ¬P holds for every proposition
P . Indeed the law of excluded middle translates to the type

LEM` := Π(X : U`).X + (X → ⊥)

and it can be shown that we cannot construct a function of this type only using the
inference rules introduced in this chapter. On the other hand, it can also be shown that
we cannot construct a function of type LEM` → ⊥, so we cannot prove the negation of the
law of excluded middle either. This means that the law of excluded middle is independent
of the inference rules we provided so far, and we could add an axiom providing a value of
the above type. However, we will not need such a value for what follows in this thesis.
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Example 1.33. In mathematics, we say that two set-theoretic functions f and g from A
to B are equal if f(a) = g(a) for all elements a ∈ A. This principle is known as function
extensionality . In MLTT we could wonder given two dependent functions f, g : Π(x : A).B
and a proof e : Π(x : A).f x ≡B g x that f and g map all values of A to equal elements,
whether we can construct a proof that f and g are equal, or in other words a term of
type f ≡Π(x:A).B g. Just as for the law of excluded middle, this principle of function
extensionality cannot be proved nor disproved and hence it is independent of all inference
rules we have introduced so far. In this thesis we will assume that we have function
extensionality and hence we include a new inference rule

Γ ` f, g : Π(x : A).B Γ ` e : Π(x : A).f x ≡B g x
funext

Γ ` funext e : f ≡Π(x:A).B g

providing us for any proof e that f and g map all values of type A to equal values of
type B with an axiomatic element of type f ≡Π(x:A).B g. Note that this element does not
evaluate to anything, so if we encounter an application of function extensionality during
some computation, this computation will be blocked.

1.4.4 Polymorphism in Dependent Type Theory

Although we have only ordinary variables and no type variables in MLTT, we can con-
struct polymorphic functions that behave in a similar way as the ones in System F. This
crucially depends on the universe types introduced on page 19. Indeed, we can replace a
type variable X of System F with an ordinary variable x that is assumed to have some
universe type U`. This leads for instance to a polymorphic identity function

id` := λ(X : U`) . λ(x : X) . x

which has type Π(X : U`).X → X in the empty context. Hence we see that the ∀
type constructor gets replaced with the construct Π(X : U`). . . . In the same way we can
consider the Church encoding of the booleans

ctrue` := λ(X : U`) . λ(x : X) . λ(y : X) . x

cfalse` := λ(X : U`) . λ(x : X) . λ(y : X) . y

which are both of type

CBool` := Π(X : U`).X → X → X.

However, there is a big difference between the polymorphic functions of System F and
those of MLTT. In System F, a polymorphic function can be applied to any type, even
to its own type. For instance the term(

ΛX .λ(x : X) . x
)

[∀X .X → X]

is well typed in System F. For this reason, System F is called impredicative. On the
other hand, a polymorphic function in MLTT can never be applied to its own type. For
instance, the function id` as defined above expects a type argument from the universe U`.
However, the type of id` is Π(X : U`).X → X, which is a type living in the universe U`+1.
Martin-Löf type theory is said to be predicative.
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There is another difference between the polymorphism of System F and that of MLTT,
namely polymorphism in System F will automatically be parametric and this is not the
case for polymorphism in MLTT. Parametricity and its consequences will be the subject
of the next chapter.



Chapter 2

Parametricity

In this chapter we will study, as the title suggests, parametricity and its consequences.
Intuitively, a polymorphic function is called parametric if its implementation does not
inspect the type it is instantiated with and therefore applies the same algorithm for every
type. In languages like System F or Haskell, every polymorphic function is automati-
cally parametric because the type system does not allow the definition of non-parametric
functions. The intuition about parametric polymorphism in System F was formalized by
John Reynolds using relations, stating that a parametrically polymorphic function maps
related arguments to related results [Rey83]. Using this relational interpretation Philip
Wadler subsequently described a procedure to derive from a polymorphic System F type
a theorem which is satisfied by all polymorphic functions of that type [Wad89]. This will
be the subject of section 2.1.

Subsequently, in section 2.2 we will study ParamDTT which is a dependent type sys-
tem with support for parametricity. This concretely means that there are parametric
dependent product types whose values are functions that are enforced to be parametric.
Moreover, as we have a dependent type system, we can use the Curry-Howard correspon-
dence (see section 1.4.3) to prove theorems inside the system and ParamDTT provides
tools to derive parametricity results à la Wadler internally.

Finally, we will see in section 2.3 some examples of parametricity results in ParamDTT
involving Functors. Some of these results will also be useful in the next chapter.

2.1 Parametricity in System F

In example 1.20 we introduced the type CBool of Church encoded booleans in System
F as ∀X .X → X → X and we constructed to values ctrue and cfalse of this type. At
the end of the example, we wondered whether ctrue and cfalse are the only values of
type CBool. The following intuitive argument shows that indeed any closed term of type
CBool behaves as either ctrue or cfalse. A closed term t of type CBool must be a type
abstraction because its type starts with ∀X. Since the type then contains two function
types, the body of the type abstraction must consist of a lambda abstraction in another
lambda abstraction. In summary, t must be of the form t = ΛX .λ(x : X) . λ(y : X) . u
for some term u of type X. However, since this term u must be of type X for any type
X, we cannot use any specific constant. Our only possibilities for u are the variables x
or y of type X that are in the context at this point. Moreover, there is no possible way
in System F for the function t to inspect the type X it is instantiated with. Hence t

29
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cannot use information about X to choose between x or y as return value and therefore
it either always returns x (behaving like ctrue) or always returns y (behaving like cfalse).
This intuitive argument can be made precise using relational parametricity, which is the
subject of this section.

2.1.1 Some Substitution Properties for System F

Before we formally develop the theory of parametricity in System F, we will work out some
properties that will turn out to be useful. We could also have discussed these properties
in section 1.3.2, but we choose to do it here because we will introduce some notation that
is only used in sections 2.1.1 and 2.1.2. This is based on section 5 of [Wad89], but instead
of working in an abstract frame model, we simplified the discussion by working in a term
model. This has the advantage that we do not have to discuss the semantics of System F
in frame models (see for instance [BMM90]) and moreover it will suffice for our description
of parametricity in section 2.1.2. More concretely, Wadler’s universe U of type values will
be represented here by the set of closed System F types and the other notions are adjusted
accordingly, although not always mentioned explicitly (for instance the interpretation of
a type or a term in an environment will be replaced by multiple substitutions). Wadler’s
proposition about soundness of types corresponds to our Proposition 2.2.

We introduce the notation T0 ⊂ TF for the set of all closed types (i.e. types without free
type variables) and T0 ⊂ TF for closed terms (i.e. terms without free ordinary variables).
More generally, Tk ⊂ TF will be the set of all types containing at most k free type variables
and Tk the set of terms containing at most k free ordinary variables.1 If a type T ∈ Tk
has free (mutually distinct) type variables X1, . . . , Xk, we will sometimes denote it by
T (X1, . . . , Xk). Similarly, we will sometimes write t(x1, . . . , xk) for a term in which the
(mutually distinct) ordinary variables x1, . . . , xk appear free.

When A and B are two sets, we denote by BA the set of mathematical functions from
A to B (so these functions are not lambda abstractions, but sets of pairs representing

their graph). We can then define a map Ξ ∈
(
T0

T0
)T1

by specifying for every type T ∈ T1

a function Ξ(T ) : TT0
0 as

Ξ(T )(S) =

{
T [S/X] if T has exactly one free type variable X

T if T ∈ T0.

Similarly, we can define a map ξ ∈
(
T T00

)T1
by specifying for every term t ∈ T1 a

function ξ(t) ∈ T T00 where

ξ(t)(s) =

{
t[s/x] if t has exactly one free ordinary variable x

t if t ∈ T0.

Given a closed type T ∈ T0, we can define the set DT of all closed terms of type T
that are in normal form, more specifically

DT = {t ∈ T0 | ` t : T and t is in normal form}.
1One would expect at first sight that we should consider a set Tk,l of terms with k free ordinary

variables and l free type variables. However, it turns out that the type variables in terms do not have to
be mentioned in the results of the current section.
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Suppose now that we have two types T, S ∈ T0 and a term u ∈ DT→S. Then the typing
rules of System F allow us to conclude that for any t ∈ DT the term u t has type S.
By the preservation property (see Theorem 1.21) the normal form nform(u t) has type S
and furthermore it is in normal form. Hence nform(u t) ∈ DS. This allows us to define
a function ϕTS(u) : DT → DS (not confusing → with the constructor of function types)
by letting ϕTS(u)(t) = nform(u t) for all t ∈ DT . In this way, we constructed a mapping
ϕTS : DT→S → (DS)DT .

Suppose now that we are given a type ∀X .T ∈ T0 and a term t ∈ D∀X .T . Then
we can define the function Φ∀X .T (t) : T0 → T0 where Φ∀X .T (t)(S) = nform(t [S]) for all
S ∈ T0. Notice that Φ∀X .T (t)(S) ∈ DT [S/X] = DΞ(T )(S) for all S ∈ T0.

Let Θ be a sequence X1, . . . , Xm of mutually distinct type variables and Ā a sequence
A1, . . . , Am of closed types. Then for any type T (Θ) = T (X1, . . . , Xm) ∈ TF we define the
multiple substitution

T [Ā/Θ] = T [A1/X1] . . . [Am/Xm].

Notice that the order in which we substitute every type variable is not important since
every type Ai is closed and the type variables are assumed to be mutually distinct. In
the same way, we can also define t[Ā/Θ] for a term t. If in addition Γ is a sequence of
typing assumptions x1 : T1, . . . , xn : Tn, and ā is a sequence a1, . . . , an of closed typable
terms (with closed types) in normal form, then we define for every term t(x1, . . . , xn) the
multiple substitution

t[Ā, ā/Θ,Γ] = t[Ā/Θ][a1/x1] . . . [an/xn].

Again the order in which the variables are substituted is unimportant (among others
because the types of the terms a1, . . . , an are assumed to be closed). We say that Ā, ā
respect Θ; Γ if ai ∈ DTi[Ā/Θ] for every i.

Lemma 2.1. Suppose that Θ,Ω; Γ ` t : T and that Ā is a sequence of closed types for Θ.
Then we have that Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].

Of course by Γ[Ā/Θ] we mean the sequence of type assumptions on ordinary variables
where xi : Ti is replaced with xi : Ti[Ā/Θ] for every i.

Proof. First notice that it makes sense to have Ω as a type variable context in the result
because no type variables from Θ appear free due to the substitutions. The proof proceeds
by induction on a derivation of Θ,Ω; Γ ` t : T . There are 5 possibilities for the last applied
inference rule.

• T-Var: t = xi and T = Ti and xi : Ti is contained in Γ.
Then we have that xi : Ti[Ā/Θ] is contained in Γ[Ā/Θ]. Hence, since t[Ā/Θ] =
xi[Ā/Θ] = xi, we get that Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].

• T-Abs: t = λ(x : U) . v and Θ,Ω; Γ, (x : U) ` v : V and T = U → V .
Using the induction hypothesis, we see that

Ω; Γ[Ā/Θ], (x : U [Ā/Θ]) ` v[Ā/Θ] : V [Ā/Θ].

Since t[Ā/Θ] = λ(x : U [Ā/Θ]) .
(
v[Ā/Θ]

)
and (U → V )[Ā/Θ] = U [Ā/Θ] →

V [Ā/Θ], it follows from inference rule T-Abs that Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].
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• T-App: t = u v and Θ,Ω; Γ ` u : V → T and Θ,Ω; Γ ` v : V .
Using the induction hypothesis, we get that

Ω; Γ[Ā/Θ] ` u[Ā/Θ] : V [Ā/Θ]→ T [Ā/Θ]

Ω; Γ[Ā/Θ] ` v[Ā/Θ] : V [Ā/Θ].

As t[Ā/Θ] =
(
u[Ā/Θ]

) (
v[Ā/Θ]

)
, we get that Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].

• T-Tabs: t = ΛX . u and Θ,Ω, X; Γ ` u : U and T = ∀X .U .
The induction hypothesis tells us that

Ω, X; Γ[Ā/Θ] ` u[Ā/Θ] : U [Ā/Θ].

Because t[Ā/Θ] = ΛX .
(
u[Ā/Θ]

)
and T [Ā/Θ] = ∀X .

(
U [Ā/Θ]

)
, we get that

Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].

• T-Tapp: t = u [V ] and Θ,Ω; Γ ` u : ∀X .U and T = U [V/X].
Now we can apply the induction hypothesis to see that

Ω; Γ[Ā/Θ] ` u[Ā/Θ] : ∀X .
(
U [Ā/Θ]

)
.

From this it follows that Ω; Γ[Ā/Θ] `
(
u[Ā/Θ]

)
[V [Ā/Θ]] : U [Ā/Θ][V [Ā/Θ]/X].

Since t[Ā/Θ] =
(
u[Ā/Θ]

)
[V [Ā/Θ]] and U [Ā/Θ][V [Ā/Θ]/X] = T [Ā/Θ], we get that

Ω; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ].

Proposition 2.2. If Θ; Γ ` t : T , then for all Ā, ā respecting Θ; Γ, we have that
nform(t[Ā, ā/Θ,Γ]) ∈ DT [Ā/Θ].

Proof. Since Θ contains all type variables occurring free in T and since all Ai are closed,
T [Ā/Θ] is a closed type so that the set DT [Ā/Θ] is defined. Using Lemma 2.1, we get
that ∅; Γ[Ā/Θ] ` t[Ā/Θ] : T [Ā/Θ]. Furthermore, since Ā, ā respects Θ; Γ, we have that
` ai : Ti[Ā/Θ]. Hence we can use a substitution lemma stating that if Ω; ∆, (y : U) ` s : S
and if Ω; ∆ ` u : U then also Ω; ∆ ` s[u/y] : S (which can be proved by induction just
like Lemma 2.1), to conclude that

` t[Ā/Θ][a1/x1] . . . [an/xn] : T [Ā/Θ],

and hence ` t[Ā, ā/Θ,Γ] : T [Ā/Θ]. Since Γ contains all ordinary variables occurring
free in t and since all ai are closed, it is clear that t[Ā, ā/Θ,Γ] is closed and therefore
nform(t[Ā, ā/Θ,Γ]) ∈ DT [Ā/Θ].

2.1.2 Relational Parametricity

We will now formally introduce the theory of parametricity in System F. The discussion
is based on section 6 of [Wad89], but as discussed in section 2.1.1 in order to avoid the
need for an introduction to semantics of System F using frame models, we decided to
make everything more concrete by using a term model. Throughout this section, we work
in System F and we use notation such as Tk and DT introduced in section 2.1.1.

The intuitive idea of relational parametricity is as follows. To every closed type T
we will associate a binary relation JT K on the set DT . The parametricity theorem for
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System F (Theorem 2.4) will then tell us that for every closed term t ∈ DT we have
that (t, t) ∈ JT K, that is, t is related to itself by the relation determined by its type. This
information will allow us to prove interesting properties of closed terms with certain types.
However, in order to define the relation JT K and to prove the parametricity theorem, we
will work inductively and hence we need to consider relations JT K as well for types T that
contain free type variables. For this purpose, the multiple substitution and the properties
of section 2.1.1 will be useful.

Suppose that we have types T, T ′, S, S ′ ∈ T0 and relations R ⊆ DT × DT ′ and S ⊆
DS × DS′ . Then we can construct the relation R → S ⊆ DT→S × DT ′→S′ defining
u ∈ DT→S and u′ ∈ DT ′→S′ to be related (so (u, u′) ∈ R → S) if and only if for all
(t, t′) ∈ R we have that (ϕTS(u)(t), ϕT ′S′(u′)(t′)) ∈ S.

For any two types T, S ∈ T0 we will denote by Rel(T, S) the set of relations between
DT and DS, so we have that Rel(T, S) = P(DT × DS) where P(A) denotes the power
set of a set A. Suppose now that we have closed types ∀X .T,∀X ′ . T ′ ∈ T0 and for
any types S, S ′ ∈ T0 a function FSS′ : Rel(S, S ′) → Rel(Ξ(T )(S),Ξ(T ′)(S ′)). Then we
define the relation ∀X .F(X ) between D∀X .T and D∀X′ . T ′ saying that (t, t′) ∈ ∀X .F(X )
if and only if for all types S, S ′ ∈ T0 and all relations S ∈ Rel(S, S ′) we have that
(Φ∀X .T (t)(S),Φ∀X′ . T ′(t′)(S ′)) ∈ FSS′(S).

Let Θ be a sequence of type variables X1, . . . , Xm. Then we define a relation environ-
ment for Θ to be a partial function Ā from the set VT of type variables to

⋃
S,S′∈T0

Rel(S, S ′)

with domain Θ. If, moreover Ā and Ā′ are type environments for Θ, we say that Ā is a re-
lation environment between Ā and Ā′ if Ā(X) ∈ Rel(Ā(X), Ā′(X)) for every type variable
X in Θ. Given a type T (X1, . . . , Xm) and a relation environment Ā for Θ = X1, . . . , Xm,
we can define by induction on the structure of T the relation corresponding to T in the
environment Ā, denoted by JT K Ā. We say that

JXK Ā = Ā(X)

JT → SK Ā = JT K Ā → JSK Ā
J∀X .T K Ā = ∀X . JT K Ā[X/X],

where Ā[X/X] is the relation environment that maps X to X and otherwise behaves as
Ā.2 We must be careful in the last part of this recursive definition (for the type ∀X .T )
because in order to construct the relation ∀X . . . ., we need a function mapping relations
to relations with certain properties. This will be made clear in the proof of the following
proposition, which could also be interpreted as stating that the definition above is makes
sense.

Proposition 2.3. Let T (Θ) be a type and Ā, Ā′ type environments for Θ. Further-
more, let Ā be a relation environment between Ā and Ā′. Then we have that JT K Ā ∈
Rel(T [Ā/Θ], T [Ā′/Θ]).

Proof. By induction on T . There are 3 possibilities.

• T = X for some X in Θ. In this case, we know that JT K Ā = Ā(X), which is a
relation between Ā(X) = T [Ā/Θ] and Ā′(X) = T [Ā′/Θ] by the assumption that Ā
is a relation environment between Ā and Ā′.

2Note that in this definition of Ā[X/X] it is not important whether X is already in the domain of Ā.
If it is, it remains in the domain and we only change the relation to which it is mapped to X . If X is not
in the domain of Ā, we simply add it to the domain.
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• T = U → V . Then, by the induction hypothesis we know that

JUK Ā ∈ Rel(U [Ā/Θ], U [Ā′/Θ])

and
JV K Ā ∈ Rel(V [Ā/Θ], V [Ā′/Θ]).

It follows that

JT K Ā = JUK Ā → JV K Ā ∈ Rel(U [Ā/Θ]→ V [Ā/Θ], U [Ā′/Θ]→ V [Ā′/Θ])

= Rel(T [Ā/Θ], T [Ā′/Θ]).

• T = ∀X .U . As X is not free in T , we may assume that it does not occur in Θ. Now
take any two types S, S ′ ∈ T0 and any relation S ∈ Rel(S, S ′). Then we see that
Ā[S/X] is a relation environment between Ā, S and Ā′, S ′. Hence by the induction
hypothesis JUK Ā[S/X] ∈ Rel(U [Ā/Θ][S/X], U [Ā′/Θ][S ′/X]). Since X does not
occur in Θ, we see that

JUK Ā[S/X] ∈ Rel
(
Ξ(U [Ā/Θ])(S),Ξ(U [Ā′/Θ])(S ′)

)
.

Therefore, the function FSS′ defined by FSS′(S) = JUK (Ā[S/X]) is a mapping from
Rel(S, S ′) to Rel

(
Ξ(U [Ā/Θ])(S),Ξ(U [Ā′/Θ])(S ′)

)
, as required by the definition of

the ∀-operation on relations. Hence we see that ∀X . JUK Ā[X/X] is well-defined and
that it is a relation between ∀X .U [Ā/Θ] and ∀X .U [Ā′/Θ], so that it is an element
of Rel(T [Ā/Θ], T [Ā′/Θ]).

In particular, the previous proposition tells us that for a closed type T ∈ T0, we have
that JT K (without relation environment because it is unnecessary) is a relation between
DT and DT .

Suppose that we are given a context Θ; Γ and two environments Ā, ā and Ā′, ā′ that
both respect Θ; Γ and a relation environment Ā between Ā and Ā′. Then we say that
Ā, Ā, Ā′, ā, ā′ respect Θ; Γ if (ai, a

′
i) ∈ JTiK Ā for all assumptions xi : Ti in Γ.

Theorem 2.4 (Parametricity for System F). If Θ; Γ ` t : T then for all environments
Ā, Ā, Ā′, ā, ā′ that respect Θ; Γ we have that

(
nform(t[Ā, ā/Θ,Γ]), nform(t[Ā′, ā′/Θ,Γ])

)
∈

JT K Ā.

Proof. Notice first that the statement of the theorem makes sense because JT K Ā ∈
Rel(T [Ā/Θ], T [Ā′/Θ]) by Proposition 2.3 and also nform(t[Ā, ā/Θ,Γ]) ∈ DT [Ā/Θ] and
nform(t[Ā′, ā′/Θ,Γ]) ∈ DT [Ā′/Θ] by Proposition 2.2.

Now we proceed by induction on a derivation of Θ; Γ ` t : T . There are 5 possibilities
for the inference rule last applied.

• T-Var: t = xi and T = Ti and xi : Ti is contained in Γ.
We see that nform(t[Ā, ā/Θ,Γ]) = ai and nform(t[Ā′, ā′/Θ,Γ]) = a′i. Because
Ā, Ā, Ā′, ā, ā′ respects Θ; Γ, we have that(

nform(t[Ā, ā/Θ,Γ]), nform(t[Ā′, ā′/Θ,Γ])
)

= (ai, a
′
i) ∈ JTiK Ā = JT K Ā,

which was to be proved.
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• T-Abs: t = λ(x : U) . v and Θ; Γ, (x : U) ` v : V and T = U → V .
Now we have that JT K Ā = JUK Ā → JV K Ā. Take arbitrary (u, u′) ∈ JUK Ā. Then
we see that Ā, Ā, Ā′, (ā, u), (ā′, u′) respect Θ; Γ, (x : U). Hence the induction hy-
pothesis tells us that(

nform(v[Ā, (ā, u)/Θ, (Γ, x : U)]), nform(v[Ā′, (ā′, u′)/Θ, (Γ, x : U)])
)
∈ JV K Ā.

Furthermore, as we assume that x does not occur in Γ, we have that

nform(v[Ā, (ā, u)/Θ, (Γ, x : U)]) = nform(v[Ā, ā/Θ,Γ][u/x]) = ϕUV (t[Ā, ā/Θ,Γ])(u)

and similarly nform(v[Ā′, (ā′, u′)/Θ, (Γ, x : U)]) = ϕUV (t[Ā′, ā′/Θ,Γ])(u′). There-
fore, we see that(

ϕUV (t[Ā, ā/Θ,Γ])(u), ϕUV (t[Ā′, ā′/Θ,Γ])(u′)
)
∈ JV K Ā.

By definition of → for relations, it follows that
(
t[Ā, ā/Θ,Γ], t[Ā′, ā′/Θ,Γ]

)
∈ JT K Ā

from which we can conclude the result since nform(t) = t.

• T-App: t = u v and Θ; Γ ` u : V → T and Θ; Γ ` v : V .
Using the induction hypothesis, we see that(

nform(u[Ā, ā/Θ,Γ]), nform(u[Ā′, ā′/Θ,Γ])
)
∈ JV K Ā → JT K Ā(

nform(v[Ā, ā/Θ,Γ]), nform(v[Ā′, ā′/Θ,Γ])
)
∈ JV K Ā.

Furthermore, we see that

ϕV T (nform(u[Ā, ā/Θ,Γ]))(nform(v[Ā, ā/Θ,Γ])) = nform(t[Ā, ā/Θ,Γ])

ϕV T (nform(u[Ā′, ā′/Θ,Γ]))(nform(v[Ā′, ā′/Θ,Γ])) = nform(t[Ā′, ā′/Θ,Γ]).

From the definition of the constructor → for relations we can then conclude that
(nform(t[Ā, ā/Θ,Γ]), nform(t[Ā′, ā/Θ,Γ]′)) ∈ JT K Ā.

• T-Tabs: t = ΛX . u and Θ, X; Γ ` u : U and T = ∀X .U .
We can see that JT K Ā = ∀X . JUK (Ā[X/X]). Now take arbitrary types S, S ′ ∈
T0 and an arbitrary relation S ∈ Rel(S, S ′). Then we see that the environments
(Ā[S/X]), (Ā, S), (Ā′, S ′), ā, ā′ respect Θ, X; Γ. Therefore, the induction hypothesis
gives us that(

nform(u[(Ā, S), ā/(Θ, X),Γ]), nform(u[(Ā′, S ′), ā′/(Θ, X),Γ])
)
∈ JUK Ā[S/X].

As we assume that X does not occur in Θ, we also have that

nform(u[(Ā, S), ā/(Θ, X),Γ]) = nform(u[Ā, ā/Θ,Γ][S/X]) = Φ∀X .U(t[Ā, ā/Θ,Γ])(S)

and similarly nform(u[(Ā′, S ′), ā′/(Θ, X),Γ]) = Φ∀X .U(t[Ā′, ā′/Θ,Γ])(S ′). Hence we
see that

(
Φ∀X .U(t[Ā, ā/Θ,Γ])(S),Φ∀X .U(t[Ā′, ā′/Θ,Γ])(S ′)

)
∈ JUK Ā[S/X]. By def-

inition of ∀ for relations, we have that
(
t[Ā, ā/Θ,Γ], t[Ā′, ā′/Θ,Γ]

)
∈ JT K Ā and the

result follows since nform(t) = t.
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• T-Tapp t = u [V ] and Θ; Γ ` u : ∀X .U and T = U [V/X].
The induction hypothesis tells us that(

nform(u[Ā, ā/Θ,Γ]), nform(u[Ā′, ā′/Θ,Γ])
)
∈ J∀X .UK Ā.

Moreover, we know that J∀X .UK Ā = ∀X . JUK (Ā[X/X]). Using the relation
JV K Ā ∈ Rel(V [Ā/Θ], V [Ā′/Θ]), we can apply the definition of ∀ for relations to
see that(
nform(u[Ā, ā/Θ,Γ]) [V [Ā/Θ]], nform(u[Ā′, ā′/Θ,Γ]) [V [Ā′/Θ]]

)
∈ JUK Ā[(JV K Ā)/X].

It can be easily shown that JUK Ā[(JV K Ā)/X] = JU [V/X]K Ā = JT K Ā and that

nform(u[Ā, ā/Θ,Γ]) [V [Ā/Θ]] = nform(t[Ā, ā/Θ,Γ])

and similarly we also have

nform(u[Ā′, ā′/Θ,Γ]) [V [Ā′/Θ]] = nform(t[Ā′, ā′/Θ,Γ]).

Hence we can conclude that
(
nform(t[Ā, ā/Θ,Γ]), nform(t[Ā′, ā′/Θ,Γ])

)
∈ JT K Ā.

In the special case where T ∈ T0 is a closed type and t ∈ DT is a closed term in normal
form, the theorem states that (t, t) ∈ JT K. So a closed term of a closed type is related to
itself by the relation corresponding to the type.

Notice that all results proved in this section remain valid if we extend the language of
System F with a concrete type A with values DA = {a1, . . . , an} and interpret JAK as the
identity relation on DA. In particular, we can consider a unit type > with D> = {tt} or
a type of booleans Bool with DBool = {true, false}.

Example 2.5. We can now apply the parametricity result for System F to the Church
Booleans from example 1.20 and the beginning of this section. Suppose that we have a
closed term f of type CBool that is in normal form, so f ∈ DCBool. Then Theorem 2.4
tells us that (f, f) ∈ JCBoolK. Furthermore, we have that JCBoolK = ∀X .X → X → X .
This means that for any types S, S ′ ∈ T0 and any relation S ∈ Rel(S, S ′) we have that
(f [S], f [S ′]) ∈ S → S → S. It then follows that for every s1, s2 ∈ S and s′1, s

′
2 ∈ S if

(s1, s
′
1) ∈ S and (s2, s

′
2) ∈ S then also (f [S] s1 s2, f [S ′] s′1 s

′
2) ∈ S.

Take now an arbitrary closed type T ∈ T0 and arbitrary t1, t2 ∈ DT . If we assume
that we have a type Bool with DBool = {true, false}, we can consider the case where
S = Bool, S ′ = T, s1 = true, s2 = false, s′1 = t1, s

′
2 = t2 and S = {(true, t1), (false, t2)}. We

then get that (f [Bool] true false, f [T ] t1 t2) ∈ S. As f [Bool] true false ∈ DBool, there are
two possibilities. Either f [Bool] true false = true and then (true, f [T ] t1 t2) ∈ S so that
f [T ] t1 t2 = t1 for all T, t1, t2 or f [Bool] true false = false and then (false, f [T ] t1 t2) ∈ S
so that f [T ] t1 t2 = t2 for all T, t1, t2. This proves that a closed term of type CBool in
normal form behaves exactly as ctrue or cfalse.

2.2 Parametricity and Dependent Types

In section 1.4.4, we saw that it is possible to define polymorphic functions in MLTT by
considering an abstraction of the form λ(X : U`) . · · · for some universe U`. A natural
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◦ ¶ id ]
¶ ¶ ¶ ]
id ¶ id ]
] ¶ ] ]

(a) Definition of ◦.

\ ¶ id ]
¶ ¶ ] ]
id ¶ id ]
] ¶ id id

(b) Definition of \.

Table 2.1: Definition of the operations ◦ and \ on modalities in ParamDTT.

question is then of course whether functions defined in this way are, just like in System
F, enforced to be parametric. This is not true in general and it is possible to construct
polymorphic functions in MLTT that are not parametric. A concrete example was given
by Nuyts, Vezzosi and Devriese in [NVD17]. However, being able to derive theorems
about functions only based on their types is a very powerful feature of a type system
or programming language and hence the authors presented in the same article a way to
restore parametricity. More concretely, they developed ParamDTT, a dependent type
system based on MLTT in which the type of a function can contain a parametricity
annotation and which provides tools to prove results à la Wadler internally.

The reason why parametricity breaks down in MLTT is the fact that dependent prod-
uct types are used as a generalization of both function types and universal types of System
F. The main difference in System F between a function f : A → B and a polymorphic
function g : ∀X .C is that f can use its argument of type A in its implementation whereas
the type argument of g is only available during type checking. The fact that a function g
cannot use its type argument in its implementation appears to be crucial for parametric-
ity. By generalizing a universal type ∀X .C to Π(X : U`).C in dependent type theory,
polymorphic functions can start using their type argument in their implementation, which
is why we lose parametricity. In ParamDTT, this problem is resolved by distinguishing
between parametric dependent product types Π](x : A).B whose functions intuitively
cannot use the argument x in their implementation and continuous dependent product
types Πid(x : A).B whose functions can use argument x in their implementation.

In the rest of this section, we will more formally explore the parts of ParamDTT that
will be useful for this thesis. Note that we will not explicitly mention every difference
between MLTT and ParamDTT, but only those differences that will be important in
subsequent chapters. This section is completely based on [NVD17], to which we also refer
for more details.

2.2.1 Modalities

In ParamDTT, every dependency is equipped with a modality which can be parametric (]),
continuous (id) or pointwise (¶). The continuous modality will be considered default and
will henceforth be omitted. We define an order on modalities by ¶ ≤ id ≤ ]. Furthermore,
ParamDTT provides two operations ◦ (composition) and \ (left division) on modalities,
defined in Table 2.1.3

An important place where modalities will show up are typing contexts. More con-
cretely, an assumption xµ : T in a context Γ will from now on always have some modality

3The motivation for the particular order on modalities as well as the intuition behind the operations
on modalities can be found in [NVD17]
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µ. The operation \ on modalities can be extended to modalities and contexts. More
concretely, a context Γ that is left-divided by a modality µ will be denoted by µ \Γ and
for every assumption xν : T in Γ the context µ \Γ will contain the assumption xµ \ ν : T .
The modality with which a variable is contained in a context Γ is significant when con-
structing terms in Γ because only a variable x that appears pointwise or continuous in Γ
will type-check as a term of the type it is assumed to have. In other words, the rule var

from MLTT gets replaced by the following inference rule.4

` Γ, xµ : T,∆ context µ ≤ id
var

Γ, xµ : T,∆ ` x : T

Another important inference rule that gets replaced in ParamDTT is the rule univ-type

that allows us to convert a value of a universe into a type.

] \Γ ` T : U`
univ-type

Γ ` T type

In this way, we see that variables that are parametric in the context Γ can be used in the
construction of a type. Indeed, by the left-division of Γ by ], every parametric modality
gets replaced with a continuous modality and hence such a variable can be used as a term
in this context.

ParamDTT now provides for every modality µ a dependent product type Πµ(x : A).B.
We will omit the formation rule for such types. The introduction and elimination rules
are as follows.

Γ, xµ : A ` t : B
Π-intro

Γ ` λ(xµ : A) . t : Πµ(x : A).B

Γ ` f : Πµ(x : A).B µ \Γ ` a : A
Π-elim

Γ ` f aµ : B[a/x]

We now see that in the definition of a parametric function λ(x] : A) . t the variable x is
parametric in the context when t is type-checked, and hence by inference rule var it cannot
be used in t except at a parametric position (for instance it can be used as an argument
of another parametric function, in which case the context gets left-divided by ] an x
appears continuous). This makes precise the intuition that “a parametric function cannot
use its argument in its implementation.” Furthermore, the elimination rule tells us that
an application f aµ depends on the term a with modality µ. As already explained, this
implies that a variable that is parametric in the context can still be used as an argument
of a parametric function. From now on, we will write ∀(x : A).B for the parametric
dependent product type Π](x : A).B. For any modality µ we will also write µA → B
instead of Πµ(x : A).B if the type B does not depend on the variable x.

Similar to dependent products with any modality, ParamDTT also provides dependent
sums Σµ(x : A).B for any modality µ. These types contain dependent pairs that depend
on their first component with modality µ. More concretely, the introduction rule for
dependent sums is as follows.

Γ ` Σµ(x : A).B type µ \Γ ` a : A Γ ` b : B[a/x]
Σ-intro

Γ ` (aµ, b) : Σµ(x : A).B

4Note that we also use the name var for this rule. Since from now on, we will always work in the
system ParamDTT, this will not cause any confusion.
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In the following chapters, we will quite often use nested dependent sums to represent types
of tuples. When specifying such a tuple, we will not always annotate the components with
their modalities because this could cause some confusion, especially when the components
of the tuple are long expressions. Just as with dependent sums in MLTT, the elimination
rule is more difficult and we will therefore omit it. We make however the remark that
using the induction principle for a pointwise dependent sum Σ¶(x : A).B one can define
a first projection function

fst¶ : ](Σ¶(x : A).B)→ A

that is parametric. This will for instance be useful in chapter 4.

Example 2.6. As an example of the modalities in ParamDTT, we can define the poly-
morphic identity function for a universe U` as

λ(X] : U`) . λ(x : X) . x : ∀(X : U`).X → X.

Indeed, when type-checking the body λ(x : X) . x of this function, the variable X is
parametric in the context, but it only appears as a type in λ(x : X) . x and this is by the
inference rule univ-type a parametric position.

As another example, one can define the type of Church encoded booleans in ParamDTT
as

CBool` = ∀(X : U`).X → X → X

and once we have tools to prove parametricity results internally, we will be able to show
a theorem like in example 2.5 for any term of this type.

2.2.2 Internal Parametricity Proofs

In order to prove parametricity results internally in the type system, ParamDTT provides
a way to express relations in the type system. There is an interval pseudotype I with two
axiomatic elements 0, 1 : I. A relation between two types C,D : U` is then expressed using
a continuous function B : I → U` with B 0 = C and B 1 = D, which is called a bridge
between C and D. Subsequently, a proof that c : C and d : D are related, is expressed
using a parametric function p : ∀(i : I).B i with p 0] = c and p 1] = d, which is called a
path over B between c and d.

The modality of a function can now also be described in terms of these bridges and
paths. Continuous functions respect bridges and paths and parametric functions respect
paths and strengthen bridges to paths (compare this to section 2.1 where we said that
parametric polymorphic functions map related types to related results). Furthermore,
pointwise functions respect paths but have no action on bridges.

There is also a path degeneracy axiom asserting that the endpoints of a homogeneous
path are propositionally equal.5 We say that a path p is homogeneous if it is a path over
a constant bridge, or in other words if p has type ]I → A for some type A. The use of
this axiom will be the final step in most of the parametricity proofs in this thesis. It is
however an axiom that has no computational content. In other words, computations in
which the path degeneracy axiom is used will block (this situation is similar to that of

5Actually the path degeneracy axiom in ParamDTT states that any homogeneous path is (proposi-
tionally) constant, but from this it obviously follows that its endpoints are propositionally equal.
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function extensionality in example 1.33). More formally, we have the following inference
rule.

Γ ` A type ] \Γ ` p : ∀(i : I).A
path-to-eq

Γ ` p 0 ≡A p 1

Furthermore, ParamDTT provides tools to interpret a function f : C → D as a
relation. More concretely, for such a function f there will be a bridge /f\ : I → U`
with /f\ 0 = C and /f\ 1 = D. The relation represented by this bridge will be the
graph of the function f . Furthermore there are functions push f : ∀(i : I).C → /f\ i
and pull f : ∀(i : I)./f\ i → D with push f 0] = idC , push f 1] = f , pull f 0] = f and
pull f 1] = idD. This situation is illustrated in the following diagram.

C /f\ i D

f

push f i] pull f i]

The functions push and pull allow us to construct a path between any c : C and its image
f c : D. An important remark is that the graph relation /f\ and the functions push f and
pull f depend pointwise on f .

However, the operations / · \, push and pull are not primitive in ParamDTT, but they
are implemented in terms some other primitive constructs. In fact there are two ways to
implement them: using Weld types or using Glue types. In the rest of this section, we will
present a simplified discussion of Weld and Glue types that only contains the material we
will need in the other parts of the thesis or for the implementation of / · \, push and pull .

Suppose that we have a type E : U` that possibly depends on a variable i : I and
suppose furthermore that we have types A and B (not depending on i) and functions
f : E[0/i] → A and g : E[1/i] → B. Then a Weld type will allow us to extend the types
A and B and the functions f and g for any i : I. In other words, we have a type

Weld{E → (i
.
= 0 ?A, f | i .= 1 ?B, g)}

that is definitionally equal to A if i is equal to 0 (or in other words if the predicate i
.
= 0

holds) and is definitionally equal to B if i is equal to 1. Moreover, there is a function

weld(i
.
= 0 ? f | i .= 1 ? g) : E → Weld{E → (i

.
= 0 ?A, f | i .= 1 ?B, g)}

that is definitionally equal to f if i is equal to 0 and is definitionally equal to g if i is
equal to 1. This situation is illustrated in Figure 2.1. We make the remark that both the
type Weld{E → (i

.
= 0 ?A, f | i .= 1 ?B, g)} and the function weld(i

.
= 0 ? f | i .= 1 ? g)

depend pointwise on the functions f and g.
Using Weld types, the graph relation former and push function for a given function

h : U → V can be implemented as

/h\ = λ(i : I) .Weld{U → (i
.
= 0 ?U, idU | i

.
= 1 ?V, h)},

and
pushh = λ(i] : I) .weld(i

.
= 0 ? idU | i

.
= 1 ?h).

In order to implement the pull function, we need an induction principle for Weld types.
This will tell us that if we have some value of type Weld{E → (i

.
= 0 ?A, f | i .= 1 ?B, g)}
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E A

E Weld{E → (i
.
= 0 ?A, f | i .= 1 ?B, g)}

E B

f

weld(i
.
=0 ? f |i .=1 ? g)

g

Figure 2.1: Illustration of Weld types. The middle row depicts the situation
for general i and reduces to the top row if i

.
= 0 holds and to the bottom row

if i
.
= 1 holds.

and we want to construct a value of type C, then it is sufficient to give a value c : C
depending on a variable x : E, a value d0 : C depending on a variable y : A assuming that
i
.
= 0 holds and a value d1 : C depending on a variable z : B assuming that i

.
= 1 holds.

Moreover, we need to have definitional equality of c and d0[f x/y] if i
.
= 0 holds and of c

and d1[g x/z] if i
.
= 1 holds. If these conditions are satisfied, we can construct

indWeld

(
C, (i

.
= 0 ? y.d0 | i

.
= 1 ? z.d1), x.c, w

)
: C

for any w : Weld{E → (i
.
= 0 ?A, f | i .= 1 ?B, g)}. This will be definitionally equal to

d0[w/y] if i
.
= 0 holds and definitionally equal to d1[w/z] if i

.
= 1 holds. Furthermore, if

w = weld(i
.
= 0 ? f | i .= 1 ? g) e for some e : E, then this is definitionally equal to c[e/x].

We can now define pullh for h : U → V as

pullh i]w = indWeld

(
V, (i

.
= 0 ? y.(h y) | i .= 1 ? z.z) x.(hx), w

)
: V.

Glue types can be seen as the opposite construction of Weld types. Hence we now
assume we have a type E : U` that possibly depends on a variable i : I and types A and
B (not depending on i) and functions f : A→ E[0/i] and g : B → E[1/i]. In this case, a
Glue type will enable us to extend the types A and B and the functions f and g for any
i : I. Hence we have a type

Glue{E ← (i
.
= 0 ?A, f | i .= 1 ?B, g)}

that is definitionally equal to A if i
.
= 0 holds and definitionally equal to B if i

.
= 1 holds.

Additionally, we have a function

unglue(i
.
= 0 ? f | i .= 1 ? g) : Glue{E ← (i

.
= 0 ?A, f | i .= 1 ?B, g)} → E

that is definitionally equal to f if i
.
= 0 holds and is definitionally equal to g if i

.
= 1 holds.

This situation is illustrated in Figure 2.2. Just as for Weld types, the type Glue{E ← (i
.
=

0 ?A, f | i .= 1 ?B, g)} and the term unglue(i
.
= 0 ? f | i .= 1 ? g) depend pointwise on the

functions f and g.
Using Glue types, the graph relation former and pull function for a given function

h : U → V may be implemented as

/h\ = λ(i : I) . glue{V ← (i
.
= 0 ?U, h | i .= 1 ?V, idV )},
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A E

Glue{E ← (i
.
= 0 ?A, f | i .= 1 ?B, g)} E

B E

f

unglue(i
.
=0 ? f |i .=1 ? g)

g

Figure 2.2: Illustration of Glue types. The middle row depicts the situation
for general i and reduces to the top row if i

.
= 0 holds and to the bottom row

if i
.
= 1 holds.

and
pullh = λ(i] : I) . unglue(i

.
= 0 ?h | i .= 1 ? idV ).

To implement the push function, we need a constructor for Glue types. In order to
construct some value of type Glue{E ← (i

.
= 0 ?A, f | i .

= 1 ?B, g)} we need to give a
value e : E, a value a : A assuming that i

.
= 0 holds and a value b : B assuming that i

.
= 1

holds. Moreover, f a must be definitionally equal to e if i
.
= 0 holds and of g b must be

definitionally equal to e if i
.
= 1 holds. If these conditions are satisfied, we can construct

glue
(
e←[ (i

.
= 0 ? a | i .= 1 ? b)

)
: Glue{E ← (i

.
= 0 ?A, f | i .= 1 ?B, g)}.

This will be definitionally equal to a if i
.
= 0 holds and definitionally equal to b if i

.
= 1

holds. Moreover, we have that

unglue(i
.
= 0 ? f | i .= 1 ? g)

(
glue(e←[ (i

.
= 0 ? a | i .= 1 ? b))

)
= e : E.

We can now define pushh for any h : U → V as

pushh i] u = glue
(
hu, (i

.
= 0 ?u | i .= 1 ?hu)

)
: /h\ i.

2.3 Examples Involving Functors

In this section we will see several examples of parametricity results about functors, functor
laws and natural transformations. All results are proved in ParamDTT and have been
formalized in Agda parametric.6 Some of these results will be useful in chapter 3 when
we define a monad in ParamDTT.

2.3.1 Definition of a Functor in ParamDTT

In the functional programming language Haskell, a functor (or more precisely an instance
of the type class Functor) is defined to be a type operator f together with an action

6See https://github.com/JorisCeulemans/effect-param-agda/blob/master/Functors.agda.

https://github.com/JorisCeulemans/effect-param-agda/blob/master/Functors.agda
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fmap :: (a -> b) -> f a -> f b on functions which is assumed to respect composition
and preserve identity functions [Lip11, chapters 8, 11] (as Haskell does not have dependent
types, these functor laws cannot be imposed in the language). This is a special case of the
more general category theoretic definition of a functor in the sense that a Haskell functor
is a category theoretic functor from the category of Haskell types, which is sometimes
called Hask, to itself.7 The category of Haskell types has as objects all types present in
Haskell and as morphisms between types a and b the functions of type a -> b. Strictly
speaking, the fact that a Haskell program may be undefined or may not terminate poses
some problems for Hask to be a category, but these difficulties are usually ignored [Bau16].

The definition of a functor that we will present in this section resembles more the
definition of a Haskell functor than that of a category theoretic functor. It will also be a
type operator equipped with some action on functions. However, via the Curry-Howard
correspondence the dependent types in our system will enable us to enforce the functor
laws in the definition of a functor, something which is not possible in Haskell.

More concretely, the first thing we need in order to specify a functor F is a type
operator objF . Since in dependent type theory types are values of a universe type, such a
type operator is nothing more than a function going from some universe to some (possibly
other) universe, so objF : Uk → U` for some universe levels k and `. Second, we need a
way to convert a function of type A→ B into a function of type objF A→ objF B. Hence
the functor F will also contain an operation

homF : ∀(X, Y : Uk).(X → Y )→ objF X → objF Y,

which is parametric in its first two arguments X and Y , expressing our intuition that the
procedure to convert a function f : A → B into homF f : objF A → objF B should not
inspect the types A and B.

Finally, we need to express that objF and homF satisfy the functor laws, stating that
homF maps the identity function idX := λ(x : X) . x for any type X to the identity
function idobjFX for the type objF X and that homF respects composition of functions, so
homF (g ◦ f) equals homF g ◦homF f for any two composable functions f and g. Using the
Curry-Howard correspondence, we can translate these functor laws to the types

∀(X : Uk).Π(x : objF X).homF idX x ≡objFX x (2.1)

and

∀(X, Y, Z : Uk).Π(f : X → Y ).Π(g : Y → Z).Π(x : objF X). (2.2)

homF (g ◦ f)x ≡objFZ (homF g ◦ homF f)x.

Note that in for instance (2.1) we should strictly speaking write homF X
]X] idX instead

of homF idX , but we leave these two arguments X] implicit for the sake of readability
(they can be deduced from the type of idX). Also note that both types in (2.1) and (2.2)
are dependent products that are parametric in their first argument(s). This is possible
because homF is parametric in its first two arguments and it expresses our intuition that
in some sense the proofs that F satisfies the functor laws should be the same for all
types (we should not inspect the type when constructing these proofs). This choice for
parametric types is also practically justified by implementing some well-known functors

7Such a functor from a category C to itself is called an endofunctor.
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such as the list functor, the covariant hom functor and the maybe functor, showing that
we are not too restrictive when requiring parametric proofs of the functor laws.8

Taking into account the discussion in the last paragraphs, a first attempt to formally
define a functor F could be as a 4-tuple consisting of a type operator objF , an action on
functions homF and a value of each of the two types in (2.1) and (2.2) proving the two
functor laws. However, we will see in section 2.3.2 that in the definition we only need to
require that F preserves identity functions and using parametricity we will then construct
a proof that F respects composition.

In summary, we define for all universes Uk and U` the type of functors

Functork,` := Σ(obj : Uk → U`).
Σ¶(hom : ∀(X, Y : Uk).(X → Y )→ objX → objY ).

Σ¶(funct-id : ∀(X : Uk).Π(x : objX).hom idX x ≡objX x).>.

In other words, a functor is a 4-tuple consisting of a type operator, an action on functions,
a proof that this action preserves identity functions and an element of the unit type >.
This last element is a trivial piece of information (there is only one value of type >,
namely tt) that is included because we want a functor to depend pointwise on its action
on functions and on its proof of the functor law involving identity functions.9 This can
be done using pointwise sigma types, but only for the first component of a pair and hence
we need to add the trivial element of type > to the definition of a functor.

From now on, if we have a functor F : Functork,` we will by abuse of notation write F
not only for the entire functor, but also for its type former and for its action on functions.
If we wanted to be extremely precise, we should write objF for the type operator of F and
homF for its action on functions but this would severely reduce readability in formulae.
We will denote by funct-idF the proof that F preserves identity functions.

Example 2.7. If our type system has for any type A the type ListA of lists with elements
of type A, then we can consider the list functor mapping a type A to ListA and a function
f : A → B to the function of type ListA → ListB that applies f to every element in a
list of type ListA.

As another example, we can consider for any type X the covariant hom functor that
maps a type Y to the function type X → Y . A function f : Y → Z is then converted
into the function of type (X → Y )→ (X → Z) that maps g : X → Y to f ◦ g.

Remark 2.8. Our definition of a functor corresponds to what is called in category the-
ory a covariant functor. It is also possible to define and study in ParamDTT so-called
contravariant functors, but we will not cover those in this thesis.

2.3.2 Functors and Composition

In this section we will prove two results about functors and the composition of functions.
We start with a justification that the functor law involving composition is not included
in the definition of a functor.

8See the module Examples in https://github.com/JorisCeulemans/effect-param-agda/blob/

master/Functors.agda
9The reason why we want this dependency to be pointwise, is that in this case a parametric function

taking a functor as argument can still use the action and the proof in its implementation.

https://github.com/JorisCeulemans/effect-param-agda/blob/master/Functors.agda
https://github.com/JorisCeulemans/effect-param-agda/blob/master/Functors.agda
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Proposition 2.9. Suppose that Γ is a context containing the assumptions

• F ] : Functork,`

• A], B], C] : Uk

• f : A→ B

• g¶ : B → C.

Then we can construct in this context Γ a term

funct- comp : Π(a : F A).F g
(
F f a

)
≡FC F (g ◦ f) a.

Proof. We will use parametricity of objF . The general idea is to construct a (heteroge-
neous) path between f and g ◦ f and subsequently apply the functor F to everything in
order to get a (heterogeneous) path between F f and F (g◦f). Then we will use the func-
tion pull g to construct a homogeneous path between (F g) ◦ (F f) and (F idC) ◦F (g ◦ f).
Finally we will use the fact that F preserves identity functions which is part of the defi-
nition of Functork,`.

More concretely, using the function g we first construct a bridge

/g\ : I→ Uk

from B to C. Here we need that g is pointwise in the context Γ because we want to apply
/ · \ to it. Then we apply the function push g to obtain for every b : B a path

g-path b := λ(i] : I) . push g i] b : ∀(i : I)./g\ i

over /g\ between b and g b. This can subsequently be used to construct a path

func-path := λ(i] : I) . λ(a : A) . g-path (f a) i] : ∀(i : I).A→ /g\ i

between f and g ◦ f . This situation is illustrated in figure 2.3, where the dashed line
represents the bridge /g\. One could think of this diagram as if /g\ i can move up
and down along the dashed line and the middle arrow (with label func-path i]) follows
accordingly. When i is 0, then we are at the top and /g\ i is definitionally equal to B
and func-path i] is definitionally equal to f . Likewise, if i is 1 then we are at the bottom
of the diagram (definitionally).

We now have for any i : I a function func-path i] from A to /g\ i. We can then apply
the functor F to this to get a function F (func-path i]) from F A to F (/g\ i). This gives
us a path

F-path := λ(i] : I) . F (func-path i]) : ∀(i : I).F A→ F (/g\ i)

between F f and F (g ◦ f). This situation is illustrated in the left part of figure 2.4.
Additionally, we can apply for any i : I the functor F to the function pull g i] to get a
function from F (/g\ i) to F C. This then yields a path

Fpullg-path := λ(i] : I) . F (pull g i]) : ∀(i : I).F (/g\ i)→ F C
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B

A /g\ i

C

f

func-path i]

g◦f

Figure 2.3: Construction of a path between f and g ◦ f .

F B

F A F (/g\ i) F C

F C

F gF f

F-path i]

F (g◦f)

Fpullg-path i]

F idC

Figure 2.4: Construction of a path between F g ◦ F f and F idC ◦ F g ◦ f .

between F g and F idC . This is illustrated on the right part of figure 2.4. As can be seen
on that diagram, for any i : I we can compose the functions F-path i] and Fpullg-path i] to
get a function of type F A→ F C. Applying this to an arbitrary a : F A gives the path

final-path a := λ(i] : I) .Fpullg-path i]
(
F-path i] a

)
: ∀(i : I).F C

between F g (F f a) and F idC (F (g ◦ f) a). As we can see, this is a homogeneous path so
that the path degeneracy axiom provides a term

path-to-eq (final-path a) : F g (F f a) ≡FC F idC (F (g ◦ f) a).

Using this proof term together with the term

funct-idF (F (g ◦ f) a) : F idC(F (g ◦ f) a) ≡FC F (g ◦ f) a

obtained from the definition of a functor gives us by transitivity

funct- comp a : F g
(
F f a

)
≡FC F (g ◦ f) a.

Remark 2.10. We formulate some remarks regarding Proposition 2.9.

1. Using function extensionality (see example 1.33), it is possible to derive from the
term funct- comp a term of type (F g) ◦ (F f) ≡FA→FC F (g ◦ f). However, it is also
possible to derive such a term directly by modifying the argument above a little bit
and by applying function extensionality to the term funct-idF . This is also included
in the mechanization of the previous proof in Agda and we refer to that code for
more details.
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2. Proposition 2.9 also holds in the case where F is continuous or pointwise in the
context Γ. The proof is in those cases exactly the same. This can be verified by
adjusting the modality of F in the mechanization of the proof in Agda.

3. The fact that good behaviour of a functor F with respect to composition follows
from parametricity and the functor law involving identity functions, was already
known.10 However, to our knowledge it has not yet been proved in a dependent
type system with support for parametricity.

4. A very similar argument can be applied to obtain a term of the same type as in
Proposition 2.9 but with f appearing pointwise and g continuous in the context Γ.
In this case the function f is used to create a bridge /f\ from A to B and the rest
of the proof needs to be adjusted accordingly.

By Proposition 2.9 we can omit the functor law involving composition in the definition
of a functor. We could of course also wonder whether the functor law involving identity
functions can be omitted and proved directly from the types of objF and homF by para-
metricity. This is however not the case, as can be seen by considering for instance the
type operator

Θ := λ(X : U0) .N : U0 → U0

mapping any type in U0 to the type of natural numbers. For the morphism part, we will
map any function f : X → Y to the constant function of type N → N mapping every
natural number to 0, so we have

θ := λ(X], Y ] : U0) . λ(f : X → Y ) . λ(n : N) . 0 :

∀(X, Y : U0).(X → Y )→ N→ N.

Clearly the constant function λ(n : N) . 0 is not the identity function for N and hence
the functor law involving identity functions does not hold automatically by parametricity.
Moreover, it is easy to check that θ (g ◦ f) and θ g ◦ θf map every natural number to 0
so that θ respects composition of functions. Hence it is not possible to define a functor
alternatively by only requiring the functor law involving composition (and then proving
identity preservation).

The following result is in some sense a generalization of Proposition 2.9.

Proposition 2.11. Suppose that Γ is a context containing the following assumptions

• F ] : Functork,`

• A], B], C], D] : Uk

• f1 : A→ B

• f2 : C → D

• g¶ : A→ C

• h¶ : B → D

10See for instance https://github.com/quchen/articles/blob/master/second_functor_law.md.

https://github.com/quchen/articles/blob/master/second_functor_law.md
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and assume that we can derive the judgement

Γ, a : A ` h (f1 a) = f2 (g a) : D.

Then we can construct in this context Γ a term

square- commute : Π(a : F A).F h (F f1 a) ≡FD F f2 (F g a).

In other words, the previous proposition tells us that if the left diagram below com-
mutes definitionally, then we can construct a proof that the right diagram commutes.

A B F A F B

C D F C F D

f1

g h

F f1

F g F h

f2 F f2

Proof. Again we use parametricity of objF . The idea is now to construct a path from
f1 to f2 and again apply the functor F to get a path from F f1 to F f2. Pre- and
postcomposing this path with the right paths will then yield the result by applying the
path degeneracy axiom. Throughout this proof we assume that the graph relation former
/ · \ is implemented using the Weld type former.

More concretely, we construct bridges /g\ : I→ Uk between A and C and /h\ : I→ Uk
between B and D. This explains why g and h appear pointwise in the context Γ. Using
the function pushh we get for any b : B a path

h-path b := λ(i] : I) . pushh i] b : ∀(i : I)./h\ i

between b and h b. Subsequently, we want to define a path between f1 and f2 over the
bridge λ(i : I) . /g\ i → /h\ i. For this purpose, we must specify for any i : I a function
of type /g\ i → /h\ i and we will do this using the induction principle for Weld types,
recalling that /g\ was implemented using the Weld type former as

/g\ i = Weld{A→ (i
.
= 0 ?A, idA | i

.
= 1 ?C, g)}.

Hence, in order to use the induction principle indWeld to construct an element of type
/h\ i, we need to specify an element of type /h\ i given a : A and to specify an element of
type /h\ i assuming that the predicate (i

.
= 0) ∨ (i

.
= 1) holds. The former can be given

using the path h-path we just constructed, more concretely if a : A then we have that
h-path (f1 a) i] : /h\ i. The latter element is given by

(
i
.
= 0 ? a.(f1 a) | i .= 1 ? c.(f2 c)

)
.

Finally, we also need that if (i
.
= 0) then h-path (f1 a) 0] is definitionally equal to f1 a,

which is the case because pushh 0] = idB, and that if (i
.
= 1) then h-path (f1 a) 1] is

definitionally equal to f2 (g a) which is the case because the left diagram above commutes
definitionally. We can then use the induction principle for Weld types to get a path

func-path := λ(i] : I) . λ(x : /g\ i) .
indWeld(/h\ i, (i

.
= 0 ? a.(f1 a) | i .= 1 ? c.(f2 c)), a.(h-path (f1 a) i]), x)

between f1 and f2. This situation is illustrated in figure 2.5.
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A B

/g\ i /h\ i

C D

f1

func-path i

f2

Figure 2.5: Construction of a path between f1 and f2.

Now we apply for any i : I the functor F to the function func-path i] to get a path

F-path := λ(i] : I) . F (func-path i]) : ∀(i : I).F (/g\ i)→ F (/h\ i)

between F f1 and F f2. This is illustrated in the middle part of figure 2.6. Subsequently,
we use the functions push g and pullh to construct paths

Fpushg-path := λ(i] : I) . F (push g i]) : ∀(i : I).F A→ F (/g\ i)

between F idA and F g, and

Fpullh-path := λ(i] : I) . F (pullh i]) : ∀(i : I).F (/h\ i)→ F D

between F h and F idD.

We can then see on the diagram of figure 2.6 that for any i : I we can compose the
functions Fpushg-path i], F-path i] and Fpullh-path i] to get for any a : F A a path

final-path a := λ(i] : I) .Fpullh-path i] (F-path i] (Fpushg-path i] a) : ∀(i : I).F D

between F h (F f1 (F idA a)) and F idD (F f2 (F g a)). Note that this path is homogeneous
and hence the path degeneracy axiom provides us with a proof

path-to-eq (final-path a) :

F h (F f1 (F idA a)) ≡F D F idD (F f2 (F g a)).

Applying twice the proof funct-idF that F preserves identity functions and using transi-
tivity we finally get a term

square- commute a : F h (F f1 a) ≡FD F f2 (F g a).

Remark 2.12. The remarks 1 to 3 from remark 2.10 remain valid here (of course appropri-
ately modified to match the current proposition). We now also note that Proposition 2.11
a generalization of Proposition 2.9. It is indeed easy to see that if we assume in Proposi-
tion 2.11 that A = C and that the function g is the identity function idA, then the result
of Proposition 2.9 follows.
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F A F B

F A F (/g\ i) F (/h\ i) F D

F C F D

F f1

F hF idA

Fpushg-path i]

F g

F-path i] Fpullh-path i]

F f2

F idD

Figure 2.6: Construction of a path between F h◦F f1 ◦F idA and F idD ◦F f2 ◦
F g.

2.3.3 Natural Transformations

In this section we show that if we have two functors F,G : Functork,` and a parametric
polymorphic function

ρ : ∀(X : Uk).F X → GX,

then ρ is a natural transformation from F to G. This means that for any two types
A,B : Uk and any function f : A→ B the following diagram commutes.

F A GA

F B GB

ρA]

F f Gf

ρB]

More concretely, we will prove the following Proposition.

Proposition 2.13. Let Γ be a context containing the following assumptions

• F ], G] : Functork,`

• ρ : ∀(X : Uk).F X → GX

• A], B] : Uk

• f¶ : A→ B.

Then we can construct in this context Γ a term

naturality : Π(a : F A).G f (ρA] a) ≡GB ρB] (F f a).

Proof. We will use the parametricity of ρ. The main idea is to construct a bridge from A
to B and apply ρ to this bridge. As ρ is parametric in its first argument, this will give us
a path.

We will need paths obtained by applying F to the function push f and G to the function
pull f . More concretely, we have the path

Fpushf-path := λ(i] : I) . F (push f i]) : ∀(i : I).F A→ F (/f\ i)
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F A GA

F A F (/f\ i) G(/f\ i) GB

F B GB

ρA]

GfF idA

F f

F (push f i]) ρ (/f\ i)] G(pull f i])

ρB]

G idB

Figure 2.7: Constructing a path from Gf ◦ ρA] ◦ F idA to G idB ◦ ρB] ◦ F f .

from F idA to F f which is illustrated on the left of figure 2.7. Additionally, we consider
the path

Gpullf-path := λ(i] : I) . G (pull f i]) : ∀(i : I).G(/f\ i)→ GB

from Gf to G idB which can be found on the right of figure 2.7. We can now compose
the different paths appearing on that diagram to get for any a : F A the path

final-path a := λ(i] : I) .Gpullf-path i] (ρ (/f\ i)] (Fpushf-path i] a)) :

∀(i : I).GB

from Gf (ρA] (F idA a)) to G idB (ρB] (F f a)). Moreover, this path is homogeneous so
that the path degeneracy axiom gives us a proof

path-to-eq (final-path a) : Gf (ρA] (F idA a)) ≡GB G idB (ρB] (F f a)).

Finally, using the fact that functors preserve identity functions and applying transitivity,
we can construct

naturality a : Gf (ρA] a) ≡GB ρB] (F f a).

Remark 2.14. When appropriately adjusted, remarks 1 and 2 of remark 2.10 hold as
well for this proposition. We also note that proposition 2.13 is a known result and it
has already been proved in the type system ParamDTT by Nuyts, Vezzosi and Devriese
[NVD17].11 We include this result and proof in this thesis because we will need them in
chapter 3.

11See also https://github.com/Saizan/parametric-demo/blob/master/Naturality.agda.

https://github.com/Saizan/parametric-demo/blob/master/Naturality.agda
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Chapter 3

Effects and Monads

Most computer programs interact with the outside world (i.e. the world outside the pro-
gram, which could include other programs running on the same device) for instance by
writing output to a screen, accepting input from a user, storing the value of some global
variable or sending information over a network. These different kinds of interaction are
called side effects or simply effects . In a purely functional programming language such
as Haskell or Agda, an ordinary function cannot cause any side effect and hence it can
only compute some output value for a given input.1 Moreover, applying such a function
at different instants of time to the same input will result in equal output values, as a pure
function does not have access to some kind of state such as a global variable storing how
many times the function has been applied. This is clearly a benefit for reasoning about
programs.

However, in a programming language that does not allow any kind of side effects, one
could not write many practically useful programs. This is why for instance in Haskell the
concept of a monad was introduced. The idea is to define for a particular kind of side
effects a new type m a for any type a, containing computations that yield a result of type
a but that may also cause a side effect of this particular kind. Adding some requirements
to the type former m, such as the possibility to sequentially compose different effectful
computations, gives rise to the definition of a monad, which we will see in this chapter.

The concept of a monad originated in category theory and was first introduced in
computer science by Eugenio Moggi for studying semantics of programming languages
[Mog91]. Subsequently, Philip Wadler described their use for the treatment of side effects
in purely functional programming languages [Wad92; Wad95].

The aim of this chapter is twofold. We will provide an introduction to the theory of
monads, based on [Wad92; Lip11, chapter 12; Vou12; Mil18, chapters 20–22]. At the same
time, we present this theory of monads in the type system ParamDTT and investigate the
consequences of parametricity in this context (formalizations for this in Agda parametric
are also available2).

1Strictly speaking, Haskell is almost purely functional because one can define ordinary functions of
type a -> b that throw an exception using the value undefined.

2See https://github.com/JorisCeulemans/effect-param-agda/tree/master/Monads.
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3.1 Introduction

Considered as a programming language, the type systems MLTT and ParamDTT are
purely functional. Indeed, a function of type A → B can only compute an output value
of type B given some argument of type A. Suppose now that we want to define a function
pred of type N → N that maps a natural number to its predecessor. Clearly, we have
to decide what to do with the number 0 as it has no predecessor contained in the type
N. We could choose to map 0 to itself but that would not be a proper definition of a
predecessor function. In fact, we would like to throw some kind of error or exception
when this function is applied to 0. That is however not possible in a purely functional
language because the only thing a function of type N → N can do is produce output of
type N given an argument of the same type N.

A possible solution consists of the introduction of a new type MaybeA for any type
A, containing besides all values of type A an element used for signaling that some error
has occurred or some unexpected case has been reached. More concretely, we will extend
our type system with the following inference rules.

Γ ` A : U`
Mb-form

Γ ` MaybeA : U`

Γ ` a : A
Mb-intro-just

Γ ` just a : MaybeA

Γ ` MaybeA type
Mb-intro-nothing

Γ ` nothing : MaybeA

Γ, x : MaybeA ` B type Γ, y : A ` bj : B[just y/x]
Γ ` m : MaybeA Γ ` bn : B[nothing/x]

Γ ` indMaybe(x.B, y.bj, bn,m) : B[m/x]
Mb-elim

Γ, x : MaybeA ` B type Γ, y : A ` bj : B[just y/x]
Γ ` a : A Γ ` bn : B[nothing/x]

Γ ` indMaybe(x.B, y.bj, bn, just a) = bj[a/y] : B[just a/x]
Mb-comp-just

Γ, x : MaybeA ` B type
Γ, y : A ` bj : B[just y/x] Γ ` bn : B[nothing/x]

Γ ` indMaybe(x.B, y.bj, bn, nothing) = bn : B[nothing/x]
Mb-comp-nothing

The introduction rules tell us that the type MaybeA has a specific value nothing (signaling
an error) and values of the form just a for any value a of type A. Just like for most types
in section 1.4.2, we have an induction principle stating that these values are essentially
the only inhabitants of the type MaybeA.

We can now consider functions from a type A to a type B that may cause an error
as pure functions of type A → MaybeB that return the value nothing in case an error
has occurred. In other words, we can interpret MaybeB as the type of computations
that result in some value of type B, but that may also produce an error. In this way the
predecessor function pred may be defined as

pred := λ(n : N) . indN(m.MaybeN, nothing, k.a. just k, n),
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and it has as type N→ MaybeN. We now have indeed that pred 0 is definitionally equal
to nothing by the computation rules for the type N.

In our interpretation of MaybeA as the type of computations that yield a result of
type A but may also produce an error, we have for any value a : A a pure computation
just a that does not cause any effect but only yields the result a. This will be true in
general, for any monad there will be a function mapping a value of a certain type X to
pure a computation only yielding that value (and not causing any side effect).

We now know that functions from A to B that may produce an error are interpreted
as pure functions of type A → MaybeB. However, at first sight this construction poses
a problem for function composition. Indeed, suppose that we have functions f from A to
B and g from B to C that may cause an error. It is clear that we would like to be able
to compose f and g but in fact, taking into account that f and g may produce an error,
we have functions

f : A→ MaybeB and g : B → MaybeC,

and these cannot be composed because their types do not match. Intuitively however, it
is obvious how the “composition” of f and g should behave: first apply f and then apply
g and if an error occurs in the process, then propagate it. We can make this more precise
using the induction principle for the Maybe type former, giving us the function

λ(x : A) . indMaybe (z.MaybeC, y.(g y), nothing, f x) (3.1)

of type A→ MaybeC (which is indeed the type of functions from A to C that may cause
an error). If we analyze this function more carefully, we see that we first applied f to the
argument x, giving us some value of type MaybeB, and then used the induction principle
for Maybe to construct a value of type MaybeC out of this value of type MaybeB and
the function g of type B → MaybeC. This procedure to convert a value of type MaybeX
into a value of type MaybeY using a function of type X → MaybeY is the key ingredient
in the composition of functions that may cause an error and it is called the bind operation
for Maybe. It will be denoted by the symbol �=Maybe as an infix operation with a term
of type MaybeX on the left and a function of type X → MaybeY on the right. More
concretely, we have for m : MaybeX and k : X → MaybeY that

m�=Maybe k := indMaybe(z.MaybeY, x.(k x), nothing,m).

Hence we can abbreviate the “composition” of f and g as given in (3.1) to

λ(x : A) . f x�=Maybe g.

Note that the bind operation �=Maybe is in fact polymorphic3 but we will omit the type
arguments as they can be inferred from the types of the left and right arguments (just
like we did with the hom operation for functors in section 2.3).

3.2 Definition of a Monad

In the previous section we saw that computations which may produce an error can be
described using the type former Maybe . Of course there are many other kinds side effects

3Actually this operation is even polymorphic in the universe level as it works for types of any universe.
This is however not expressible in MLTT or ParamDTT and hence we should strictly speaking annotate
the symbol �=Maybe with a universe level. We omit this for the sake of readability.
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that we can imagine a programmer would want to include, such as writing output to the
screen, accessing and updating some kind of state variable, etc. For every kind of side
effects, there will be a different type former that can be used to model them. Additionally,
any useful treatment of side effects should provide a way to compose effectful functions
and hence we will require that such a type former comes with a bind operation as in the
previous section. Equipping a type operator with the structure needed to model effects
gives rise to the notion of a monad. In this section we will define monads and some other
related concepts and we present these definitions in the type system ParamDTT.

3.2.1 A first formulation

As already mentioned, a monad M always consists of a type operator, which we also
denote by M . Just like in section 2.3 such a type operator is a function with certain
universe types as its domain and codomain. For a given type X, we will then interpret
M X as the type of computations that yield a result of type X but that may also cause
a certain side effect (and the kind of side effect depends on the type operator M). In
this context, it is not surprising that we require from a type operator in a monad that
its domain and codomain are equal. Indeed, intuitively it is plausible that the type
of computations which yield a result of type X must live in the same universe as X.
We postpone the more technical motivation for this requirement to section 3.2.2. As a
conclusion we have for a monad M a type operator M : U` → U`.

Second, we need a way to produce for any type A : U` and for any value a : A a
computation of type M A that causes no side effect and only yields the result a. This will
be achieved by a function called return which has type

return : ∀(X : U`).X →M X.

Note that this return function is parametric in its type argument, expressing the intuition
that the procedure to embed X into M X should not depend on the type X. This require-
ment is practically justified as we will see in example 3.2 that many well-known monads
can be implemented in this way. Moreover, taking into account that polymorphism in
Haskell is parametric, this type is the best approximation in ParamDTT for the type of
the return method in the Haskell type class Monad.

Third, in order to compose effectful functions we need a bind operation �= such as
the one for Maybe in the previous section. We will use�= as an infix operation and this
function will have type

�= : ∀(X, Y : U`).M X → (X →M Y )→M Y.

Again we have the requirement that �= is parametric in its two type arguments which
is the best approximation for the bind method in the Haskell type class Monad and which
is practically justified by implementing some well-known monads in this way. Just like
for Maybe , the composition of two effectful functions f : A→ M B and g : B → M C is
given by

λ(x : A) . f x�= g.

The return and bind functions give us enough structure on the type operator M to
model side effects, but in order for this to be a monad, some extra conditions, called the
monad laws, must be satisfied. However, in chapter 4 we will see that those structures
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that do not necessarily satisfy the monad laws are interesting and useful as well. Such
structures will be called premonads .4

Definition 3.1. For any universe U` we define the type

Premonad` := Σ(M : U` → U`).
Σ¶(return : ∀(X : U`).X →M X).

Σ¶( �= : ∀(X, Y : U`).M X → (X →M Y )→M Y ).>

and a value M : Premonad` is called a premonad.

Notice that a premonad is a 4-tuple consisting of a type operator, return and bind
functions and a value of type >. Just as in the definition of a functor in section 2.3.1
this last component is an irrelevant piece of information that is included only so that a
premonad can depend pointwise on its return and bind functions. The reason why this
pointwise dependence is useful, will become clear in section 4.1.

From now on, if M : Premonad` is a premonad, we will write returnM for its return
function and �=M for its bind operation. Although both functions take one or two type
arguments, we will usually omit these as they can be inferred from the other arguments.
When these type arguments are not omitted, they can be distinguished from other argu-
ments because they are annotated with a parametric modality (so returnM A] is a function
of type A→M A and returnM a is a value of type M A for any a : A). Sometimes, when
the premonad is clear from the context, we will just write return and �=.

Example 3.2. We will now consider some examples of premonads, which are all formal-
ized in Agda parametric5.

1. The simplest premonad possible is the identity premonad id-pm` : Premonad` (for
any universe level `). Its type operator is the identity function idU` : U` → U` and
the return function is the polymorphic identity function

λ(X] : U`) . λ(x : X) . x : ∀(X : U`).X → X.

The bind function has type ∀(X, Y : U`).X → (X → Y )→ Y and maps x : X and
k : X → Y to k x : Y . In this way, the composition of functions f : A → id-pm`B
and g : B → id-pm`C using bind corresponds to the usual composition of f and g
(notice that id-pm`B = B so that this makes sense). The identity premonad models
no side effects and will be important in many proofs involving effect parametricity
in chapter 4. From now on we will not explicitly write the level ` in id-pm` anymore
unless this is important in the reasoning.

2. From the previous section, we know that(
λ(X : U`) . MaybeX, λ(X] : U`) . λ(x : X) . justx, �=Maybe, tt

)
is a premonad, called the Maybe premonad. Strictly speaking we should have anno-
tated the second and third component of this tuple with a pointwise modality, but
we omitted this for the sake of readability.

4This terminology is not standard in the literature. Actually there is no generally accepted name for
these structures, which is why we came up with the term premonad.

5For more details, see https://github.com/JorisCeulemans/effect-param-agda/blob/master/

Monads/Examples.agda

https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Examples.agda
https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Examples.agda
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3. For a type S : Uk we can define a premonad state-pmS : Premonad` for any ` ≥ k.
Its type operator maps a type X : U` to the type S → (X × S), which also lives in
U` because of cumulativity of the universes. The return function is given by

returnstate-pmS := λ(X] : U`) . λ(x : X) . λ(s : S) . (x, s)

and its bind function by

f �=state-pmS k := λ(s : S) . k (fst (f s)) (snd (f s)).

We will later see that state-pmS is actually a monad and this monad is used to
model computations that can read and update a state of type S. For instance if
S = N the state could be the number of times a certain function has been called.

4. Finally, we consider the example of the writer premonad for a pointed magma.
A magma is an algebraic structure consisting of a type (its carrier) and a binary
operation on that carrier. More concretely, for any universe type U` we define the
type of magmas with carrier in U` as

Magma` := Σ(X : U`).
Σ¶( · : X → X → X).>.

We will denote by (X, ·) the magma with carrier X and (infix) operation · .6

Suppose now that we are working in a context Γ and that (R, ·) : Magmak is a
magma. Additionally, suppose that we can derive the judgement ¶ \Γ ` r : R.
Then we can construct (in the context Γ) for any ` ≥ k the writer premonad
writer-pmR,r¶ : Premonad`. Its type operator is given by

writer-pmR,r¶ := λ(X : U`) . X ×R : U` → U`

and the return function maps any x : X to the tuple with r as its second component,
so

returnwriter-pm
R,r¶

:= λ(X] : U`) . λ(x : X) . (x, r) : ∀(X : U`).X → X ×R.

Finally, the bind operation takes m : X × R and k : X → Y × R and produces
a value of type Y × R by applying k to the first component of m, retaining the
first component and multiplying the second component with that of m (using the
magma operation). More concretely, we have

m�=writer-pm
R,r¶

k :=
(

fst (k (fstm)), sndm · snd (k (fstm))
)
.

Notice that writer-pmR,r¶ depends pointwise on r because any premonad depends
pointwise on its return function and in this case we needed r to implement that
return function. More concretely, if we could only derive the judgement Γ ` r : R
(so with context Γ and not ¶ \Γ), then r becomes available only for parametric
use in the context ¶ \Γ, which is the context in which the return function is type
checked, and hence we would not be able to use r in the implementation of return.

6Notice that again a magma is actually a 3-tuple containing an irrelevant value of type >, but we will
not write this last trivial component.
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As mentioned above, given a monad M we will interpret effectful functions from A
to B as pure functions of type A → M B and the bind operation provides a way to
compose such functions. This way of composing functions is possible even if M is merely
a premonad and we could then try to build a category using this notion of composition.
More concretely, suppose that M : Premonad` is a premonad. Then the category CM we
want to construct has as objects the types in the universe U` and the morphisms from
a type A : U` to B : U` are all functions of type A → M B. The identity morphism for
a type A is given by returnM A] : A → M A and the composition of f : A → M B and
g : B →M C is as usual

λ(x : A) . f x�=M g.

However, for CM to be a category, composition needs to be associative and the identity
morphisms must be left and right units for composition. Translating the law that the
identity morphism is a left unit for composition gives us the requirement that

returnM x�=M k = k x (3.2)

for any types X, Y : U`, any x : X and any function k : X → M Y . Similarly we can
express the law that the identity morphism is a right unit for composition as

m�=M (returnM X]) = m (3.3)

for all types X : U` and all m : M X.7 Finally the translation of the associativity of
composition gives us that

(m�=M k)�=M q = m�=M (λ(x : X) . k x�=M q) (3.4)

for all X, Y, Z : U`, and any m : M X and k : X → M Y and q : Y → M Z. Equa-
tions (3.2) to (3.4) are called the monad laws and every premonad satisfying these laws
is called a monad . Using the Curry-Howard correspondence we can translate the monad
laws to types and then define for any premonad M a type IsMonadM of proofs that M
is a monad (i.e. proofs that M satisfies the three monad laws).

Definition 3.3. For every universe U` we define a type family (i.e. a function with a
universe as codomain) IsMonad` : Premonad` → U`+1 by saying that

IsMonad`M := Σ¶(return-law1 : ∀(X, Y : U`).Π(x : X).Π(k : X →M Y ).

returnM x�=M k ≡M Y k x).

Σ¶(return-law2 : ∀(X : U`).Π(m : M X).m�=M (returnM X]) ≡MX m).

Σ¶(assoc-law : ∀(X, Y, Z : U`).Π(m : M X).

Π(k : X →M Y ).Π(q : Y →M Z).

(m�=M k)�=M q ≡M Z m�=M (λ(x : X) . k x�=M q)).

>.

A monad is then defined to be a premonad M : U` together with a value of IsMonad`M .

7Strictly speaking the translation of this law should be k z �=M (returnM X]) = k z for all k : Z →
M X and any z : Z. However it is easy to see that this is equivalent to equation (3.3). A similar remark
also holds for equation (3.4).
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Remark 3.4. We formulate some remarks regarding the definition of a monad.

1. Strictly speaking, a monad is defined as a pair consisting of a premonad and a
proof that this premonad satisfies the monad laws. In other words, it is a value of
the type Σ(M : Premonad`). IsMonad`M . However, from now on we say by abuse
of terminology that a monad is a premonad that satisfies the monad laws. Note
that this could cause some problems because there could be different proofs that a
premonad M satisfies the monad laws, so different values of IsMonad`M . These two
different proofs strictly speaking give rise to different monads which is not taken
into account when saying that a monad is a premonad satisfying the monad laws.
However, when we consider a monad in this thesis it will be in general clear what its
proof of the monad laws is. Note that this proof relevance is a general phenomenon
in the formalization of mathematics using dependent type theory.

2. Just like in the definitions of a functor and of a premonad, the last component of
type > in a value of type IsMonad`M for a premonad M is an irrelevant piece of
information.

3. Also notice that in the translation of the monad laws to types using the Curry-
Howard correspondence, some modalities are introduced. The motivation for these
parametric modalities is the same as in previous instances such as the types of return
and �=.

4. From now on, if we have a premonad M : Premonad` and a proof M̃ : IsMonad`M
that M is a monad, then we will write return-law1 M̃ for its proof of the first return
law, return-law2 M̃ for its proof of the second return law and assoc-law M̃ for its
proof of the associativity law.

5. As a final remark, the universe level ` in IsMonad`M can always be deduced from
the type of M and will henceforth be omitted.

From the discussion leading to the definition of a monad, we know that if the premonad
M : Premonad` is a monad, then CM as constructed above really is a category. This is
called the Kleisli category for the monad M after the Swiss mathematician Heinrich Kleisli
[Kle65]. We can say that the morphisms in the Kleisli category CM from a type X to a
type Y are the effectful functions from X to Y (where the kind of effects depends on M).

Example 3.5. We now investigate which premonads of example 3.2 are monads. These
examples are also worked out in Agda parametric (in the same file as that for example 3.2).

1. The identity premonad id-pm is a monad because composition is here just ordinary
composition and the identity morphisms are the usual identity functions.

2. The Maybe premonad turns out to be a monad as well. The first return law follows
immediately from the definition of�=Maybe. The two other laws require some more
work, but we refer to the Agda implementation for all details.

3. For any type S the state premonad state-pmS is a monad. All monad laws follow
trivially by working out definitions of return and �=.
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4. It is not the case that writer-pmR,r¶ is a monad for every magma (R, ·) and every
r : R. There will be an easy characterization for when this is the case but we
postpone this to section 3.3.

A final notion that we introduce in this section and that will be important in some
results of chapter 4 is that of a monad morphism. Despite its name a monad morphism
can be defined between any two premonads, they do not necessarily have to satisfy the
monad laws. More concretely, if M1,M2 : Premonad` are premonads, then a monad
morphism from M1 to M2 is a polymorphic map h of type ∀(X : U`).M1X →M2X that
is compatible with the return and bind functions of both premonads. Compatibility with
the return functions means that

h (returnM1 x) = returnM2 x

for any type X : U` and any x : X and compatibility with the bind operations means that

h (m�=M1 k) = (hm)�=M2 (h ◦ k)

for any types X, Y : U` and any m : M1X and k : X →M1 Y . Notice that h takes a type
argument which is omitted for the sake of readability. Again we can translate the monad
morphism laws to types using the Curry-Howard correspondence and subsequently we can
define the type of monad morphisms from M1 to M2.

Definition 3.6. For any universe U` we define the type family

MonadMorphism : Premonad` → Premonad` → U`+1

as follows

MonadMorphismM1M2 := Σ(h : ∀(X : U`).M1X →M2X).

Σ¶(morph-return : ∀(X : U`).Π(x : X).

h (returnM1 x) ≡M2X returnM2 x).

Σ¶(morph-bind : ∀(X, Y : U`).Π(m : M1X).Π(q : X →M1 Y ).

h (m�=M1 k) ≡M2 Y (hm)�=M2 (h ◦ k)).

>.

If M1,M2 : Premonad` are premonads and h is a value of type MonadMorphismM1M2

then h is called a monad morphism from M1 to M2.

Notice that again there is an irrelevant piece of information of type > contained in a
monad morphism. Just like with the definition of a monad, we will say from now on by
abuse of terminology that a monad morphism from M1 : Premonad` to M2 : Premonad` is
a polymorphic function h : ∀(X : U`).M1X →M2X that satisfies the laws above.

Example 3.7. If M : Premonad` is a premonad, then we know that returnM has type
∀(X : U`).X → M X. In this example we will see that if M is a monad (witnessed

by M̃ : IsMonadM) then this return function is a monad morphism from the identity
monad id-pm to M . Indeed, using the definition of return for id-pm the monad morphism
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law involving return functions becomes trivial. Furthermore, taking into account the
definition of �=id-pm, the morphism law involving bind functions requires a proof of type

∀(X, Y : U`).Π(x : X).Π(k : X → Y ). returnM (k x) ≡M Y (returnM x)�=M (returnM ◦ k).

This proof can be constructed using return-law1 M̃ which gives for any X, Y : U`, x : X
and k : X → Y a value of type

(returnM x)�=M (returnM ◦ k) ≡M Y (returnM ◦ k)x.

Hence the result follows from symmetry of propositional equality (see example 1.30).

3.2.2 A different formulation

As mentioned in the introduction to this chapter, the concept of a monad originated in
category theory. However, the usual category theoretic definition of a monad is quite
different from the one given in Definitions 3.1 and 3.3. More concretely, a monad in
category theory is defined as an endofunctor T on a category C together with natural
transformations η : idC

.→ T and µ : T 2 .→ T (where idC is the identity endofunctor on
C and T 2 = T ◦ T is the composition of T with itself) such that the following diagrams
commute.

T 3 T 2 T T 2 T

T 2 T T

µT

Tµ µ

ηT

µ

Tη

µ

Here µT is the natural transformation from T 3 to T 2 such that (µT )X = µT X for all
objects X and likewise for ηT . Similarly, Tµ is the natural transformation from T 3 to T 2

such that (Tµ)X = T (µX) for all objects X and likewise for Tη.
The category theoretic definition above is the inspiration for the following alternative

definitions of a premonad and monad in ParamDTT.

Definition 3.8. For any universe U` we define the type

Premonad-rj` := Σ(F : Functor`,`).

Σ¶(η : ∀(X : U`).X → F X).

Σ¶(µ : ∀(X : U`).F (F X)→ F X).>.

If M : Premonad-rj`, then we write functM for its functor and ηM and µM for its two
natural transformations. Most of the time M will be clear from the context and then we
just write funct, η and µ. Just like with return and�=, we will often leave type arguments
implicit as they can be inferred from other arguments.

Definition 3.9. The type family IsMonad-rj` : Premonad-rj` → U`+1 is defined as

IsMonad-rjM := Σ¶(µ-law : ∀(X : U`).Π(x : funct3X).µ (µx) ≡functX µ (functµx)).

Σ¶(η-law1 : ∀(X : U`).Π(x : functX).µ (η x) ≡functX x).

Σ¶(η-law2 : ∀(X : U`).Π(x : functX).µ (funct η x) ≡functX x).>.
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The types of the different non-trivial components of IsMonad-rjM are the translations
(by the Curry-Howard correspondence) of the requirement that the diagrams above com-
mute. This is not completely trivial to see at first sight because a lot of type arguments
for η and µ are omitted.

Remark 3.10. We make two remarks concerning definitions 3.8 and 3.9.

1. In the category theoretic definition, η and µ are required to be natural transfor-
mations and hence one would expect to see naturality conditions for η and µ in
the definition of Premonad-rj or IsMonad-rj as well. However, because η and µ are
parametric in their type arguments, we can apply Proposition 2.13 to see that these
two functions are automatically natural thanks to parametricity (of course for µ one
should first show that a functor composed with itself gives again rise to a functor,
but that is not too difficult).

2. The type operator of the functor in a value of type Premonad-rj` must have the
same domain and codomain U`. Indeed, otherwise we would not be able to compose
this functor with itself and define µ. This reflects the fact that the functor in the
category theoretic definition of a monad needs to be an endofunctor. Since we want
this alternative definition of a monad to be equivalent to that from section 3.2.1 (see
also the next paragraphs), we also required from the type operator in definition 3.1
to have equal domain and codomain.

Of course, a natural question that now emerges is whether this definition of a monad is
equivalent to the definition we saw in section 3.2.1. This appears to be the case, so both
definitions are different formulations of the same concept.8 We call the formulation of
the previous section the return-bind or simply bind formulation (for obvious reasons) and
the one of this section the return-join or simply join formulation of a monad (because the
operation µ is often called join, this also explains the suffix rj in for example Premonad-rj).
However, it is not the case that both definitions of a premonad are equivalent. Every value
of Premonad-rj` can be turned into a value of type Premonad` but the converse is not true.
The reason for this is not fundamental but it is a consequence of our definition of a
functor, more specifically of the requirement that a functor preserves identity functions.
Both definitions would be equivalent if we had defined a notion of a prefunctor (with
actions on types and functions not necessarily preserving identity functions) and had
defined Premonad-rj using such a prefunctor.

We now give a more concrete idea of the equivalence of both definitions of a monad.
All details are worked out in a formalization in Agda parametric.9

Given a premonad M : Premonad` that is a monad (witnessed by M̃ : IsMonadM),
we can construct a functor whose type operator is just M . For that purpose, we need
a procedure to convert a function f : X → Y into some function of type M X → M Y .
This can be done by first considering the composition returnM ◦f : X → M Y and then
applying the bind operation for M to obtain

λ(m : M X) .m�=M returnM ◦f : M X →M Y.

8Although both definitions are equivalent, this cannot be proved completely in ParamDTT. The reason
for this is not fundamental but exposes some shortcomings of the type system ParamDTT. We will come
back to this later in this section and we will discuss in general the practical use of ParamDTT in chapter 6.

9See the following file in the GitHub repository https://github.com/JorisCeulemans/

effect-param-agda/blob/master/Monads/Return-Join-Isomorphism.agda.

https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Return-Join-Isomorphism.agda
https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Return-Join-Isomorphism.agda
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The fact that this procedure preserves identity functions corresponds exactly to the second
monad law involving returnM and hence a proof is given by return-law2 M̃ . This implies
that we need M̃ in order to construct a functor out of the premonad M and it explains
why we cannot build a value of type Premonad-rj` out of a value of type Premonad` alone.
Subsequently, the polymorphic function η has exactly the same type as returnM and hence
the only thing we still have to construct is µ. This can be done by noticing that �=M

can be used to convert a function of type A→M B into a function of type M A→M B
for all types A,B : U`. If we substitute A by M X and B by X, then we can convert the
identity function idMX : M X →M X into a function of type M (M X)→M X (for any
X : U`) and hence we can define µ as

µX] := λ(m : M (M X)) .m�=M idMX .

At this point, we have constructed a value of type Premonad-rj`. A construction of a proof
of the laws described in IsMonad-rj is more technically involved and can be found in the
formalization in Agda parametric.

For the converse direction of the equivalence, suppose that we have M : Premonad-rj`
and that we want to construct a premonad of type Premonad`. The type operator is
given by the type operator of functM and the return function is just ηM . The only
non-trivial object to construct is the bind operation, so assume that we have X, Y : U`
and k : X → functM Y . We can then apply the functor functM to k to get a function
of type functM X → functM (functM Y ). Subsequently, we compose this function with
µY ] : functM (functM Y )→ functM Y to obtain a function of type functM X → functM Y .
In summary, the bind operation is given by

λ(X], Y ] : U`) . λ(m : functM X) . λ(k : X → functM Y ) . µ (functM km).

This gives the procedure to convert a value M of type Premonad-rj` into a value M ′ of
type Premonad`. Then we would like to construct from any value of type IsMonad-rjM a
proof that the corresponding premonad M ′ is a monad, so a value of type IsMonadM ′.
This is however impossible in ParamDTT. The problem lies in the fact that in for instance
the construction of a term of type

∀(X, Y : U`).Π(x : X).Π(k : X →M ′ Y ). returnM ′ x�=M ′ k ≡M ′ Y k x

proving the first monad law for M ′ involving return, we need to apply naturality of η with
respect to k. Hence we want to use Proposition 2.13, but the term naturality we constructed
in that proposition depends pointwise on its function f and since k is only available for
continuous use, we are not allowed to pass it as an argument to naturality. A similar
situation occurs when proving the monad law stating that�=M ′ is associative. A possible
solution would be to make some monad laws depend pointwise on their function arguments
instead of continuous (for instance in the type above we could replace Π(k : X → M ′ Y )
with Π¶(k : X → M ′ Y )) so that these functions become available for pointwise use
and can therefore be passed as an argument to naturality. In fact, this was our first
approach when working out monads and effect parametricity in ParamDTT and Agda
parametric.10 However, later we realized that this approach introduces new problems

10See https://github.com/JorisCeulemans/effect-param-agda/releases/tag/isomorphism for
an earlier version of the code in which both formulations of a monad can still be proved to be equivalent.

https://github.com/JorisCeulemans/effect-param-agda/releases/tag/isomorphism


3.3. MONADS AND PARAMETRICITY 65

when working with the glue constructor and indWeld eliminator in the proofs of effect
parametricity (see chapter 4).11 Hence we decided to make the monad laws continuous
in their function arguments and give up the equivalence of both definitions of a monad
in ParamDTT. We want to emphasize that this is not a fundamental problem in both
formulations of a monad, but rather a consequence of the fact that the graph relation
former / · \ in ParamDTT depends pointwise on its function argument and that therefore
naturality in Proposition 2.13 also has this pointwise dependence.

3.3 Monads and Parametricity

We already pointed out in remark 3.10 that in the join formulation of a monad there are
some laws that need not to be proved because of parametricity. More concretely, we do
not have to show that a functor respects composition (see Proposition 2.9)12 and that
the polymorphic functions η and µ are natural transformations. These results could give
us hope that also in the bind formulation of a monad some monad laws can be proved
automatically using parametricity of return and �= and that we can then simplify the
definition of a monad just like we did for functors in section 2.3. That question will be
the subject of this section.13

Unfortunately, we are not as lucky as in section 2.3 and the monad laws do not follow
from parametricity. In fact, we will construct for each monad law a premonad that does
not satisfy this law, but still satisfies the two other monad laws. As a consequence, this
shows that no monad law follows from the other two by parametricity.

The examples we will construct all involve the writer premonad for a pointed magma
from example 3.2. We will investigate for which magmas (R, ·) : Magma` and which
elements r : R the writer premonad writer-pmR,r¶ is a monad. Recall that the return
function for writer-pmR,r¶ is given by

returnx := (x, r)

for any X : U` and x : X and that the bind function was defined as

m�= k :=
(

fst (k (fstm)), sndm · snd (k (fstm))
)

for any X, Y : U` and m : X × R and k : X → Y × R. Expanding these definitions of
return and bind in the first monad law involving return, we get the requirement that(

fst (k x), r · snd (k x)
)

= k x (3.5)

for all X : U`, x : X and k : X → Y × R. This is clearly satisfied if r is a left unit for
the magma operation · . Moreover, given any s : R we can take for k the function
λ(x : >) . (x, s) of type > → >×R and hence we see that equation (3.5) is equivalent to
r being a left unit for · .

11These problems did not directly show up in Agda parametric because it does not check modalities
when applying rewrite rules, see also https://github.com/agda/agda/issues/3839.

12Since the definition of a monad in the join formulation involves a functor, this result indeed reduces
the amount of work needed to construct a monad using this formulation.

13A formalization of the results in this section is available at https://github.com/JorisCeulemans/
effect-param-agda/blob/master/Monads/Examples.agda, along with examples of premonads and
monads.

https://github.com/agda/agda/issues/3839
https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Examples.agda
https://github.com/JorisCeulemans/effect-param-agda/blob/master/Monads/Examples.agda
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· a b
a a a
b b b

(a) Associative magma with
right units but no left unit.

· a b
a a b
b a b

(b) Associative magma with
left units but no right unit.

· e a b
e e a b
a a b a
b b a a

(c) Non-associative magma
with unit e. We have for in-
stance that a · (b · b) = b 6=
a = (a · b) · b.

Table 3.1: Multiplication tables of the different magmas for the construction
of premonads that do not satisfy exactly one monad law.

Using the definitions of return and bind for writer-pmR,r¶ in the second monad law
involving return, we obtain the requirement that(

fstm, sndm · r
)

= m (3.6)

for any X : U` and m : X×R. Hence it is easy to see that this monad law for writer-pmR,r¶

is equivalent to r being a right unit for the magma operation · .
Finally, we expand the definitions of return and �= in the monad law involving asso-

ciativity of bind to get the requirement that(
fst (q (fst (k (fstm)))),

(
sndm · snd (k (fstm))

)
· snd (q (fst (k (fstm))))

)
=
(

fst (q (fst (k (fstm)))), sndm ·
(

snd (k (fstm)) · snd (q (fst (k (fstm))))
))

(3.7)

for any X, Y, Z : U`, m : X ×R, k : X → Y ×R and q : Y → Z ×R. It is clear that this
requirement is satisfied if the magma operation · is associative. Moreover, by taking
for k and q functions with constant second components, one can see that equation (3.7)
is equivalent to the associativity of · .

In summary, equations (3.5) to (3.7) tell us that writer-pmR,r¶ is a monad if and only
if (R, ·) is a monoid and r is its unit. Moreover, we can construct a premonad that does
not satisfy the first return law but does satisfy the other monad laws by taking the writer
premonad for the magma given by the multiplication table in Table 3.1a. We see that
this magma is associative and has a right unit (both a and b are right units) but it has
no left unit. Similarly a premonad that does not satisfy the second return law but does
satisfy the other monad laws is given by the writer premonad for the magma given in
Table 3.1b. This magma is associative and has a left unit (both a and b are left units),
but no right unit. Finally, the magma defined in Table 3.1c has a (left and right) unit e
but is not associative and hence its corresponding writer premonad (with the element e)
satisfies both return laws but not the associativity law.



Chapter 4

Effect Parametricity and Dependent
Types

In the previous chapter we saw that in a purely functional programming language such
as Haskell, functions causing side effects can be treated using monads and that different
monads give rise to different kinds of side effects. In this chapter, we will be interested
in so-called effect polymorphic functions, which are functions that work for any of monad
or in other words for any kind of side effect. Consider for example the following function
from the Haskell Prelude (a standard library for Haskell).1

sequence :: Monad m => [m a] -> m [a]

For any monad m it takes a list of monadic computations (that yield a result of any type
a) and performs them sequentially, collecting their results in a list. This function works
for any monad and its implementation cannot inspect the monad it is instantiated with
because the Haskell type system prohibits this. Therefore we can say that sequence is
parametric in the monad m.

In [Voi09], Janis Voigtländer extended the procedure we saw in section 2.1 for de-
riving free theorems from types of polymorphic functions, to include effect polymorphic
functions such as sequence.2 In this way he was able to prove various useful properties
of such functions metatheoretically. For instance, a parametricity argument shows that
if all monadic computations in a list of type [m a] are pure, then so is the result of
applying sequence to this list. This use of parametricity to prove theorems about effect
polymorphic functions is called effect parametricity . In this chapter, we will describe
how properties involving effect parametricity can be proved internally in the type system
ParamDTT. More concretely, in section 4.1 we will see how effect polymorphism can be
expressed in ParamDTT and in section 4.2 we will give a general idea of how to apply
the machinery of this type system to prove properties using effect parametricity. In the
subsequent sections we will make this general idea more concrete and prove Theorems

1See http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html.
2These effect polymorphic functions cannot be expressed in System F as they involve quantification

over type operators (i.e. functions that map types to types). A well-known extension of System F that
allows such quantification is called System Fω. The relational interpretation of System Fω types that is
behind the procedure to derive free theorems is referred to in [Voi09] as being folklore, but has in the
meantime been formalized in [Atk12].
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1–5 from [Voi09] in ParamDTT (the other theorems in that article do not involve effect
parametricity). All results in this chapter have been formalized in Agda parametric.3

4.1 Effect Polymorphism

Before we can describe how effect parametricity in ParamDTT works, we need to know
how we can express effect polymorphic functions in this type system, which is the subject
of this section. We start with a translation of the Haskell function sequence that we saw
in the introduction to this chapter. For that purpose, we need to introduce lists in our
type system (note that we used lists in some examples in the previous chapters but we
never formally introduced them) and hence we add the following inference rules.

Γ ` A : U`
List-form

Γ ` ListA : U`

Γ ` ListA type
List-intro-empty

Γ ` [ ] : ListA

Γ ` a : A Γ ` l : ListA
List-intro-cons

Γ ` a :: l : ListA

Γ, x : ListA ` B type Γ ` be : B[[ ]/x]
Γ ` l : ListA Γ, y : A, z : ListA,w : B[z/x] ` bc : B[y :: z/x]

Γ ` indList(x.B, be, y.z.w.bc, l) : B[l/x]
List-elim

Γ, x : ListA ` B type
Γ ` be : B[[ ]/x] Γ, y : A, z : ListA,w : B[z/x] ` bc : B[y :: z/x]

Γ ` indList(x.B, be, y.z.w.bc, [ ]) = be : B[[ ]/x]
List-comp-empty

Γ, x : ListA ` B type
Γ ` be : B[[ ]/x] Γ, y : A, z : ListA,w : B[z/x] ` bc : B[y :: z/x]
Γ ` a : A Γ ` l : ListA

Γ ` indList(x.B, be, y.z.w.bc, a :: l) = bc[a/y, l/z, indList(x.B, be, y.z.w.bc, l)/w] : B[a :: l/x]

(List-comp-cons)

The introduction rules allow us to construct values of type ListA (for any type A) that are
of the form a1 :: a2 :: . . . :: an :: [ ] with a1, a2, . . . , an values of type A, and of course these
represent the lists with elements a1, a2, . . . , an (and consequently [ ] denotes the empty
list). The induction principle then intuitively tells us that these are essentially the only
values of type ListA. More concretely, it allows us to construct a value of a type B that
depends on a variable x : ListA by giving both a value of B assuming that x is the empty
list [ ] and a procedure to convert B[l/x] into B[a :: l/x] for any list l : ListA and any
value a : A. Using this induction principle we can for instance define a length function
length : ListA→ N for any type A as

length := λ(l : ListA) . indList(x.N, 0, y.z.w.(succw), l).

3See the folder https://github.com/JorisCeulemans/effect-param-agda/tree/master/

EffectParametricity in the GitHub repository.

https://github.com/JorisCeulemans/effect-param-agda/tree/master/EffectParametricity
https://github.com/JorisCeulemans/effect-param-agda/tree/master/EffectParametricity


4.1. EFFECT POLYMORPHISM 69

Furthermore, we can implement a function map that takes for any types A and B a
function f : A → B and a list l : ListA and returns the list of type ListB obtained by
applying f to all elements of l. More concretely we have that

map f l := indList(x.ListB, [ ], y.z.w.(f y :: w), l),

and this allows us to convert f into a function map f of type ListA → ListB. In this
way one can construct a functor as defined in section 2.3 with the List type former as its
action on types.

Now we can proceed with the definition in ParamDTT of a function sequence that
behaves like its Haskell namesake. For reasons that will be clear in section 4.2, we will
want this function to work for any premonad instead of any monad.4 Hence for a given
universe U` the function sequence should take a premonad M : Premonad`, a type X : U`
and a list l of type List (M X). It should then return a value of type M (ListX) obtained
by sequentially composing all computations in l. We will use the induction principle for
lists to express this more formally. That induction principle tells us that we can first
assume that l is the empty list, in which case the result should be a monadic computation
that just yields the empty list as its result and this computation is given by returnM [ ].
Then we can assume that l is of the form m :: l′ with m : M X and l′ : List (M X) and
that we know the result of sequence applied to l′. In this case, we execute the effectful
computation m and we compose this with sequence applied to l′ using the bind operation
for M . More concretely, we define sequence as

sequence := λ(M ] : Premonad`) . λ(X] : U`) . λ(l : List (M X)) .

indList

(
z.M (ListX),

returnM [ ],

m.l′.w. m�=M

(
λ(x : X) . w �=M (λ(y : ListX) . returnM (x :: y))

)
,

l
)
.

Its type is ∀(M : Premonad`).∀(X : U`).List (M X) → M (ListX) and hence we clearly
see that sequence is parametric in its premonad argument. In fact we should annotate
sequence with the universe level ` but we will omit this for the sake of readability. Note
that the expression defining the behaviour of sequence when l is non-empty could be
written more elegantly using the do-notation present in Haskell (see for instance [Lip11,
chapter 12]), but we do not have this in our type system nor in Agda parametric for the
(pre)monads we defined in chapter 3.

Remark 4.1. Of course we should verify that the definition of sequence above is allowed
by the type system. For instance, at first sight it is not clear why we can use the return
and bind operations of the monad M in the implementation of that function even though
M appears parametric in the context at those points. It is for exactly this reason that we
wanted a premonad to depend pointwise on its return and bind functions in section 3.2.1.

4Actually, this also better reflects the behaviour of the Haskell function sequence because in Haskell
an instance of the type class Monad is not guaranteed to satisfy the monad laws. Moreover a function that
works for any premonad can be applied in more cases than a function that works for any monad because
every monad is also a premonad. It means however that the implementation of this function cannot use
any monad laws.
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Indeed, for a pointwise dependent sum type Σ¶(x : A).B there is a first projection fst¶ :
]
(
Σ¶(x : A).B

)
→ A that is parametric. Hence we can write functions of type

∀(M : Premonad`).∀(X : U`).X →M X

and
∀(M : Premonad`).∀(X, Y : U`).M X → (X →M Y )→M Y

that map a premonad to its return and bind operation respectively and that are both
parametric in the premonad. As a consequence, we can say that in some sense the return
and bind functions depend parametrically on their premonad. Therefore, the monad M
always appears in parametric position in the implementation of sequence and hence this
function is well defined. Note that one could argue that we should write returnM] and
�=M] instead of returnM and �=M but this would reduce readability.

We now consider another example of an effect polymorphic function, this time involv-
ing booleans. Hence we assume that there is a type Bool : U0 and values true : Bool and
false : Bool in our type system. Furthermore, we will use an operation if then else
which takes a term of type Bool and two other terms of a (possibly other) equal type and
which behaves as one would intuitively expect. Formally, we should add inference rules
for all these constructs, but we believe that it is clear from the description above how
they behave. Alternatively, we could have decided to define the type of booleans using
the other types already available as >+>, but we will not do this.

The effect polymorphic function that we consider, let us call it f , will take for any
premonad M : Premonad0 a list of effectful computations that yield a result of type
Bool, so in other words a list of type List (M Bool). It will then perform these effectful
computations sequentially until it reaches a computation which yields the result false.
The computation that f returns will yield the result true if and only if all computations
in the input list yield true. In this context, one could interpret the boolean result of a
monadic computation as an indicator of the success of that computation. The function
f will then try to execute all computations in a list and will report on whether they all
succeeded or not. More concretely, f is defined as

f := λ(M ] : Premonad0) . λ(l : List (M Bool)) .

indList

(
x.(M Bool),

returnM true,

m.l′.w. m�=M

(
λ(b : Bool) . if b then w else (returnM false)

)
,

l
)

(4.1)

and it has as type ∀(M : Premonad0).List (M Bool)→M Bool. Again remark 4.1 applies
in this example.

In this section, we have seen two examples of effect polymorphic functions in the type
system ParamDTT. Of course many more examples can be given, but these two make clear
how effect polymorphic functions and their types look like in ParamDTT. Essentially, the
types always contain a parametric quantification over a premonad. In the rest of this
chapter, we will see how the structures available in ParamDTT enable us to exploit this
parametric quantification over a premonad and prove interesting theorems about effect
polymorphic functions.
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4.2 Constructing a Bridge inside Premonad

In this chapter we focus on effect polymorphic functions f which have a type of the
form ∀(M : Premonad`).A where A is a type that depends on the variable M . Gen-
erally speaking, effect parametricity results relate the behaviour of f with respect to
one premonad to its behaviour with respect to another premonad in the presence of a
certain relation between these two premonads, such as a monad morphism.5 More con-
cretely, suppose that we have two premonads κ1, κ2 : Premonad` and a monad morphism
h : MonadMorphismκ1 κ2. The general idea of an effect parametricity proof in ParamDTT
is then to use h to construct a bridge inside the type Premonad` with endpoints κ1 and
κ2. In other words, we want to construct a function pm-bridge of type I → Premonad`
such that pm-bridge 0 = κ1 and pm-bridge 1 = κ2. We can then apply f to this bridge
and since f is parametric in its premonad argument, this bridge will be strengthened to
a path from a term of type A[κ1/M ] to a term of type A[κ2/M ]. Further manipulations
of this path will eventually yield a homogeneous path and we can then apply the path
degeneracy axiom to conclude the proof.

Of course this raises the question how to construct a bridge pm-bridge inside the type
Premonad` from κ1 to κ2 using the monad morphism h. The idea is to use the fact that
a premonad is a 4-tuple and to construct bridges and paths between the corresponding
components of κ1 and κ2. More concretely, we will first construct a bridge type-op-bridge
in U` → U` between the type operators of κ1 and κ2. For this purpose, we must give for
any i : I and any X : U` a type in the universe U` that is equal to κ1X if i = 0 and to
κ2X if i = 1. This can be done by considering the function hX] : κ1X → κ2X and
using the graph relation former / · \. Indeed, we have that /hX]\ is a bridge in U` from
κ1X to κ2X and hence we define

type-op-bridge := λ(i : I) . λ(X : U`) . /hX]\ i : I→ U` → U`. (4.2)

We see that indeed type-op-bridge 0 is the type operator of κ1 and type-op-bridge 1 is the
type operator of κ2.

Second, we need for any i : I a function of type ∀(X : U`).X → type-op-bridge iX
that can be used as the return function of pm-bridge i. The construction of this function
is possible using the return function for κ1 and the function pushh. More concretely, for
any X : U` we have returnκ1 X

] : X → κ1X and push (hX]) i] : κ1X → type-op-bridge iX
and hence we can consider their composition

return-path i] := λ(X : U`) . λ(x : X) . push (hX]) i] (returnκ1 x) :

∀(X : U`).X → type-op-bridge iX. (4.3)

Notice that in the implementation of return-path the variable i is used only in a parametric
position and therefore this function can indeed depend parametrically on i (as was implied
by writing return-path i] instead of return-path i). This means that the function return-path
has the type

∀(i : I).∀(X : U`).X → type-op-bridge iX

and hence it really is a path (and not a bridge) from returnκ1 to some other function.
Moreover, since push (hX]) 1 = hX], this other function maps any x : X to h (returnκ1 x)

5Note that in this sentence the words “relate” and “relation” are informally used and do not refer to
mathematical relations as in section 2.1, although the procedure described in [Voi09] works in this way.
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pm-bridge 0 =
(

κ1, returnκ1 , �=κ1 , tt
)

pm-bridge i =
(

type-op-bridge i, return-path i], bind-path i], tt
)

pm-bridge 1 =
(

κ2, returnκ2 , �=κ2 , tt
)

Figure 4.1: Construction of the bridge pm-bridge inside the type Premonad`.
The top row gives the endpoint for i = 0, the middle row is the situation
for general i and the bottom row gives the endpoint for i = 1. Dashed lines
represent bridges and solid lines represent paths.

which is equal to returnκ2 x because h is a monad morphism.6 As a conclusion return-path
is a path from returnκ1 to returnκ2 .

Third, we need to consider the bind operation for pm-bridge i and hence we have to
construct for any i : I a function of type

∀(X, Y : U`).type-op-bridge iX → (X → type-op-bridge i Y )→ type-op-bridge i Y.

At first glance, it is not evident how to do this and it turns out we cannot construct such
a function using only push and pull . We will work out the details for this construction
in the next sections, gradually going from simpler to more difficult cases. For now, we
assume that we have a path

bind-path : ∀(i : I).∀(X, Y : U`).type-op-bridge iX → (X → type-op-bridge i Y )

→ type-op-bridge i Y

from �=κ1 to �=κ2 .
Now we are ready to define the bridge pm-bridge as

pm-bridge := λ(i : I) .
(
type-op-bridge i, return-path i], bind-path i], tt

)
:

I→ Premonad`.

See also Figure 4.1 for an illustration of this situation.
Notice that it is important that return-path and bind-path are paths (and hence their

argument i is in parametric position). Indeed, we know from definition 3.1 that a pre-
monad depends pointwise on its return and bind operations. Hence the implementations
of these operations are type checked in the current context left-divided by the modality ¶,
which means that i is only available for parametric use at these points. We can also look

6This equality of h (returnκ1
x) and returnκ2

x is propositional and not definitional because of the
definition of a monad morphism. We will ignore this important detail in this section for simplicity but
we will come back to it in the following sections.
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at this situation in the following more intuitive way. As a premonad depends pointwise
on its return operation, a bridge between different return functions will be broken when
going to the premonad level and hence we need a (stronger) path between the return
functions in order to get some relational structure between the premonads. The same is
true for the bind operations.

Another remark is that the bridge pm-bridge is actually not a bridge from κ1 to κ2 but
from a premonad which has the same type operator, return and bind functions as κ1 to
a premonad which has the same type operator, return and bind functions as κ2. Indeed,
although intuitively the unit type > only has one inhabitant, it is not possible to derive
that any two values of type > are definitionally equal (because we do not have an η-rule for
the unit type). Hence, the last components of κ1 and κ2 are not necessarily definitionally
equal to tt. However, this will not pose a problem because the value of type > in a
premonad is irrelevant and will therefore not be used anywhere in the implementation
of an effect polymorphic function or in a proof of an effect parametricity result. Hence
we will be able to show that if an effect parametricity result holds for pm-bridge 0 and
pm-bridge 1, then it also holds for κ1 and κ2. We refer to the following sections for more
details.

At this point we can also say something more about why we want an effect polymorphic
function to take a premonad as its argument instead of a monad. In the latter case, our
effect polymorphic functions would have a type of the form ∀(M : Premonad`).∀(M̃ :

IsMonadM).A for some type A depending on M and M̃ . If we wanted to prove theorems
using effect parametricity for such a function, we would need to construct not only a bridge
pm-bridge : I → Premonad` from a premonad κ1 to a premonad κ2, but also a bridge of
type ∀(i : I). IsMonad (pm-bridge i) from a given term of type IsMonadκ1 to a given term of
type IsMonadκ2. In other words, we would have to build paths between the corresponding
proofs of the monad laws for κ1 and κ2 but we did not succeed in doing this. However, as
illustrated in section 4.1 the implementations of many effect polymorphic functions only
require access to the return and bind operations of a premonad and not to proofs that
they satisfy the monad laws.

4.3 Purity Preservation

In this section, we are going to use effect parametricity to show for effect polymorphic
functions of a certain type that if all of their arguments are pure monadic computations
(i.e. computations not causing any side effect), then so is their result. More concretely,
we start with a function f of type

∀(M : Premonad`).M A→M A

for a given closed type A (so for instance A = Bool or A = N) and we will prove that if κ
is a monad and m : κA is pure, then so is f κ]m. In fact, this result even holds if κ is a
premonad satisfying only the first monad law involving return. Of course, before stating
and proving the theorem we should first clearly define what we mean by a pure monadic
computation. We say for any premonad κ : Premonad` that a computation m : κA is
pure if and only if it can be written as returnκ a for some value a : A.
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Theorem 4.2. Suppose that Γ is a context containing the following assumptions

• A] : U`

• f : ∀(M : Premonad`).M A→M A

• κ : Premonad`

• a : A

and assume that we can derive the judgement

¶ \Γ, X] : U`, Y ] : U`, x : X, q : X → κY ` returnκ x�=κ q = q x : κY. (4.4)

In other words, we assume that the first monad law for κ involving return holds defini-
tionally. Then we can construct in this context Γ a term

thm : returnκ (f id-pm] a) ≡κA f κ] (returnκ a).

This theorem indeed tells us that f applied to a pure computation returnκ a can be
written as returnκ applied to some other term and is therefore also pure itself. Recall that
id-pm is the identity premonad as defined in example 3.2.

Proof. Throughout this proof we will assume that the graph relation former / · \ is imple-
mented using the Weld type former. We will follow the procedure outlined in section 4.2
to construct a bridge pm-bridge inside Premonad` using the return operation of κ (recall
that we saw in example 3.7 that returnκ is a monad morphism from id-pm to κ)7. More
concretely, we have a bridge

type-op-bridge := λ(i : I) . λ(X : U`) . / returnκX
]\ i : I→ U` → U`

from idU` to the type operator of κ and a path

return-path := λ(i] : I) . λ(X] : U`) . push (returnκX
]) i] :

∀(i : I).∀(X : U`).X → type-op-bridge iX

from returnid-pm to returnκ. Next, we need to construct the bind operation for the premonad
bridge, so we have to specify for any i : I a function of type

∀(X, Y : U`).type-op-bridge iX → (X → type-op-bridge i Y )→ type-op-bridge i Y.

In other words, given i : I, X, Y : U`, b : / returnκX
]\ i and a function q : X →

/ returnκ Y
]\ i we must provide a value of type / returnκ Y

]\ i. We will do this by noticing
that / · \ is assumed to be implemented using the Weld type former and by applying the
induction principle for Weld types to b. More concretely, we know that

/ returnκX
]\ i = Weld{X → (i

.
= 0 ?X, idX | i

.
= 1 ?κX, (returnκX

]))},

and hence in order to use indWeld for b to give a value of type / returnκ Y
]\ i, we must

specify and verify the following things (see also Figure 4.2).

7Actually, we assumed in example 3.7 that κ is a monad. However, if we analyze this example again,
we see that we only used the first monad law involving return which we also assume in this theorem.
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• First, we need a way to construct a value of type / returnκ Y
]\ i given x : X. This

is easy because we can just take q x.

• Next, we must give a value of the same type / returnκ Y
]\ i under the assumption

that the predicate (i
.
= 0) ∨ (i

.
= 1) holds. If i

.
= 0 holds, then we have that q

has type X → Y and we must produce a value of type Y given x : X. Hence we
just take q x. On the other hand, if i

.
= 1 holds, then q has type X → κY and we

must give a value of type κY given b′ : κX. This means that we can take the term
b′ �=κ q.

• Finally, we have to verify that if i
.
= 0 holds, then q x is definitionally equal to q x

and if i
.
= 1 holds, then returnκ x �=κ q is definitionally equal to q x. The former

equality is trivial and the latter is satisfied because we assumed in (4.4) that the
first monad law for κ involving return holds definitionally.8

We can then construct a path

bind-path := λ(i] : I) . λ(X], Y ] : U`) . λ(b : type-op-bridge iX) .

λ(q : X → type-op-bridge i Y ) .

indWeld

(
type-op-bridge i Y, (i

.
= 0 ? x.(q x) | i .= 1 ? b′.(b′ �=κ q)), x.(q x), b

)
from �=id-pm to �=κ.

9 In this way, we get a bridge

pm-bridge := λ(i : I) .
(
type-op-bridge i, return-path i], bind-path i], tt

)
from id-pm to κ just as described in section 4.2. Note that pm-bridge 1 is not exactly κ but
κ with the last (irrelevant) component replaced with tt. This problem will be solved at
the end of the proof and it will not be important in the meantime because we will never
use this trivial component of a premonad. However, when mentioning the endpoints of a
path we will sometimes write κ instead of pm-bridge 1 for clarity and readability.

Next, we use push for the function returnκA
] to get a path

returna-path := λ(i] : I) . push (returnκA
]) i] a : ∀(i : I).type-op-bridge i A

from a to returnκ a. Since type-op-bridge i is the type operator of the premonad pm-bridge i,
we can apply the function f to pm-bridge i and returna-path i] to obtain a path

f-path := λ(i] : I) . f (pm-bridge i)] (returna-path i]) : ∀(i : I).type-op-bridge i A

from f id-pm] a to f κ] (returnκ a). This situation is illustrated in Figure 4.3.
Finally, we can use pull applied to returnκA

] to get a path

final-path := λ(i] : I) . pull (returnκA
]) i] (f-path i]) : ∀(i : I).κA

8We can now explain why the context Γ in assumption (4.4) is left-divided by the modality ¶. This is
because the path we are constructing between�=id-pm and�=κ will be used in pointwise position in the
bridge pm-bridge. Hence everything that contributes to the construction of that path will be type-checked
in the context ¶ \Γ and not in Γ.

9Indeed, bind-path is a path with �=id-pm and �=κ as its endpoints because for i = 0 or i = 1 the
result of indWeld is definitionally equal to the values we provided in case the predicate (i

.
= 0) ∨ (i

.
= 1)

holds and these are exactly applications of the bind operations for id-pm and κ.
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X X Y

X / returnκX
]\ i / returnκ Y

]\ i

X κX κY

idX

q

q

push (returnκX]) i]

q

returnκX]

q

�=κq

Figure 4.2: Diagram similar to that in [NVD17, p. 10] illustrating a part of the
construction of the path bind-path in the proof of Theorem 4.2. The middle
row depicts the situation for general i and reduces to the top row when i = 0
and to the bottom row when i = 1. Dashed lines represent bridges that were
already constructed and the dotted arrow is the function we are constructing
using indWeld.

f id-pm a f id-pm] a

f pm-bridge i returna-path i]  f-path i]

f κ returnκ a f κ] (returnκ a)

Figure 4.3: Application of f to the bridge pm-bridge and the path returna-path
gives rise to the path f-path on the right. Note that for i = 1 (bottom row) we
write κ instead of pm-bridge 1 even though they are not exactly equal (defini-
tionally).
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from returnκ (f id-pm] a) to f κ] (returnκ a). Since this path is homogeneous, we can use
the path degeneracy axiom to get a term

path-to-eq (final-path) : returnκ (f id-pm] a) ≡κA f (pm-bridge 1)] (returnκ a).

As a last step, we then need to use the fact that any two values of type > are proposi-
tionally equal and replace in this way the last component tt of pm-bridge 1 with the trivial
component of κ. We refer to the Agda code for the details of this step. Eventually, we
get a proof

thm : returnκ (f id-pm] a) ≡κA f κ] (returnκ a).

The next theorem is a generalization of Theorem 4.2. We are now considering an effect
polymorphic function f with type

f : ∀(M : Premonad`).F (M A)→M A

for a given closed type A and a given functor F (as defined in section 2.3). An example
of such a function is given in equation (4.1) for A = Bool and F equal to the list functor.

Theorem 4.3. Let Γ be a context containing the following assumptions

• F ] : Functor`,`

• A] : U`

• f : ∀(M : Premonad`).F (M A)→M A

• κ : Premonad`

• aF : F A

and assume that the first monad law for κ involving return holds definitionally (just as in
Theorem 4.2). Then we can construct in this context Γ a term

thm : returnκ (f id-pm] aF ) ≡κA f κ] (F (returnκA
]) aF ).

If we take for F the list functor, this theorem intuitively tells us that if f is applied
to a list of pure computations, then its result will also be pure. The specialization of
Theorem 4.3 to the list functor is a translation of Theorem 1 from [Voi09] to ParamDTT.
Note that Theorem 4.2 is indeed an instance of Theorem 4.3 by taking for F the identity
functor.

Proof. Again we assume that the graph relation former is implemented using the Weld
type former. The construction of the bridges type-op-bridge and pm-bridge is then exactly
the same as in the proof of Theorem 4.2.

Using the action of F on functions and using push applied to returnκA
], we can

construct a path

aF-path := λ(i] : I) . F (push (returnκA
])) aF : ∀(i : I).F (type-op-bridge i A)

from F idA aF to F (returnκA
]) aF . Then we apply the function f to the bridge pm-bridge

and the path aF-path to get a path

f-path := λ(i] : I) . f (pm-bridge i)] (aF-path i]) : ∀(i : I).type-op-bridge i A
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from f id-pm] (F idA aF ) to f κ] (F (returnκA
]) aF ). Using pull we can then build a path

final-path := λ(i] : I) . pull (returnκA
]) i] (f-path i]) : ∀(i : I).κA

from returnκ (f id-pm] (F idA aF )) to f κ] (F (returnκA
]) aF ). Since this final path is ho-

mogeneous, the path degeneracy axiom gives us a term

path-to-eq (final-path) :

returnκ (f id-pm] (F idA aF )) ≡κA f (pm-bridge 1)] (F (returnκA
]) aF ).

Just like in the proof of Theorem 4.2 we then replace pm-bridge 1 with κ using the fact
that any two values of type > are propositionally equal. Applying the fact that a functor
preserves identity functions finally gives us the result

thm : returnκ (f id-pm] aF ) ≡κA f κ] (F (returnκA
]) aF ).

4.4 Value Extraction

The inspiration for the results in this section comes from Theorem 2 of [Voi09], so we
consider the extraction of a result or a value out of a monadic computation. More con-
cretely, we suppose that we have a premonad κ : Premonad` and a polymorphic function
p : ∀(X : U`).κX → X that maps a computation m : κX to its result of type X.10 Of
course, this is not possible for any (pre)monad11 and even when it is possible, p will have
to satisfy some requirements before we can interpret it as a projection of a computation
to its result. Indeed, for any x : X the computation returnκ x yields the result x and hence
we want that pX] (returnκ x) equals x.

Just as in the previous section, we first consider effect polymorphic functions f of type

f : ∀(M : Premonad`).M A→M A

for a given closed type A and we wonder whether for any m : κA (for a premonad
κ : Premonad`) the result of p (f κ]m) can be derived from only pm. In other words, we
want to know if the result of the computation obtained by applying f to m is determined
by the result of the computation m (and we do not have to take any side effects in m into
account). This will not be the case for any κ and any p. As Voigtländer points out in
[Voi09], we need to require that

p (m�=κ q) = p (q (pm))

for any types X, Y : U`, any m : κX and q : X → κY . Together with the requirement
above involving return, this will ensure that p is a monad morphism from κ to id-pm.

10Just as with other polymorphic functions in this thesis, we will not explicitly write a type argument
of p if this can be inferred from the context.

11For instance, if we had such a function p for the Maybe monad, we could apply it to the empty type
⊥ and the value nothing : Maybe⊥ to get a value of the empty type. A premonad for which we can
construct such a function p is the writer premonad for some magma (R, ·) because we can then project
a computation m : X ×R to its first component of type X.
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Theorem 4.4. Suppose that Γ is a context with the following assumptions

• A] : U`

• f : ∀(M : Premonad`).M A→M A

• κ : Premonad`

• p¶ : ∀(X : U`).κX → X

• aκ : κA

and assume that we can derive the judgements

¶ \Γ, X] : U`, x : X ` p (returnκ x) = x : X (4.5)

and

¶ \Γ, X] : U`, Y ] : U`, xκ : κX, q : X → κY ` p (xκ �=κ q) = p (q (p xκ)) : Y. (4.6)

Then we can construct in Γ a term

thm : p (f κ] aκ) ≡A f id-pm] (p aκ).

Proof. Throughout this proof, we assume that the graph relation former / · \ is imple-
mented using the Glue type former. We will again apply the procedure of section 4.2 to
construct a bridge in the type Premonad` from κ to id-pm using the monad morphism p.
More concretely, we have a bridge

type-op-bridge := λ(i : I) . λ(X : U`) . /pX]\ i : I→ U` → U`
from the type operator κ to the type operator idU` of id-pm. Note that it is important
that p is parametric in its type argument, because / · \ depends pointwise on its function
argument and hence X is only available for parametric use at the point it appears in the
implementation of type-op-bridge. Furthermore, we have a path

return-path := λ(i] : I) . λ(X] : U`) . λ(x : X) . push (pX]) i] (returnκ x) :

∀(i : I).∀(X : U`).X → type-op-bridge iX

from returnκ to some other function. This other function maps a type X : U` and a value
x : X to p (returnκ x) and by assumption (4.5) of the theorem, this is definitionally equal
to x. Therefore, the endpoint return-path 1 is definitionally equal to returnid-pm, or in other
words return-path is a path from returnκ to returnid-pm.12

Then we need to construct a path from�=κ to�=id-pm, which is equivalent to specify-
ing for any i : I, X, Y : U`, b : /(pX])\ i and q : X → /(p Y ])\ i a value of type /(p Y ])\ i.
We will do this using the fact that / · \ is implemented using Glue types and applying the
constructor for such types. More concretely, we know that

/(p Y ])\ i = Glue{Y ← (i
.
= 0 ?κY, p Y ] | i .= 1 ?Y, idY )}

and hence constructing an element of /(p Y ])\ i using glue amounts to specifying and
verifying the following things (see also Figure 4.4).

12Similar to footnote 8, the reason why assumption (4.5) contains ¶ \Γ instead of Γ is that it is used in
to replace return-path 1] in the bridge pm-bridge 1 (that we still have to construct) with returnid-pm. Since
a premonad depends pointwise on its return function, everything involved with the return operation of
pm-bridge is type-checked in the context ¶ \Γ instead of Γ. A similar remark applies to assumption (4.6).
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• First, we need to give an element of type Y . For this purpose, we apply pull (pX]) i]

to b to get a value of type X. Then we can apply the function q to this value and
in this way we obtain a value of type /(p Y ])\ i.13 Finally we can feed this into the
function pull (p Y ]) i] and obtain a value of type Y . In summary, the value of type
Y we constructed is (

(pull (p Y ]) i]) ◦ q ◦ (pull (pX]) i])
)
b.

For easy reference in the rest of this proof, we denote by ξi] the function

ξi] := (pull (p Y ]) i]) ◦ q ◦ (pull (pX]) i]) : /(pX])\ i→ Y.

• Second, we have to specify a value of type κY assuming that i
.
= 0 holds and of

type Y assuming that i
.
= 1 holds. In case i

.
= 0 holds, q has type X → κY and b

has type κX. Hence we can take b�=κ q. On the other hand, if i
.
= 1 holds, then

q has type X → Y and b has type X, so we can take the value q b.

• Finally, we must verify that if i
.
= 0 holds then p (b�=κ q) is definitionally equal to

ξ0] b and if i
.
= 1 holds, then q b is definitionally equal to ξ1] b. In the former case,

i
.
= 0 holds and hence ξ0] = (p Y ]) ◦ q ◦ (pX]) which means that we must verify

that p (q (p b)) is definitionally equal to p (b �=κ q) and this follows immediately
from assumption (4.6) in the theorem. In the latter case, we have that i

.
= 1 holds

and hence ξ1] = q from which we see that the equality we need to verify follows by
reflexivity.

In summary, we can construct a path

bind-path := λ(i] : I) . λ(X], Y ] : U`) . λ(b : type-op-bridge iX) .

λ(q : X → type-op-bridge i Y ) .

glue{ξi] b←[ (i .= 0 ? b�=κ q | i
.
= 1 ? q b)}

from �=κ to �=id-pm. Indeed, the endpoints of bind-path are �=κ and �=id-pm because
if i = 0, the result of glue is definitionally equal to the value we provided for the case
where i

.
= 0 holds and in the implementation of bind-path this is an application of �=κ.

A similar argument applies to the case i = 1.
We can then construct a bridge

pm-bridge := λ(i : I) .
(
type-op-bridge i, return-path i], bind-path i], tt

)
from κ to id-pm. Like in the proof of Theorem 4.2, the endpoint pm-bridge 0 is not
definitionally equal to κ because its last component tt is not definitionally equal to the
last component of κ. Again we will solve this problem at the end of the proof and in the
meantime we will sometimes write κ instead of pm-bridge 0 when specifying endpoints of
paths or bridges.

13The attentive reader might wonder why we make things so complicated and do not just take
q (pull (pX]) i] b) as our final result. After all, we are using the glue constructor to create a value of
type /(p Y ])\ i. The problem is that for i = 0 this will not necessarily be definitionally equal to b�=κ q
and hence this would not result in a path with �=κ as one of its endpoint.
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κX κY Y

/pX]\ i /p Y ]\ i Y

X Y Y

�=κq

ξ
0]

p Y ]

ξ
i]

pull (p Y ]) i]

q

ξ
1]

idY

Figure 4.4: Diagram illustrating a part of the construction of bind-path in
the proof of Theorem 4.4. Just as in Figure 4.2, the middle row depicts the
situation for general i and reduces to the top row if i = 0 and to the bottom
row if i = 1. Dashed lines represent bridges that are already constructed. The
dotted arrow represents the function we are constructing using glue. Note that
in the construction of bind-path we apply this function to the value b : /pX]\ i.

We know for any i : I that push (pA]) i] aκ has type type-op-bridge i A and hence we
can apply f to pm-bridge i and this value to obtain a path

f-path := λ(i] : I) . f (pm-bridge i)]
(
push (pA]) i] aκ

)
: ∀(i : I).type-op-bridge i A

from f κ] aκ to f id-pm] (p aκ). Next, we apply pull (pA]) to get a path

final-path := λ(i] : I) . pull (pA]) i] (f-path i]) : ∀(i : I).A

from p (f κ] aκ) to f id-pm] (p aκ). As this final path is homogeneous, we can apply the
path degeneracy axiom to get a term

path-to-eq (final-path) : p (f (pm-bridge 0)] aκ) ≡A f id-pm] (p aκ).

Finally, we use the fact that any two values of the unit type > are propositionally equal
to replace the last component tt in pm-bridge 0 with the trivial component of κ (see the
Agda code for details of this step). In this way, we get a proof

thm : p (f κ] aκ) ≡A f id-pm] (p aκ).

Remark 4.5. In Theorem 4.4, we required that p (returnκ x) is definitionally equal to x
for any x : X because then we can conclude in its proof that return-path 1 is really
definitionally equal to returnid-pm. However, we could wonder if the procedure to replace
the last component of pm-bridge 0 with the last component of κ works for the return
functions as well. In other words, would it also be sufficient to impose the requirement
that p (returnκ x) and x are propositionally equal – witnessed by some term t – and could
we then use this term t at the end of the proof to replace the return function of pm-bridge 1
with returnid-pm? If we analyze this situation a bit further, we actually want to use the
term t to show that pm-bridge 1 and id-pm are propositionally equal, so to construct a
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term of type pm-bridge 1 ≡Premonad` id-pm. Because all components of these premonads
except their return functions are definitionally equal, a first idea to build such a term is
to apply the congruence rule of example 1.31 (translated to ParamDTT) to the term t
and to a function

λ(r : ∀(X : U`).X → X) . (idU` , r, �=id-pm, tt) : (∀(X : U`).X → X)→ Premonad`.

However, we know from Definition 3.1 that a premonad depends pointwise on its return
function and hence the above function will not pass type checking (because r becomes
available only for parametric use at the point it gets used).

A second idea would then be to make the above function pointwise in its argument
r and apply some kind of congruence rule for pointwise functions. This congruence rule
would take a function g : ¶A → B and transform a proof of type a ≡A b into g a¶ ≡B
g b¶. However, we cannot implement such a congruence rule for pointwise functions in
ParamDTT in the same way as we did in example 1.31. The problem lies in the fact that
the J-rule in ParamDTT (see [NVD17, p. 9]) requires us to give a goal type C that depends
parametrically on a variable y : A and with any modality on a variable w : a ≡A y. As
we are constructing a type, the variable y becomes available for continuous use, but this
does not let us use it as an argument of a pointwise function because it will then be only
available for parametric use again. Hence we cannot take g a¶ ≡B g y¶ for C because it
does not type-check. This does not mean that it is impossible to prove that propositional
equality is a congruence for pointwise functions in ParamDTT, but the standard and
intuitive way to do it does not work, which is in our opinion rather remarkable.

In summary, the technique we apply for replacing the last component of a premonad
does not work for the return functions because of the pointwise dependence of a premonad
on its return function. As a consequence, we require that p (returnκ x) and x are defini-
tionally equal in Theorem 4.4. We emphasize that we did not prove that this requirement
for definitional equality cannot be weakened to propositional equality, but we did not
succeed in doing so.

Just as in section 4.3, we now generalize Theorem 4.4 to effect polymorphic functions
f of type

f : ∀(M : Premonad`).F (M A)→M A

for a given closed type A : U` and functor F : Functor`,`. The following theorem is a
translation of Theorem 2 from [Voi09] to ParamDTT, generalized to hold for any functor
instead of only the list functor.

Theorem 4.6. Suppose that Γ is a context containing the following assumptions

• F ] : Functor`,`

• A] : U`

• f : ∀(M : Premonad`).F (M A)→M A

• κ : Premonad`

• p¶ : ∀(X : U`).κX → X

• aFκ : F (κA)
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f κ F idκA aFκ f κ] (F idκA aFκ)

f pm-bridge i aFκ-path i]  f-path i]

f id-pm F (pA]) aFκ f id-pm] (F (pA]) aFκ)

Figure 4.5: Application of f to the bridge pm-bridge and the path aFκ-path gives
rise to the path f-path on the right. This is a part of the proof of Theorem 4.6.

and assume that the judgements from (4.5) and (4.6) can be derived. Then we can con-
struct in this context Γ a term

thm : p (f κ] aFκ) ≡A f id-pm] (F (pA]) aFκ).

Proof. We assume that the graph relation former / · \ is implemented using the Glue type
former. The construction of a bridge pm-bridge from κ to id-pm is exactly the same as in
the proof of Theorem 4.4.

Using the action of F on functions applied to push p we obtain a path

aFκ-path := λ(i] : I) . F (push (pA]) i]) aFκ : ∀(i : I).F (type-op-bridge i A)

from F idκA aFκ to F (pA]) aFκ. Next, we can apply f to the bridge pm-bridge and the
path aFκ-path to get a path

f-path := λ(i] : I) . f (pm-bridge i)] (aFκ-path i]) : ∀(i : I).type-op-bridge i A

from f κ] (F idκA aFκ) to f id-pm] (F (pA]) aFκ) (see also Figure 4.5). Then the use of
pull p yields a path

final-path := λ(i] : I) . pull (pA]) i] (f-path i]) : ∀(i : I).A

from p (f κ] (F idκA aFκ)) to f id-pm] (F (pA]) aFκ). Since this final path is homogeneous,
we can apply the path degeneracy axiom and get

path-to-eq (final-path) : p (f (pm-bridge 0)] (F idκA aFκ)) ≡A f id-pm] (F (pA]) aFκ).

Applying the fact that a functor preserves identity functions and replacing the last com-
ponent of pm-bridge 0 with that of κ gives us the final result

thm : p (f κ] aFκ) ≡A f id-pm] (F (pA]) aFκ).
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4.5 Effect Parametricity and Monad Morphisms

In this section, we will consider the interaction of an effect polymorphic function with an
arbitrary monad morphism. Inspiration for this material comes from sections 4.3 and 4.4
of [Voi09]. We also refer to that article for background on how the results proved in the
current section (and more generally in this chapter) can be used for reasoning about the
behaviour of effect polymorphic functions with respect to specific monads.14 Just as in
the previous sections, we start with an effect polymorphic function f of type

f : ∀(M : Premonad`).M A→M A

for a given closed type A.

Theorem 4.7. Let Γ be a context containing the following assumptions

• A] : U`

• f : ∀(M : Premonad`).M A→M A

• κ1, κ2 : Premonad`

• h¶ : MonadMorphismκ1 κ2

• aκ1 : κ1A

and assume that we can derive the judgements15

¶ \Γ, X] : U`, x : X ` h (returnκ1 x) = returnκ2 x : κ2X (4.7)

and

¶ \Γ, X] : U`, Y ] : U`, xκ1 : κ1X, q : X → κ1 Y `
h (xκ1 �=κ1 q) = (hxκ1)�=κ2 (h ◦ q) : κ2 Y. (4.8)

In other words, we assume that the requirements for h to be a monad morphism hold
definitionally. Then we can construct in the context Γ a term

thm : h (f κ]1 aκ1) ≡κ2A f κ
]
2 (h aκ1).

This theorem states intuitively that a monad morphism h will in some sense commute
with the effect polymorphic function f .

Proof. Throughout this proof, we assume that the graph relation former / · \ is imple-
mented using the Glue type former. We can now exactly follow the procedure outlined
in section 4.2 to construct a bridge in Premonad` from κ1 to κ2. More concretely, we
have a bridge type-op-bridge : I → U` → U` from the type operator of κ1 to the type
operator of κ2 as defined in equation (4.2) and a path return-path : ∀(i : I).∀(X : U`).X →
type-op-bridge iX from returnκ1 to returnκ2 as defined in equation (4.3). Notice that below

14Note however that the reasoning in [Voi09] is metatheoretic and does not involve dependent types.
15The reason why in these judgements the context Γ is left-divided by the modality ¶ is the same as

in footnotes 8 and 12.
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equation (4.3) we made the remark that h (returnκ1 x) needs to be definitionally equal to
returnκ2 x for any x : X in order to conclude that return-path 1] is definitionally equal to
returnκ2 . This requirement is now fulfilled because of the assumption (4.7) in the theorem.

Next, we need to construct a path from �=κ1 to �=κ2 . Hence we must specify for
any i : I, X, Y : U`, b : /(hX])\ i and q : X → /(hY ])\ i a value of type /(hY ])\ i. The
procedure for this is very similar to that of the proof of Theorem 4.4. We now have that

/(hY ])\ i = Glue{κ2 Y ← (i
.
= 0 ?κ1 Y, h Y

] | i .= 1 ?κ2 Y, idκ2Y )}

and we will use the constructor glue to create a value of this type. For this purpose, we
must specify and verify the following things (see also Figure 4.6).

• First, we must give a value of type κ2 Y . We notice that pull (hY ]) i] has type
/(hY ])\ i→ κ2Y and hence

(
pull (hY ]) i]

)
◦ q will have type X → κ2 Y . In order to

construct a value of type κ2 Y we could then apply the bind operation of κ2 to this
function and to a value of type κ2X. Now we notice that pull (hX]) i] b has type
κ2X and hence our value of type κ2 Y will be given by

pull (hX]) i] b�=κ2

(
pull (hY ]) i]

)
◦ q.

For easy reference in the rest of this proof, we denote by ξi] the function

ξi] := λ(b′ : /(hX])\ i) . pull (hX]) i] b′ �=κ2

(
pull (hY ]) i]

)
◦ q :

/(hX])\ i→ κ2 Y.

• Next, we need to specify a value of type κ1 Y assuming that i
.
= 0 holds and of type

κ2 Y assuming that i
.
= 1 holds. If i

.
= 0 holds, then q has type X → κ1 Y and b

has type κ1X, so that we can take b �=κ1 q. On the other hand, if i
.
= 1 holds,

then we know that q has type X → κ2 Y and b has type κ2X and hence we can
take b�=κ2 q.

• Finally, we have to verify that if i
.
= 0 holds then h (b�=κ1 q) is definitionally equal

to ξ0] b and if i
.
= 1 holds then b�=κ2 q is definitionally equal to ξ1] b. In the former

case i
.
= 0 holds and hence ξ0] b is equal to h b�=κ2 h ◦ q. Using assumption (4.8)

in the theorem, this is indeed definitionally equal to h (b�=κ1 q). In the latter case
we have that i

.
= 1 holds and therefore ξ1] b is equal to b�=κ2 q so that the equality

we need to verify follows by reflexivity.

In summary, we construct a path

bind-path := λ(i] : I) . λ(X], Y ] : U`) . λ(b : type-op-bridge iX) .

λ(q : X → type-op-bridge i Y ) .

glue{ξi] b←[ (i .= 0 ? b�=κ1 q | i
.
= 1 ? b�=κ2 q)}

from �=κ1 to �=κ2 and we use this to build a bridge

pm-bridge := λ(i : I) .
(
type-op-bridge i, return-path i], bind-path i], tt

)
from κ1 to κ2. Just as in the proofs of the previous theorems, the endpoints of pm-bridge
are not exactly κ1 and κ2 because of their last components, but we solve this problem at
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κ1X κ1 Y κ2 Y

/hX]\ i /h Y ]\ i κ2 Y

κ2X κ2 Y κ2 Y

�=κ1q

ξ
0]

hY ]

ξ
i]

pull (hY ]) i]

�=κ2q

ξ
1]

idκ2Y

Figure 4.6: Diagram illustrating a part of the construction of bind-path in
the proof of Theorem 4.7. Just as in Figure 4.4, the middle row depicts the
situation for general i and reduces to the top row if i = 0 and to the bottom
row if i = 1. Dashed lines represent bridges that are already constructed. The
dotted arrow represents the function we are constructing using glue. Note that
in the construction of bind-path we apply this function to the value b : /hX]\ i.

the end of the proof and in the meantime we write κ1 and κ2 in the endpoints of bridges
and paths.

Using push applied to h we can now build a path

aκ1-path := λ(i] : I) . push (hA]) i] aκ1 : ∀(i : I).type-op-bridge i A

from aκ1 to h aκ1 . Then we apply the effect polymorphic function f to the bridge pm-bridge
and this path to obtain a path

f-path := λ(i] : I) . f (pm-bridge i)] (aκ1-path i]) : ∀(i : I).type-op-bridge i A

from f κ]1 aκ1 to f κ]2 (h aκ1). Finally, application of pullh yields the path

final-path := λ(i] : I) . pull (hA]) i] (f-path i]) : ∀(i : I).κ2A

from h (f κ]1 aκ1) to f κ]2 (h aκ1). Since this final path is homogeneous, we apply the path
degeneracy axiom and get a term

path-to-eq (final-path) : h (f (pm-bridge 0)] aκ1) ≡κ2A f (pm-bridge 1)] (h aκ1).

Replacing the last components of pm-bridge 0 and pm-bridge 1 with those of κ1 and κ2

respectively, gives us the result

thm : h (f κ]1 aκ1) ≡κ2A f κ
]
2 (h aκ1).

Remark 4.8. We can see that Theorem 4.2 is in fact an instance of Theorem 4.7 by
taking for κ1 the identity premonad id-pm, for κ2 the premonad κ and for h the return
operation returnκ (which is a monad morphism because of example 3.7). Similarly, also
Theorem 4.4 is an instance of Theorem 4.7 by taking for κ1 the premonad κ, for κ2 the
identity premonad id-pm and for h the function p (equipped with the necessary proofs
that this is a monad morphism, which follows from the assumptions (4.5) and (4.6)).
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We now again generalize the previous result to effect polymorphic functions f with
type

f : ∀(M : Premonad`).F (M A)→M A

for a given closed type A and a given functor F . The following theorem is a translation to
ParamDTT of the core idea of Theorems 3 and 4 from [Voi09] (it is in fact equation (4)
in the proof of Theorem 3 from that article), generalized to work for arbitrary functors
instead of only the list functor.

Theorem 4.9. Let Γ be a context containing the following assumptions

• F ] : Functor`,`

• A] : U`

• f : ∀(M : Premonad`).F (M A)→M A

• κ1, κ2 : Premonad`

• h¶ : MonadMorphismκ1 κ2

• aFκ1 : F (κ1A)

and assume that the judgements from (4.7) and (4.8) can be derived. Then we can con-
struct in this context Γ a term

thm : h (f κ]1 aFκ1) ≡κ2A f κ
]
2 (F (hA]) aFκ1).

Proof. We assume that the graph relation former / · \ is implemented using Glue types.
The construction of a bridge pm-bridge in Premonad` from κ1 to κ2 is then exactly the
same as in the proof of Theorem 4.7.

Using pushh and the action of F on functions, we can construct a path

aFκ1-path := λ(i] : I) . F (push (hA]) i]) aFκ1 : ∀(i : I).F (type-op-bridge i A)

from F idκ1A aFκ1 to F (hA]) aFκ1 . Next, we apply f to the bridge pm-bridge and the path
we just constructed to obtain a path (see also Figure 4.7)

f-path := λ(i] : I) . f (pm-bridge i)] (aFκ1-path i]) : ∀(i : I).type-op-bridge i A

from f κ]1 (F idκ1A aFκ1) to f κ]2 (F (hA]) aFκ1). Applying pullh then yields a path

final-path := λ(i] : I) . pull (hA]) i] (f-path i]) : ∀(i : I).κ2A

from h (f κ]1 (F idκ1A aFκ1)) to f κ]2 (F (hA]) aFκ1). Finally, this path is homogeneous so
that the path degeneracy axiom gives us a term

path-to-eq (final-path) :

h (f (pm-bridge 0)] (F idκ1A aFκ1)) ≡κ2A f (pm-bridge 1)] (F (hA]) aFκ1).

Replacing the last components of pm-bridge 0 and pm-bridge 1 with those of κ1 and κ2

respectively, and using the fact that a functor preserves identity functions yields the final
result

thm : h (f κ]1 aFκ1) ≡κ2A f κ
]
2 (F (hA]) aFκ1).

Remark 4.10. Similarly as in remark 4.8, we can see that Theorems 4.3 and 4.6 are
instances of Theorem 4.9 by taking specific premonads for κ1 and κ2 and a specific monad
morphism for h.
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f κ1 F idκ1A aFκ1 f κ]1 (F idκ1A aFκ1)

f pm-bridge i aFκ1-path i]  f-path i]

f κ2 F (hA]) aFκ1 f κ]2 (F (hA]) aFκ1)

Figure 4.7: Diagram similar to that in Figure 4.5 showing the construction of
the path f-path in the proof of Theorem 4.9. Note that we write κ1 and κ2 as
the endpoints of pm-bridge although this is not definitionally true.

4.6 A Parametricity Result for sequence

As a final result, we will consider a parametricity theorem for effect polymorphic functions
that have a type similar to that of sequence (as defined in section 4.1). More specifically,
we assume that we have a function f of type

f : ∀(M : Premonad`).∀(X : U`).F (M X)→M (F X)

for any given functor F : Functor`,`. The function sequence is an example if we take the
list functor for F . Notice that the type of f contains two parametric quantifications:
one involving a premonad and an ordinary one involving a type in the universe U`. As
a consequence, the following theorem is a combination of two parametricity results: one
that is similar to the results we have seen so far in this chapter and one that is more like
the results from chapter 2. We could have proved both results separately and combine
them afterwards, but we choose to illustrate how such a combined statement is proved in
ParamDTT.

Recall that in section 3.2.2, we saw that if κ : Premonad` is a monad, then we can
construct a functor whose type operator is the same as that of κ and whose action on
functions is given by postcomposing a function with returnκ and feeding this into �=κ.
Moreover, in the implementation of this action on functions, we never used the fact that
κ is a monad and hence we can apply it for any premonad. From now on, we will write
this action applied to a function g : A → B as κ g : κA → κB. Notice that κ idA is not
necessarily idκA if κ is not a monad and hence we do not necessarily obtain a functor. If
κ is a monad (witnessed by κ̃ : IsMonadκ), a proof that this procedure preserves identity
functions is given by return-law2 κ̃ and hence in this case we do get a functor.

The following theorem is Theorem 5 from [Voi09], translated to ParamDTT and gen-
eralized to work for any functor instead of only the list functor.

Theorem 4.11. Suppose that Γ is a context containing the following assumptions

• F ] : Functor`,`

• f : ∀(M : Premonad`).∀(X : U`).F (M X)→M (F X)
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• κ1, κ2 : Premonad`

• κ̃1 : IsMonadκ1, κ̃2 : IsMonadκ2

• h¶ : MonadMorphismκ1 κ2

• A], B] : U`

• g¶ : A→ B

• aFκ1 : F (κ1A)

and assume that we can derive the same judgements as in (4.7) and (4.8) so that the laws
required for h to be a monad morphism hold definitionally. Then we can construct in the
context Γ a term

thm :
(
κ2 (F g)

) (
h (f κ]1 aFκ1)

)
≡κ2(FB) f κ

]
2

((
F (κ2 g)

)
(F haFκ1)

)
.

Proof. The construction of a bridge type-op-bridge : I→ U` → U` from the type former of
κ1 to the type former of κ2 and of a bridge pm-bridge : I → Premonad` from κ1 to κ2 is
exactly the same as in the proof of Theorem 4.7.

We can now construct a path

haFκ1-path := λ(i] : I) . F (push (hA]) i]) aFκ1 : ∀(i : I).F (type-op-bridge i A)

from F idκ1 aFκ1 to F haFκ1 . Next, we know for any i : I that push g i] is a func-
tion from A to /g\ i. Hence, we can apply the action of the premonad pm-bridge i on
functions to push g i] and in this way we obtain a function (pm-bridge i)(push g i]) from
type-op-bridge i A to type-op-bridge i (/g\ i). Applying then the functor F gives us the path

ghaFκ1-path := λ(i] : I) . F
(
(pm-bridge i)(push g i])

)
(haFκ1-path i]) :

∀(i : I).F (type-op-bridge i (/g\ i))

from F (κ1 idA) (F idκ1 aFκ1) to F (κ2 g) (F haFκ1). Notice that in the definition of the
path ghaFκ1-path the i in pm-bridge i is in parametric position although it is not annotated
with ] (and neither is any structure that contains it). This is because the implementation
of the functor-like action of a premonad on functions only makes use of the premonad via
its return and bind operations and from remark 4.1 we know that these return and bind
functions depend parametrically on their premonad.

Then we can apply f to the bridge pm-bridge and the path we just constructed to get
a path (see also Figure 4.8)

f-path := λ(i] : I) . f (pm-bridge i)] (ghaFκ1-path i]) :

∀(i : I).type-op-bridge i (F (/g\ i))

from f κ]1
(
F (κ1 idA) (F idκ1 aFκ1)

)
to f κ]2

((
F (κ2 g)

)
(F haFκ1)

)
. The next step is to

apply pullh to this, which yields a path

almost-final-path := λ(i] : I) . pull
(
h (F (/g\ i))]

)
i] (f-path i]) :

∀(i : I).κ2 (F (/g\ i))
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f κ1 F (κ1 idA) (F idκ1 aFκ1) f κ]1
(
F (κ1 idA) (F idκ1 aFκ1)

)

f pm-bridge i ghaFκ1-path i]  f-path i]

f κ2 F (κ2 g) (F haFκ1) f κ]2
((
F (κ2 g)

)
(F haFκ1)

)
Figure 4.8: Diagram similar to that in Figures 4.5 and 4.7 showing the con-
struction of the path f-path in the proof of Theorem 4.11. Note that again we
write κ1 and κ2 as the endpoints of pm-bridge although this is not definitionally
true.

from h
(
f κ]1

(
F (κ1 idA) (F idκ1 aFκ1)

))
to f κ]2

((
F (κ2 g)

)
(F haFκ1)

)
. The final path can

be constructed by applying for any i : I the actions of the functor F and the premonad κ2

to pull g i] which yields a function of type κ2 (F (/g\ i)) → κ2 (F B). As a consequence,
we have the path

final-path := λ(i] : I) . κ2

(
F (pull g i])

)
(almost-final-path i]) : ∀(i : I).κ2 (F B)

from (
κ2 (F g)

)(
h
(
f κ]1

(
F (κ1 idA) (F idκ1 aFκ1)

)))
to (

κ2 (F idB)
)(
f κ]2

((
F (κ2 g)

)
(F haFκ1)

))
.

Since this last path is homogeneous, the path degeneracy axiom provides us with a term

path-to-eq (final-path) :
(
κ2 (F g)

)(
h
(
f (pm-bridge 0)]

(
F (κ1 idA) (F idκ1 aFκ1)

)))
≡κ2(FB)(

κ2 (F idB)
)(
f (pm-bridge 1)]

((
F (κ2 g)

)
(F haFκ1)

))
.

Finally, we need to replace the last components of pm-bridge 0 and pm-bridge 1 with those
of κ1 and κ2 respectively, use the fact that F preserves identity functions and make use of
return-law2 κ̃1 and return-law2 κ̃2 which prove that the actions of κ1 and κ2 on functions
also preserve identity functions. This then gives us a term

thm :
(
κ2 (F g)

) (
h (f κ]1 aFκ1)

)
≡κ2(FB) f κ

]
2

((
F (κ2 g)

)
(F haFκ1)

)
.

Remark 4.12. Using the last theorem with the list functor for F , the function sequence for
f , the identity premonad id-pm for κ1, the return operation returnκ2 for h and the identity
function idA for g (assuming that A = B), we obtain that sequence applied to a list of pure
computations is itself pure. Of course, this is not a surprise given the implementation
of sequence, but we see that by parametricity, any function of this type will have this
property.



Chapter 5

Related Work

In this small chapter, we discuss some related work on parametricity, monads and effect
parametricity.

Parametricity According to Reynolds [Rey83], the notions of parametric and ad hoc
polymorphism were invented by Strachey in 1967 in a set of lecture notes [Str00]. However,
the distinction between these kinds of polymorphism was only described intuitively (a
polymorphic function being parametric if it behaves the same way for all types). In order
to reason about parametric polymorphism, Reynolds formalized this notion using relations
and he stated that parametric polymorphic functions map related arguments to related
results [Rey83]. Subsequently, Wadler made use of Reynolds’s relational interpretation
to describe a procedure to derive from a System F type a theorem that is satisfied by all
terms of that type [Wad89]. In his discussion, Wadler used a denotational semantics of
System F given by frame models (described in for instance [BMM90]). A more operational
point of view on parametricity can be found in [Sko15]. Our treatment of parametricity
in section 2.1 has the same operational flavour of this last work, but we stay closer to
Wadler’s notation.

Parametricity and dependent types For parametricity in dependent type theory, we
completely followed the article by Nuyts, Vezzosi and Devriese in which the type system
ParamDTT is described [NVD17]. However, this is not the first time the relation between
parametricity and dependent types is studied. For instance Bernardy et al. provide a
way to translate types in a pure type system (a kind of dependent type system) to their
corresponding logical relation and terms of a certain type to a proof that they are related
to themselves by the relation corresponding to that type [BJP12]. Based on this work
(among others), there are tools for the proof assistant Coq that automatically perform
such a translation and enable us to use parametricity results in further reasoning.1 The
consistency of the type system ParamDTT and in particular the path degeneracy axiom
has been proved by providing a presheaf model for the system [Nuy17], which was based
on [BCM15].

Monads and effects Monads were first introduced in category theory under a variety
of different names such as monad, triple, triad or standard construction. See [Vou12]

1See for instance https://github.com/coq-community/paramcoq.
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for a further discussion of monads in category theory and an introduction of some more
historical facts. Moggi was the first to use monads in computer science for the mathe-
matical study of semantics of imperative programming languages [Mog91]. Subsequently,
the use of monads for modeling side effects in purely functional languages was presented
by Wadler [Wad92; Wad95].

Effect Parametricity Voigtländer extended the procedure in [Wad89] and studied
parametricity properties for effect polymorphic functions [Voi09]. He provides many ex-
amples of the use of such theorems for concrete monads, but a formal development of the
relational interpretation that is behind the procedure is not presented. This is for instance
developed by Atkey [Atk12] for System Fω (an extension of System F that also supports
type operators, operators on type operators, . . . ) and by Bernardy et al. [BJP12] for pure
type systems. The validity of our effect parametricity proofs is justified by the consis-
tency of ParamDTT and hence by the model provided in [Nuy17]. We based ourselves on
Voigtländer’s article for inspiration on effect parametricity results.



Chapter 6

Conclusion and Further Work

We have come to the end of this thesis. In this final chapter, we will reflect on the
results we obtained and relate these to the general aim of the thesis as formulated in
the beginning. Recall that our intention was to study how the dependent type system
ParamDTT can be used to reason about monads in general and effect parametricity in
particular. Furthermore, taking these subjects as specific use-cases, we wanted to evaluate
ParmDTT (and its implementation Agda parametric) as a practical tool for reasoning
about parametricity and identify possible difficulties that present themselves.

Our general conclusion is that ParamDTT is indeed suitable to reason about effect
parametricity. This is demonstrated by the fact that all effect parametricity results from
[Voi09] could be translated to and proved within the type system. Furthermore, in sec-
tion 2.3 and chapter 3 we showed that reasoning about functors and monads in general
is also possible in ParamDTT.

However, in the following paragraphs we describe some problems or difficulties that
we were confronted with along the way and that somewhat reduce the applicability of our
results and the elegance of our proofs.

Definitional equality for Glue and Weld types Proposition 2.11 and all theorems
in chapter 4 are of the form “Take a context Γ with the assumptions . . . and assume
that we can derive the judgements . . . , then the result . . . holds.” The fact that these
propositions and theorems require that some judgements involving definitional equality
can be derived, is partly caused by our use of the induction principle indWeld for Weld types
or the constructor glue for Glue types in their proofs.1 The inference rules introducing
both constructs indeed have a judgement requiring some definitional equality as one of
their premises. Our proofs would be more elegant if these premises could be weakened to
require only propositional equality. Indeed, in that case it would be for instance sufficient
in Theorem 4.7 to require that h is a monad morphism from κ1 to κ2 (what we already do)
and we would not have to impose that the laws for monad morphisms hold definitionally.

Moreover, the requirement for definitional equalities has an impact on the practical
applicability of the formalizations in Agda parametric of the proofs presented in this the-
sis. More concretely, all formalizations of the theorems containing definitional equality
premises are implemented in a module that postulates its arguments rather than taking

1This explains not all of the requirements for definitional equality. For instance in Theorem 4.4, the
assumption (4.6) is needed because of the glue constructor, but assumption (4.5) is needed for another
reason discussed below.

93



94 CHAPTER 6. CONCLUSION AND FURTHER WORK

parameters. This is necessary because the definitional equality has to be implemented
as a rewrite rule and Agda does not allow us to introduce in a module a rewrite rule
that involves that module’s parameters. However, this means that when we have a con-
crete effect polymorphic function, we cannot instantiate the module proving some effect
parametricity result with this concrete function and use the result for further reasoning.

Pointwise dependence of parametricity results Most of the parametricity results
in ParamDTT that we have seen in this thesis depend pointwise on one or more values or
functions. In Theorem 4.4 for example, the term thm we constructed depends pointwise
on the function p. This pointwise dependence is caused by the fact that in the proof of
that theorem we use p in the graph relation former / · \, which depends pointwise on its
function and this is on its turn caused by the pointwise dependence of the constructors
weld and glue on one of their arguments. In [NVD17], Nuyts, Vezzosi and Devriese already
pointed out that this precludes iterated parametricity in ParamDTT. In our specific case,
the pointwise dependence caused problems in chapter 3 when we wanted to prove the
equivalence of the bind and join formulations of a monad. As a result, our two definitions
of a monad (Definitions 3.3 and 3.9) cannot be proved equivalent in ParamDTT, but this
would be possible if the term naturality in Proposition 2.13 depended continuously on the
function f instead of pointwise.

Propositional equality and pointwise functions As already pointed out in re-
mark 4.5, we cannot prove that propositional equality is a congruence for pointwise func-
tions in the standard way using the J-rule and we did not find any alternative proof. This
makes it for instance impossible to show for a premonad κ : Premonad` and a polymor-
phic function g : ∀(X : U`).X → κX which is propositionally equal to returnκ that κ is
propositionally equal to the premonad obtained from κ by replacing its return function
with g. As a consequence, we imposed in some results extra requirements for definitional
equality (such as assumption (4.5) in Theorem 4.4). The loss of applicability this causes
for the formalization of our results in Agda parametric has already been discussed in the
paragraph about definitional equality for Glue and Weld types.

Moreover, it is probable that if we were able to prove that propositional equality is a
congruence with respect to pointwise functions, then it would become possible to change
the definition of a monad a little bit and prove the equivalence of both formulations of
a monad while retaining all effect parametricity results. More concretely, we would in
this case make the bind operation m �=κ q depend pointwise on the function q and
additionally introduce some pointwise modalities in the monad laws, which would enable
us to use the term naturality from Proposition 2.13 in the proof of the equivalence of
both formulations. In a first attempt, we tried to work out this idea, but we found out
that we would then need a proof that propositional equality is a congruence for pointwise
functions in many places, which is why we left this approach.

Pointwise dependent sums In many definitions, such as Definitions 3.1, 3.3 and 3.6,
we used pointwise dependent sums to introduce a pointwise dependence of a certain object
on one of its components. If we want to do this for the last (relevant) component of a
tuple, we need to introduce an irrelevant last component of the unit type >. However,
as a consequence we must show explicitly in the proof of many parametricity results that
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two premonads which are definitionally equal up to their last (irrelevant) component are
propositionally equal, which is somewhat annoying. A possible solution would be to make
the last trivial component of type > irrelevant, which means that it will not be inspected
when checking whether to values (e.g. premonads) are equal.

The difficulties described above are not really an indication of a fundamental problem in
our approach to prove the parametricity results, but rather of some possible improvements
in the type system ParamDTT (and actually the last problem about pointwise dependent
sums is rather an inconvenience caused by Agda parametric than by ParamDTT). In
fact, Nuyts and Devriese already developed a successor for ParamDTT, called RelDTT,
in which all of the problems above can be solved [ND18]. An interesting subject for
further research would be to translate our proofs of parametricity results to RelDTT. The
reason why we did not yet started doing this, is that there is currently no proof assistant
available that implements this type system, but development in this direction is carried
out by Andreas Nuyts.2 We now sketch briefly how each difficulty above can be solved in
RelDTT.

• The type system RelDTT supports extension types. These will eliminate the need
to impose the definitional equality requirements in effect parametricity results that
are now necessary because of the application of indWeld or glue in proofs. More
concretely, using extension types, it would be for instance sufficient in Theorem 4.4
that the equality in assumption (4.6) holds propositionally.

• In RelDTT, the weld and glue constructors depend continuously on the argument
which is pointwise in ParamDTT. Hence most pointwise dependencies in parametric-
ity results of this thesis could be converted into continuous dependencies.

• The inference rule introducing the J-rule for identity types in RelDTT has some
different modalities in its premises than that of ParamDTT. This makes it possible
to prove that propositional equality is a congruence for ad hoc functions (which is
the name for pointwise functions in RelDTT).

• Finally, RelDTT has support for irrelevance. At first glance it would be interesting
to use this for instance in the last (irrelevant) component of a premonad. However,
if we tried to do this, we would be faced with the problem that dependent sums can
again only be made irrelevant in their first component, which leads us to introducing
another component of type > that is not irrelevant. Hence in a practical proof
assistant based on ParamDTT or RelDTT, it would be convenient to have dependent
sums that can also depend on their second component with some modality chosen
by the user. Of course, one should then first investigate whether there is some
interaction with the first component’s modality and what would be the implications
of such an interaction.

Another interesting subject for future research would be to consider in ParamDTT the
Church encoding of a free monad for a functor. Given a functor F , we say that a monad M
is the free monad for F if there is a natural transformation ρ : ∀(X : U`).F X →M X such
that for any other monad M ′ and any natural transformation σ : ∀(X : U`).F X →M ′X

2See https://github.com/anuyts/menkar.

https://github.com/anuyts/menkar
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there is a unique monad morphism h : MonadMorphismMM ′ with the property that
σ = h ◦ ρ. Free monads can be used in the treatment of so-called algebraic effects. The
idea for the Church encoding of a functor F : Functor`,` would be to consider the type
operator F ∗ defined as

F ∗X := ∀(M : Premonad`).∀(M̃ : IsMonadM).
(
∀(Y : U`).F Y →M Y

)
→M X

for any X : U` and then verify that F ∗ can be equipped with the structure of a monad
and that it is indeed the free monad for F . The inspiration for this construction comes
from [JO15]. One important remark is that in order to show that F ∗ gives rise to the free
monad, we will probably have to construct not only a bridge inside the type premonad,
but also paths between different proofs of the monad laws, and we did not yet succeed in
doing so as described at the end of section 4.2.
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l’arithmétique d’ordre supérieur”. PhD thesis. Université Paris VII, 1972.
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