{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TRANSFORMADA Z\n",
"## SISTEMAS Y SEÑALES \n",
"### Ingenieria de Telecomunicaciones \n",
"### Universidad Pontificia Bolivariana \n",
"### Por: Jose R. Zapata - [https://joserzapata.github.io/](https://joserzapata.github.io/) \n",
"**joser.zapata@upb.edu.co**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
""
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Script para ver y ocultar el codigo del jupyter\n",
"from IPython.display import HTML\n",
"\n",
"HTML('''\n",
"''')"
]
},
{
"cell_type": "markdown",
"metadata": {
"toc": true
},
"source": [
"Contenido
\n",
""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Importar librerias basicas\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import sympy as sym\n",
"\n",
"%matplotlib inline\n",
"plt.style.use('bmh') # estilo de las graficas\n",
"from IPython.display import Latex # para visualizar ecuaciones en jupyter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Definición\n",
"la transformada $Z$ es una transformación que representa una señal discreta $x[k]$ en el dominio espectral. Se basa en la función exponencial compleja $z^{-k}$ con $z \\in \\mathbb{C}$ como señal base.\n",
"\n",
"## Transformada Bilateral Z\n",
"\n",
"$$\n",
"\\large X(z) = \\sum_{k = -\\infty}^{\\infty} x[k] \\, z^{-k}\n",
"$$\n",
"\n",
"## Transformada Unilateral Z\n",
"Para señales causales tenemos:\n",
"$$\n",
"\\large \\boxed{X(z) = \\sum_{k = 0}^{\\infty} x[k] \\, z^{-k}}\n",
"$$\n",
"\n",
"## Transformada Z inversa \n",
"$$\n",
"\\large \\boxed{x[k] = \\frac{1}{2 \\pi j} \\oint_{C} X(z) \\, z^{k - 1} \\; dz}\n",
"$$\n",
"\n",
"\n",
"# Región de Convergencia\n",
"La transformada Z converge si es absolutamente sumable\n",
"\n",
"$$\n",
" \\sum_{k = -\\infty}^{\\infty} | x[k] \\cdot z^{- k} | = \\sum_{k = -\\infty}^{\\infty} | x[k] | \\cdot | z |^{- k} < \\infty\n",
"$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Propiedades\n",
"\n",
"| | $x[k]$ | $X(z) = \\mathcal{Z} \\{ x[k] \\}$ | Region de convergencia (ROC) |\n",
"|:---|:---:|:---:|:---|\n",
"| Linealidad | $A \\, x_1[k] + B \\, x_2[k]$ | $A \\, X_1(z) + B \\, X_2(z)$ | $\\supseteq \\text{ROC}\\{x_1[k]\\} \\cap \\text{ROC}\\{x_2[k]\\}$ |\n",
"| Conjugacion | $x^*[k]$ | $X^*(z^*)$ | $\\text{ROC}\\{ x[k] \\}$ |\n",
"| Señales Reales | $x[k] = x^*[k]$ | $X(z) = X^*(z^*)$ | |\n",
"| Convolucion Lineal | $x[k] * h[k]$ | $X(z) \\cdot H(z)$ | $\\supseteq \\text{ROC}\\{x[k]\\} \\cap \\text{ROC}\\{h[k]\\}$ |\n",
"| Desplazamiento en el tiempo | $x[k - \\kappa]$ | $z^{- \\kappa} \\cdot X(z)$ | $\\supseteq \\text{ROC}\\{x[k]\\} \\setminus \\{0, \\infty \\}$ |\n",
"| Modulacion | $z_0^k \\cdot x[k]$ | $X\\left( \\frac{z}{z_0} \\right)$ | $\\{z: \\frac{z}{z_0} \\in \\text{ROC} \\{ x[k] \\} \\}$ |\n",
"| Inversion | $x[-k]$ | $X \\left( \\frac{1}{z} \\right)$ | $\\{z: \\frac{1}{z} \\in \\text{ROC} \\{ x[k] \\} \\}$ |\n",
" \n",
"Donde $A, B, z_0 \\in \\mathbb{C}$ y $\\kappa \\in \\mathbb{Z}$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tabla de Transformadas Básicas\n",
"\n",
"| $x[k]$ | $X(z) = \\mathcal{Z} \\{ x[k] \\}$ | ROC |\n",
"|:---:|:---:|:---|\n",
"| $\\delta[k]$ | $1$ | $\\mathbb{C}$ |\n",
"| $\\epsilon[k]$ | $\\frac{z}{z-1}$ | $|z| > 1$ |\n",
"| $k \\epsilon[k]$ | $\\frac{z}{(z-1)^2}$ | $|z| > 1$ |\n",
"| $z_0^{k} \\epsilon[k]$ | $\\frac{z}{z - z_0}$ | $|z| > |z_0|$ |\n",
"| $-z_0^{k} \\epsilon[-k-1]$ | $\\frac{z}{z - z_0}$ | $|z| < |z_0|$ |\n",
"| $\\sin(\\Omega_0 k) \\epsilon[k]$ | $\\frac{z \\sin(\\Omega_0)}{z^2 - 2 z \\cos(\\Omega_0) + 1}$ | $|z| > 1$ |\n",
"| $\\cos(\\Omega_0 k) \\epsilon[k]$ | $\\frac{z ( z - \\cos(\\Omega_0))}{z^2 - 2 z \\cos(\\Omega_0) + 1}$ | $|z| > 1$ |\n",
"\n",
"Donde $z_0 \\in \\mathbb{C}$, $\\Omega_0 \\in \\mathbb{R}$ y $n \\in \\mathbb{N}$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# REFERENCIAS\n",
"- https://nbviewer.jupyter.org/github/spatialaudio/signals-and-systems-lecture/blob/master/z_transform/definition.ipynb\n",
"- https://nbviewer.jupyter.org/github/spatialaudio/signals-and-systems-lecture/blob/master/z_transform/properties.ipynb\n",
"- https://nbviewer.jupyter.org/github/spatialaudio/signals-and-systems-lecture/blob/master/z_transform/theorems.ipynb\n",
"- https://nbviewer.jupyter.org/github/spatialaudio/signals-and-systems-lecture/blob/master/z_transform/table_theorems_transforms.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Phd. Jose R. Zapata**\n",
"- [https://joserzapata.github.io/](https://joserzapata.github.io/)\n",
"- https://twitter.com/joserzapata\n",
""
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Contenido",
"title_sidebar": "Contenido",
"toc_cell": true,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}