{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Characterization of Discrete Systems in the Time Domain\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Comunications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Impulse Response\n", "\n", "The concept of the so-called impulse response of discrete linear time-invariant (LTI) system and its connection to linear difference equations is introduced in the following." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Output Signal\n", "\n", "The response $y[k] = \\mathcal{H} \\{ x[k] \\}$ of an LTI system to an arbitrary input signal $x[k]$ is derived. By applying the [sifting-property of the discrete Dirac impulse](../discrete_signals/standard_signals.ipynb#Dirac-Impulse), the input signal can be represented as\n", "\n", "\\begin{equation}\n", "x[k] = \\sum_{\\kappa = -\\infty}^{\\infty} x[\\kappa] \\cdot \\delta[k-\\kappa]\n", "\\end{equation}\n", "\n", "The output signal of the system is given by\n", "\n", "\\begin{equation}\n", "y[k] = \\mathcal{H} \\left\\{ \\sum_{\\kappa = -\\infty}^{\\infty} x[\\kappa] \\cdot \\delta[k-\\kappa] \\right\\}\n", "\\end{equation}\n", "\n", "The summation and system response operator $\\mathcal{H}$ can be exchanged under the assumption that the system is linear\n", "\n", "\\begin{equation}\n", "y[k] = \\sum_{\\kappa = -\\infty}^{\\infty} x[\\kappa] \\cdot \\mathcal{H} \\left\\{ \\delta[k-\\kappa] \\right\\}\n", "\\end{equation}\n", "\n", "where $\\mathcal{H} \\{\\cdot\\}$ was only applied to the Dirac impulse, since $x[\\kappa]$ can be regarded as constant factor with respect to the index $k$.\n", "\n", "The response of a system to a Dirac impulse as input is termed [*impulse response*](https://en.wikipedia.org/wiki/Impulse_response). It is defined as\n", "\n", "\\begin{equation}\n", "h[k] = \\mathcal{H} \\left\\{ \\delta[k] \\right\\}\n", "\\end{equation}\n", "\n", "If the system is time-invariant, the response to a shifted Dirac impulse is $\\mathcal{H} \\left\\{ \\delta[k-\\kappa]) \\right\\} = h[k-\\kappa]$. Hence, for a discrete LTI system we finally get\n", "\n", "\\begin{equation}\n", "y[k] = \\sum_{\\kappa = -\\infty}^{\\infty} x[\\kappa] \\cdot h[k-\\kappa] = y[k] = x[k] * h[k]\n", "\\end{equation}\n", "\n", "This operation is termed as linear [*convolution*](https://en.wikipedia.org/wiki/Convolution) and commonly abbreviated by $*$. The properties of an LTI system are entirely characterized by its impulse response. The response $y[k]$ of a system to an arbitrary input signal $x[k]$ is given by the convolution of the input signal $x[k]$ with its impulse response $h[k]$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Relation to Difference Equation\n", "\n", "The impulse response $h[k] = \\mathcal{H} \\{ \\delta[k] \\}$ is the response of an LTI system to an Dirac impulse at the input. It can be derived from the coefficients of a [linear differential equation representing the LTI system](difference_equation.ipynb) by computing the output signal for the input signal $x[k] = \\delta[k]$. Introducing this into the [solution of the difference equation](difference_equation.ipynb#Computation-of-the-Output-Signal) yields\n", "\n", "\\begin{equation}\n", "h[k] = \\frac{1}{a_0} \\left( \\sum_{m=0}^{M} b_m \\; \\delta[k-m] - \\sum_{n=1}^{N} a_n \\; h[k-n] \\right)\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Finite Impulse Response\n", "\n", "Let's consider the case of a [non-recursive system](difference_equation.ipynb#Recursive-and-Non-Recursive-Systems) with $a_n = 0$ for $n > 0$. Without loss of generality it can be assumed that $a_0 = 1$, since $\\frac{1}{a_0}$ can be incorporated into the other coefficients by dividing them through $a_0$. The impulse response is given as\n", "\n", "\\begin{equation}\n", "h[k] = \\sum_{m=0}^{M} b_m \\; \\delta[k-m] = \\begin{cases} b_k & \\text{for } 0 \\leq k < M \\\\ 0 & \\text{otherwise} \\end{cases}\n", "\\end{equation}\n", "\n", "Note that the summation in above formula constitutes a convolution between the signal given by the samples $b_m$ and the Dirac impulse $\\delta[k]$. The impulse response of a non-recursive system is of finite length $M$. Its values are given by the coefficients $b_m$ of the linear difference equation characterizing the system. An impulse response of finite length is commonly termed [finite impulse response (FIR)](https://en.wikipedia.org/wiki/Finite_impulse_response). The term FIR (system) is used synonymously to non-recursive system. The former relates to the length of the impulse response and the latter to the structure of the system." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example - Moving Average**\n", "\n", "According to above findings, the impulse response of the [moving average filter](difference_equation.ipynb#Moving-Average) is given as\n", "\n", "\\begin{equation}\n", "h[k] = \\frac{1}{N} \\cdot \\text{rect}_N[k]\n", "\\end{equation}\n", "\n", "As alternative to the [solution of the difference equation illustrated before](difference_equation.ipynb#Moving-Average), the output signal $y[k] = \\mathcal{H} \\{ y[k] \\}$ is computed by convolution of the (same) input signal." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDcxMS40NjQwNjI1IDI3OC4wNjU2MjUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicxV1Nb2W3kd2/X/GWnoXYrA+yWMsYSQwEmEWSxswiyCJwnJ44aQ9sI+OZfz+nnqR3SbYkXhuGKcBw64i6PI9kVZ3iZVF0/fpC1w/XfP0a//1w/dP1z/j/X690/QL/fbhkfPfxYkRJq+Yq+Paf/bdsLeVaKhfgefz2vy6Xv13e/QqP+R6/9sXlUjhpI/xMLBUVK3i0aEmFvAgd6D97lKvhke0G3x/Qg0/d8GM3H0AbHyW17sOg8/jJpZbUMpFxT6ADNeWn/i+fY1R+uHz+/vrut3SlfH3/t0vlVJm03ZowJy/X93+9fJb/7fr+6+tv3l9ufV6IMn4iqt530qNv90JZU3HNpkqmXT80d1RqolyMbeioQxcdqSfTKjHMbl1HPHXEmRKXlvMwbz266Mg1NW+VvWSmriOZO9KalDK3YX569O2OWHPKJXu2rNpPkc4dOaVYo3Xo5wAX3bSSOAs1La16102ZuhGpybBgZJihHn27I5GcpBTFqmPnrqN67+hb/Fa+PmQsevKacs7iOazPE0wxLOXLj3homHHS2w/w++9+y089fPaPeNAFD/r9E+eXTFRb8hG78+36Z6yHq0isqbDLW7/dh2lJrD1yy4/rOZXnzr9F5zkeFDSf/oHff/frr77+y3/8649/+eb7h49//+Zf319//d8g+glVK8ncnKzneoCvkjXGgMHeqNZqZwjnn4kwESa+cG7SM+7QVymHH+Fya4SvNef8sw0y4V9ye3JP+Q6+YiqeCtYCVnuCXcbKeSQ1GcrRiYNwxYwMU9mhb3fTYFlwaE8T2n3+F7pibqkRTHiYgw59syvmgjE0e5qHbnm81NU9WPU9dRHsrY6qwJKpPQ0dHZ8H84lV8RATSSUR39qQPk/I23b/v7dVURLsw28k8mOD594/+9OtgSTPJPWx//yi7wgzo0zlvua6h/z58C7fXj/1LOySsjR+Gnl8YPz/u6+u/3n9BrTxiUpF1IieoTaevgyDa7m0xlLYr999eL3ldWj5hy+GlpfXW3734cnsYnyf1cFtBGB5+M4Kq5A4hvj67t9z2Mtza4RumASbFeXrAxw21qIhmhOtGmOkKVe1ZqyrtlBfQsXM0bgsWVCEz4IhFrZlY6gHNeg6zOi6NfxVw+BwCfG0erJg+t2z5AIzXZNGiC3m+JKyHmhLFqtIG9fl4D1QS9XhZysVXY6eQUzhM2bnuv6IHPMCe7GgvuYRrHMlRHhbsw6XDbkFN3hi9ASyAXatRW35CcmTMmbRGLL9zEfMwQIf09ePhn9hQ0t1khOTiDWdDUu1tPXgwXNgLAjyk5dDDRdasUAU6rssZxHLo1nEKvETPBDXEG/NJa8tsVIygZo1wtpbPjkcuSENKt7ykrTAL7kKHBUM/cSaFiw8cy1LE4dChaupOb7WjZMbUxUsvbWnwTirxsghsK89DVQlwhALrds+cHCGESINyOtxRmtjBE9lXreGx2NEfIN+97WFw4extFpOTDelxoTADfWythR49IyBxspTW5sskiIhN1gt6wmvhMHDvCAowhLXgwcmN9baTviw8LwsLuJIB8+EgAyHThmraclbLTkcOvJmpHFnbKs4wSG4tHVraEiryF6t6YnABSnhWh0xvyxHRCJjQ4QzWNiJ8NJiYwCRqGpbP5oTtCASBdX16ovQjMAMMbv2NLAACVEjWCTrVe0IV0ViOFZtoSMVzqs2yUsLkNDEDjVppkvGCFkl/BLc6Hr9G9QyTFCw/s84A0Fibkp+QgzWBL/BoSZoOW6esrcQmVD/XVtkZdcfq6P5+jtMQ7n+cFb9QicjJfyfv3/51R+++Pz65ffd/lifAh7oIYojk/njFo4WPg7ar2f4jHGslgoTLhv5QSmDDCT1wPCOMniQVSXZyNHh+WsrY6p/oIzUFd4Hi30fxyYJvxM7JD3HA2W4vYysvNpGjrEJY4KUb+B4oFZSRaondR9HZ+hFZIRt4NihjofBcyN07OMYvtgQeUeOHYqYj6xcNnJEGoQUhyO89SR7GFrD2DezRFaPpzNPLA8YYd0jM9m4JrtXJAPLDobwZaxJ30myoHGDOp5IHjAj+65ID3ZOOJJ6b+K5TCwPOMNRFm1lY9CGAI8tIZLRm3dwg9iEwtvKEVqMwlePFJ/RYFiplo3aAgOFBzoajBwPuMGCMkT4To4tIRMJ6TtyPOAMuSZkeWPkDl8dex06efMDtnitJqQ73SRS3VDbRhPJO+zxejJT3UmyRNKVY5NkIHnALWZesu+07eNV+UjyDkOgQ2HktpNkzQna1idZ3sMwoookm3faN9JBkkptUhg9DCZSeeuqrJ5qIZ0s50Dj5ZzGq56NHLHm4vXlJM07mCGIqnndGroNa65Rm8R5D9cWMHnbyBKJIXls5o8sD5izhq8Mh7SRpSWDauRpWR4wxws/aWVnVktIDhm/M6vzA2ZFXhvv3reyrAmC0WZ5fsCssHausjMf645O9Sw7mIUStVJk41hyLslMsAInlnc4dlucnXcOZZyHabExP3C8o5zhkQiJzkYD53hPDv09CfQejh0sF8kb0whGcijUnOahPGBvsUlZEc33sUR23USRe40sO9jjmBy3nVsZcYpI1GXS6D3sCitS+PeNLGG+rWqZRHoPI57H+/u6UWrE1riYt0ml9zAEcGxj5Z0zrgQLLrmMqWMPs0b/cW5oI8v7UdqR5R2GiedsajsdUcmIKqVMtnNH441Ei0N+OymW2+GFSaR3cFWgeeerEi4OP1iQJ0wcD5ig3YDu3F9jDBQyLpokegdHdgYdvDGN4BpnNqtOAr2Da7yw1Z0vGNkklUx1kucdXFpid9/KEc4FeaFNCuOAPazGJe+c7MapIOnKkyM/4Fri+H4cHNlI0lJWk1maH7BbQr7oeadUu9dTDBwPNHZ8kXmXnU4yaiaQFrZJXHSwaCpNtzogRJJUYBY0uvIelhrv5m2nNEf2EodleZLmPawIOBBtO+0b/iUOoekkzXvYovTMduo0QWoIVVt91Bc9DAMn0rp1KOM8XxHnOrG8w7G9Vqhh3jeyRGpI1WlS5h3MceRXiHZmjMKWaou38RPLO8x0O6XnO/cIJE4Vutc8qowO5ttpu6iS/DlYNqyiG08BS/QYhRRxjiu+ubFX5AMnD6y9yP3OMXrNn9SNjs/99HN8fLkgFc98qar142tVrWj/0rNfroztG/eFRa8/+16B+7vrY6UvhvapuveCbCVFuUIbeBoiiz3W93Y9d2jfQ/eIn1aVq1FUoMWy9Bx69O0ySSWInVqfapBeLczFKo9tfx8/ao8uukHm1OB9c4GhvFWYW2K7vmQubVgpHfp2RwVe0xEkm3B+szC3lJriiTLUsfbooiPk1FCyVOPF8VuFuRjb2NpvNMxQjy46ilfSXsKP+ZuFuVVrnCXNPsxRjy5KtBXeTOPoepM3S3Ph+fEjlzrMUY8uOmqwtlt5EvTMsjS3FEpx2vyxRu+nlua+bKsar7Am9KXyUTFIRFX4h/Ayv2CZbkd7KNQ9eL9dqjsQ/6VLdjvyY9HuwX5RtjvQ/8XLd3v+XTDs6ffB8KUi9Kap3eIKrwt5++6GUt6uv1Ux79jhiZLePgANRb1Hp8uy3qHTM8W9L0a9sc9Fge/Y5ZkyX7i0bimdrPT9v1+60jfk1DE6Z2Xf6drcoeX1LfF6OdlyqPc9ZMdtkOPOj1LFDGHyqYSFXi3baCkjehRSfy5heautNstx+P+5RPP1tkhNqRVXrtpWbS15LFzkr0yrtlhAAm8KeZ2XzxWs1YZBoTWFsG9Mccv+XDP7etuHONxrsezcluP7EAWUGGCRlpcfLkpEHYFXBOPm69Y5NFc25P2yZo1nl1hbJZz1ujUiAMP8ogDvRGtNsBt4PADrIfGo1+a4xyWvP2ScWr0d+mVaLroHiOrbPqfac8HSG43BGaYktXBb09AowJbK0N3LxYTGhPkjmKvZqjHcJhY0JFldjzP0G6RrvIHV5cfD/FWDdI0kY8kBHgPB7SYNlw9ukGGQ6tlOeAysUGQfLXTSeoyxQDlDnDOk/XIRRaWlFoUruNebvdEY+RLiKEuUVJ14chwBQ8jKvKQRhehVWstNl21jTxHCG9+u/ZEkxdQRhm354R7iBE7mKBdcrwqOO7BquGZbPxjuJT5dXAaxbhwFa4LFxm29hG4Vp5AOXhG+T3gXTgWRjzzerZ1wc0K3SwoanWhdkOAqsuOGsT7j5iKmgoy0M86I4OFAhc6MCKcW79wz1seJoIIw2EqjyOpP0BaYt8HA2XztvBDlYyMUkmntFQ2T/nhNwVppPHBIAviumPd1PIaP48iKeTmJ8Iqc4Wvj7oi11IAHx+onOiM13K1IbOgt1ygWdGlhsBnC/4S7xaJwx2+svQbWHKJOLP7C62AC+y5RNtzW8S8ebBHg8fnOPFigYzjCSd/4p0rn+47pWcH7yY5pt9c2ZIkdfBfCx57pHqYlskeXKZ/tYMuhRYbj8FuYCrJjizsJRqYdHNUkkJtadjONGwfjxdLE9IAb0udiLtvH1BH3EXJ1YnrAXlOT2z2De5mq3FyNji8hethBupasu4m2RBJlVyPPZ5QzR81gtt0DWsIB4bET0QPmjKQMwch3L9ISYsXimSPTOxxjWlwiBu1lWinVhl+a3P4BQwuE4ccFVZuZ3t/SjEwPuNXkSDJ2E43oQ8J5fHPfwxZ7cUifZDfTuJ6ozaWtPYyYj6SQ8+5lan67/mm636OHFWNqcUpnM9MoB8aPffL6HRyFHbEPu9udIqLH+XOa1EkHQ/zFnXBeNzPF07lBJU2Ov4MhqI3wtZuoIRXR20WkA9EDznHhi1fbvEwhj+JKsDbJ/R6G38+tIkvZzfRRzs1En1EvCeOJbGozzePd/sDzgJ2Q3bvudvrIQlOLd/Z1InqHHbbkrrutvnDsdkJ1jj6/gz1qaSwKYjcTjcvN44rXiegBh9WTxmuFzUw9aZxy84npAZMlLbD63UxFknOVSev3MIfwq95225PELZZUJ63fw1JTbHHW3WOqcUSltjJKkx6OvwfgWXdnpEWxCm1W0B1aI4qWtp1nobgdQmaiHRwXr/h4dnwP0/uJsJHpAXtNlWBZu+0JqWecvJikfgczYj/WqGy3p1qiICSueRqZ3uGo2o8rqdvudYrcM4PHJPU7OCqRq0JN7w76pqlU0UnqdzDHGynn4rstCrlnNgjkye8fMIekKkigNhNtEltNUQg0ED3gmHwnrbzb9JF6Uo6Lwkeiz2iYUy23MyV7eXr8GSCVWesfcGyaOYvV3XMfNSJxi/nk9js4bqWs6rp5h6c7Sdwz7WGLMwpGujnJrwg/ZDlPcn+APVW4qN1bpjWuCYKum+R+D2uJy+uINjvTSuXxEh6bmB5w3BPn2xVfJShkKvEXOkaiB8zgPFTPb+HJcUl39knr93C8Nq9Ud+dPleMEVKU2EX1G3RPiE+/2pPV2hTTpJPU72PGA7dOOfuJmXCkTyzscUT9D8u02+KgD9Th3OhI9YCROzfNwO+AeovfCk5HoHW7Q+Ij6ulmUVCSdwiyTxu/ghgRPVfPu+BmXxaOb6cKmDva4zFtCnewlWuNv792O4A5EDzhOGiB68u41GtshteVJ4fcwWKmW7Zv5td5ubuHJ6g+UcwRPk91r1OI2rhZ/HWcg2sESg+tl94BaS0oCOTcRPWA1OADaP6Qtboprc3bXw5WSu+9XJC2MRedLQnvYNM7vcf7ZouhR5nz9EWXOrxzae/ED/Kg659fqDF8s88VzX6oW/vhatTDa/5ia47F5X2n1+vN/f/l/5OISOgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjQzMjkKZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODcgPj4Kc3RyZWFtCnicNY3BDcAwCAP/mcIjxBAg2afqq93/W0jUj32yjLFY6FBLcQrCOy42Tt34NolDT2YBZSSNZbBRVCeHxCdkWpKxFrPFvp0REK8OxXaix/4nT7s/uE4ZxAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzkgPj4Kc3RyZWFtCnicPY+xDcUwCER7prgFkAAbG8+T6Ff++7fBcZIC8XSgO/BhELDVLOloUuC141SyGmAX/MmkgdUE2i2hFWhdSigOWjrrCETbFvXpB32uk3jkUrGkai+1viliuTv0jtFtWsCjZ072rtDm4HJPRkEmTspT1qGTNH02mQfUIsllPNr70Pz+mfS7ALu8LdsKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE3IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA3IC9rIDEyMCAveCAveSBdIC9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTUgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNyAwIG9iago8PCAvayAxOCAwIFIgL3ggMTkgMCBSIC95IDIwIDAgUiA+PgplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4UoDAPG0FiMKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY3ID4+CnN0cmVhbQp4nDO2NFAwULA0V9A1NDZUMDYwUTA3M1BIMeSCMXPBLLBsDhdMHYRlBmIYGZogscyAxoEl4QyQGTlw03K40gDOgxXTCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyNCAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDkxIC9icmFja2V0bGVmdCA5MwovYnJhY2tldHJpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMiAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMSAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjEgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjQgMCBvYmoKPDwgL2JyYWNrZXRsZWZ0IDI1IDAgUiAvYnJhY2tldHJpZ2h0IDI2IDAgUiAvZml2ZSAyNyAwIFIgL2ZvdXIgMjggMCBSCi9vbmUgMzAgMCBSIC9wZXJpb2QgMzEgMCBSIC9zaXggMzIgMCBSIC90aHJlZSAzMyAwIFIgL3R3byAzNCAwIFIKL3plcm8gMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMyAwIFIgL0YyIDE2IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAyOSAwIFIgL00wIDEyIDAgUiAvTTEgMTMgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwgL0JCb3ggWyAtMy41IC0zLjUgMy41IDMuNSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM2IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA3MDQxMTQ1MjUrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgMzcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTIxODcgMDAwMDAgbiAKMDAwMDAxMTQxMSAwMDAwMCBuIAowMDAwMDExNDU0IDAwMDAwIG4gCjAwMDAwMTE1NTMgMDAwMDAgbiAKMDAwMDAxMTU3NCAwMDAwMCBuIAowMDAwMDExNTk1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDQwMCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDQ4MDQgMDAwMDAgbiAKMDAwMDAxMTY2MyAwMDAwMCBuIAowMDAwMDExOTI1IDAwMDAwIG4gCjAwMDAwMDU4OTQgMDAwMDAgbiAKMDAwMDAwNTY4NiAwMDAwMCBuIAowMDAwMDA1MzYwIDAwMDAwIG4gCjAwMDAwMDY5NDcgMDAwMDAgbiAKMDAwMDAwNDgyNSAwMDAwMCBuIAowMDAwMDA0OTg0IDAwMDAwIG4gCjAwMDAwMDUxNDggMDAwMDAgbiAKMDAwMDAxMDE5MSAwMDAwMCBuIAowMDAwMDA5OTkxIDAwMDAwIG4gCjAwMDAwMDk2MTEgMDAwMDAgbiAKMDAwMDAxMTI0NCAwMDAwMCBuIAowMDAwMDA2OTk5IDAwMDAwIG4gCjAwMDAwMDcxNDIgMDAwMDAgbiAKMDAwMDAwNzI4MSAwMDAwMCBuIAowMDAwMDA3NjAxIDAwMDAwIG4gCjAwMDAwMDc3NjMgMDAwMDAgbiAKMDAwMDAwNzkzMyAwMDAwMCBuIAowMDAwMDA4MDg1IDAwMDAwIG4gCjAwMDAwMDgyMDYgMDAwMDAgbiAKMDAwMDAwODU5NiAwMDAwMCBuIAowMDAwMDA5MDA3IDAwMDAwIG4gCjAwMDAwMDkzMjggMDAwMDAgbiAKMDAwMDAxMjI0NyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM2IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNyA+PgpzdGFydHhyZWYKMTI0MDEKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from scipy import signal\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "\n", "def rect(k, N):\n", " return np.where((k >= 0) & (k < N), 1.0, 0.0)\n", "\n", "\n", "np.random.seed(seed=0)\n", "\n", "N = 10\n", "\n", "k = np.arange(0, 60)\n", "h = 1/N * rect(k, N)\n", "x = np.cos(2*np.pi/30 * k) + .2 * np.random.normal(size=(len(k)))\n", "y = np.convolve(x, h)\n", "\n", "plt.figure(figsize=(10, 4))\n", "plt.subplot(121)\n", "plt.stem(k, x)\n", "plt.xlabel('$k$')\n", "plt.ylabel(r'$x[k]$')\n", "plt.ylim([-1.5, 1.5])\n", "\n", "plt.subplot(122)\n", "plt.stem(k, y[0:len(x)])\n", "plt.xlabel('$k$')\n", "plt.ylabel('$y[k]$')\n", "plt.ylim([-1.5, 1.5])\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Compare above output signal $y[k]$ derived by convolution with the output signal derived by [solution of the difference equation](difference_equation.ipynb#Moving-Average)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Infinite Impulse Response\n", "\n", "Now the general case of a [recursive system](difference_equation.ipynb#Recursive-and-Non-Recursive-Systems) is regarded. By inspection of above formula for the computation of the impulse response from the coefficients of a linear difference equation it becomes clear that the impulse response $h[k]$ for time-instant $k$ depends on the impulse response of past time instants $k-1, \\dots, k-N+1$. This feedback generally results in an impulse response of infinite length. Such an impulse response is commonly termed as [infinite impulse response (IIR)](https://en.wikipedia.org/wiki/Infinite_impulse_response). The term IIR (system) is used synonymously to recursive system. The former relates to the length of the impulse response and the latter to the structure of the system.\n", "\n", "For a finite-length input signal $x[k]$ the output signal of a recursive system cannot be computed by a linear convolution $y[k] = x[k] * h[k]$ in practice. This is due to the infinite length of its impulse response. As practical solution, the impulse response is often truncated to a finite length after its has decayed reasonably." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "The impulse response $h[k]$ of the previously introduced [second-order recursive LTI system](difference_equation.ipynb#Second-Order-System) with the difference equation\n", "\n", "\\begin{equation}\n", "y[k] - y[k-1] + \\frac{1}{2} y[k-2] = x[k]\n", "\\end{equation}\n", "\n", "is derived by solution of the difference equation for a Dirac impulse as input signal. As can be deduced from its difference equation, the second-order recursive system has an IIR. Its first 256 samples are computed and plotted in the following. Note, less samples have been shown for ease of illustration." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 25, -0.5, 1.2]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQwNy4yIDIxNC41NjM3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJztnUtv1EgUhff+FbVkFqlU3XovQQyRRpoFEM0sEAuUQCBDGEHE8Pfn2G1wle1uUCeKNydSlO7T5fudKt9bj87CVl13Vl0po67x+029Uq/x91JZdYbfq87g3U3nTdKCVx/HV2K9DtGlAMU079533bvu9DEuvUX7s64LWWdvogTlkg6+b3XTueJ0nKkfa1WM03kMOUWo1REkO9AVzKIDOlddAL7/ZN1BJXptRgPdE4zFt+7JuTp9ZpU16vxdF4KO0ZS+gYguQZ1fdo/Mb+r8Wv1+3g3EzkrQ2cwRtXqYYRE5yhwSZpAiOsUFpFJ/AslRe2OlRthZRyQUnWTOqNXDDAlOuzhjzPrhJOqYFxlRqYcZTox20jJk1o+1/Gqz7ieMjCzPM8aPfnzGBUadGOSciNOyC1m0pOGSixsE6wtH7z7AxafPZIz86J8+Socoz0ev6+kZtFvUx+i0xlsUo3M6+ZjTSK66kbVLuQxhzC5vdTDf+Z/BN32k3un4AgFOn769fvPX15dvPt2e3Hz49PVWPf0XXpduo2hjJCTf2J3UvX4RQkyIJQcp/lc870b+Pjz3JRCtK6nxPKl7srrogNHNKNLog8B8zqM1M0u8CWWt0UWMiG1YlXwQZjHPWnHOB8CkGYhVmgMhFePbu1HJh2nO6pDFxmJtik2qrNIwIWTcpphb2iQfpoWI6jOlSPTJjrS0v2/ZaykR3lraJB+mZRRiKdlGdG2ckqr7hpRCYp70uWQDhtz2hdTfpWRc+lkxvx8SM2rX5uzk4dGroYXTxVgX0xDcrM4IQadiDYZmJcjrac74rFbmC6QJxsxGGBH15a36W32CYfQlxBylRyLBx5/U9V3rk8qh/tSXq/0tVdPyxVnTstvf8svVWPP9yK7dx+FGXNyo0z9NX6nfm1osHkWGkt7z0YnPuuBqP9DuoZ147b/79kdZsqIF19qBdudmUVu7My3H2Tlx2oQ0dMfK3ZthWpAch4GMR/lBYkTvXD/C7u6t3DRHHTU4SGAUWR4m1ftoZkoIXiQdmTsI4FNKdlh77t5KXM4BC2s5dnCMtcVjF+PrCFhH1S/POqL+UMgZ7MJ/ca7ArILV+78PF29fnD1RF7f7Fuu11QDT/suHNZdQxdipzsxN6qbmMk4q4ufmJrXdDDywuVKQXXFubk19eG8Wk7M3eW6ukptd7UO7m46RjbtJ3tSdK5gsFyVRyQkl4Sx2+1u4C4J97aImVuUN3MWgS1oURSXjcB9StMZt4S4VnOWXVTHJm7qbvvdo3FUytv/DfvvhzYnBPi4simJV3sCdxcj4RVHUstfFSZItVjGspIAviqKWt3Tn+3iLoqhlrLcFIcoW7qYv6hp3a/IG7pLD6WZZFY2cvQsxbuEO8GCWVdHI27nDTimXZVU0cgzis2zgzuEIIXlRFavyBu6mr5Ybd43sYsDZaQt3HueutKiKVt7OXXBovKiKmWxdlC2qAuuBzmFRFavyBu6y0SjIhbtWzkHyFhuo6p8hjbtW3spd/29Gszxpz+QE+AbmyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPPPLII4888sgjjzzyyCOPvGN42ZUd0YFnw/hA3/6pyaMPH+ySN4HaZ5lkLWsPqOmBRl2r4TnY6pV6jXeXe0P+8F4/JFWM0zCZxkcG1Q++n5pX6qz9avS1ILPWU5hD0Z93/wO0qfdPCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTM1NgplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODcgPj4Kc3RyZWFtCnicNY3BDcAwCAP/mcIjxBAg2afqq93/W0jUj32yjLFY6FBLcQrCOy42Tt34NolDT2YBZSSNZbBRVCeHxCdkWpKxFrPFvp0REK8OxXaix/4nT7s/uE4ZxAplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMDQgL2ggMTA3IC9rIF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9oIDE3IDAgUiAvayAxOCAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicM7Y0UDBQsDBT0DU0NlQwsjRWMDczUEgx5AIKgVi5XDCxHDDLzBLEMjQ3Q2LpmhlCZZFYIONyuGAG58DMy+FKAwDxtBYjCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NyA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuNIAzoMV0wplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgutIAcvgSkQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUzIC9maXZlIDU1IC9zZXZlbiA5MSAvYnJhY2tldGxlZnQgOTMKL2JyYWNrZXRyaWdodCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9icmFja2V0bGVmdCAyMyAwIFIgL2JyYWNrZXRyaWdodCAyNCAwIFIgL2ZpdmUgMjUgMCBSIC9vbmUgMjcgMCBSCi9wZXJpb2QgMjggMCBSIC9zZXZlbiAyOSAwIFIgL3R3byAzMCAwIFIgL3plcm8gMzEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAyNiAwIFIgL00wIDEyIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JCb3ggWyAtMy41IC0zLjUgMy41IDMuNSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMyIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA3MDQxMTQ1MjUrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgMzMKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDc5NzggMDAwMDAgbiAKMDAwMDAwNzQ3NSAwMDAwMCBuIAowMDAwMDA3NTE4IDAwMDAwIG4gCjAwMDAwMDc2MTcgMDAwMDAgbiAKMDAwMDAwNzYzOCAwMDAwMCBuIAowMDAwMDA3NjU5IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5MyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE4MjQgMDAwMDAgbiAKMDAwMDAwNzcxNiAwMDAwMCBuIAowMDAwMDAyODIxIDAwMDAwIG4gCjAwMDAwMDI2MTMgMDAwMDAgbiAKMDAwMDAwMjI5MCAwMDAwMCBuIAowMDAwMDAzODc0IDAwMDAwIG4gCjAwMDAwMDE4NDUgMDAwMDAgbiAKMDAwMDAwMjEzMSAwMDAwMCBuIAowMDAwMDA2MjgwIDAwMDAwIG4gCjAwMDAwMDYwODAgMDAwMDAgbiAKMDAwMDAwNTcwNSAwMDAwMCBuIAowMDAwMDA3MzMzIDAwMDAwIG4gCjAwMDAwMDM5MTYgMDAwMDAgbiAKMDAwMDAwNDA1OSAwMDAwMCBuIAowMDAwMDA0MTk4IDAwMDAwIG4gCjAwMDAwMDQ1MTggMDAwMDAgbiAKMDAwMDAwNDY4OCAwMDAwMCBuIAowMDAwMDA0ODQwIDAwMDAwIG4gCjAwMDAwMDQ5NjEgMDAwMDAgbiAKMDAwMDAwNTEwMSAwMDAwMCBuIAowMDAwMDA1NDIyIDAwMDAwIG4gCjAwMDAwMDgwMzggMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzMgPj4Kc3RhcnR4cmVmCjgxOTIKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def dirac(k):\n", " return np.where(k == 0, 1.0, 0.0)\n", "\n", "\n", "a = [1.0, -1.0, 1/2]\n", "b = [1.0]\n", "\n", "k = np.arange(256)\n", "x = dirac(k)\n", "h = signal.lfilter(b, a, x)\n", "\n", "plt.figure(figsize=(6, 3))\n", "plt.stem(k, h)\n", "plt.xlabel('$k$')\n", "plt.ylabel(r'$h[k]$')\n", "plt.axis([0, 25, -.5, 1.2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to illustrate the amplitude decay of the impulse response over a wider range, its magnitude $A[k]$ is plotted in [decibel (dB)](https://en.wikipedia.org/wiki/Decibel)\n", "\n", "\\begin{equation}\n", "A[k] = 20 \\cdot \\log_{10} ( |h[k]| ) \\quad \\text{in dB}\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYyNS4zNTMxMjUgMjcwLjMwMDYyNSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJztXU2PHLcRvc+vmKNyEMUiq4rk0YJjAQFyiCMkB8MHQ/5UvApswfElPz7F2dV2zbLWu5nEmrfAGJCleTNdfPP6o4o9fNW0f7uj/Xf7vH9rf37df7H/0v7+ek/7V/bnu122V1c7LZKqVCpiL3/0L0vLqeZsiOH5+OX3u923uxefWJj3ttmr3U406fVmtSXh2mTGJl7QHz1aZFjMa3iL4NHDQD/tg/AifV8Kpab7n7/Z/33/bv/ikzL5lP2f7PvZd059+9a7nHRkGppbZxPgxaff/OuHN998/url/s37mH1MaPfX3V/2P30YK5u+y1hTkfnOQ2Erp3yjye6l7apfdy9f7198RnvK+9ff7qQmbvXwgVLSkP3rr3fP8h/2r9/u//j6QOJ3VoVUU1buw9PfwFNVeSDsA6qQjdqyCLH9fzhl5GNKU5rYzlEV9l/CoaeK82DgB+QpKmnY24MGUXfyUP6Y+tTOqffOdLSTHXqqPg8GfkAfeydVHlVUyb6o0+ejHj88eF5MqR/tZoeeqs+DgR/Qh03JpkSFaqn+wlM+6vGjuaZGNPhoNzv0VH0eDPzQRdmUpFZ611wGe3224+cn2yzvn2ejUWv5oNNIpfX5jzdXFnJm38SHbGpbv/is3MR/9o8ZZTdV/hg6/xdp+39PfDXRGvVaYyeZSVpMt9RYe7tRy+2Anmrr4yBcPgjfrw/M3UH4nPIMNMW9+Ydtb1/57Vd/++WvX717//zqh3e/vN9/+s8p78cV2C7MRReBb9FTBXZhN4F91FhgpcT6OIHbExF42LnYF4Fv0VMFdmE3gX3UWOA+EvXHCaxPRGAq2UqvReENPlViH3jT+ChuLDKRJlPyUSrLU1GZe+KyqnwLn6yyC+xU9nHvUZmNRXmcyvxUVG6aaM13G3yyyi6wU9nHvUflVqwyfZzK9YmoXKyu6mvS2+BTVfaBN5WP4sYqWxlr88zHqVyeisqVkqyZb4NPVtkFdir7uPeoXFpqj8x+9FRUvp1xXN13C+tElV1gp7KPG03UairjcG9IJMl1Djy6QWRi2vDPp4ok8/pi6fT6Qr9NQKocQhxmIB8CP/v3YXfUVHUQbzvKzVG+P3xCUz3elS7GFzcxTNiqjSa5u0GuJzqS2qBMEgX58p4g9zF8tr/BqfVG+fDVrt/44fBGSa31ahcJut3iXfxN7o/09YcNuOlG+tnL02dtOdlkW7RrmYPMqvz6v7ab5Y/0bvPwMvY/Xx9M5A+l+7bcH235+avdIz/583c3Z/I8cqID9M3V/sWf8zz9PnyqWJV7vTXT4Wz9zQ88p2TXXtvhZWjwWbZrg/I1oYc+exn4MvBl4MvAl4EvA18Gvgx8Gfgy8GXgy8CXgS8DXwa+DHwZ+DLwZeDLwJeBLwNfBr4MfBn4MvBl4MvAl4F/t4FPX5BBSY4WZDzyd+1HrdX4TRvPGcn21JmqHnNdQQCqSsn2tAy9swZmQ1vSyp0hyNZUqPVKR2TPT0vmav+sdzR0qKShMmxbBBFtvME1H4voUSi2I7VepLZjtg7lVEbLBMG2UTIurRWsA7RxIhk5H4vo0ZK0dMoYIh5WYBWux2wdCsW2J6nCrR+zdWhOY1r2INh2e7vURhXrAO0ljbveryuP8rCzPJfeIUSURHedfFcexWLbUrnry7zyKFuGL1QbBtuxumwBDtAxq+JjY/SVA9lSphRWCAlHTX0tlR2KxVZTXmrlDWRL772KNAiuPZW1WD47LbvsJF7rYg+zpUximzEiyGhzy6RrwexhML6c2loye5gtybO0CsJX01iLZgBeI9FaHnu4Tie19qIQOhJNF8XdutnDYHyrDbhUzh42SprbIBC+ktpaOwPwammsVbKH6+zEYYcAho7FtlzLZw+D8S1rK4yrI7ha2m85DxC+nHgtoQF42dBrsezh2aIiE3WIe41UeupLFe1QLLaVUl7raA9Xy/q1FIw7uVRrKkslDUBLEq9Fs4fLmB0tqoLIaCkyKKYdDMZ3pB4U0w4uh3u7LBD38IkpjbWYBuDFidai2cPFkmgRYRAdNdWgmHYwGN+eJCimHWxptohqxeAr9v5aTAPwKpZ0lqLZw1ZHSbcjoGLoKLblWkw7GIxvSzUoph1sdfWg3gmE70iyFtPn56WUdC2aPUyWR3mMjKGj1tSDYtrBYHzXXp1HHTxttio9jwHCttu1fSmmz8+r2YeXotmhZDnUJtK9QKjY5i+fay3tYDC+nHpQSzuYLOdztW+AwbelvNbSALxGouAGtIPJcmjjohg6dko1qKUdDMa3Gpu1lnYwWc63ab8QBl9Jba2lAXi1NIIb0A7OlkOr2sUVQsdhWwa1tIPB+JZUg1rawdkoaTN6GHw5yVpLA/BSe3+9Ae3gLKkPCwyiY197a18dwVB8S6aU11raw5nnT+kNhG5NZSmlAWhJ4rVm9nC2LKoZYh3HvPLoUkk7FIrrSH2toz2cs51P1CEW7c1iKQOuez4U72u57GAalj7neQ6io6a6ltEORuPbbQq/lNEOpmGUhLNi8J1NnQGXP5dDJ/+lXHYwDUufXUhAdJREaxntYDS+LdW1jHbwLATtNCuMcfkvIwngKujZfHd5BMaVh2elb4LWiqFjnf1blzLawWh8NeW1jHbwnPn11rmA8O1zdRncYui52pGXenlDrWyyAmAIYajIt49pOaZ7C6Px5cA9uKHzbspM+Rlirel0DwQGQgBeI/IKOnjeROuNdGDoKBSZCB2MxrdGNkIH2/XfzqrSOghfiYyEALxaZBl0MHXLoZZBG8RayKI58hI6GI1vidyEDqae5/rDoSB8OfITAvDSyDno4OtfozQLiI49shQ6GIxvo8hU6OD546TYa4ZYdlhajWyFALyCx3QePWST7J9d5vYYOrbAWbihaGxH5C108Pxt3+rpWjD4Wi5a3YUAtDgyEjp4LumQYtRBZNTIYOhgNL49Mhg6eK7wmffPMsRa0zJyZDAE4FUiI6GDbTpyWB49QHSUyGDoYDS+LTIYOphmXxa7fmH03yljRAbDs/OyEycyEjqY1NIoc2sQqyGNYGQwdDAaX40Mhg4mnY9Olq4gfHtkMDw/L8qRkdDBZPNSyToEQ0cqkcHQwWh8OTAYbiipZf3aM4OwbZHBEIDXCIyEGzodB5ZHqUKs3aw2ROAvdDAa3xr5Cx08rSaScykgfCXyFwLwapGP0MHTYmR6GjsIHWuO/IUORuNbIn+hg0ks52vhDLGIr1aO/IUAvDTyETp4Wvd4VB4gOvbIX+hgML5Mkb/QwdPJ2QtLB+FbI38hAC+JfIQOJrY8KqIQv+fV2bUuKKU3GIzuiNyFDiZjzl0xfjUzNDAXAtDiyEXoYLLDdVrLIG5DVht6NRduKBjZHnkLHXxohWDHBMStqDqncoBroqvWyELoYGJLn93qe4i1m1UlshY6GI1vi6yFDiaeR8a8L4XBd0TWwvPzahRZCB08O8jYvi8YbZZrq5G10MFofDWyFjp4dhTiVsuAWHVYW4+shefn1XNkIXTw7CQ1b+lhdFu2i1BkLXQwGl+OrIUOJptY3xyyEHxbZC0E4DUCD+GGUi0zmGA0Xa6DImuhg9H41sBcuKFU5w/oTTHaRNfpzgFcE11Hj3yEDqZiObT0htF3mXOO/IUORuNbIn+hg6lYzpfRMfpEc+bIXwjASyMfoYONlZ3veWD0XebcI3+hg8H4EkX+QgfPjrdkpTRGn2i7xEf+QgBeEvkIHTxbGs+EitF3malF/kIHo/Edkb/QwbPFdZtVKsQtNJt8Rv5CAF4c+QgdbHs/EUnBuBXJRQN/4Yaise2Rv9DBs3E8s04cga/Vyqu/EIBWjYyEDj48LqA1xui7zDaNDwyGDkbj2yKDoYOJLOnnLhh9ormOyGB4fl5MkZHQwUSWROtQjL7LzDUyGDoYja9GBkMHE123GcHoE83cI4Ph+XlJjoyEDj48d8fKKIy+yywlMhg6GI0vRwZDB1O2S2stA6NPNEuLDIYAvEZkJHQwZcujyhmj7zIrRQZDB6PxrYHBcEPnU8zykDwgVh3y9D0Arolm7YGRcEPns+tsgkIYfZe55chf6GA0viXyFzp4PsuwSSsYfaK5ceQvBOClkY/QwWPMOxQVo+2yFSGRvdDBWHQ7Re5CBw9L+Jb6MZpEc6+RuRCAl0QmQgeP2d06C0bPZe4t8hY6GIzuiKyFDh6W7zspRodoHiVyFgLw4shB6OAxcxNKPhoa+QodjMW2R65CB087PFeM9fqSc+ApBKBVI/Ogg+2Mz40hFsPZ1TFwFG4oFNUW2Qkd3OcNUxkgbEdkJjw/L6LINOjg+QSL6SPDkJFq5CV0MBhdjayEDu6W49WSPAjdHjkJz8+r5Mgx6OA+F+6MgtFlWUqJjIQOBqPLkY/Qwd0CGIzRE1pKi2yEALxGZBd0cLPkqcQYLZZt1MhF6GAwujVyETq4NTunimA0hJa5dBxw8bPUHtgFN7TJ/A3HChUIETlHJkIHg9EtgYlwQ5ulerucYnSDFubIRAjASyO3oIOb5c4uDaO5svCITIQOxqIrFHkIHdwsANkVFYRujSyEALwksgo6WG3/8/Q5YMjYIgehg8HojshA6OBpIW0jY/SBFi2RfxCAF0c+QQerZU/KhNFWWVQj+6CDwej2yD3oYNM5MxWMJtAyu6gCLniWViOToINn+3er8TC6KosVnKt3cEPByLbIOuhgnQEqFxC6I3AOnp9Wp8gi6GBDTUQhiEWOMm8oBvXzBoPR1cg46GArUqqKYrR/tnci3+D5eY0c+QMdbKWpDlWMljAySmQbdDAYXY5cgw4WO7tKaxi9n2W0yDQIwGtE5kAHi6VP2x6jlbJmijyDDgajWyPLoIMlJ+1jYDR+1iyRYxCAV4+cgQ6et3YKZYw+yko5Mgw6GIxuCfyCG8qznX4hhlj9osSRXfD/yKvXcc2sGhUyEkzUVA4vDnznAsVg6hnRCtnequiI2LBGIu/vD3v7ha7CsQ5B3XDu4/eTCKNHQe58+pFfcfcfsXRVAgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjM3NTQKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEzID4+CnN0cmVhbQp4nD1QMZIDMQjr/QqeAAiw/Z69uSr5fxthZ1LsikFIRhRCVJD8ZZXMUvmzkTkFUHmP2CD1GqFfLDI+T7UF4RLTqE8iBGSfETMFc7NTgrUu7jxMSTg1nIuARCq/3QzaKSSU88upv/iM3qMrb6dK8aQOIONGF1WxHdxgii2iNmOeZ1tcsIWT7DV8/irjymVdgTbbxJk/2YW65HkAZDIZj4slVWEXuW757ewtGZxyat3IZDIIw/Y1I9dFO0z1GTjPEFjUVBznZhi49Dgi6PQ9/zP+P5wOTjwKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg3ID4+CnN0cmVhbQp4nDWNwQ3AMAgD/5nCI8QQINmn6qvd/1tI1I99soyxWOhQS3EKwjsuNk7d+DaJQ09mAWUkjWWwUVQnh8QnZFqSsRazxb6dERCvDsV2osf+J0+7P7hOGcQKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA0IC9oIDEwNyAvayBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvaCAxNyAwIFIgL2sgMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1OSA+PgpzdHJlYW0KeJw9UklywzAMu/sVfAJ3Se9Jpyfn/9cC9NSXEGOKAAimd4vK2fhpK1l+5McuO0sit3wHbZP7iqoHpG6CzCXHJVeIWcrnSpBYtJSZWJ+pDsrPNahV+MJPzExMhyQRS8hJPYqwfl4H96B+vaTzW2T8o2OD0luSTAWdGu6Vo5TYsFSfGuQeNN2UVp+ZdmUHLI03ZKUmdfr10+MHSzClLxLRQYjEn+RyhywLKQfxdq7eQHhXuyDVUysPO0Saj5HeUgWrOTMBS0bTDiNgbdaYIFUCvEVrCLQW4vKFTisiPjk3dDBNVZ6FyLBS4Vh7z2gNF7qGvNJwepJx//kfvCve1+8f2vNmZAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzY2VzBQMDQyV9A1MjZVMDI0UDA3M1FIMeSCMXPBLLBsDhdcIYQJks+Bq8zhSgMATJAPFQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicM7Y0UDBQsDBT0DU0NlQwsjRWMDczUEgx5AIKgVi5XDCxHDDLzBLEMjQ3Q2LpmhlCZZFYIONyuGAG58DMy+FKAwDxtBYjCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NyA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuNIAzoMV0wplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILrSAHL4EpEKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggL3NldmVuIC9laWdodCA2NiAvQgo5MSAvYnJhY2tldGxlZnQgOTMgL2JyYWNrZXRyaWdodCAxMDAgL2QgMTA1IC9pIDExMCAvbiAxMjQgL2JhciBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CIDIzIDAgUiAvYmFyIDI0IDAgUiAvYnJhY2tldGxlZnQgMjUgMCBSIC9icmFja2V0cmlnaHQgMjYgMCBSCi9kIDI3IDAgUiAvZWlnaHQgMjggMCBSIC9maXZlIDI5IDAgUiAvZm91ciAzMCAwIFIgL2kgMzEgMCBSIC9uIDMzIDAgUgovb25lIDM0IDAgUiAvc2V2ZW4gMzUgMCBSIC9zaXggMzYgMCBSIC9zcGFjZSAzNyAwIFIgL3RocmVlIDM4IDAgUgovdHdvIDM5IDAgUiAvemVybyA0MCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIxIDAgUiAvRjIgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDMyIDAgUiAvTTAgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDEgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDcwNDExNDUyNiswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCA0MgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzA2OCAwMDAwMCBuIAowMDAwMDEyNTY1IDAwMDAwIG4gCjAwMDAwMTI2MDggMDAwMDAgbiAKMDAwMDAxMjcwNyAwMDAwMCBuIAowMDAwMDEyNzI4IDAwMDAwIG4gCjAwMDAwMTI3NDkgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNDIyOCAwMDAwMCBuIAowMDAwMDEyODA2IDAwMDAwIG4gCjAwMDAwMDUyMjUgMDAwMDAgbiAKMDAwMDAwNTAxNyAwMDAwMCBuIAowMDAwMDA0Njk0IDAwMDAwIG4gCjAwMDAwMDYyNzggMDAwMDAgbiAKMDAwMDAwNDI0OSAwMDAwMCBuIAowMDAwMDA0NTM1IDAwMDAwIG4gCjAwMDAwMTEyNjYgMDAwMDAgbiAKMDAwMDAxMTA2NiAwMDAwMCBuIAowMDAwMDEwNjM3IDAwMDAwIG4gCjAwMDAwMTIzMTkgMDAwMDAgbiAKMDAwMDAwNjMyMCAwMDAwMCBuIAowMDAwMDA2NjUyIDAwMDAwIG4gCjAwMDAwMDY3NzggMDAwMDAgbiAKMDAwMDAwNjkyMSAwMDAwMCBuIAowMDAwMDA3MDYwIDAwMDAwIG4gCjAwMDAwMDczNjAgMDAwMDAgbiAKMDAwMDAwNzgyNSAwMDAwMCBuIAowMDAwMDA4MTQ1IDAwMDAwIG4gCjAwMDAwMDgzMDcgMDAwMDAgbiAKMDAwMDAwODQ0NyAwMDAwMCBuIAowMDAwMDA4NjE3IDAwMDAwIG4gCjAwMDAwMDg4NTEgMDAwMDAgbiAKMDAwMDAwOTAwMyAwMDAwMCBuIAowMDAwMDA5MTQzIDAwMDAwIG4gCjAwMDAwMDk1MzMgMDAwMDAgbiAKMDAwMDAwOTYyMiAwMDAwMCBuIAowMDAwMDEwMDMzIDAwMDAwIG4gCjAwMDAwMTAzNTQgMDAwMDAgbiAKMDAwMDAxMzEyOCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQxIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0MiA+PgpzdGFydHhyZWYKMTMyODIKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import warnings\n", "warnings.filterwarnings('ignore', 'divide by zero encountered in log10')\n", "\n", "plt.figure(figsize=(10, 4))\n", "plt.stem(k, 20*np.log10(np.abs(h)))\n", "plt.xlabel('$k$')\n", "plt.ylabel(r'$|h[k]|$ in dB')\n", "plt.axis([0, k[-1], -800, 0])\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Its obvious that the magnitude of the impulse response has decayed to quite small values after 256 samples. The truncated impulse response can be used to calculate the output signal $y[k]$ by convolution with the input signal $x[k] = \\text{rect}_{20}[k]$. The resulting output signal is plotted for illustration." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 40, -0.7, 2.6]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQwMS44NDA2MjUgMjE0LjU2Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nO2dTW/cNhCG7/oVPKYH0xx+89ggjYECPSQx2kOQQ+Akbtw4RWKkQf99h1otSY1W2tgGlkAxAQzvvqLmeUcaciRt4AVxM4C4Fkrc4M938Vq8wd/vBIgL/LkeFL67HawCGa3y2uHbT+1bDVY6b4JDWc3e/TkMH4bznzHIHe50MQzOSBsB9zFBOpsH3Q4mRqnn4qdG1MrIOMUru7fiBNE7yDVaxjRkbBJBdN5ykF41K9UEH57i8fg+PL0U589BgBKXHwanpFHgxny1TE5cvhueqJ/E5Y345XIYeUNy0hgSv2rb8ZOW4Gh8N48PGBdoAo24TQCDUTTE0BKApAAhSUVzaMQjiKClDxRBstAaf9MsGnEbMZYXzUKTLLTXMtAsGvEIwnlpaBaaZGEU+liUchWPIBKWN83CkCyM9dLSLBpxG2GskopmYWgWy7k3m5BHEBFkolnYksUX3EOJM4UzUkOYTm+SOowvrm4xWF5b5G4VwX3Pn+sp8pO/cpABg7yYnJZ5aoP0emfUJpnmWvHZsrXUwuJ6oX12OnKbJCKe65imdW2c1NLt4V8QrnKgbHN6gfufP3t/8/b3b6/efr47u/34+dudePY3Gl1YxdkQqdWirRxSpONGjxNuZ3fniFRGIWAZKUoo2iYhWSzAhuBWCKANDiSIKm4yAJK0FQKraYCNOJBCirgNsRZPfgNZzSSYZeVUcRuCJyRWiF7PBI/+4pxXcRuCvUK1EFdnUi7ks1yA4LCaAZQMyoRjs+jfsZCdTLiCj3HVbsAe/OT1OMDIpMBMC7c6OBOdDAmm/keDvKlz9YtY9liDq0jEI4iLqhZf34s/xGe0CxqDRa8zUVo//QtDTsxFPFpOJ/H1en2kmI18eTEbOayP/Ho9LQ75kB4o86tbcf6byjN6PyivEAL7v13bpvM5Wdmm1jacAfbKh23EI3lvnMHLi4dsg7E0750cHvK4vt/xzSZtnItVLJZA8huBj29XKdqHkM9yfdipGT5mTK4lbb16UP65arCSld1K8ocGYYkpD04ba+L9D0YuKKOChwDpcYNy+XlnoopuddBGOQSc9T7hNcyjhphkwVi86nzQRIAUlA/aq/DYQViczhiPp+4Bh0Jh5Xkf8Zzecwxe2IgfXde1+DWvGHjv9YOrMa7beDX1z8er9y8vnoqru4MXTwdWaWykr07qy+PtriO+ija7ijitr6DyjcTcV9FmFx4n9hWlS9TXXuvoK3qZPPFVNMBXneqrPCdofBWtY32BMridGKsi+IC4Ps6wkeENLnFWxJ7OdG701FkRAeenDZ2c4cSDhbO92LPOymOs1lkRITjskbGLM+uko0t/FXs6Q1Cii38VIVhpx/N6emdeS02X/yr2rDOcfJ42gCpmZ9r0sLV/xDqztRe72YpB2sXqX8Rsa3rAc3pr2B3DYvkvYscS08pKoMt/FbOzkB/+xg7WsD06uv5Xsau18glAa62I46V/0MmnHtaS1LQDHBBPb8zkB9/UWBEt0lPCquvgDPtjog2gij2dOSsNbQBV9HjvBGBtj7NZPqBqnS3F0xsLIIF2gUZMGDclpXs4S3gpvXBWxI7OsEnGRROoIs6E4KP2HZwln0ucOFuKJzdWPz1tjDUiSG0DLmwdnEH+eJM6q2JHZxowHnXWiso4dNLDWZKedoAD4umNmSgVbQCNiNcZEGLs4ax8tt86q2JHZ9gfI+0AjWik0ipC6ODMGwm0AxwQT28MVwVHG8BMDNpp6NAADLbFRBvATOzmrPzPk9ZZK4ZgbexwI2ywP/pFB1iKJzfGOMYxjnGMYxzjGMc4xjGOcYxjHOMYxzjGMY5xjGMc4xjHOMYxjnGMYxzjGMc4xjGOcYxjHOMYxzjGMY5xjGMc4xjHOMYxjnGMYxzjGMc4xjGOcYxjHOMYxzjGMY5xjGMc4xjHOMYxjnGMYxzjGMc4xjGOcYxjHOMYxzjGMe7/jYsm7YAGcYCxLUDw+eu7JxvWwRJXOM1fWLcKX+++2Xz5J9YzUokbMX4Fu3gt3uC7d2tBi/nm62S1MhJN7mPWPzTfDK4iGX0o8oEI87E1xkbkF8N/EqCIfgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE1NTYKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODcgPj4Kc3RyZWFtCnicNY3BDcAwCAP/mcIjxBAg2afqq93/W0jUj32yjLFY6FBLcQrCOy42Tt34NolDT2YBZSSNZbBRVCeHxCdkWpKxFrPFvp0REK8OxXaix/4nT7s/uE4ZxAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTM5ID4+CnN0cmVhbQp4nD2PsQ3FMAhEe6a4BZAAGxvPk+hX/vu3wXGSAvF0oDvwYRCw1SzpaFLgteNUshpgF/zJpIHVBNotoRVoXUooDlo66whE2xb16Qd9rpN45FKxpGovtb4pYrk79I7RbVrAo2dO9q7Q5uByT0ZBJk7KU9ahkzR9NpkH1CLJZTza+9D8/pn0uwC7vC3bCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDEwNyAvayAxMjEgL3kgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL2sgMTcgMCBSIC95IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4UoDAPG0FiMKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY3ID4+CnN0cmVhbQp4nDO2NFAwULA0V9A1NDZUMDYwUTA3M1BIMeSCMXPBLLBsDhdMHYRlBmIYGZogscyAxoEl4QyQGTlw03K40gDOgxXTCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSA5MSAvYnJhY2tldGxlZnQgOTMKL2JyYWNrZXRyaWdodCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9icmFja2V0bGVmdCAyMyAwIFIgL2JyYWNrZXRyaWdodCAyNCAwIFIgL2ZpdmUgMjUgMCBSIC9mb3VyIDI2IDAgUgovb25lIDI4IDAgUiAvcGVyaW9kIDI5IDAgUiAvdGhyZWUgMzAgMCBSIC90d28gMzEgMCBSIC96ZXJvIDMyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtbWludXMgMjcgMCBSIC9NMCAxMiAwIFIgPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9CQm94IFsgLTMuNSAtMy41IDMuNSAzLjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNzA0MTE0NTI3KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDM0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA4NTU1IDAwMDAwIG4gCjAwMDAwMDgwNTIgMDAwMDAgbiAKMDAwMDAwODA5NSAwMDAwMCBuIAowMDAwMDA4MTk0IDAwMDAwIG4gCjAwMDAwMDgyMTUgMDAwMDAgbiAKMDAwMDAwODIzNiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyMDI5IDAwMDAwIG4gCjAwMDAwMDgyOTMgMDAwMDAgbiAKMDAwMDAwMjk1MiAwMDAwMCBuIAowMDAwMDAyNzQ0IDAwMDAwIG4gCjAwMDAwMDI0MjEgMDAwMDAgbiAKMDAwMDAwNDAwNSAwMDAwMCBuIAowMDAwMDAyMDUwIDAwMDAwIG4gCjAwMDAwMDIyMDkgMDAwMDAgbiAKMDAwMDAwNjg0NCAwMDAwMCBuIAowMDAwMDA2NjQ0IDAwMDAwIG4gCjAwMDAwMDYyNjkgMDAwMDAgbiAKMDAwMDAwNzg5NyAwMDAwMCBuIAowMDAwMDA0MDQ3IDAwMDAwIG4gCjAwMDAwMDQxOTAgMDAwMDAgbiAKMDAwMDAwNDMyOSAwMDAwMCBuIAowMDAwMDA0NjQ5IDAwMDAwIG4gCjAwMDAwMDQ4MTEgMDAwMDAgbiAKMDAwMDAwNDk4MSAwMDAwMCBuIAowMDAwMDA1MTMzIDAwMDAwIG4gCjAwMDAwMDUyNTQgMDAwMDAgbiAKMDAwMDAwNTY2NSAwMDAwMCBuIAowMDAwMDA1OTg2IDAwMDAwIG4gCjAwMDAwMDg2MTUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzQgPj4Kc3RhcnR4cmVmCjg3NjkKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def rect(k, N):\n", " return np.where((k >= 0) & (k < N), 1.0, 0.0)\n", "\n", "\n", "x = rect(k, 20)\n", "y_ir = np.convolve(h, x)\n", "\n", "plt.figure(figsize=(6, 3))\n", "plt.stem(k, y_ir[:len(k)])\n", "plt.xlabel('$k$')\n", "plt.ylabel(r'$y[k]$')\n", "plt.axis([0, 40, -.7, 2.6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Compare the output signal computed by convolution with the one [computed by solution of the difference equation](difference_equation.ipynb#Second-Order-System).\n", "\n", "* Investigate the effect of truncating an IIR on the output signal computed by convolution\n", "\n", " * Split the IIR $h[k]$ into two parts: a first part holding the samples of the truncated impulse response and second part holding the remaining samples\n", " * Split the output signal into to parts by splitting the convolution using the splitted impulse response" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "The notebooks are provided as [Open Educational Resource](https://de.wikipedia.org/wiki/Open_Educational_Resources). Feel free to use the notebooks for your own educational purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Lecture Notes on Signals and Systems* by Sascha Spors." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }