{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"nbsphinx": "hidden"
},
"source": [
"# Characterization of Discrete Systems in the Spectral Domain\n",
"\n",
"*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Phase and Group Delay\n",
"\n",
"The [phase and group delay](https://en.wikipedia.org/wiki/Group_delay_and_phase_delay) characterize the phase and delay properties of an linear time-invariant (LTI) system. Both quantify the frequency dependent delay that is imprinted on a signal when passing through a system. In many applications the delay introduced by a system should be as small as possible or within reasonable limits."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Phase Delay\n",
"\n",
"For an LTI system with transfer function $H(e^{j \\Omega})$ the phase delay in samples is defined as follows\n",
"\n",
"\\begin{equation}\n",
"t_p(\\Omega) = - \\frac{\\varphi(e^{j \\Omega})}{\\Omega}\n",
"\\end{equation}\n",
"\n",
"where $\\varphi(e^{j \\Omega}) = \\arg \\{ H(e^{j \\Omega}) \\}$ denotes the phase of the transfer function. The phase delay quantifies the delay of a single harmonic exponential signal $e^{j \\Omega k}$ with normalized frequency $\\Omega$ when passing through the system. The negative sign in the definition of the phase delay results in a positive phase delay $t_p(\\Omega) > 0$ when a signal is delayed by a system. Note, the phase delay may not be defined for $\\Omega = 0$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Example - Phase delay of second-order recursive system**\n",
"\n",
"The phase delay $t_p(\\Omega)$ for the before introduced [second-order recursive LTI system](difference_equation.ipynb#Second-Order-System) with transfer function\n",
"\n",
"\\begin{equation}\n",
"H(z) = \\frac{1}{1 - z^{-1} + \\frac{1}{2} z^{-2}}\n",
"\\end{equation}\n",
"\n",
"is computed. First the transfer function is defined"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGkAAAAzCAYAAACUlyarAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADnElEQVR4Ae2cjXETMRCFcxkKMNCB6YBQgksgQwWEDpKhAiZ0EFIBkxICFUDcgV2CcQfmex7JY+5kW74757RCO7Nzfyvd233S6qQ7u1qtVmc5SVVVb/HnAb3At2UOvr3IwQmIGeHHPbpA36FjNBvJgiTXYy7FCoRds1FvykbOs/EkY0cKSQbILSQVkgxEwADE0pMKSQYiYABi6UmFJAMRMACx9KRCkoEIGIBY5bLAynKQFlW1hqe1O23n6BT9hY9f2ZqVbEgyy0AE8DImRQRpaJNC0tAMRNy/kBQRpKFNCklDMxBx/0JSRJCGNikkDc1AxP0LSRFBGtqkkDQ0AxH3r7DJ65uuCKetmZQVBwOMmUh3+q4OvUKfDMT0H4h9YE/+uzuc1Dd0E+e5Fk7NSF/YkyeJFWytZE9x+L0ZdhzQvrCbSHfWyOkbbyGp74ieoL4GScqj6Aw1lf9PEJtkqlyPSY6QbH+VkEy0WwJZ9yQGuCV6iX6inu8t6zJTjEY5Qa+sAG6kOyvAO+JUKjeTzpN/BKfFjwmoerjmSmOO79jO6PXJf1zSF/bkSYIMffVzg5qTvrD/r+nOFOGFJAN0dU535F0NwD/RYwZiPUlquWevUPfB1yjUo9ctQXHjl8ayurzSCa5rrKvLlDrXv7+tX9g+jsG2bd9m3/vWmSQqWgLgog2IQ2U8yEN2u65TPkSCyNE64JjrrR8+umLbhTl0vjNJoUrLubgI+MaC9WtUT7F3kP+jXrqQVI/IEccEWSn+syuiIEs+Emhllxi5x/alDF1df7RbL1hIqkfkuONbgrxJqQRaczi9mHwTWc32MCGSg+Runu64wQP6iKFvGU/unP68okg4AnpbPNm6dMu+JtxRf/YBwZoDelHZ4APLpidRIGjgaxhy65zWT1vU0oRTrW4B5oNPiNidUtSLfu+7QQx2bNQDb3b5syFp340SuPYBDL4RrdMLDnVZhRDZwdRyjK9g+FazF7Z5Ldh7sUOQepAIWmo/6Bcnz6wozqgHyZHkMINLKW6GjkL4ON/AzjmNX5oLetWaZMM3M590ubQxwYnWcxuCcRIBmwhQytIkvdFDO2MPMZfaOZxXK732uNhXUIIt1ts819ZhefD341hYNVFe9wh33An7OZUkLa6V6q3xXC0S1dOUUl6jxT63Iw6betAXh00EaVxaCIu73h27ZzzVLb5qYB2hepOqyZ7y+KalDonb4fHjyWbrMXG9F+x/ATYXLr3qVP2UAAAAAElFTkSuQmCC\n",
"text/latex": [
"$\\displaystyle \\frac{1}{1 - \\frac{1}{z} + \\frac{1}{2 z^{2}}}$"
],
"text/plain": [
" 1 \n",
"────────────\n",
" 1 1 \n",
"1 - ─ + ────\n",
" z 2\n",
" 2⋅z "
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sympy as sym\n",
"sym.init_printing()\n",
"%matplotlib inline\n",
"\n",
"z = sym.symbols('z', complex=True)\n",
"W = sym.symbols('Omega', real=True)\n",
"H = 1 / (1 - z**(-1) + sym.Rational(1, 2)*z**(-2))\n",
"H"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the phase delay $t_p(\\Omega)$ is computed and plotted for illustration"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM3OS4wMiAzMzkuNzU5NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicpZpLkxTHFYX3/StqiRYU+X4sTcgiwhsHgrAXlhcEQhiCwcJY5u/7O1mV1d3TF0YRQgGayZOnbj7u49zq9sv7k1/eLm55z98vyz+Wf/L/nxe/POPv25Pjt7tTrH11gR8/zB9j7GvNvWaG3NVv/zqdfjk9+RPkzxCenbxb6xLymlIF51mlri2cRz4cI92veX/IRroY2J8atqe+ZW2sd20XK8aWkJNva+XBZYl1zSkOm+extLox9uF0esrGv5w+8a9bHjue6P0am8s1lNL9EsLa8/L67vT05fLkB1C3vPzl1NZYW3clZFgvfz49it8tL9+f/vySB7nV6Vn8N3+A/eT7N+9f/e23F68+fn589+7jb5+X7/99es5/Y/Wnmtfcsq/xcrkXg99ab2lr8LW33FP5vcsNf2y5PoY1hZBbvTrei9FvHjCX7nKOvYcQf++K/R9ccetruOcM28jNSq/W4VtZXXORNe8r1WKcFrOwmO3hITGp1+Svru9y9NtGQuLJvtaQa60XZvy1mehAYmrh6tQvRx8w0xWe2cfucrowE+6ZyUyrIaQrK+fBbxuJuay5h5xDjK5fWInTyoUnxBIV8lxEbTrh4QXjkpebS17LNuHyov969+btq4cvOq+XeeArF13KGrPwGMkSpdX9qtd7l70b4KE9NFfa2cJ56CETLaw+es8xVR92M8E04zlunC+2i51cjD1kyEe3Zs+dO5+Itc1Ssi2xqNJLdfHC0nnsQUu1ra133LD6OI+umJZC9MSUp3wchs5DD9kJoa6hJZ8y/9bdTrPtUKNSyTFe3NHF2IOWyL+ltFRCo/xsAXl2BtIQDvxYrulzm5Ts9lK1ebLcNo0kBvvJD2G38ei/I5lF3MW13oZXPvZruZpax8xfx8y0Vl9qH055PW8u+9FPj8ZMildOYZu5Jc6fvpvGnKfE+jOy7ABXV73r8QDeDSAQ8C2GLfdtwMcBcED3kvNXn/R5AHkNrvdyCbzan+S5kKvl3g2AZJN8uHrUr9N2qiWfTX/42lrfTAtkonR/RUaK8WGlJG2b2i/tW9nm03KtaGKubGZBNKye///nzfL35SOXldEmDsTn0kqo4+Fl/1Px1+pyayHm0Jcfny2Y+9+7129+fPZ0ef15kz+XmYxnNxd4fIq4Zu89yYtfmAAFiODFvXD17Nc0JRTTLYDpfS2UOpJ2cSgglNKcbgCqCOT5TgKTAKmemtK36RZwd0qekHRE71I5qJRiCNt0C2B6XV0M3pNV5W4lhX0xFnB3ynF1FT1Rl17WQpFDg4zpFsB0/KtVlxKXiI4txZX9JE3k7lQyV+iUB8naPIdS2jaCiaDduLoMGb8itRVySNr3ayIQ2Dylg2ro0Q3BpbYl3Rc2cndqRDQ5kP34oshjm/seTOTu1DEcGsWAtI7EZWNl34OJQGg4R0qcHYFFGeGOJsFC8E+X1kJqlbigwiXX004wEQikK+c7FpeAH+RQet53bUOicBwxJ6feoa2kjtTKpFgQlEDMeec8ar7oMF2bcWMhIrDGzvWgTrku1FUPk2AgIiCKYilEVKgU50BO6JNhQaIggkMnJ4xC03CJuXML2Qg4QdYZ1rJSNlxNZ8YtJEoZ+UW1jN6K1c4bNxERKunMUcsYb8o7qeXJsCBRKH4ewRRGbfUu1nRQLEgUIiuVXsdwRPOW47AMZCOQ3WMMe/2ONZ8JN4g6EbQHp+63gs+EPMPPhkQhD8Xsdo3gIn/8pFjQRsFBw3gUR8IPpZ4pt9DWIhVPltvO3ec6fdcAND1y6LGXca8F3ZKO+QYiQlpD7q314Tv0hf6oESYkChnMqZwzHhEyPbvpJSa0UVAtiaipKiAplnBm3CAi0BS4FjthU7imRpAey7IgUYhHFHJoIzRxCt+Pw7WgjVKJyKxoZofkmx7PlFtIFDJZRzvgcYXQbkoBk2JBouDKZRjPkpmlx8OIgUBIiHtcuUsf0u8kytH0LBMShYyH5MvYJufTeKlP2CkWJAp5hlRPuQpRmakgeybFgkQpK1km0dQhtZCV+RztJgQFwVBbdjizrwHJTv6b52VCoiBgvCTO6EYcFfLIWyYkncMvGfHXKKqs3Y0MvSsdCxIlSCPTRC90uY7uKM+tWIgIKtyRnLw03IkEnecJW4gINB48JnUJFYL7CEUD0HQqEJm4tYVICDXQoc/5BgKBepKrOo2iGEqlTnc3AE33a6tN11J08EGnuM83EBGidHssC6deuNEwk64BaDoVm0OjvuWEHqbozf1aiAiIUNIqLkMX1F3PZcaFhYhA7NIy1iU1MlMiNc35t4Cm02DSj8FNnEOsnPmcbyDq+Aiujg+XoYqrtP1OsBAROC4cmOMiyDg3P1WkiYjAyRGyCcNo/EhfMrdgIVsTiq5Ezi9kF5Kec4cFAxFhVN3Ux8uY2n07Nm0hIqC5ET74uBqH4ttRjS0EAuKPlIg403DxpPhpwUJE0FmQGb1W6jwqYjqGhYiABm+q5IwW+e+cfjOuybhUQ7yyrT76CD/d1EJEyMNpSaFJiQrJdxAMRAQpJJrhtqSg5qAcgWwhIqi9r2QEeQvH7I8N3AK0UQ413SlKaUmq5PRlu1OYiAjjBV4m/oLqB8J6zr8FND1LgnK6I15puFOf8w1EhKKXEiRl5QMEXGuHAQMRgdujBQpxoZt1iep8EAwEAiUiog6IIklcpx93goWIQLMd1BMvBAp1DN02CQYiAuyMA+YFJ6Ow0l9OgoGIIFXUHObQnWvh7LqfDAsSBTekF/Zq5TjJ1LTPnWJB6rAJ84JE6KM3w9XKzDE2JEpDvDjauPF2jTbczxxgQ1DQhkgqCj62m5PQ3wkGoOn8QjaUipa+wEPzvA4TEoVC112VNiTnkqyVG3eKBYmi5r7otTPPQFEludFOsSC9EKd204P7NhRVrGxvUkxIFPpRSa++NWi6tXlaJrRReolqMCUo8b4w9YYN3Y337zmkXvKQrQ75NkPKQkSgr245FzUq3JRLrGQyLGijVO6oh9EHBuR4OjNuEBGU73JtcXsTmd353k1IFHyTENCHCNRcziZPn7eQjUBfvT2IopC57Xhm3ELbpxoRiZTC6GwC5SEdN2JBG4Va6GIf48ROm1rFhkSpenUU904wZHrHYysWJAp6nYYx560VpFb46cMmJAp8vb3x23jkWI69WNBG6TG3ujWcgUdHf6bcQlAQPYUTb37bY2j00jvFhESheSoIn+0gyYdHOFqICAQN3aC6Am6Lg/dTKNiQKOQ+YmG0nFkvlcN5WRYkipQxymnrB9lhz9OJTUgUepQcW+jjhYnjDqbutCFRuC2v9nS8TUXjtHYszIKgkDOIuIRA0UJqRX9NigmJgmpPOdLTKcgD4dfmwkwIitqagsk2PoUo5OfZvtuQKPi3Og7GvT7ka+VwShOCQurH3ZRyJEjIJH6+KrUhUfAdh2TcPoahi6zzxZsN6WVvJsuWqj6K2k9DpSn7614L0geNUenfdVU0NXi9zjC2IVHQC92rd1GD1wnvKZ5sCIonG1Y2pg/iaZSwPRWsDYlCLqehgk/ZQGLNFt4CmB4y5ryKOTtF8/TZ+ZkIBMosygWziHQUepyCywI0XbkvRXxGwePolOZ6LASCSgY6O2S9MY+195lRTUQE/RLQqtJt3uNEB8FA9K5eRSnpDQAtGxtz03FNRIQq5yTXqgfjIMqsoSair3PwHG6Fo8YBqBpHnTaR4/sfl5/Kvjg9Xz4tYfnL9jWUq6913Ptg5Guf5l9/vPfi/AWUL+NLKPe/dHJnfenk9PH4hslYwvHtlcuPw63V3zN278srX7P1/PR/LisILQplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI4NTMKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzI4ID4+CnN0cmVhbQp4nDWSS47EIAxE95zCF4iEf3zOM6NZdd9/O8/QLSWxQxm7qmB4SpfHePqUXFtydPnVFnuI+5T3zVZK1GsqMYgx5adFhMQ0CY2D+rxVP81j3RUDnUts8z8CxCa12cUSxFXM+e+1x7Q6bLHexemvkHFVEK0O9Nbp1O8bux/ERbNqicyyHsIomllIVWXIYMj2CvCCP0m1H5NpKuss75QNDx2i6vAKUeagEJZaeqnWPdECP6/JsdEwthx3mPr1q3Rcre9mgUZa2+ySiho4px9/+GZCBPfK8NAb6TvWyRLlGfWCHH8SPQfFl9B7WJ5FvzKDXRa7yLNf4QMSZIhNVCnTYyI8jzAXFIbhKm0gWeUO9pQOl4cdzklURBOmVWa25EFQx5Z+/B+4wBEMSDLJZRnLa9779Grfm/VqymXJqKyO/JN9rHq1v39ufnj3CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTEyIC9wIDExNiAvdCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvcCAxNiAwIFIgL3QgMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicPVG7ccUwDOs9BUbgR/xonneXKtm/DSg5KXiAKREE5Kcs0YWfZ4jg+1nu/8gDkq1QbYQnNBWRDdPA50kRWG6kJtxe3OeEbJUj9uJcIMIQ7TwJaaQLFjsZC94XP4+rHmasuWH8vjOafVR01VEdvHsO42ZNP06U3evNrI5bm/t0764Th2tIJp/3H5yUSqeXLIM6S7iwNpoa1uO8KMZYzDj+J6qwTbK2owrB0iVIKtCAGEoSxoDFLf4iJ1oOC9qbG2nrnclOqjSKhhejDN6g9UY4inSRfJhrK4OxqZg2vvnkJTfo+2e/n69fA2ta6wplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM2ID4+CnN0cmVhbQp4nE1QS25EIQzbc4pc4EkkIQHOQ9VV5/7bscNU7SqGGH9ID+myVR7rU2J1iezypU2XyjJ5FajlT9v/UQwCbv/QyEG0t4ydYuYS1sXCJDzlNCMbJ9csH487TxtmhcbEjeOdLhlgnxYBNVuVzYE5bTo3QLqQGreqs95kUAwi6kLNB5MunKfRl4g5nqhgSncmtZAbXD7VoQNxWr0KuWOLk2/EHFmhwGHQTHHWXwHWqMmyWcggSYYhzn2je5QKjajKeSsVwg+ToRH1htWgBpW5haKp5ZL8HdoCMAW2jHXpDEqBqgDB3yqnfb8BJI1dUwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgOTcgL2EgMTAxIC9lIDEwNSAvaSAxMDggL2wgL20gL24gMTEyIC9wIDExNSAvcyBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTkgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTggMCBSID4+CmVuZG9iagoxOSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE4IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9hIDIzIDAgUiAvZSAyNCAwIFIgL2VpZ2h0IDI1IDAgUiAvZm91ciAyNiAwIFIgL2kgMjcgMCBSIC9sIDI4IDAgUgovbSAyOSAwIFIgL24gMzEgMCBSIC9vbmUgMzIgMCBSIC9wIDMzIDAgUiAvcGFyZW5sZWZ0IDM0IDAgUgovcGFyZW5yaWdodCAzNSAwIFIgL3BlcmlvZCAzNiAwIFIgL3MgMzcgMCBSIC9zaXggMzggMCBSIC9zcGFjZSAzOSAwIFIKL3RocmVlIDQwIDAgUiAvdHdvIDQxIDAgUiAvemVybyA0MiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLU9tZWdhIDIyIDAgUiAvRGVqYVZ1U2Fucy1taW51cyAzMCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA3MTExODA3NTMrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgNDQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTM0MjkgMDAwMDAgbiAKMDAwMDAxMzE3NCAwMDAwMCBuIAowMDAwMDEzMjE3IDAwMDAwIG4gCjAwMDAwMTMzMTYgMDAwMDAgbiAKMDAwMDAxMzMzNyAwMDAwMCBuIAowMDAwMDEzMzU4IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDMzMjIgMDAwMDAgbiAKMDAwMDAwNDUyNiAwMDAwMCBuIAowMDAwMDA0MzE4IDAwMDAwIG4gCjAwMDAwMDM5OTUgMDAwMDAgbiAKMDAwMDAwNTU3OSAwMDAwMCBuIAowMDAwMDAzMzQzIDAwMDAwIG4gCjAwMDAwMDM3NDQgMDAwMDAgbiAKMDAwMDAxMTg2MyAwMDAwMCBuIAowMDAwMDExNjYzIDAwMDAwIG4gCjAwMDAwMTEyMjYgMDAwMDAgbiAKMDAwMDAxMjkxNiAwMDAwMCBuIAowMDAwMDA1NjIxIDAwMDAwIG4gCjAwMDAwMDU5OTIgMDAwMDAgbiAKMDAwMDAwNjM2OSAwMDAwMCBuIAowMDAwMDA2Njg3IDAwMDAwIG4gCjAwMDAwMDcxNTIgMDAwMDAgbiAKMDAwMDAwNzMxNCAwMDAwMCBuIAowMDAwMDA3NDU0IDAwMDAwIG4gCjAwMDAwMDc1NzEgMDAwMDAgbiAKMDAwMDAwNzg5OSAwMDAwMCBuIAowMDAwMDA4MDY5IDAwMDAwIG4gCjAwMDAwMDgzMDMgMDAwMDAgbiAKMDAwMDAwODQ1NSAwMDAwMCBuIAowMDAwMDA4NzY0IDAwMDAwIG4gCjAwMDAwMDg5ODQgMDAwMDAgbiAKMDAwMDAwOTIwNiAwMDAwMCBuIAowMDAwMDA5MzI3IDAwMDAwIG4gCjAwMDAwMDk3MzIgMDAwMDAgbiAKMDAwMDAxMDEyMiAwMDAwMCBuIAowMDAwMDEwMjExIDAwMDAwIG4gCjAwMDAwMTA2MjIgMDAwMDAgbiAKMDAwMDAxMDk0MyAwMDAwMCBuIAowMDAwMDEzNDg5IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDMgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ0ID4+CnN0YXJ0eHJlZgoxMzY0MwolJUVPRgo=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
"