{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"nbsphinx": "hidden"
},
"source": [
"# The Discrete Fourier Transform\n",
"\n",
"*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Comunications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fast Convolution\n",
"\n",
"The linear convolution of signals is a basic building block in many practical applications. The straightforward convolution of two finite-length signals $x[k]$ and $h[k]$ has considerable numerical complexity. This has led to the development of various algorithms that realize the convolution with lower complexity. The basic concept of the *fast convolution* is to exploit the [convolution theorem](theorems.ipynb#Convolution-Theorem) of the discrete Fourier transform (DFT). This theorem states that the periodic convolution of two signals is equal to a scalar multiplication of their spectra. The scalar multiplication has considerably less numerical operations that the convolution. The transformation of the signals can be performed efficiently by the [fast Fourier transform](fast_fourier_transform.ipynb) (FFT). \n",
"\n",
"Since the scalar multiplication of the spectra realizes a periodic convolution, special care has to be taken to realize a linear convolution in the spectral domain. The equivalence between linear and periodic convolution is discussed in the following."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Equivalence of Linear and Periodic Convolution\n",
"\n",
"The [linear convolution](../discrete_systems/linear_convolution.ipynb#Finite-Length-Signals) of a causal signal $x_L[k]$ of length $L$ with a causal signal $h_N[k]$ of length $N$ reads\n",
"\n",
"\\begin{equation}\n",
"y[k] = x_L[k] * h_N[k] = \\sum_{\\kappa = 0}^{L-1} x_L[\\kappa] \\; h_N[k - \\kappa] = \\sum_{\\kappa = 0}^{N-1} h_N[\\kappa] \\; x_L[k - \\kappa]\n",
"\\end{equation}\n",
"\n",
"The resulting signal $y[k]$ is of finite length $M = N+L-1$. Without loss of generality it is assumed in the following that $N \\leq L$. The computation of $y[k]$ for $k=0,1, \\dots, M-1$ requires $M \\cdot N$ multiplications and $M \\cdot (N-1)$ additions. The computational complexity of the convolution is consequently [on the order of](https://en.wikipedia.org/wiki/Big_O_notation) $\\mathcal{O}(M \\cdot N)$.\n",
"\n",
"The [periodic (or circular/cyclic) convolution](https://en.wikipedia.org/wiki/Circular_convolution) of two signals $x_L[k]$ and $h_N[k]$ is defined as\n",
"\n",
"\\begin{equation}\n",
"x_L[k] \\circledast_P h_N[k] = \\sum_{\\kappa=0}^{P-1} \\tilde{x}_P[k - \\kappa] \\; \\tilde{h}_P[\\kappa]\n",
"\\end{equation}\n",
"\n",
"where $\\circledast_P$ denotes the periodic convolution with period $P$. The periodic summations $\\tilde{x}_P[k]$ of $x[k]$ and $\\tilde{h}_P[k]$ of $h[k]$ with period $P$ are defined as\n",
"\n",
"\\begin{align}\n",
"\\tilde{x}_P[k] &= \\sum_{\\nu = -\\infty}^{\\infty} x_L[\\nu \\cdot P + k] \\\\\n",
"\\tilde{h}_P[k] &= \\sum_{\\nu = -\\infty}^{\\infty} h_N[\\nu \\cdot P + k]\n",
"\\end{align}\n",
"\n",
"The result of the circular convolution has a period of $P$.\n",
"\n",
"\n",
"To compute the linear convolution by a periodic convolution, one has to take care that the result of the linear convolution fits into one period of the periodic convolution. Hence, the periodicity has to be chosen as $P \\geq M$ where $M = N+L-1$. This can be achieved by zero-padding of $x_L[k]$ to the total length $M$ resulting in the signal $x_M[k]$ of length $M$ which is defined as\n",
"\n",
"\\begin{equation}\n",
"x_M[k] = \\begin{cases} \n",
"x_L[k] & \\text{for } 0 \\leq k < L \\\\\n",
"0 & \\text{for } L \\leq k < M\n",
"\\end{cases}\n",
"\\end{equation}\n",
"\n",
"and similar for $h_N[k]$ resulting in the zero-padded signal $h_M[k]$ which is defined as\n",
"\n",
"\\begin{equation}\n",
"h_M[k] = \\begin{cases} \n",
"h_N[k] & \\text{for } 0 \\leq k < N \\\\\n",
"0 & \\text{for } N \\leq k < M\n",
"\\end{cases}\n",
"\\end{equation}\n",
"\n",
"Using these signals, the linear and periodic convolution are equivalent for the first $M$ samples $k = 0,1,\\dots, M-1$\n",
"\n",
"\\begin{equation}\n",
"x_L[k] * h_N[k] = x_M[k] \\circledast_M h_M[k]\n",
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example\n",
"\n",
"The following example computes the linear, periodic and linear by periodic convolution of two signals $x[k] = \\text{rect}_L[k]$ and $h[k] = \\text{rect}_N[k]$."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDcxMC4zMTU2MjUgNTY2LjUxODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nO1byW4cNxS891f0UTmY4s7mIYcYjgUECRAlAnIwfDBkWZZjS7a8IX+f18s0i5wme7REHCMWIFuqeWLVsMlHst5QtG8a0Z63vH1D31/bZ+1z+v9lK9oj+j5vOP32rnGCMyWMlYZ+fYu/GmuZEZ0zBPPot9dN86o5/Ika+Uh/dNQ0yjBjvKIXtTBM6f6nd431lrmhqYC+BdRozYQf0dACohORHInOSTa9FdbBmyH6/pWMAkQF6yYFzWPql6/N45P28KloBW9PXjVKMuW87d+f5pwEticvmwP+Q3vypv35pBlIG8E949JYryOWCC7TCG7odcs5BWuNVDKh6iTTXnKRUCG8QuU8PUmppFVd55FKx1TSGOZNp5SKqCK4TCWNZM51Vk/hgcrGVEp6pqW2JqaK4LXnZJnU2lsjiRGpuphKc8k6z72TEVUEr1DRQDU0FyiWvpBKJONCO8uUcdInXAiXubT1zHvnhaUvF3ElA8NozzqprBARVwSXuYxWTFs9BPfhwJWMDCsVk533KuaK4DKXFZZ5xc3wZSOuZGgsJYs4hawweUpcWxNYzKPiA/0Jbx9xyiHKKiaM6wQ1qzrH+Pjj6Ttqsc+KTPOekf7+8Kmcmj/4u2+ooYaON2M55BYak3xooh/KjKdoZtJIRuOi/3d8Wwv5BihohvmUYMJKzdOoEHIQsZBjoHnKFW7ou4hgRksUjtKEGxaGhdwCaZ1bZtM+msECgeln7LgiLWWUQKBoWA9hEcOMligo/9gxPsokH5p+uDzqBw6NSXqvdtMh5bHyzzBWqF/EtKTwMWBDevBsCFDMc6Hs2Hl8cbwZRjmBb5bnuJHnYUR+aJfWP2sFraSDABoErDPt9Vn7V3tJqoWkNjsre2JKBtOXo0513HSUSKhL2uvzfGQbRf5xFEU2+cjr82kmDhMxiFaeGa7Gadge/sbbJ1chjHKA2iTiVtADlWJ8CN8jc5H8HiIe7U73fwo9bo7bG0442f7SCmZo37rjNKEJdfjk7MvF6dkfR4/b04+51WZpAlGi+7OGREeplNYjFUsENKxXVfThNh0EIkxnHKU3K14dkZpSPr1sEpEA46pcRyMcQlAjwJ52WJ7bik9bCs+kNMLFIgHGzUcdiXDCQokBNpIzvjk4VxLpJbNe0BONRQY42mJV0Yjnx2gvPsN7oJFyy3joiDUGuL5GPByDRoD3YED2K52VWqhEZICrT2w8+KNEgOsnSEN7G+65NiISiXD1lQZdDdQIcP0l23SW+KxziUiAK+980LABhQjf5/axU36UqUikIEVaCGf78+Mkvh9cO+5wF6XPEntWvuUJZ9tddIbRb6Zm13yoJPwmzncUHtoptM6H9zf63iJyvc9nG0MOXqXgzI48xvCpid7L+PXi8uzFdXt6dfnl6u3nTxdXlxtzY/LvlyoEfKoQgFxJna+33l1A0ddXtIGRW74+orfx9VEBojS1dvP1Ze8grvn6yBLBZZrE1weqvK8fUSG8QhX7+kCV9/WRKoLLVImvD1R5Xz96TAivPafI1weqvK+PVBG8QhX7+kBV8PUjLoTLXImvj1x5Xx+5IrjMlfj6yJX39aN5jXCZK/H1kSvr6+dSyApT8PWRZc3XF75j4o6+vlSOiS1fP6AFR1nSXl7t4OtLq/sUExNMWKl5y+kUu+7rS+q8bsvXD2iJYiiMrPv6Sjjm0j6awQKBoo2m38HXV7Qkmi1fP6AlCt0XgtZ9fdltOmTPfP14GxYm0Dfk7IfBNjioYtWQ/o8jEkd3byPv472m9vV+hN5iWN+nfx5l9YVhunD+eRCFwShHhYBWV4j7YZCIcH2NwSiPNAJcXyNs9lFjgBXX9Nhz9tCDiASjHEUCjIt8HYlwkkGJAaZMxETWrnwYkcEoj0QGONrKVNGI57RozzvDe6AxGOWRxgDX14iHUNAI8B4MSDDKI5EBrj6x8YCNEgO8BwkSjHIUifA9rjR39VRzEvEwextPddmVQ68v8lSXPYAk/CauYxQe2im0XvJUwUyQ/UfnNh8SpCc0thDOh9PBOFiwB78P5zbHpLJqPJsPJ7uDswlXHaLXA6qZV2oUP8IX0wmSVi8/+gcjfrVpREdnz4OXE24FHDezrZwOuGW0Pbfh7HnQTuGd0NqooDETntNyudHCjQb4ywRH591sI28z0j8vN/5p6kaaqdPHOG/XjxntuZ75OuB+C8/R5mS+vhnt+8WnXWGAZQQOPgfOBs+Mmw6AweYYA34cAoRklNkM9onYMCodDTsdfJGb1S4ox5ntnLMBsXIh+mriVuUC0dtULoAfbS3Gd6xbSNrOrpQtgALRMkdatJh58jUL5AF0hSepWMw8+YIF8CBa5knLFTNPvlqBjwZ3uyvPJq5VzDz5UgXwILrCkxQqZp5CnQKJAC0TpVWKQJQvUgARomWitEQRiPIVCpy9gJaJ0vpEIMqWJ5azxAoNFCcCxVptgk7Qd71x0DG5feFgAxYvBDC9Q1nCGZa2PkGFtp1gaoeaBG0DmN+qSQS0wDDUdNZLEsMuOtU/g4X26WXGdyhJCEpJdqskEdAShelrWOslCb/pjr2uSMxz5hsqSJBSBzcN5M5m/ffIUhniThFpneB7qFyqlKxPt3u9aACLzMLsWfA0HkIf3CcI+gIYlqka4vAuQVAHaNcxk/204oMohIsEoDCg0UJcRSFcIwCFARX9R+qy3t9DSMS7BUEioLjZqCIQbhaAwIAKTTMm60M/iES4VwASAxptp2ooxFsFuN+e0foK4U4BKAxodYV4oyAoBLT+QMT7BCAxoLUnM14bAIEBrZ8Q8dJAkAho9VUFrwyAwoBWX5nxvgAoDGjdrQ1+ED/IA/Qed4Z3vkCwKBD9kduUuhZtXPSGo0rXop2URO9uUUfBoZVC2ztfHZCU6bgdzQXh5NTG8t2B9sXH9v3Z9cXVy4vTpTsFx82//wT8LAplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIyMDQKZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc0ID4+CnN0cmVhbQp4nD2PS3IEMQhD9z4FRzAgPj5Pp7Ly3H87QCq9sVTCRs++lTZJ1OGbKeTQDy/2M/az9MS4u+A6zhgUrGQ45Cn0LEslN54Fvn3UEDVpBw+yMMIGmYDUd00QQsqdVvtR0h2jz+La1u4uFi+su4buvlAVmJAjC4/PIQ1UpqL/Lv4ySFVkEuo2uHFQuECV1qeQPmoYnHb9Jht/F3Qpn56gnOZs6E5NHn1eirt+vzKEPcIKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg3ID4+CnN0cmVhbQp4nDWNwQ3AMAgD/5nCI8QQINmn6qvd/1tI1I99soyxWOhQS3EKwjsuNk7d+DaJQ09mAWUkjWWwUVQnh8QnZFqSsRazxb6dERCvDsV2osf+J0+7P7hOGcQKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOSA+PgpzdHJlYW0KeJw9j7ENxTAIRHumuAWQABsbz5PoV/77t8FxkgLxdKA78GEQsNUs6WhS4LXjVLIaYBf8yaSB1QTaLaEVaF1KKA5aOusIRNsW9ekHfa6TeORSsaRqL7W+KWK5O/SO0W1awKNnTvau0Obgck9GQSZOylPWoZM0fTaZB9QiyWU82vvQ/P6Z9LsAu7wt2wplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTggMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4MCAvUCAxMDcgL2sgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNiAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE1IDAgUiA+PgplbmRvYmoKMTYgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE1IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9QIDE5IDAgUiAvayAyMCAwIFIgL3kgMjEgMCBSID4+CmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU5ID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuNIAqeEQWgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicM7Y0UDBQsDBT0DU0NlQwsjRWMDczUEgx5AIKgVi5XDCxHDDLzBLEMjQ3Q2LpmhlCZZFYIONyuGAG58DMy+FKAwDxtBYjCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NyA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuNIAzoMV0wplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicszC2UDBQMDQwUzA0N1IwNzZSMDE1UUgx5AIJgZi5XDDBHDDLGKgsByyLYEFkQSwjU1OoDhALosMQrg7BgsimAQDr5xgyCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIgPj4Kc3RyZWFtCnicNYyxEcAwCAN7ptAINlhg75NLRfZvQ3xOAy8dD5eiwVoNuoIjcHWp/NEjXbkpRZdjzoLhcapfSDFGPagj497HT7lfcBYSfQplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODggPj4Kc3RyZWFtCnicNYy7EcAwCEN7T8EIBouP98mlSvZvg+3QgKR394KDOkHyuBspnC5u2Vd6G4+TniYAsfRMQ+3fYEXVi1oULV9uY9BiKr4/+iQglnXyXjj0kBLeH8UXHXsKZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IDYxIC9lcXVhbCA3NiAvTAo4MCAvUCA5MSAvYnJhY2tldGxlZnQgOTMgL2JyYWNrZXRyaWdodCA5NyAvYSA5OSAvYyAvZCAvZSAxMDQgL2ggL2kgMTA4IC9sCjExMCAvbiAvbyAvcCAxMTQgL3IgL3MgL3QgL3UgL3YgL3cgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIyIDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNSAwIG9iago8PCAvTCAyNiAwIFIgL1AgMjcgMCBSIC9hIDI4IDAgUiAvYnJhY2tldGxlZnQgMjkgMCBSIC9icmFja2V0cmlnaHQgMzAgMCBSCi9jIDMxIDAgUiAvZCAzMiAwIFIgL2UgMzMgMCBSIC9laWdodCAzNCAwIFIgL2VxdWFsIDM1IDAgUiAvZm91ciAzNiAwIFIKL2ggMzcgMCBSIC9pIDM4IDAgUiAvbCAzOSAwIFIgL24gNDAgMCBSIC9vIDQxIDAgUiAvb25lIDQyIDAgUiAvcCA0MyAwIFIKL3IgNDQgMCBSIC9zIDQ1IDAgUiAvc2l4IDQ2IDAgUiAvc3BhY2UgNDcgMCBSIC90IDQ4IDAgUiAvdHdvIDQ5IDAgUgovdSA1MCAwIFIgL3YgNTEgMCBSIC93IDUyIDAgUiAvemVybyA1MyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDI0IDAgUiAvRjIgMTcgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9NMCAxMiAwIFIgL00xIDEzIDAgUiAvTTIgMTQgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwgL0JCb3ggWyAtMy41IC0zLjUgMy41IDMuNSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CQm94IFsgLTMuNSAtMy41IDMuNSAzLjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1NCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNjI3MTUyODA2KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDU1CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE0NzIwIDAwMDAwIG4gCjAwMDAwMTM2OTYgMDAwMDAgbiAKMDAwMDAxMzczOSAwMDAwMCBuIAowMDAwMDEzODM4IDAwMDAwIG4gCjAwMDAwMTM4NTkgMDAwMDAgbiAKMDAwMDAxMzg4MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyNjc3IDAwMDAwIG4gCjAwMDAwMTM5MzQgMDAwMDAgbiAKMDAwMDAxNDE5NiAwMDAwMCBuIAowMDAwMDE0NDU4IDAwMDAwIG4gCjAwMDAwMDM4NTMgMDAwMDAgbiAKMDAwMDAwMzY0NSAwMDAwMCBuIAowMDAwMDAzMzE2IDAwMDAwIG4gCjAwMDAwMDQ5MDYgMDAwMDAgbiAKMDAwMDAwMjY5OCAwMDAwMCBuIAowMDAwMDAyOTQ1IDAwMDAwIG4gCjAwMDAwMDMxMDQgMDAwMDAgbiAKMDAwMDAxMjI5NiAwMDAwMCBuIAowMDAwMDEyMDk2IDAwMDAwIG4gCjAwMDAwMTE2MjIgMDAwMDAgbiAKMDAwMDAxMzM0OSAwMDAwMCBuIAowMDAwMDA0OTU4IDAwMDAwIG4gCjAwMDAwMDUwODkgMDAwMDAgbiAKMDAwMDAwNTMyNyAwMDAwMCBuIAowMDAwMDA1NzA0IDAwMDAwIG4gCjAwMDAwMDU4NDcgMDAwMDAgbiAKMDAwMDAwNTk4NiAwMDAwMCBuIAowMDAwMDA2Mjg5IDAwMDAwIG4gCjAwMDAwMDY1ODkgMDAwMDAgbiAKMDAwMDAwNjkwNyAwMDAwMCBuIAowMDAwMDA3MzcyIDAwMDAwIG4gCjAwMDAwMDc1MTUgMDAwMDAgbiAKMDAwMDAwNzY3NyAwMDAwMCBuIAowMDAwMDA3OTEzIDAwMDAwIG4gCjAwMDAwMDgwNTMgMDAwMDAgbiAKMDAwMDAwODE3MCAwMDAwMCBuIAowMDAwMDA4NDA0IDAwMDAwIG4gCjAwMDAwMDg2OTEgMDAwMDAgbiAKMDAwMDAwODg0MyAwMDAwMCBuIAowMDAwMDA5MTUyIDAwMDAwIG4gCjAwMDAwMDkzODIgMDAwMDAgbiAKMDAwMDAwOTc4NyAwMDAwMCBuIAowMDAwMDEwMTc3IDAwMDAwIG4gCjAwMDAwMTAyNjYgMDAwMDAgbiAKMDAwMDAxMDQ3MCAwMDAwMCBuIAowMDAwMDEwNzkxIDAwMDAwIG4gCjAwMDAwMTEwMzUgMDAwMDAgbiAKMDAwMDAxMTE3OSAwMDAwMCBuIAowMDAwMDExMzM5IDAwMDAwIG4gCjAwMDAwMTQ3ODAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTUgPj4Kc3RhcnR4cmVmCjE0OTM0CiUlRU9GCg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
"