{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# The Fourier Transform\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Theorems\n", "\n", "The theorems of the Fourier transform relate basic time-domain operations to their equivalents in the Fourier domain. They are of use for the computation of Fourier transforms of signals composed from modified [standard signals](../continuous_signals/standard_signals.ipynb) and for the computation of the response of systems to an input signal. The theorems allow further to predict the consequences of modifying a signal or system by certain operations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Temporal Scaling Theorem\n", "\n", "A signal $x(t)$ for which the Fourier transform $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$ is existing and known is given. The Fourier transform of the [temporally scaled signal](../continuous_signals/operations.ipynb#Temporal-Scaling) $x(a t)$ with $a \\in \\mathbb{R} \\setminus \\{0\\}$ reads\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(a t) \\} = \\frac{1}{|a|} \\cdot X \\left( \\frac{j \\omega}{a} \\right)\n", "\\end{equation}\n", "\n", "The Fourier transformation of a temporally scaled signal is given by inverse scaling of the Fourier transform of the unscaled signal and weighting with $\\frac{1}{|a|}$. This relation is known as scaling theorem of the Fourier transform. It can be proven by introducing the scaled signal $x(a t)$ into the definition of the Fourier transformation together with the substitution $t' = a t$. For $a>0$ this reads\n", "\n", "\\begin{equation}\n", "\\begin{split}\n", "\\mathcal{F} \\{ x(a t) \\} &= \\int_{-\\infty}^{\\infty} x(a t) e^{-j \\omega t} dt \\\\\n", "&= \\frac{1}{a} \\int_{-\\infty}^{\\infty} x(t') e^{-j \\frac{\\omega}{a} t'} dt' \\\\\n", "&= \\frac{1}{a} X \\left( \\frac{\\omega}{a} \\right)\n", "\\end{split}\n", "\\end{equation}\n", "\n", "\n", "\n", "Note that the cases $a<0$ and $a>0$ have to be regarded separately." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "According to the scaling theorem and the [Fourier transform of the rectangular signal](definition.ipynb#Transformation-of-the-Rectangular-Signal) $\\mathcal{F} \\{ \\text{rect}(t) \\} = \\text{sinc} \\left( \\frac{\\omega}{2} \\right)$, the transform of the scaled rectangular signal $\\text{rect}(a t)$ is given as\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ \\text{rect}(a t) \\} = \\frac{1}{|a|} \\cdot \\text{sinc} \\left( \\frac{\\omega}{2 a} \\right)\n", "\\end{equation}\n", "\n", "This can be confirmed by explicitly calculating the Fourier transformation of $\\text{rect}(a t)$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFUAAAAvBAMAAABgYpvOAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpnNuzKriUQQ7912ZlSugimNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACXElEQVRIDe1VTWjUUBD+kk2ym822rgqCojT4U+lBWMGrsIIr1Iu1VAT3sMGDB0FY6cGTNicFUQzqdenSwyoFIRTreT2oKCoqIih7qB6l6FosWH9YZ97bhKxtai715EBmvpn53svkZd57QIz0u5FEOoJXgB+iMb0Y9f7EZoEj+hzwhkGLFbBhR0kCKHe6gIz2grFKT5mB5bFWHEy4DIDMgrSstwi4DTXBR85h3/CQrTMgEYMl3C3Me3p5jZG5xDq7BOMLg175JtwH2IX7Au1nbfgwFoUbVbqYBxdH716pivjObtZq0xc/e1rY2EB5auvDJoVzvsilpoyGAHgiDSpN4Cbg4x7QaOpckVHo5gJzzZNohsxlD1UcAg4Dv8jVijIV6sqIgKpNxvpK30Dcg8BPclMOqagMuMJ7xdoc79gRrmVTrBMI4UmXFPqrWA9sRm0xwk05nIrIgKjhOPAYmAfOrMat5GmgMrN90Ac+ejjAxe6T9RpFSpnnTnnB1GIdUlRUAbjUeuSOTQ+PfS+9/uHQ+taJpEKlWaS8C8Bym+H/ts5Vwj86uJwTRm4T6vOIe711loOiH8JsL5B9lvbNWdEass96KaF3QqCyp9p6nWCfQypOjDnKKMNUs2hzKx9HpLjYb5twdDKvvaWF6+63mAG0j5XSsaFsvnKVUDGGJcN0PmQ7nXZmz/x5IE1Tr6EEffd3217DKv5P/W9XwKDXKbPJ3vmJuXyoJRCbORcSEOmGcaEBLxNxc8Ao6DBOInSnPYeSjKuN6Au4kWyDpW+d/nwycoOuVot5ZG9uurkS4zfPH7SOO/LjZAAAAABJRU5ErkJggg==\n", "text/latex": [ "$$\\frac{2 \\sin{\\left (\\frac{\\omega}{2 a} \\right )}}{\\omega}$$" ], "text/plain": [ " ⎛ ω ⎞\n", "2⋅sin⎜───⎟\n", " ⎝2⋅a⎠\n", "──────────\n", " ω " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sym\n", "%matplotlib inline\n", "sym.init_printing()\n", "\n", "\n", "def fourier_transform(x):\n", " return sym.transforms._fourier_transform(x, t, w, 1, -1, 'Fourier')\n", "\n", "\n", "t, w = sym.symbols('t omega')\n", "a = sym.symbols('a', positive=True)\n", "\n", "x = sym.Heaviside(t + sym.S.Half/a) - sym.Heaviside(t - sym.S.Half/a)\n", "X = fourier_transform(x)\n", "X" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For illustration both the signal $x(t)$ and its Fourier transform $X(j \\omega)$ are plotted for a specific value of $a$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM3OC41MiAzMTcuNzU5NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicpVjLchU3EN3PV2hpFpal1qu1DEVwVXaAK1kEFpQxBJevU+AQfj+nZ+5jRt3YSQWX8b19Tj9GanX3KLrbKbpPLrhb/H53v7t3+PvBRXeJ309TwLfdlBr7Qvh4d/iYYvOt9FYgCptvf0zTx+niJyg/QOFyisE3R8Xn3IDDVm2e6SS5O0p69GVvZFFaCfZWabH6CbEhXs+riOFLkClXnyMCbL7kNHs8SLIPs+Rump7job9PX/B/cOcB1lIHmDlScUS+F3e9m55fuYuX0cXgrj5O7PHkPVQQ8P3DdJafuavb6ecrWAk+iCH8HD5A++LFze37X7+9eX//cL77fP/twb34c3qFnznsKWLJONV1nEfRY4FGLE2u/F8ipf8ZKXdP20D3EhXnJo7I1QcO6RSpBBMkGIdgFuNUg6+c19aPosfNU4EKCFvztDWfEvkYeG3+KHrcfCL2nXgwnw/m16lTi6QvlqTNuzLvhxwc33l2AMWLl7S3e/bXYTceW9/i20ryg/Wt1acieEq+ISfafoX9sMZ7BzDaqa0dHCVPOWAsWQonB2Q6iFjShCReeTiJnnIB+77EfPKRbR8Ipfay8XEUPekDtYs7n3xU0wel6EPrax8n0VM+iJonppMPtn20jmO82e6T6EkfrfhajxseTxuOE46MPJfcjDhGIEoZoEb7QnrKzTwXiDk1Dw7Ovs6pmX2MEekfjwXkZpZXHwulOSEX8fUsRh3vHJb0W+RLhifkVuD9EViAt2cHJEQU/XhUWR2P9wdfWA7q/8LqKv63z05n64vbNp6EcoEmQFjEiL9fb9xv7t6hwaCFBCCxVK4kRrEJ+38Ne9ZCYaZUqLvXlw6l8u/P1zevL5+764elS63PbfUdD8Vtc3TfWHKUOZwpKmg5A9mQg8yeIkIZuUqM+paxRCmV0a4hR2vE0zZU0jqQDfncRwuqQKaRrOW7qZBPlXvNA9mQg9yQErwp1AtZy3dTRTWOqXAfyIYcZPYNJyGMW2LId1PLHimHLBjIhnw3McpHzLmPD2jIQUalZaThuIGGfDfJ2IPD2UeyIQe5+lo66sJI1nIkaEAh6K1XlaEGIHT0wJpCHvfFAmR+KR45Q2HcGQsAnaKPlWlMVEMuZHymyHFcFAsAHS0xhI6qNNINQOg4SCGGqiI3ANBz8pFTauPeW4DQGQ9UeDw3hhzkElGAQsnjkbQAoScZ96hougYWeuZUulp0A1joBTVD1QcL2NMbRti2bWZvbGRRwHsDeqKloBBRwFEMPYasFQxkUeiYKjhZCgqRGo4ClWOf2+ZWwUJEAaWkJAy6WsFAoIDujXxtxjNYiMwH5EPCCKKX1UJEAa9jjAavl9VCoNATRlgcf61gIaKAKQYDSdAhWQgaWMBYgS7a1EObiCjgPaZjuVkrGAgUInmuAf1CKViIKLBMOrnqkCxEOnbyUpeKVrAQUcD023vAq5ZSMJBFoaVmZKuJLApoprGZCgpZFHotqZsKChGFgoKZiiqNFrCnZ65l7DAWIPTqCS/nY30x5ELGeWLs+1hILQD0+d2j4jyNdAMAHTMPoR6oIcQChI6hjmtXzc4CQMfc03sh1e0sQOiMl1uMoIqt5PLCjBMU0HWUbQMQevetIfdU5AYAOqafXNB21DIagEyqGIp7LKxnVQ0IXS4JahrHF0MOcsdYyhja1LIYgNDxXsWp69Q1AAzOAZNbLaRmBgsQOl77u/RARdeA0LvcB2ADFV0DoMfsK2FwGhfGAoTePQfqTVk3ANClmqA49HFlLECuTIJcmWyuqxa6AQgdpSe3EsdzagFC75glqARN14C83yCpe0ctVC84GgC9IDVyaUk9qgEIvXpu1OI42lmAXGaiAWckq4rdAI53n1vqK/fFkftluYLdXGkOb5s/uocbCvnx7vX7fP863rfurPvW6f54uTpHcLy4fSr4wdlwb/sjX6+mfwDwFXSRCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTQ2MwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDkgPj4Kc3RyZWFtCnicRZLJjWMxDETvPwom0IC4SoqnB33y5H+dR9qNOdhVnzuLKnVZEipfkIwtWUv+6JO+xdXk7xO7iHg9ft4Yy+V4G3DkEo8SqwnWJd+P7SNfKfapaWsNfj+aPkw1ReUQcrFmSu4e4Hr/qx+MEFsmReWkrG6x08FaR5xmRpRHwt9IBsWbMV9iq/vLtkrkBeODe6Jhh71Z1plk8Fp7YGHkxOFHjsV48bBIa+HFuCfonYNsfN/MqnExHbi7mq3ODlG+ekINavhskohnxpR6l6STbX0AsBXJUfJwjmxp75zF442tjw+LMnJK4lJNW7l0rF2RU0bHg44XTzN27XjfNr08JyeM2t19jaK/t6cPFtvJK/B8sxf3rWHG9L2xMqXNDTQ5G6oo2+j9YLZCw9pDF+WwWjyAHkr3lU1ldGIV82rozefbbQsBXv1ouo7fS407V1G2Cq/R6/+kr+fnH+XehrEKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA5NyAvYSAxMTYgL3QgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2EgMTYgMCBSIC90IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIDU0IC9zaXgKNTYgL2VpZ2h0IDk5IC9jIDEwMSAvZSAxMTQgL3IgMTE2IC90IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2MgMjIgMCBSIC9lIDIzIDAgUiAvZWlnaHQgMjQgMCBSIC9mb3VyIDI1IDAgUiAvb25lIDI3IDAgUgovcGFyZW5sZWZ0IDI4IDAgUiAvcGFyZW5yaWdodCAyOSAwIFIgL3BlcmlvZCAzMCAwIFIgL3IgMzEgMCBSIC9zaXggMzIgMCBSCi90IDMzIDAgUiAvdHdvIDM0IDAgUiAvemVybyAzNSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDI2IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzYgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDUxNjE4Mzc1MiswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCAzNwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwOTg4OCAwMDAwMCBuIAowMDAwMDA5NjU4IDAwMDAwIG4gCjAwMDAwMDk3MDEgMDAwMDAgbiAKMDAwMDAwOTgwMCAwMDAwMCBuIAowMDAwMDA5ODIxIDAwMDAwIG4gCjAwMDAwMDk4NDIgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTkzMiAwMDAwMCBuIAowMDAwMDAzMTU2IDAwMDAwIG4gCjAwMDAwMDI5NDggMDAwMDAgbiAKMDAwMDAwMjYyNiAwMDAwMCBuIAowMDAwMDA0MjA5IDAwMDAwIG4gCjAwMDAwMDE5NTMgMDAwMDAgbiAKMDAwMDAwMjM3NSAwMDAwMCBuIAowMDAwMDA4NDE1IDAwMDAwIG4gCjAwMDAwMDgyMTUgMDAwMDAgbiAKMDAwMDAwNzgxMiAwMDAwMCBuIAowMDAwMDA5NDY4IDAwMDAwIG4gCjAwMDAwMDQyNTEgMDAwMDAgbiAKMDAwMDAwNDU1NCAwMDAwMCBuIAowMDAwMDA0ODcyIDAwMDAwIG4gCjAwMDAwMDUzMzcgMDAwMDAgbiAKMDAwMDAwNTQ5OSAwMDAwMCBuIAowMDAwMDA1NjY5IDAwMDAwIG4gCjAwMDAwMDU4MjEgMDAwMDAgbiAKMDAwMDAwNjA0MSAwMDAwMCBuIAowMDAwMDA2MjYzIDAwMDAwIG4gCjAwMDAwMDYzODQgMDAwMDAgbiAKMDAwMDAwNjYxNCAwMDAwMCBuIAowMDAwMDA3MDA0IDAwMDAwIG4gCjAwMDAwMDcyMDggMDAwMDAgbiAKMDAwMDAwNzUyOSAwMDAwMCBuIAowMDAwMDA5OTQ4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzYgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM3ID4+CnN0YXJ0eHJlZgoxMDEwMgolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4OC40MjYyNSAzMTIuNTEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nLWaS48UyRWF9/krYsksSCJuvJdGM0bjhS2GHtuSx4s204NBVCOGwSws/3d/NzMjq7rqNm2EDOLRceLE8z7Ojarg3kzBvXLeveHPJ/c393f+/dkF94w/rybPT4cptjYnKZL56e3JTzHInIPQ5k/+/89p+mV68jvoH+j/bJpCnWsqrWYX/Fx1vJrmVo4tb09bpJa5LQMdece2bXBZB3/FIln43E6WzpSKnLBLnnv1XTpTn7TKnNbWt9P0lFP4NL3nb+8ee0ats7gc5lhrqD30ltzLw/T0yj35fWDN7uqXqQG27tdTufp5eiT+G3f1ZvruinH87HUofo//QH/y7c2b6z9/fHF9++Hx4fXtxw/u23fTc34vG5hYUGwXCz5p/eyCWSyL/MIlh/x1Sw6+zl4uD/mk+bOL7mVO7YsX/ZXnHJivlMtFnzR/dtEhpVl6X3p+4dK/9rg5r+gvV37SfLnyOysKPc5Barhcuy5vOVjH8tbpJPm5X7rQafMD00nE3cp90+Wz6Vqe86UDnDY/NF3ts4g5VzjbW4yerheTnTY/MFmUSMiyJzvb2Ul0uzPZSfNDk5U2Z29OJvvOTmw0Vj/HdWi9Ap+jT0cTXSzQXVjgnAni+dwO//SPt6/ff7x5/O5w8+r6XnsMZZaGV9TFHmVu582mJ3EaXrL6B9kjtRJEfI3ysCOx1v+TK+1LPzbf40o1zskva+L2Qk0+p6MnzWf2dnpUIc8lN3Z7dlbH9gdnDIFwX5iuYIbl9EjsKdlMTKX2eH49e/vDU5Yw59R7aCm1utr5Z3Yp7MbHVKXcnfKk/cEphV0SQlr2uca+TXn/LqWkueK9uZ1NeWx/eMpCcJNcmxS2ujrYfOJharaP1chCbkRBHT1hnWGz2akggnrHVkOs2GNaBmWU42SP/r1YLqsuglcuK1yN+tcFSDOXG6WF3dhvNkLIElPcu79cmvOcerszzG9Le2QbvmGPR8JPjwbC6rao7NfFyVjc9ZiLWCr9fxj1ZGM/fXPP+I/+szurEXXWM1KXfXH1/V//+O72x9vX3/92/fjj7evvhGCw+e17d6YjY64skxtjtfz76437i7t1GAhi0IOEXFrRbMAUZftVsRqiYWsSM579wzNHnPjX65c3Pzx76l5+OJGHFTNNMXlZMh6X5bsjqPrme01qRy+MZmI6blhDqk2DQs8+rq71wgTojgAKOTbEJpLJE+Jl624AhylFbB1DLS4n4iXbK2t3C6B7n0OpLegYOUupdet92X6Yctb4n+IS+SSU5Pva2wLQpX4u0ip3WFGohai9DW4BdM8zp5pxwdo4rZrqdi4WcJg40pZLzNk1Dnf5z9LbaKez+hK+Xl1FtgPHtvU2gMMEs+N7mQWSTKPHytfuFkD3Qo7yLSwXl0vArLfuBnCYOvcccg9Rb6KnloYBWADdGYSJHEGk1k6HrfNFM12RAC1WfCXVubH1MfBlu0rwMAcNaU3HiKmnrbcFaPc45145fpe9qtvo9/4GogS8LoraQo7o5kp2HgQDgUCGZ17MR80I/9usy2jXzlhoZdvcs5ACeup1dDcQCILfk5pacVxLScSnMb6FKAE/KSorHRdDrGhRBsFAlICvdO9jdD0g1rIM3zMRCHg80YFo6Vqfa+SGxgwWooQ4SyoxBIfkrYU6Y9yBhSgBicJfxBSEb8YC8jglC4GQAonQhxYdXpqxgriFMhNRgsZDTERcbIiT0Ed8MhEtorQ2aMVXJ10lbQhjSRaiBNK0nnF3gvxpKe8zWIgSSOa+RdwOAY6EljbuwUKUgFk1dpScMKIE2U3bQpRAxO2l56TjeCxg738JaPdGydDUImntRLKw9zcQJXSuv3RuU5bU1cu+AwOBwJXgfxED4+gQB0nCRrAQJYSZAjWG4iKhiTi2b8FClKAHJoFsR7nQo3gZhmEhSkhEM3KII/NgXWHEUAvQ7phtJRdXR+6hHMhluKeFKIGAXQvh1XEmqsfSsCML0XcdTcLYV1aLr5ykHzuwECWgnAr1RnfqwEm1+7A8E4LSCJ1MRz4JBJ8kJfZxESakFC4+1oKrC3Gx17BHDQtRQtHmFNWIUTG91j0KmJBSUKJUhJy5JJlrbyrONooFKaUjjntT9Vpn1ipDGpiIqmlCVo1VDY0SlJS0J3AbUgrB0OeS1H8pdNHE43wtZFXsgs7HNgXP8fHoqBZyWB4z0Pak+EW2I0vJI4NhQUpJs6DrsHoha2tNuRuWCa2Uxq/ManEG/ud3QzEhpRCwIvV3WGqPjGov40ZMaH3DwY8TUy7lShhmctmunStyrxIqlkbKnxr38S1opfRMZbMuNbfe5ci4QJSA9MCOU16OA5W9Bx0LUQLBa3laWo484NSy358Foas90jx1LcxwZH19KyNQ2ZBSKAmR7mkxnRqCT3kwDGQl9MTlb8aJbR/7nwPanSOgzEIkCBGs1txG2rYhpaDnOGe1NfIumj2kfQ4LUgrhnZBUsDUivea2sG/cgpTSCPWoGS7WM1Qo/bgwC4Ki0grZi9DUkIad1qGMbUgpVZ8yci5L6BOROISaDUEhd3pcnuNrKhVJW2NdFqIEBBY2gM4uWlqgg8ogGIgS9GHE62KzTpybH3duIUqoWiyjsFTjCkVIGSWbhSgBDY3C6g4dFConGEb/S0C7q2wTleXcauuJFDH6GwgE4rW+1YTkIqVF0XeUjWAhShCVnpoMWTHVVKo7wUCUwAnH5qvaMwZEYh/9LwHtjmFSH6vSIMGjj30d/Q1ECdRSavFVtVLdb+yi+bA++nL3bZFJQhk7IoeJKKFTiCSvW2JyJtz3egls78/IkCx6AhURsx+mhSgBb9XL0zcDsgf17k4wECV0yq+myoIShqwe9/u1EAgoSW6SslvfDWL2YZ/BQpSArsgFM0Q4aHXdhmMagHZHG6GEUSSIABJmG/WQiUDQkpRaiZipRUysIQyntBAlsH/cgh+WIqbvYdIAtDvLjDnEZRROOo6q2ESUgOhnMzSjSRrCcD9SC4FQtQyLBKal1EeT7AQLUQLlLNkb8UH57hMaZmzBQvSDBSEBiIoPklIUljD2YCFKaFqVh7B8zpawlT1oWwgEPQGkKlJQC3mMYPdKC1ECopDMhezXWp6UOXSAiSih4HWI8qjjdJTRkWAg+j6l7yZBVXzWwrvqM9D2QGUgStB3cGRqd9QOqYzOZ610JKXoOwGCtuLcLVN/bZ0tRAkYLLPU5XmmJdnfbUwEgqA0gwZ7hHyXEMZriQUclg9oYidfF21upWL6o7+BKKHoA7y2NiJlT3kcjQHoZ0WoxNi1nMCsyOx7NWAiSsC+k1ay+mKEIpW0EwwEAuGpIWWRZkt624tpC9DuhEuKzJTWV0BWMK7LQiDwA1KMzO6yltjkq0GwECVoQM76iqlxh30ODzARfd9M+jglXL1+nqIf9fTxwGkgSmAclFZefFWFkOwEA7nzIdrxyXYhPHfvnbg/rN9tuPMVgbM33/s+xbI+WFhG3r/c8Gn5gsP51xkO9tcZptv9iwvLapRqf0nB/LzQmvnyGxL3z/18+i+4j8ReCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjY1MwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDkgPj4Kc3RyZWFtCnicRZLJjWMxDETvPwom0IC4SoqnB33y5H+dR9qNOdhVnzuLKnVZEipfkIwtWUv+6JO+xdXk7xO7iHg9ft4Yy+V4G3DkEo8SqwnWJd+P7SNfKfapaWsNfj+aPkw1ReUQcrFmSu4e4Hr/qx+MEFsmReWkrG6x08FaR5xmRpRHwt9IBsWbMV9iq/vLtkrkBeODe6Jhh71Z1plk8Fp7YGHkxOFHjsV48bBIa+HFuCfonYNsfN/MqnExHbi7mq3ODlG+ekINavhskohnxpR6l6STbX0AsBXJUfJwjmxp75zF442tjw+LMnJK4lJNW7l0rF2RU0bHg44XTzN27XjfNr08JyeM2t19jaK/t6cPFtvJK/B8sxf3rWHG9L2xMqXNDTQ5G6oo2+j9YLZCw9pDF+WwWjyAHkr3lU1ldGIV82rozefbbQsBXv1ouo7fS407V1G2Cq/R6/+kr+fnH+XehrEKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxODEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicNVA5DgQhDOt5hT+wErnDe0baavb/7YYwU6AYHAc7g0nxIcFvRDaQiRR4gsNxjWSIMYgNqgJaDtMogpc0uge/XGr1EihmiaV6SEspdVzhDJbY5Roy+y6mIF2QDEgNuYaWdKN7qBxObcIJRnmktuYGrrMml882uv/ydkrwiHbjhY/T0HycRmXcXKR1qgh6YkbNyj02eglG3LUcsZy11FKkVIs6UWWw1Q9zNv/u8RrfP+Y3Px4KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA5NyAvYSAxMTYgL3QgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2EgMTYgMCBSIC90IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzkgPj4Kc3RyZWFtCnicPVI7ksUgDOtzCl+AGfAXzpOdrbL3b1eCvFdkrERGkh3SUroMDWkjVWIMqezyMy7CtlT+DiL7XD6/0NY60JyHo4uNCaAp96WrA3YVrZIWvusoMgTmENhommhOUXAKCbV92nCQh/oA6zIidr0vBiV6NrKtQ/Yg9hOpGVJBOfCOhFCEh82+Y/g4cTztzRNgTp4MOCN79TNOKV05YTkUMDK3wy2w3tdnX89GuYi85gdhDiLHInJiUxMMkkCxHF6OdPDUU6M2A+RRXDBRx2yxwM+9Zz7oMaRT6JHt2FwupF5k8IX52aHwYD+3AAYqqrWdBjtYvb+OY72GDb+P4VrkjtuKLRygTRcOxDvBEVnv7y15rt9/B3JuBgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjc2ID4+CnN0cmVhbQp4nD1SS47oMAjb5xRcIFL4Jj1PR7Pqu//22bSaFRZgY0jKS5aopUwtk1SVXUt+dHTuMvk3NK9Gz7D15sxD5kmxODK3yj0M5JlbrNBrb9SrCwCxSO7UEtslxpZLxZJkh6ztEHdk0OHFKtnM+NrCDjdrjkdSFypepwcF+Yww8E7Mfb6JZSE0Vxltt8BBDxaoAz0wCxO5IuPdaxM9jXgLoKwPmb+ILjfUXI9sTIBTuNoL3qmU1jEPFYmiHOxGGr2fo+Y4ocPbPWI59nIJRwbe4mjHe/BFiJ5GVkSsfsizEfmGDalIj5jKG+puH3r8ja3YaH92JknB11/W20w10rng1Fyt1l+DR2jw3qjh8/dLnvH7HyEmbhIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MyAvZml2ZSA5OSAvYwoxMDEgL2UgMTE0IC9yIDExNiAvdCAxMjMgL2JyYWNlbGVmdCAxMjUgL2JyYWNlcmlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvYnJhY2VsZWZ0IDIzIDAgUiAvYnJhY2VyaWdodCAyNCAwIFIgL2MgMjUgMCBSIC9lIDI2IDAgUiAvZml2ZSAyNyAwIFIKL29uZSAyOSAwIFIgL3BhcmVubGVmdCAzMCAwIFIgL3BhcmVucmlnaHQgMzEgMCBSIC9wZXJpb2QgMzIgMCBSIC9yIDMzIDAgUgovdCAzNCAwIFIgL3R3byAzNSAwIFIgL3plcm8gMzYgMCBSID4+CmVuZG9iago0MSAwIG9iago8PCAvQkJveCBbIC0xNDEgLTI0MCAxMTI4IDc5NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzgxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDWTuXEGMQhG862CEsQpqZ5/xpHdf+oHa0cwy/EdaJ+8kh7y84RLpsn3c5fkLVHfUpaix6Viyecxu1IZYkelysT9TPw8fnOyiCAuiVN0bippe2ay6Aj6l/5tq97vRj8ztqQO+Qoqe8HgHNlKrPvGyK50ZiabvlzwumDSybYD6u5tLjFYNpGK1ftFu4KCRWX3TN5musFKiXsmpraeyQyMruJOgpOhM8OX0fHaVQv/slmXMpM1WjLPeJelw4CeVona1jNxD7fO4N/c8tK18WQNN9BKN7zoR3E0ljW3cH2/KFh6JBYz+l6heZX4Vba5eKvY3hU74uz+Zm/9Z06Hd+bgvJnRrfAh44rKNS22KK4b3adlmkLziOGi33kc1ndW9GGAsp4BBHevQkvlXOG6S+boTAbreR9E5TGgRvsybYe2ZSz1Eh5D71JEgsnyNB2C/RSgtWPMnTgSJztdWXOumbltpeWecxkYbY/Za1OTfr9oHxHEv3/h83z9Ai8TlAoKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvQmFzZUZvbnQgL1NUSVhOb25Vbmljb2RlLUl0YWxpYyAvQ2hhclByb2NzIDQwIDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xNDEgLTI0MCAxMTI4IDc5NSBdIC9Gb250RGVzY3JpcHRvciAzOCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NQovTmFtZSAvU1RJWE5vblVuaWNvZGUtSXRhbGljIC9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDM3IDAgUiA+PgplbmRvYmoKMzggMCBvYmoKPDwgL0FzY2VudCAxNDUwIC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtNTUyIC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTQxIC0yNDAgMTEyOCA3OTUgXSAvRm9udE5hbWUgL1NUSVhOb25Vbmljb2RlLUl0YWxpYwovSXRhbGljQW5nbGUgNDM5MDkgL01heFdpZHRoIDI1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMAo+PgplbmRvYmoKMzcgMCBvYmoKWyAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgXQplbmRvYmoKNDAgMCBvYmoKPDwgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIxIDAgUiAvRjIgMTQgMCBSIC9GMyAzOSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtT2JsaXF1ZS1vbWVnYSAxNyAwIFIgL0RlamFWdVNhbnMtbWludXMgMjggMCBSCi9TVElYTm9uVW5pSXRhLXVuaUUyMzIgNDEgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0MiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNTE2MTgzNzUyKzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDQzCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNjAxIDAwMDAwIG4gCjAwMDAwMTMyOTcgMDAwMDAgbiAKMDAwMDAxMzM1MSAwMDAwMCBuIAowMDAwMDEzNDUwIDAwMDAwIG4gCjAwMDAwMTM0NzEgMDAwMDAgbiAKMDAwMDAxMzQ5MiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMTIzIDAwMDAwIG4gCjAwMDAwMDQ2NjIgMDAwMDAgbiAKMDAwMDAwNDQ1NCAwMDAwMCBuIAowMDAwMDA0MTMyIDAwMDAwIG4gCjAwMDAwMDU3MTUgMDAwMDAgbiAKMDAwMDAwMzE0NCAwMDAwMCBuIAowMDAwMDAzNTY2IDAwMDAwIG4gCjAwMDAwMDM4ODEgMDAwMDAgbiAKMDAwMDAwOTkzOCAwMDAwMCBuIAowMDAwMDA5NzM4IDAwMDAwIG4gCjAwMDAwMDkzMjIgMDAwMDAgbiAKMDAwMDAxMDk5MSAwMDAwMCBuIAowMDAwMDA1NzU3IDAwMDAwIG4gCjAwMDAwMDYxMDkgMDAwMDAgbiAKMDAwMDAwNjQ1OCAwMDAwMCBuIAowMDAwMDA2NzYxIDAwMDAwIG4gCjAwMDAwMDcwNzkgMDAwMDAgbiAKMDAwMDAwNzM5OSAwMDAwMCBuIAowMDAwMDA3NTY5IDAwMDAwIG4gCjAwMDAwMDc3MjEgMDAwMDAgbiAKMDAwMDAwNzk0MSAwMDAwMCBuIAowMDAwMDA4MTYzIDAwMDAwIG4gCjAwMDAwMDgyODQgMDAwMDAgbiAKMDAwMDAwODUxNCAwMDAwMCBuIAowMDAwMDA4NzE4IDAwMDAwIG4gCjAwMDAwMDkwMzkgMDAwMDAgbiAKMDAwMDAxMjIzMSAwMDAwMCBuIAowMDAwMDEyMDE4IDAwMDAwIG4gCjAwMDAwMTE3MDUgMDAwMDAgbiAKMDAwMDAxMzI3NSAwMDAwMCBuIAowMDAwMDExMTkyIDAwMDAwIG4gCjAwMDAwMTM2NjEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDMgPj4Kc3RhcnR4cmVmCjEzODE1CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "values = {a: 1/2}\n", "\n", "sym.plot(x.subs(values), (t, -5, 5), xlabel=r'$t$', ylabel=r'$\\mathrm{rect}(a t)$');\n", "sym.plot(X.subs(values), (w, -20, 20), xlabel=r'$\\omega$', ylabel=r'$\\mathcal{F} \\{ \\mathrm{rect}(a t) \\}$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Change the width $1/a$ of the rectangular signal. How does its spectrum change?\n", "* On a qualitative level, what happens when $1/a$ increases towards infinity?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Convolution Theorem\n", "\n", "The [convolution theorem](https://en.wikipedia.org/wiki/Convolution_theorem) states that the Fourier transform of the convolution of two signals $x(t)$ and $y(t)$ is equal to the scalar multiplication of their Fourier transforms $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$ and $Y(j \\omega) = \\mathcal{F} \\{ y(t) \\}$\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(t) * y(t) \\} = X(j \\omega) \\cdot Y(j \\omega)\n", "\\end{equation}\n", "\n", "The theorem can be proven by introducing the [definition of the convolution](../systems_time_domain/convolution.ipynb) into the [definition of the Fourier transform](definition.ipynb) and changing the order of integration\n", "\n", "\\begin{align}\n", "\\mathcal{F} \\{ x(t) * y(t) \\} &= \\int_{-\\infty}^{\\infty} \\left( \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot y(t-\\tau) \\; d \\tau \\right) e^{-j \\omega t} \\; dt \\\\\n", "&= \\int_{-\\infty}^{\\infty} \\left( \\int_{-\\infty}^{\\infty} y(t-\\tau) \\, e^{-j \\omega t} \\; dt \\right) x(\\tau) \\; d\\tau \\\\\n", "&= Y(j \\omega) \\cdot \\int_{-\\infty}^{\\infty} x(\\tau) \\, e^{-j \\omega \\tau} \\; d \\tau \\\\\n", "&= Y(j \\omega) \\cdot X(j \\omega)\n", "\\end{align}\n", "\n", "under the assumption that both Fourier transforms $X(j \\omega)$ and $Y(j \\omega)$ exist.\n", "\n", "The convolution theorem is very useful in the context of linear time-invariant (LTI) systems. The output signal $y(t)$ of an LTI system is given as the convolution of the input signal $x(t)$ with the impulse response $h(t)$. Hence, the signals and the system can be represented equivalently in the time and frequency domain\n", "\n", "![Representation of an LTI system in the time- and Fourier-domain](LTI_system_Fourier_domain.png)\n", "\n", "\n", "where $H(j \\omega) = \\mathcal{F} \\{ h(t) \\}$.\n", "Calculation of the system response by transforming the problem into the Fourier domain can be beneficial since this replaces the evaluation of the convolution integral by a scalar multiplication. The (inverse) Fourier transforms are known for many signals or can be derived by applying the properties and theorems to standard signals and their transforms. This procedure simplifies the calculation of the system response significantly in many cases.\n", "\n", "The convolution theorem can also be useful to derive an unknown Fourier transform. The key is here to express the signal as convolution of two other signals for which the Fourier transforms are known. This is illustrated by the following example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Transformation of the triangular signal\n", "\n", "A prominent example for the derivation of a Fourier transform by the convolution theorem is the [trianguar signal](https://en.wikipedia.org/wiki/Triangular_function)\n", "\n", "\\begin{equation}\n", "\\Lambda(t) = \\begin{cases} 1- |t| & \\text{for } |t| < 1 \\\\ 0 & \\text{otherwise} \\end{cases}\n", "\\end{equation}\n", "\n", "which can be expressed as the convolution of two rectangular signals\n", "\n", "\\begin{equation}\n", "\\Lambda(t) = \\text{rect}(t) * \\text{rect}(t)\n", "\\end{equation}\n", "\n", "Applying the convolution theorem yields\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ \\Lambda(t) \\} = \\text{sinc}\\left( \\frac{\\omega}{2} \\right) \\cdot \\text{sinc}\\left( \\frac{\\omega}{2} \\right) = \\text{sinc}^2 \\left( \\frac{\\omega}{2} \\right)\n", "\\end{equation}\n", "\n", "Both the signal and its transform are plotted for illustration" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM5MS42MTM3NSAzMDguMjU5NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicpVhLbxw3DL7Pr9AxOUQWKYmSjg3SGCh6SWK0h7YHN6/G8LpI3TR/vx9nZ3ZnJdobIDb8WH6kSFF8SeRuJnIfXXA3+PnqfnN/4O87R+4SPx+ngE+7KTbyQrFkfLrdfIqhes4N/92Cc/vpr2n6MF38gCXuIXM5TdR8TEE4O84+pQIurFvEJzml3p5QoSovS25W2FAXRbxX9BFGYyO+brYC9Yps5GPxOcXZgg0x+TATb6fpOXzydfqM38E9C1izeHbMvmX3djc9v3IXL8lRcFcfpupjqW1eAZ/fTU/Yh6fu6mb68QoLBB90DXyv/0D+4sX7m+tfvry5vrt/tvt09+Xevfh7eoXv2e5Jom+1t3NDfMzOTL6mb7UUTvw+SwkHLjy4dEN9zNaGU67fbut3epVy9CyDrRvqY7ZSIk/fHALhux3bim9hjNUjdTD2xCKqzbcEeG/w3qbZgQ427XVwYqzc69hSH9fBwHPtdORORy2ehljeUs/oKM0zn+igfh8xIuaHINxSH9cROfoqnY5uH5uKtNWxoZ7RIdXncKKDj/vYxFksaV0SOy+VeAk3LcSoALMOiF+85GXpJ/+uoXYueLByR30geGBDazNDjL4kqeWBENpoqtm3yJT4VNWRfFZXZU8xs0hhokUfP6iP4PHIIcd4qnBDP6uRIgKWo+SaEvOiMj2sEhaWUBt37tzQz6ss1TeCfYEEJu5VyoMqGVEcWolUTlVu6GdVIn98DCElqtjnorI+rBIpl2ouoXUqj/TzKkv2UmuNUUIe0hYlEZH+TGOeRN0xLw8nhrml78Nd0McCEjhqBuBUZhvmwF/1Pfn9yRz5aIyBohSqZam/Q3KAhXFA++wJ/TJPD7XaDbV6UdxV7J+vd3++u15L9mdnzDYxl7lhiHjC33/eu1/dnUNhwWASgFCWKlrZoEKWr4LTKCHXysiD5l5fOij979Pb968vn7u39/YAA41ELSB+t2n9xqKjYiGlAo6lZzboYEbuhpZazzuQdxO6Y2Ph1q9r0MGMKTHG1mLPPNJ3U06emlDIHbNBB3PzIYYS+5UNOiaq5Lm2XKRjNuhgRvDHGjL1zCN9NyERIjadS8ds0MEM21rLvZdH8m6qmFVqqNTzGnQwa0bHGAbmkb6bGtpS1UrYMRt0MOOcqDXpt2fQdRjEPAHfDxu0gP3smDDahz6SLADshNRG2FYdfBtyI9aF3QCUvaHHJM7JIS9DTPXAPgJgZ4QCgqxEV1EQGMut1lgIBFCWU0C4V9fQvlG+0ipgISpQ1GclR0eUMUJkagcJC4JIQk9G3JOgf7GXqOVjETEhFcHuBDMqlkrFJ8LEy6uIBelcjIGG0aewlKBLYhJJbRExIRWpvlKI2hFLxP0MqUyriAVBBLcaDFHIHtJBAUF8sMtCVAD9ImKcKI6DzkOUjhIWtJvbUkQ4EIoz/JglpMMpmpCKVI+BvnKdm6c0aRRXEQuCSE2+cEIlcKynUAMfjt6EtLeiDyCkkS8M/6QS0NEXERNSEYHBrUCltlgOhIxYRSxof2egrPpBxwEXtJ60iljQXkQKvCeg4+AKSYpHkRHai+gAhG4zzwlyzFsLWa4yGZNFnMkxIy42EiOkItWDGkKd6Thk4sPmLWgvgogQjQk1lxtGhaPICKlI85Jy0Fs0wqPkik6+ilgQOnCIuM5kLXws6LrCNS4ZaUMqgmBte4ORgRjNQqFVxIIgohUNkYAjQkH2ukVeDtKGIMIBDSc1FAEm3MkD7qirYSakIvAkrJbk5pMTTCKrFhPazffAEoog8gjOL4lyW3LShvSSiQTlCKejhDDiQ4iXCLMhFZF5UELqaKHCrKdlbhGxIJ2MWIfLKG2e9GMrSKZ1OLIgFalaOVj3qE4VHN5BxIIggoYREeCluYaLZClF1q1YCARQAXFUrbqilyMMgqu3DEDZcXXEOIgQEnVNCmsymojertGb0lz9EopaqDoY7AUsZH8d16lE+uHGAsCO4oQoQOHo2Q1A2bPHcIK8H9hHQCdU3Eiw+VKHEXUElB0+1kbRj3wWAHbCNJA1qHp2A1D2gjSfHzl69hEAO6aClELhfqS0AH2iQJUXhN5guwEou3iU9tiG1Q0A7EikLGhPw6xvAMqOpiGoIcO4bwB6N8BVhWWwfCArK+5EIY0ToAWAXUjHkNT6eLEAZcdNUaTGIV4MQJ9sSJt2CYPlBrAz331m9lfus2P30/7Z/OS1ub+ynXnIO71Wvzk+mX+dn82tB/LdQw/k093hIXw2SRcw74wPbqvTbr24P6b91fQ/r17YkAplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE3MTMKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExNiAvdCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNiAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU4Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDRSMFDI5bIAkjlcRhZmCuZGlkCWsaUFlGVmbgaWMzU3BtPGJkYKZsZGQBZEbw5XGgDSKg1wCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjAgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIC9maXZlCi9zaXggNTYgL2VpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNyAwIFIgPj4KZW5kb2JqCjE4IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTcgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjAgMCBvYmoKPDwgL2VpZ2h0IDIyIDAgUiAvZml2ZSAyMyAwIFIgL2ZvdXIgMjQgMCBSIC9vbmUgMjYgMCBSIC9wYXJlbmxlZnQgMjcgMCBSCi9wYXJlbnJpZ2h0IDI4IDAgUiAvcGVyaW9kIDI5IDAgUiAvc2l4IDMwIDAgUiAvdHdvIDMxIDAgUiAvemVybyAzMiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE5IDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLUxhbWJkYSAyMSAwIFIgL0RlamFWdVNhbnMtbWludXMgMjUgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNTE2MTgzNzUyKzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDM0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5MTM0IDAwMDAwIG4gCjAwMDAwMDg4NzggMDAwMDAgbiAKMDAwMDAwODkyMSAwMDAwMCBuIAowMDAwMDA5MDIwIDAwMDAwIG4gCjAwMDAwMDkwNDEgMDAwMDAgbiAKMDAwMDAwOTA2MiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyMTg1IDAwMDAwIG4gCjAwMDAwMDI5ODEgMDAwMDAgbiAKMDAwMDAwMjc3MyAwMDAwMCBuIAowMDAwMDAyNDU3IDAwMDAwIG4gCjAwMDAwMDQwMzQgMDAwMDAgbiAKMDAwMDAwMjIwNiAwMDAwMCBuIAowMDAwMDA3NjYyIDAwMDAwIG4gCjAwMDAwMDc0NjIgMDAwMDAgbiAKMDAwMDAwNzA4MyAwMDAwMCBuIAowMDAwMDA4NzE1IDAwMDAwIG4gCjAwMDAwMDQwNjYgMDAwMDAgbiAKMDAwMDAwNDI1NyAwMDAwMCBuIAowMDAwMDA0NzIyIDAwMDAwIG4gCjAwMDAwMDUwNDIgMDAwMDAgbiAKMDAwMDAwNTIwNCAwMDAwMCBuIAowMDAwMDA1Mzc0IDAwMDAwIG4gCjAwMDAwMDU1MjYgMDAwMDAgbiAKMDAwMDAwNTc0NiAwMDAwMCBuIAowMDAwMDA1OTY4IDAwMDAwIG4gCjAwMDAwMDYwODkgMDAwMDAgbiAKMDAwMDAwNjQ3OSAwMDAwMCBuIAowMDAwMDA2ODAwIDAwMDAwIG4gCjAwMDAwMDkxOTQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzQgPj4Kc3RhcnR4cmVmCjkzNDgKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4OC40MjYyNSAzMTcuNzYyOTcyNjgxNyBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJylWFtvVDcQfj+/wo/wEOMZj2+PRdCIqmoFpBep9CFASIPYIAqUh6r/vd/4HO+e3Z0kSCTKZeeb8Yw9V5vc24ncpQvuLX6+uD/cn/j72pE7xc/lFPBpM8VavXDmhE/vVp8iFV8ytxJBDvsf/5qmN9OD77DIR0idTpOCkmtJjpOXFJQNSxfxNR+Q3+2RG/k0Vl0tsiYvynhWdgnTsR1fVxuCCYqsFojFJ4n4Z7Mmig+d+G6aHuJkvkwf8Du4k4A1i2fH7FtyrzbTwzP34HtyFNzZm6n6WGoL8wmdvZ7ucbjvzt5Oj88gH3zQJfA9/oH4g0cXb89//fz8/Prjyebq+vNH9+j99BTf3ewps4/10MwV8TYzE/kqX2sopW8zlELxgY8OdEW9zdSWvdSvNvUbz5RwMDkfmbqi3mYqiXhubY69rzP4W48WpxPDkb0r6pG9e/ZQi5640M5iNaofooNRsxKW4NtRQqyptyvhqDl/qCQdKKnJp6NwXlPvUFKaZ97TQAf7iDGA5VDFmnq7isgRBWdfxcEuVjVprWJFvUNFrj6FPRW83cUq0mIJPs4rYtulEi+x1kPJHYWST3FhWQfUzy/fXX34fHHyfnNxef51gcW+HlBvCKwSvYQe6DGOytljyx94ZaUJzm5cW5R9VTvynboqe4ocUqPQaNHHN+ojeCOSENV9hSv6nRoJ4ZOosESmyotKuVklLMytxcAHKnf0u1WW6ltg4RK5yKIy36iSI/lQRWreV7mi36kSmeW5lkwkMQ9H1ptVIhklN+T8gcod/W6VJflcIJGSpDxnm1/lgqbBiQY35eIjdwme2z2ymcqSDxneaQ01l2JBHkhfG4vtdN77t9dgip5Dz5K5Mr+418nRq+hSvcIsyUPy02DhUFvt6RAOFn9x/4Zl7v23Lf1Gvs52ar4+P3vy+0/vr3+5vnry6fzk8/XVY448J+uhIOGgK3NDdSDeW2SV9D+eb16+3mb7B3c8c83HF1NBa3Ccsyf8/fvC/eauHQYqTEwBCKVcM5wE70tevvSES0gwIiZu7tmpg+Z/rl5dPDt96F59XA9R1XNqJWmA9LJKUliLiuquvao8NwGwN09JWi29BuE/rgu7AaD4iidEOWnRxPGEIHlmtwCdY31mDi2qiQmdP8jCbgCbSVDcIiFrYwOREbozt0EHc0XCEQ4GrTO2GmTZp0HfTCn6ULKg6gl5hDCnhdsCwI6aELPkqNTEObW2sBsA5kREe0kpFaUiZFJZDtECwI5xPpRGs4kSQ+WF3QA2ExKxIieQcdg+N9Hs7OwWAHa4KyD34hIWdWzVAjYTSqXAD232cyulxZndAsBekJ+Ix+7mWENZFjfomwnzEBRWlFUYiMq1jRYLAHvxgjqcuysqI+QW7mO6TryCBEuIT0lweM6Lhww6mAl5hcOUbiXJ4p5jsrLmfqdKcAKcLZFGApkIBDBdhIqpQXSdLKXU5QRNRAWQuCEGSg4jbkwxJBkCBgKBiPklx4hKhbhIgtMam7UQFai+oINS9x1qCBJiCBgIBJBhmLT1bqcMhbHoImAhKtBwNdJMcJLhS4RtHgIGolO/9LGJyWXENibYka8mogLNN8wOsLSqCQG1dAgYCARyQiHVMujQWFFGMbosAWRDeg1FjGeCU52yVE4cR2iYkIogRyuGaFT4gNhFeanDGSYEEVhZaylIDowZSNlQ6tiKCakI2kUJuP2gjzQEEW7/wyEmpIOBtiiOEXTMs5quI6osZNNvKyIYfRrIyDAMeW1s3oTmqxDqTWpj+Mjza0AXsSAVQapg+pPSl0IxBOcQsSC0pEC97yGodQihmqUt4WtDKpJRdQICFYfCiHDmOvqYCUEE/V3wxfrEoHGn7WgRMSEVqVpmMz6Q7jEgV4dhJgQRdF0cinqV4OBMrLk6i5iQimhvRAMDHbd6DKU1bEUsSHs+uq82RnEFNSoh+8buLWS+buIehUkk9Uoc0uJGC1B2nCEStPbGJIFKKYPfQCCAk84o1Kh3/WpTUhgKLEQFqq8Y6RDK6Ajo2gjrIWAgEMha5vstAaUyYLCiJdxNBAJ6ycPdIhQtxqkQdrkIWIgKJM+ITvRLlPuK0aANDRay6Zfm2rCfpORUuG75j4H5No4oaVCGQ4wVMbOwG4AOamh+mIF0lkB2ImRGEzARFcgY+TFOzK4R1PqtgIFgWAusvtTBUweEgGvGGO4sRAU0gYPIPCLIrhqYCAS0+MI/iEasQzrfLHFqIhBA+kmLSCl1PqK9jJHQRFQAA3YWQthiayUiu2gIGIg+WBCKFUp1HwBx72wjpU1EBbRUVZ2LQI4VDaUNAQPRkRl5jio0T3V5VwAsQNlR1JFPKIV9Y3E72ZgIBNA/Mb3k2o8u6gPP2IGFQABtFlNUkJ6CWCSM3mIiKoCNodjMoyAMzWPqM5H9J5rt1aQLPHUfHLsf5ufvvffig7vNXU9x+5ff57uH7y/98dt85d7c+Mo9XW8fs7tRuoT5cG09SVn6zWfzW/U/nf4HD6DYDAplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE4ODIKZW5kb2JqCjE2IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4MQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1UDkOBCEM63mFP7ASucN7Rtpq9v/thjBToBgcBzuDSfEhwW9ENpCJFHiCw3GNZIgxiA2qAloO0yiClzS6B79cavUSKGaJpXpISyl1XOEMltjlGjL7LqYgXZAMSA25hpZ0o3uoHE5twglGeaS25gausyaXzza6//J2SvCIduOFj9PQfJxGZdxcpHWqCHpiRs3KPTZ6CUbctRyxnLXUUqRUizpRZbDVD3M2/+7xGt8/5jc/HgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExNiAvdCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNyAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU4Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDRSMFDI5bIAkjlcRhZmCuZGlkCWsaUFlGVmbgaWMzU3BtPGJkYKZsZGQBZEbw5XGgDSKg1wCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzkgPj4Kc3RyZWFtCnicPVI7ksUgDOtzCl+AGfAXzpOdrbL3b1eCvFdkrERGkh3SUroMDWkjVWIMqezyMy7CtlT+DiL7XD6/0NY60JyHo4uNCaAp96WrA3YVrZIWvusoMgTmENhommhOUXAKCbV92nCQh/oA6zIidr0vBiV6NrKtQ/Yg9hOpGVJBOfCOhFCEh82+Y/g4cTztzRNgTp4MOCN79TNOKV05YTkUMDK3wy2w3tdnX89GuYi85gdhDiLHInJiUxMMkkCxHF6OdPDUU6M2A+RRXDBRx2yxwM+9Zz7oMaRT6JHt2FwupF5k8IX52aHwYD+3AAYqqrWdBjtYvb+OY72GDb+P4VrkjtuKLRygTRcOxDvBEVnv7y15rt9/B3JuBgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjc2ID4+CnN0cmVhbQp4nD1SS47oMAjb5xRcIFL4Jj1PR7Pqu//22bSaFRZgY0jKS5aopUwtk1SVXUt+dHTuMvk3NK9Gz7D15sxD5kmxODK3yj0M5JlbrNBrb9SrCwCxSO7UEtslxpZLxZJkh6ztEHdk0OHFKtnM+NrCDjdrjkdSFypepwcF+Yww8E7Mfb6JZSE0Vxltt8BBDxaoAz0wCxO5IuPdaxM9jXgLoKwPmb+ILjfUXI9sTIBTuNoL3qmU1jEPFYmiHOxGGr2fo+Y4ocPbPWI59nIJRwbe4mjHe/BFiJ5GVkSsfsizEfmGDalIj5jKG+puH3r8ja3YaH92JknB11/W20w10rng1Fyt1l+DR2jw3qjh8/dLnvH7HyEmbhIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgL2ZpdmUKL3NpeCA1NiAvZWlnaHQgMTIzIC9icmFjZWxlZnQgMTI1IC9icmFjZXJpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2JyYWNlbGVmdCAyMyAwIFIgL2JyYWNlcmlnaHQgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZpdmUgMjYgMCBSCi9mb3VyIDI3IDAgUiAvb25lIDI5IDAgUiAvcGFyZW5sZWZ0IDMwIDAgUiAvcGFyZW5yaWdodCAzMSAwIFIKL3BlcmlvZCAzMiAwIFIgL3NpeCAzMyAwIFIgL3R3byAzNCAwIFIgL3plcm8gMzUgMCBSID4+CmVuZG9iago0MCAwIG9iago8PCAvQkJveCBbIC0xNDEgLTI0MCAxMTI4IDc5NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzgxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDWTuXEGMQhG862CEsQpqZ5/xpHdf+oHa0cwy/EdaJ+8kh7y84RLpsn3c5fkLVHfUpaix6Viyecxu1IZYkelysT9TPw8fnOyiCAuiVN0bippe2ay6Aj6l/5tq97vRj8ztqQO+Qoqe8HgHNlKrPvGyK50ZiabvlzwumDSybYD6u5tLjFYNpGK1ftFu4KCRWX3TN5musFKiXsmpraeyQyMruJOgpOhM8OX0fHaVQv/slmXMpM1WjLPeJelw4CeVona1jNxD7fO4N/c8tK18WQNN9BKN7zoR3E0ljW3cH2/KFh6JBYz+l6heZX4Vba5eKvY3hU74uz+Zm/9Z06Hd+bgvJnRrfAh44rKNS22KK4b3adlmkLziOGi33kc1ndW9GGAsp4BBHevQkvlXOG6S+boTAbreR9E5TGgRvsybYe2ZSz1Eh5D71JEgsnyNB2C/RSgtWPMnTgSJztdWXOumbltpeWecxkYbY/Za1OTfr9oHxHEv3/h83z9Ai8TlAoKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvQmFzZUZvbnQgL1NUSVhOb25Vbmljb2RlLUl0YWxpYyAvQ2hhclByb2NzIDM5IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xNDEgLTI0MCAxMTI4IDc5NSBdIC9Gb250RGVzY3JpcHRvciAzNyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NQovTmFtZSAvU1RJWE5vblVuaWNvZGUtSXRhbGljIC9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDM2IDAgUiA+PgplbmRvYmoKMzcgMCBvYmoKPDwgL0FzY2VudCAxNDUwIC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtNTUyIC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTQxIC0yNDAgMTEyOCA3OTUgXSAvRm9udE5hbWUgL1NUSVhOb25Vbmljb2RlLUl0YWxpYwovSXRhbGljQW5nbGUgNDM5MDkgL01heFdpZHRoIDI1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMAo+PgplbmRvYmoKMzYgMCBvYmoKWyAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgXQplbmRvYmoKMzkgMCBvYmoKPDwgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSIC9GMyAzOCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtTGFtYmRhIDIyIDAgUiAvRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDE2IDAgUgovRGVqYVZ1U2Fucy1taW51cyAyOCAwIFIgL1NUSVhOb25VbmlJdGEtdW5pRTIzMiA0MCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQxIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA1MTYxODM3NTMrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgNDIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTI1NzEgMDAwMDAgbiAKMDAwMDAxMjI0MSAwMDAwMCBuIAowMDAwMDEyMjk1IDAwMDAwIG4gCjAwMDAwMTIzOTQgMDAwMDAgbiAKMDAwMDAxMjQxNSAwMDAwMCBuIAowMDAwMDEyNDM2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDQwMiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIzNTkgMDAwMDAgbiAKMDAwMDAwMzQ3MCAwMDAwMCBuIAowMDAwMDAzMjYyIDAwMDAwIG4gCjAwMDAwMDI5NDYgMDAwMDAgbiAKMDAwMDAwNDUyMyAwMDAwMCBuIAowMDAwMDAyMzgwIDAwMDAwIG4gCjAwMDAwMDI2OTUgMDAwMDAgbiAKMDAwMDAwODg4MyAwMDAwMCBuIAowMDAwMDA4NjgzIDAwMDAwIG4gCjAwMDAwMDgyNzMgMDAwMDAgbiAKMDAwMDAwOTkzNiAwMDAwMCBuIAowMDAwMDA0NTU1IDAwMDAwIG4gCjAwMDAwMDQ3NDYgMDAwMDAgbiAKMDAwMDAwNTA5OCAwMDAwMCBuIAowMDAwMDA1NDQ3IDAwMDAwIG4gCjAwMDAwMDU5MTIgMDAwMDAgbiAKMDAwMDAwNjIzMiAwMDAwMCBuIAowMDAwMDA2Mzk0IDAwMDAwIG4gCjAwMDAwMDY1NjQgMDAwMDAgbiAKMDAwMDAwNjcxNiAwMDAwMCBuIAowMDAwMDA2OTM2IDAwMDAwIG4gCjAwMDAwMDcxNTggMDAwMDAgbiAKMDAwMDAwNzI3OSAwMDAwMCBuIAowMDAwMDA3NjY5IDAwMDAwIG4gCjAwMDAwMDc5OTAgMDAwMDAgbiAKMDAwMDAxMTE3NSAwMDAwMCBuIAowMDAwMDEwOTYyIDAwMDAwIG4gCjAwMDAwMTA2NDkgMDAwMDAgbiAKMDAwMDAxMjIxOSAwMDAwMCBuIAowMDAwMDEwMTM2IDAwMDAwIG4gCjAwMDAwMTI2MzEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDIgPj4Kc3RhcnR4cmVmCjEyNzg1CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = sym.Piecewise((1 - abs(t), abs(t) < 1), (0, True))\n", "X = sym.sinc(w/2)**2\n", "\n", "sym.plot(x, (t, -2, 2), xlabel=r'$t$', ylabel=r'$\\Lambda(t)$')\n", "sym.plot(X, (w, -20, 20), xlabel=r'$\\omega$', ylabel=r'$\\mathcal{F} \\{ \\Lambda(t) \\}$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Extend above example by temporal scaling of the triangular signal.\n", "* Derive the Fourier transform of a trapezoidal shaped signal by convolving two rectangular signals of different width." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Temporal Shift Theorem\n", "\n", "The [temporal shift](../continuous_signals/operations.ipynb#Temporal-Shift) $x(t-\\tau)$ of a signal $x(t)$ can be expressed by a convolution with a shifted Dirac impulse\n", "\n", "\\begin{equation}\n", "x(t - \\tau) = x(t) * \\delta(t - \\tau)\n", "\\end{equation}\n", "\n", "for $\\tau \\in \\mathbb{R}$. This follows from the sifting property of the Dirac impulse. Applying a Fourier transform to the left- and right-hand side and exploiting the convolution theorem yields\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(t - \\tau) \\} = X(j \\omega) \\cdot e^{- j \\omega \\tau}\n", "\\end{equation}\n", "\n", "where $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$. Note that $\\mathcal{F} \\{ \\delta(t - \\tau) \\} = e^{- j \\omega \\tau}$ can be derived from the definition of the Fourier transform together with the sifting property of the Dirac impulse. Above relation is known as shift theorem of the Fourier transform.\n", "\n", "Expressing $X(j \\omega)$ by its absolute value $|X(j \\omega)|$ and phase $\\varphi(j \\omega)$ results in\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(t - \\tau) \\} = | X(j \\omega) | \\cdot e^{j (\\varphi(j \\omega) - \\omega \\tau)}\n", "\\end{equation}\n", "\n", "Temporal shifting of a signal does not change the absolute value of its spectrum but it subtracts the linear contribution $\\omega \\tau$ from the phase of its spectrum." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Differentiation Theorem\n", "\n", "Let's assume a signal $x(t)$ whose temporal derivative $\\frac{d x(t)}{dt}$ exists. Using the [derivation property of the Dirac impulse](../continuous_signals/standard_signals.ipynb#Dirac-Impulse), the derivative of the signal can be expressed by the convolution\n", "\n", "\\begin{equation}\n", "\\frac{d x(t)}{dt} = \\frac{d \\delta(t)}{dt} * x(t)\n", "\\end{equation}\n", "\n", "Fourier transformation of the left- and right-hand side together with the [convolution theorem](#Convolution-Theorem) yields the Fourier transform of the derivative of $x(t)$\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\left\\{ \\frac{d x(t)}{dt} \\right\\} = j \\omega \\cdot X(j \\omega)\n", "\\end{equation}\n", "\n", "where $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$. The Fourier transform $\\mathcal{F} \\{ \\frac{d \\delta(t)}{dt} \\} = j \\omega$ can be derived by applying the definition of the Fourier transform together with the derivation property of the Dirac impulse. Above result is known as differentiation theorem of the Fourier transform. It states that the differentiation of a signal in the time domain is equivalent to a multiplication of its spectrum by $j \\omega$. Splitting the spectrum of the differentiated signal into its magnitude and phase\n", "\n", "\\begin{equation}\n", "j \\omega \\cdot X(j \\omega) = |\\omega \\, X(j \\omega)| \\; e^{j (\\varphi(j \\omega) + \\frac{\\pi}{2} )}\n", "\\end{equation}\n", "\n", "reveals that differentiation of a signal results in an attenuation of the higher frequencies of its magnitude spectrum and adds a phase shift of $\\frac{\\pi}{2}$.\n", "\n", "The main applications of the differentiation theorem are the transformation of differential equations or the derivation of transforms of signals which can be expressed as derivatives of other signals. This latter is illustrated by the following example. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Transformation of the sign signal\n", "\n", "The derivative of the [sign signal](../continuous_signals/standard_signals.ipynb#Sign-Signal) $\\text{sgn}(t)$ [is given by the Dirac impulse](https://en.wikipedia.org/wiki/Sign_function#Properties)\n", "\n", "\\begin{equation}\n", "\\frac{d}{dt} \\text{sgn}(t) = 2 \\cdot \\delta(t)\n", "\\end{equation}\n", "\n", "Fourier transformation of the left- and right-hand side and application of the differentiation theorem yields\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ \\text{sgn}(t) \\} = \\frac{2}{j \\omega}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Transformation of the Heaviside signal\n", "\n", "The transformation of the [Heaviside signal](../continuous_signals/standard_signals.ipynb#Heaviside-Signal) $\\epsilon(t)$ is derived by expressing it in terms of the sign signal\n", "\n", "\\begin{equation}\n", "\\epsilon(t) = \\frac{1}{2} ( \\text{sgn}(t) + 1 )\n", "\\end{equation}\n", "\n", "Using the linearity of the Fourier transform yields\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ \\epsilon(t) \\} = \\frac{1}{j \\omega} + \\pi \\cdot \\delta(\\omega)\n", "\\end{equation}\n", "\n", "The Fourier transformation of the Heaviside signal plays an important role in the context of [analytic signals](https://en.wikipedia.org/wiki/Analytic_signal) and their generation by the [Hilbert transform](https://en.wikipedia.org/wiki/Hilbert_transform)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Integration Theorem\n", "\n", "Let's assume a signal $x(t)$ for which the integral $\\int_{-\\infty}^{t} x(\\tau) \\; d\\tau$ exists. The integration can be regarded as inverse operation to the temporal derivative. The integration can be represented as convolution with the rectangular signal $\\epsilon(t)$ ([see integration theorem of the Laplace transform](../laplace_transform/theorems.ipynb#Integration-Theorem))\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{t} x(\\tau) \\; d\\tau = \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot \\epsilon(t - \\tau) \\; d\\tau = x(t) * \\epsilon(t)\n", "\\end{equation}\n", "\n", "Fourier transformation of the left- and right-hand side, application of the convolution theorem and using the Fourier transform of the Heaviside signal $\\epsilon(t)$ yields the integration theorem of the Fourier transform\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\left\\{ \\int_{-\\infty}^{t} x(\\tau) \\; d\\tau \\right\\} \n", "= X(j \\omega) * \\left( \\frac{1}{j \\omega} + \\pi \\delta(\\omega) \\right) \n", "= \\frac{1}{j \\omega} X(j \\omega) + \\pi X(0) \\delta(\\omega)\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "A signal whose amplitude increases linear over a finite temporal interval to a finite value can be defined as\n", "\n", "\\begin{equation}\n", "x(t) = \\begin{cases}\n", "0 & \\text{for } t < - \\frac{1}{2} \\\\\n", "t + \\frac{1}{2} & \\text{for } - \\frac{1}{2} < t < \\frac{1}{2} \\\\\n", "1 & \\text{for } t > \\frac{1}{2}\n", "\\end{cases}\n", "\\end{equation}\n", "\n", "Such functions are known as [ramp functions](https://en.wikipedia.org/wiki/Ramp_function). In order to derive the Fourier transform of the ramp signal $x(t)$ it is important to note that it can be expressed as integration over the rectangular signal $\\text{rect}(t)$\n", "\n", "\\begin{equation}\n", "x(t) = \\int_{-\\infty}^{t} \\text{rect}(\\tau) \\; d\\tau \n", "\\end{equation}\n", "\n", "Now its straightforward to apply the integration theorem to yield the desired Fourier transform\n", "\n", "\\begin{equation}\n", "X(j \\omega) = \\frac{1}{j \\omega} \\text{sinc}\\left( \\frac{\\omega}{2} \\right) + \\pi \\cdot \\text{sinc}(0) \\cdot \\delta(\\omega)\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multiplication Theorem\n", "\n", "The Fourier transform of a multiplication of two signals $x(t)$ and $y(t)$ is given as\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(t) \\cdot y(t) \\} = \\frac{1}{2 \\pi} X(j \\omega) * Y(j \\omega)\n", "\\end{equation}\n", "\n", "The Fourier transform of a multiplication of two signals $x(t) \\cdot y(t)$ is given by the convolution of their Fourier transforms $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$ and $Y(j \\omega) = \\mathcal{F} \\{ y(t) \\}$ weighted by $\\frac{1}{2 \\pi}$. Note, the convolution is performed with respect to the angular frequency $\\omega$.\n", "\n", "The multiplication theorem can be proven in a similar way as the convolution theorem by computing the inverse Fourier transform of the convolved spectra\n", "\n", "\\begin{equation}\n", "\\begin{split}\n", "\\mathcal{F}^{-1} \\left\\{ \\frac{1}{2 \\pi} X(j \\omega) * Y(j \\omega) \\right\\} &= \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} \\left( \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} X(j \\nu) \\cdot Y(j (\\omega-\\nu)) \\; d \\nu \\right) e^{j \\omega t} \\; d\\omega \\\\\n", "&= \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} \\left( \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} Y(j (\\omega-\\nu)) \\, e^{j \\omega t} \\; d\\omega \\right) X(j \\nu) \\; d\\nu \\\\\n", "&= y(t) \\cdot \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} X(j \\nu) \\, e^{j \\nu t} \\; d \\nu \\\\\n", "&= y(t) \\cdot x(t)\n", "\\end{split}\n", "\\end{equation}\n", "\n", "Alternatively the duality of the Fourier transform can be applied to the [convolution theorem](#Convolution-Theorem). Applications of the multiplication theorem include the modulation and windowing of signals. The former leads to the modulation theorem introduced later, the latter is illustrated by the following example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "Windowing of signals is often applied to derive signals of finite duration from signals of infinite duration. Here the signal $x(t)$ is multiplied by a weighting function $w(t)$ in order to derive the finite length signal \n", "\n", "\\begin{equation}\n", "y(t) = w(t) \\cdot x(t)\n", "\\end{equation}\n", "\n", "The following example considers the Fourier transform of a finite-length cosine signal. Following the concept of windowing, the signal can be defined as\n", "\n", "\\begin{equation}\n", "y(t) = \\text{rect}(a t) \\cdot \\cos(\\omega_0 t) \n", "\\end{equation}\n", "\n", "where $\\text{rect}(a t)$ denotes the scaled [rectangular signal](../continuous_signals/standard_signals.ipynb#Rectangular-Signal) which is zero for $|t| > \\frac{1}{2 a}$. The Fourier transform $Y(j \\omega) = \\mathcal{F} \\{ y(t) \\}$ is derived by the multiplication theorem, the [Fourier transform of the rectangular signal](definition.ipynb#Transformation-of-the-Rectangular-Signal), and the [Fourier transform of the cosine signal](properties.ipynb#Transformation-of-the-cosine-and-sine-signal) as\n", "\n", "\\begin{align}\n", "Y(j \\omega) &= \\frac{1}{2 \\pi} \\cdot \\frac{1}{|a|} \\text{sinc}\\left( \\frac{\\omega}{2 a} \\right) * \\pi \\left( \\delta(\\omega + \\omega_0) + \\delta(\\omega - \\omega_0) \\right) \\\\\n", "&= \\frac{1}{2 |a|} \\left( \\text{sinc}\\left( \\frac{\\omega + \\omega_0}{2 a} \\right) + \\text{sinc}\\left( \\frac{\\omega - \\omega_0}{2 a} \\right) \\right)\n", "\\end{align}\n", "\n", "The latter identity results from the sifting property of the Dirac impulse. The convolution is computed in the following in `SymPy` by symbolic evaluation of the convolution integral." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def convolve(x, y, var):\n", " tau = sym.symbols('tau')\n", " return sym.integrate(x.subs(var, tau) * y.subs(var, var - tau), (tau, -sym.oo, sym.oo))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using above function, both the Fourier transform of the cosine signal and the rectangular window are convolved which each other" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOsAAAA0BAMAAACZTNIcAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMnZmzRC73UTviSKZVKsmUdgqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEf0lEQVRYCe1XbWgcRRh+NpfNXbJ3yVkh4he5pop4QjgCKoIfh4rQP7rSLyyl2Ro8LAVz/iihWur9rQg9kUQkWg8/sETUozSBfkAXLC3UUoO/rP5Z4wcICrbSGm0lvu/uzO7s5W4UoQtSX7iZ531n5nn2nZmbnQXa25ftw0Bfp4aWuELgxpoaMS/u5Ny4H3mGE2ENUgniIwY1o9ZT261AyhN9FDyqGRY1qQQOhSOCVEH2sl6TSNbjBFzAqIqAgtO2iKnV4ZLqEVYJHPLdiGwnub5lrkgkaqsOWCWzxL3ZAnzkqybhLo8jLbbPjQdiBE6cYCTs2ppAtgHkmqmCWTIqZDsCXEaZRpgXxbCMkqEpYrKKCLKVynRlXCUYa1WTgzBQo6zy2XwXp0fm47k6pth5hAuyXMGv2hYxAidO0K08bnzwED1Q5ptTzxZF2MdWFc+zf1IEdbIxAkeQCYIs+TDWDJcP7ccNbx4cKQBbZj+iGO7gYq37o8c1G2OzjhnGd3JBJmVXjd5mrfWMXZ8NL9ISnJ5doLYYgUMBhaCrTv5GoIo9wP6CcRnWW9ibp+B39FtpwdpiH00Fm5A1HaSR9tC7iKEmDi9kXqW2GIFDAd8Cggxvjr02GngO2A78iu4yzjUpWAm6tZTBTsYQPxiZkM1M0cnV46GnjoESHkWOpyRG4HJvtoDAOE8wfekusCx1vICxBrcCjwdV+/J4jeLZycldr09OegRferrpyzoYKJh/UIBMR2AtUQfzvWU3lB0q8BhgN/0GltsZNYzVqCCTa7v5iSuhrHEhaNMRmCw7h3XnQ9kxNxile1gcj0+yZZsP5XmS/WzFwaMjsHiSvwC+DWVpbbFAQd0o3ji+iWyp6i9JWVpb5P6GgLYucM7GDl7Yx3ht6XDuY9IffF6/2Pzx95Hjo5adnJtCT5NS7eZsQYfzh9RLR+Dv5JdHi7XBN54Z/H3bPb952HqaB4V/TYIuTnFEsfsEljv53eEDxvbpJyemr5/YA/OnWX5u+d8muIIgVVfIYlAmRMGlcC1lj7MCyC0l42qtI8h6ak8V99ZC726SNT8tcgrC5Jmsvgpkm6x1BJ3PZH6BhPYBNuX5jBUWvoFkoF2tI+j8BjKU6Td24gxujLjDG0cUWol0BA+u7C4jP0sAzNu0viORn1bmO4q2Ig3Bi619I5+vQoFZnjF3GeMbpI9/fpdqTxDdpULKEORcCeevu8WeMZZK0rccibR1Z4J53bjwmvv28jJeeaAYyvbZumFRW0eC96M+1wxq93a76rFfrpnp/W8masnHbkqQSN1XEzIHEpEDjp3YRkpJy1oePqFMk5btt9FbT1629yL66fKXeLZV9NNVN2lZ2k5pOt1Y9tg7B4GkdjLAHy0km5nBhJ2gLH/ikOxTJb5EJ5Zt1g1kP7fxQoKy95MqZzsN/npLKttcA0dZlj5mU7S3kpK9Cbjdl/0TPeWvk5K1dp85W/Un+WHc6zaSku2mO0/Zl91avHkxn5Qs7ycyPi58S2ptA7X/ZcW0X82qKy/YV/8Llb8ADjHizn8iLSYAAAAASUVORK5CYII=\n", "text/latex": [ "$$\\frac{\\operatorname{sinc}{\\left (\\frac{\\omega - \\omega_{0}}{2 a} \\right )} + \\operatorname{sinc}{\\left (\\frac{\\omega + \\omega_{0}}{2 a} \\right )}}{2 \\left|{a}\\right|}$$" ], "text/plain": [ " ⎛ω - ω₀⎞ ⎛ω + ω₀⎞\n", "sinc⎜──────⎟ + sinc⎜──────⎟\n", " ⎝ 2⋅a ⎠ ⎝ 2⋅a ⎠\n", "───────────────────────────\n", " 2⋅│a│ " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w0, a = sym.symbols('omega0 a')\n", "\n", "class rect(sym.Function):\n", "\n", " @classmethod\n", " def eval(cls, arg):\n", " return sym.Heaviside(arg + sym.S.Half) - sym.Heaviside(arg - sym.S.Half)\n", "\n", " \n", "y = rect(a*t) * sym.cos(w0*t)\n", "W = 1/abs(a) * sym.sinc(w/(2*a))\n", "X = sym.pi*(sym.DiracDelta(w + w0) + sym.DiracDelta(w - w0))\n", "\n", "Y = 1/(2*sym.pi) * convolve(W, X, w)\n", "Y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both the signal and its Fourier transform are plotted for specific values $\\omega_0$, $a$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM3OC41MiAyOTMuMDEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlCj4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK2cTbMstZGG9/0raokXFJJSSknLIWwT4R2GsBeeWRAYYxMcHBh7iPn3flOpLqkrkznEDJfg3nP06impVFJ+SNUdj28e8fj6CMc3+P/H40/Hf+HfPx/x+AT/f/0I+O3tQbWdJeHHb58/pk5niAkFYfv5r4/HXx4f/QfAH1D5k0cMZz3GX7gG17Ml/e3b52+p8tkGOsrXr/NKSa/0NfqC/p1t6yGuL8oj85mBxExnLRxbRFtXWTiTln37eHyMG/3x8T3+DseHAVekfoac0V45Yupn5JQpptbb8eXb4+PPj49+G9Hd4/O/PNqJ2+6BURO///nxQf7V8fk3j998jssF3Pshw3T9APqjX3/1zRd/+NdnX3z3w4dvf/vuXz8cv/7741P8N+7hESPunvi106vwf+11xEhlbv+nbqf/Z7dbP9O9188y2+mXvsTGZ2iBnG5Lz4L07EDPtKXE4eSWX5tahe+0lUo9S8g/1VZ6bYsonTG017ZW4TttUWpnT+2n2srPtvZ5x2WshFjO3EMpvB6erLezt0y1CP7Rb9Ns5oN/Ph/d7WGkdNZeeqnjWZSz7kXu/Cnx5NilhYiu9x5aClTT+7MnniH8IhOowF4Qh0irz6vonT5nXIF6pBZDyO/3GVal/CJ9bnTCOgXuq8+r6J0+137m2mPPkan8nD6XX2acY6SzRJapeXV6K3tvdoR+1thTCSkx/5xup19mqG/2Rbu9yn7CvpSOyTwWToRhx/ynwMu8zKm7Vv2zrUrAONG2fray99uq4Yy9E2qX1F/GwbSVQsbcZbjLba2usnfbSgGWnzCLGibSy0yxTVHGlGPK23Tdyt5vimBqa881Y+Kml5Vk2+KMecI58NbWKnu/LZh1LI5CoeREL5ZGDafMyw9lDsWcn5MzSfwQ02Y185iKr0bzf8Z8LLh87dzqnKmrFx/85wejBp43TA/XuNW5WV5USaFN02wu86tlnb8/VtRDcEToJJbPGfHvP746/nh8d8SzII7BvEmxcOMkF4RLn38qRreG0prOqN9/cmDV/Pffvvzq9598fHz5w4ypXpZIPSvGAsvsdZV85itwpOUk6kxkAFeBN4xnpAw/aABXkYDxpNycHnkC4jU6KRKKTH1XAQBHi1iJbAOu8vYo+Wyce7J34CoA+tlqq8m24CpvD8z43mN7DSQG4CoAuhhimXEG8JS3R8X6bQktG8BVAEg4QmTM52e+8vZo+SxY77YBT0B1rP8We+i2vqe8PTqmF0vwagBXwdQOshgagio7t11JEOQQCI+bHVdfksg7nRxaTrZfviRIQzgLm2PH1peAJMQLsDLdDpcvCdJOzjlTdhBPAkLlDKmG7ty+KwHJEeYnFqoWcSVBMJIpBWeq+BKQgoi65Fyc23clQTAsrcbgtOJKihQqmEkuYqWJMMxtOnC3CGlqoo24KwogVA3UpTj10hCJXoBRJlBKqPFAOkEwgFw34K4oUFtGXHFQG36irPp3QaojiEg5op+wx9xjUB//ma8oUBKcTD8wjSjE1ngBRlGA4aJhVhMjMih53bKjKNBqDghUxKeEFLgswCgCYHKGEjqKhzXr9QIcZQIV3SMpDjDgY+PgCdwVBSIH5A4IbxCdNEJweAFGUQA+H4mkFBfCz7wAo0xAHmGSYoILX3PPUSbQCfGfFKMC+rABd0UBpKb4I8VYnYU2wCgT4EZN4r8TyWbcWzCKAjlUSlXyyC75DS3AKBOgjoxzFKcohm8Bd2UClWTOoxhe7rWFu6JAiaHmkdo2KpzrAowygZLGaKM4oKvbXDLKBDr8G2nyvN3Aa7FW5dwakV4BQed2baNMoCEn0ZtCqFS3J2AUBSqWYMmjGJlF3ia2USbAJVGc49xT34C7ogAmb9P76h2B96p/F2Z1QswzZnvAaorbwjHKBLgT3JnMRfRy689d0Opoiuu4Cqwtbd25C7M60pI8LiKZV9iel1EEYOSgQSI2Wa2wC2vhO8oE4MNKk+LWalhPwFEUgN+Lw+DEzjHWVf8uaHUxe6VKMR5PJVr1jaIAsgFJj2AzMxxG4gUYRYHcuYoJZIRuoS074SgKMG4f7gd2H2617F0yigBVjCxSuIPGVKlXfStodeSSBfcPx1Wwtvf6RhGgYSQS97E3lGuqfD00R3kbGWVucKVHq+LC+HpkphyVOcFsM9zhEaUYUeE1iVxJEITxGSYJiy/DNfZe07NHriQI7AfljDAYi1uqIGV+Ip6kSBvPZ+TFCYv3mqyuJAjmZJJsHeXxxIxp13pzJUWQFpJMM9wuwUVeNtiVFMEKbEHSWaz1ynx5EldSBGuWScuR3betX0ZRAHEzBmMU95CobW1YaSIZCWgeew5YjrHlDTHSRGC1kGtIecRSiNvNW0mRkjCH+ihPHX/aQqw0EbiAWkc5DAt8w4YYSRGODCM9ypEClm28jDIBSeO0tNd2TXpPUaDC3I0NFMRtJV/Oy1MmAKPSdQwR6JWwPRErTQTLv5e5CwSrvCNGUqTB7dO1cbTq38pn5VqGm5XCkLbnfRe0eo/IrPT5wJfE/TlYaSJFHI+WYwXU7Q6sJEgVR0JxPiBEMWtBedJEkIJkHb8xUXlDjKRIhPtveinCcr6ialeaCMzrbD0hyww7YqSJyITR1pEBh7IjRlIkxVp1OcP6cV7AXZjVcZGqixkBIpW6AUZShHLslEc50t5Yt05ZSZEcEcs0NUsU90aMokAJCFLzMH2SKy4T50kTqa2M+ZCQprSyZpcnKYKwgSVQh00OxPLjhVhJEVxIgqsEb8Yt47ktxEqCwFdzY+bhX1JEsHV1zJMUqTBehKFHDj8MVFyIlWTnMWDWZXHFeMpItdpycK4kSIKRhIWVXB+OfPdWriSI7D412cuvyFmQQF7Ty1MEKLI1lBEH5ooxkQxk1reCVIc3ygi2DoLvQzJRniPlCFqdGwIbkpyaMqMDq75RBMD9F0nOjoSpCt9VnwvdUxSAi8+yzJAiIOS/4k9PUYAYz2SEjZ0QEdECjKIAnK5k+RhB+OsrA3CEWb0jNmtSnEKUfZdV/64ogHA6avpaa4YLWoBRFGAKnUZx6bGkDTDKBCq8yQjdsfxX1uYpCsDCSzCnGXVaj81RJgAWkaMkK+J8V/XXcq2MdFLOcUY2nTEZV3WjTEB2QTQ5xnLsW3eMMgEe+wBSTLji1iGjTKAjJRu5bg8YiL2Fu6JARzqquXFNKW0jehdmdRr3hVJJw/fqN2FWLxg3LU4tl22OGmUC+I01uY/whztwVwRoYmbT3D4Ioa+F7CgTwOKLfeb3tKa1o0ygwBA2Lca6og24KxOAfS5zvwHef+/SXVEA99OipviYjFcM6CkTyLJFPYpRuh6Do0ygwh5rMULctnXJKBPoNZDOljjc+QLuigKYIpHGdTDUPWwtGGUCSALyWLEBUUXegbsyATnSa7rvwEisN+CuKCA2pOjuGCEj2lowygSIuyb68JEtbsNqlAlIa2PvIfXKvAN3RQGJWuK4Tq651+0ejDIBzrLli2JGxkhbC0ZRAKuvt3FrWCPh2nb2lAnUJlv3sl3BibYe3QWtzjk31r0KPKeyqt8FrY6EIY5QZWyfhq2+URRANAAfIVsVEW51HyGjCNAxR4q8IwR3ilymXDGipyiQYG0kq0TwFMfGzgUYRQF58wRxiZxkEh5mXIBRADQ5pcp4NkfJskT42jvzlLdxgC6v48iJZ+tnQbJxZRKu9DZerZJXS2SXSTbtZSf32StXEgSBPNJOiSNyhjPAM3pGAK6kSJOTXgkbJdiicMV6riTIWO5y3KvBaU/XE3QlRagjlq8jBE4JM7MuxEqKFKyXrLE5Vn+5JpYrKYLsuFQtbxxeOmYlRSpcYEszy0jt2iFzJUXgc6jVUY5gtl/5uStNhDPNzKTXvIytKyki2yGdZk4W8uUyXGkiWQMeHu+flGvTxJUm0rAMouaXuYXL+rjS23g9JKRY4kxi8bSufjnKBBjGO89MGQs2b4SRJjLe1ZkbHTlfmw2upAjsI89BgZ2C+V+IlSYijmFudbTCe8espEgahmluRiDpaAux0kRqSHOTp8YiicRCjKQIxVwpPbc80gLuwqyOnFLHHT/0uN2GURTIKdV5d2i17jdupYn0UOZ+GNwSvSBGUgRxUO1zAsGKXtmCKymCMKLPckw+zlsrVpoII/yeexFUK+2IkRSpWDRVVym8Buz6Qqw0ESbdU5I37aiFbUJaSZEm4YFeKoRhey/ESoogAQlRjVQOIey3byUgPZwho8dxWE+k8uHKsFxJkRRg//vYcM4sZmohVlIk48ZknRYEJaWu7SZXUqRiPchIwhHixxQXYRQBxKcV+E157zxxudyQI0h1sc4wMkmyeDkeWj1yFAEkVmhIGgmRPEKGa/fAEbQ65cDiydpwl9exgKcoUGLKiA8kFsGTujJXT1FA4k1xfEj60dHLjXiKArVTk31WhAwRc3trwSgKNInvxjlVCRzz1oJRFMBzoTjicmQ9tW+AUd4e8u4i8syuOTb8cHraNleZAFOqIwhm2PunrXIVBWIqxHrCPg4Zr/p3YVZHyBX0gL2SZGKr/l2ZQEeQOq4zdkG3OzCKAgi6qpw/YD4icHmmEK4yATyQzDPZufaJXEUBCnC4mvjDNjwPxl1lAhmZRZ0ZXti7ZJQJNJZUcxywX1bWE7Q6fGbMM89GVLRd3ygT4FZDnXk2stQNuCsKYKRlzWom3/YxMsoEcnl2VLb7t8dmlAnAJReaaXOmHbgrCjBsVdaha7K5tQCjTKBQ07HuOYjjWcBdmUCPiXQLSV5D3UbJKApUeM0+pjBK0/bY7sKszsRVj+XFQGzXN8oEMFlIU1pOL0/BKAq0EoKezGMyXqmcqyjQY0ttpLSIka59EFeZQC9juz2fCDJa3daCUQSIElIOY5slaO/LYDiKAgnPUuwCstSGYCQuwCgKEEIR2SmAZ+Ia9xaMokBBHiUhvmz21B54AUZRoEfEUVFcEoL7XDbAKAIkXIdL4iPjp5BavKaeowggL6hVeWmcqxjbmK5hdRQBCuIPBAZpvIcvb2M8c2pfEgQJBFOTmyM8K1xpIZ4kCDwl7KfsYGaSq3K/bsSTgMQgb+RlsUDyXk+43qFwFQVY3kvvI0VNVC/j5ykKjMOxOIIiBK3XUaMvKYJMric9JILet04ZRYAxN8eCl/RUgvyL8CRF4OgT6ZEa1UJpQ6ykCNL5GXZiPV8HEK4ygV5j1DM4DA0ivY0wkiIkpk5TFCyZ60TPlyYCt5k0c8JUCLy1YiVFshwIzqPUQNfeiC8pgjnQ2jw8p5ieG8++NBFkfjwTR8zBa6m7kiIsVuZ5+MwvD9JKEymN+ZnUtbaPmJUUqRHBUp+JY966dRdmdS5h5pnyXmfLG2AkRWAqWr5eHMBMXYiVJlK67Gpq6igOaUOMpEgPaWwpjhcgeixbx6w0kZz6HHj46mu/1JcmgoA10Mw2EVBv895KgqQzyHaR3qOcRPTrmXjSRCoyLR16Of8LO2IkReSlnNE6ITyjuoC7MKtXpJdairCxhrQBRlIEUSVVLScEBpkXYiVFCM61TnvTWg99IVZSRBKisfODKiXEK7hyJUVKoMKanHLBnNhGy0qKcNNTBpbYPyTabt9KisA8JzkFKLJPer2u7CoCIBxqYQRGRfaw6vVSpC8p0hBwSiIiH2sRC5cXYiVBwCPkFHML90clr6jGlQSpsrUAewsny3ISFdez9yRBkLLJC371kB0DuPRyNeIoAJJsv6YKFyYH44zI+TlanqKAvAuPeSMfGKotXx848hQFKoIWSZ07HAAecluAURTojFErkjojFks9L8AoAmAhZBrRf5E3GpZB8RQFEqaxbAwPY5aeBzyuogAxQrBxlp4wdry1YBQFELDNk6Ue5dWDBRhFgRL1pFheX5WzpQUYZQKyqznSBTRb29aCUSbQaGxvYl5iPl/Zk6coID6u6lk6enqZKk+ZwHxFWXLh9jKsRlEAnkvzQnlbJLVV/y7M6gWJjr7SHGEk4lb/rijQkDwGzVTR/v7YjDIBOWWYeWSJlwP0FAU6Ypo2D5dr2u74LszqpYaZdgZK+1M2ygSQCNamJ8W8LKanCDA+fc3c5nvlfS0eR5lAi1EP4Hu63oH3BK0eKTLN3Yu6HoEVZnVZHVWTVHjqutW/KxPoLCe3o0K5jrRdRYEkx/v6Yjnnvf93YVZHPqhZMEkySVv9u6KA7FXra+Upt204b+WzMjIvXdwy1qlv1e+KAohZur5VjoQ2pu36RlFAPvPdh73JiJYaL8AoCsAVj80XOXNEFLM9MaMogHkY+3gNvSb5YNoCjKKAfPxCgjaJo9eujCNIddyOfKPDoaeYV15ly7Uy5mzNI/dlPPXaV3WjKCCvgWJuE1xkbu0K+zxFAfk0RRyf80IKHNaMdpQJMExekew6hrwZFUcRQLZnQ8/286e+pEgMTbJSD7GSImJg7YflXEWAitvr8qEwS3gSEJLYBg7C+bSxKwnS5UNVxfk8pi8ByXDVcHhkPyroS/IpaAlSs3v3rvQ2vlhEwszmDLEryZeWSJqMqMN+HtOXBOnI3uV7ORzEk4BUeXFdPjJuEVcC0uSTrUXeRjOIKwnS5fUssdcW8SQgfXzmNHn34kpvD5L9OoS3zkc4fUmQIr/IfppFPEk+0h5ORgpbnM+ou5IgEtIigrRP35eASHibZYfFIq4kCKLUgFjdIRxFvqoGrjAjX3Ju3pUEGW961ejciSsBkV9gzZyP3PuSIJI9yAGsg3gSkMLyAbHifXOAK8n3SkkwjdjBfkbal9ZXUd2qf3p8f6Tjd/pdWC/fNXX7Bgbvm3fuX4Uxrnh9FdaP4+uw9q/AerNfgfX47vrGq9H6+gatn9H5W1MvX6flt/Xp49+PRtvmCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKNTE0NgplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOSA+PgpzdHJlYW0KeJw9j7ENxTAIRHumuAWQABsbz5PoV/77t8FxkgLxdKA78GEQsNUs6WhS4LXjVLIaYBf8yaSB1QTaLaEVaF1KKA5aOusIRNsW9ekHfa6TeORSsaRqL7W+KWK5O/SO0W1awKNnTvau0Obgck9GQSZOylPWoZM0fTaZB9QiyWU82vvQ/P6Z9LsAu7wt2wplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTYgL3QgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC90IDE2IDAgUiAveSAxNyAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILrSAHL4EpEKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIC9maXZlCjU1IC9zZXZlbiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTkgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTggMCBSID4+CmVuZG9iagoxOSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE4IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9maXZlIDIyIDAgUiAvZm91ciAyMyAwIFIgL29uZSAyNSAwIFIgL3BhcmVubGVmdCAyNiAwIFIKL3BhcmVucmlnaHQgMjcgMCBSIC9wZXJpb2QgMjggMCBSIC9zZXZlbiAyOSAwIFIgL3R3byAzMCAwIFIgL3plcm8gMzEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMCAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAyNCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMyIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA1MTYxODM3NTUrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgMzMKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTE4NDIgMDAwMDAgbiAKMDAwMDAxMTYxMiAwMDAwMCBuIAowMDAwMDExNjU1IDAwMDAwIG4gCjAwMDAwMTE3NTQgMDAwMDAgbiAKMDAwMDAxMTc3NSAwMDAwMCBuIAowMDAwMDExNzk2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDU2MTMgMDAwMDAgbiAKMDAwMDAwNjYyOCAwMDAwMCBuIAowMDAwMDA2NDIwIDAwMDAwIG4gCjAwMDAwMDYwOTcgMDAwMDAgbiAKMDAwMDAwNzY4MSAwMDAwMCBuIAowMDAwMDA1NjM0IDAwMDAwIG4gCjAwMDAwMDU4ODUgMDAwMDAgbiAKMDAwMDAxMDQwOCAwMDAwMCBuIAowMDAwMDEwMjA4IDAwMDAwIG4gCjAwMDAwMDk4MzQgMDAwMDAgbiAKMDAwMDAxMTQ2MSAwMDAwMCBuIAowMDAwMDA3NzIzIDAwMDAwIG4gCjAwMDAwMDgwNDMgMDAwMDAgbiAKMDAwMDAwODIwNSAwMDAwMCBuIAowMDAwMDA4Mzc1IDAwMDAwIG4gCjAwMDAwMDg1MjcgMDAwMDAgbiAKMDAwMDAwODc0NyAwMDAwMCBuIAowMDAwMDA4OTY5IDAwMDAwIG4gCjAwMDAwMDkwOTAgMDAwMDAgbiAKMDAwMDAwOTIzMCAwMDAwMCBuIAowMDAwMDA5NTUxIDAwMDAwIG4gCjAwMDAwMTE5MDIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzMgPj4Kc3RhcnR4cmVmCjEyMDU2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4OC40MjYyNSAyOTcuMDEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nLWZTa8VxxGG9/MreokXNN3V30sjx0jZRNgokZVkgTEmIA4WQYS/n6fmTM8ZzqnLDUKxjbm333qnarrrsye6N0t0r1xwb/jzyf3d/ZO/f3PRPeHPqyXw22lJvfssVQq/vT38JqP5EIW1cPj5X8vy+/Loe+gfkH+yLLH5lmtvxcXgmz6vZd/rZeXtcUVa9X190IV3WdseLueHv8JIDPf9YDoqFTmwa/elhNwiqg+rxYfz6ttlecwufFre8//gHgae2ry4kvwotUmoqSb34rQ8fuYe/Rix2T37fek+tT7CeVee/bY8kPCde/Zm+dMznhPYC6ebt/8A/dEPL988/+vHn5+/+/Dw9Prdxw/uhz+Wp/y7vsBSxad+Y/Bh9YsGl+h7/lqTY/k2k2Pg0OV2kw/LXzR6VJ/7Vxv9jfsc2apab40+LH/R6JizlzFWya80/Vu3m/1K4dbyw/Kt5Z9ZFEfyUVq8tV3NWzfWYd5ZneTgx20IHZfvUSeJcKt3qStX6nrx5TYAjsv3qWvDi5i64tW7pRQQvVF2XL5HWZJEyrKVXb3ZIbt9puywfJ8y5QVTmexvdvDR1IJP50dzWtJzz+XioqsHuhsP9CVFXPXKD//y69vX7z++fPjH6eWr53f6Y4o+pJxyW/1RfL9eNiNJX1vKWkpIuOxHE8HU+wOJd/o/hdJu+mX5jlBqyeew2lSzbyWVUS6R5K/87aAvhupDrWXkzxUe1u/VGIN4qaPFESSn45bYKnMihoj7q+M5rN+vMg3feulZchTZVOa7VXaOfvSer7b1sH6/ytZ4HA8tPYSpst6pUmL3NeZRrzb2sH6vSonEZOyhj9h73FT2u1WW6mOKofcrlZf1+1UWSnzKQuy1elYZ/SGoNVIeql/H0vdwqWltiM7hrJ6f12dBfvSjbDoe/LLGCJaEnkbPqW3hczHjwT8erDJklRDTlqnD1WPerCIx+lgk2U/5bo/Gq7QSBadhO8tYeZuZ/0uKee+u+sZUGrWLV+eF+PvfL93f3DsXfaH5CyCx1F7lrKVu/zSOrIXSu6Qiw/30xKH3P69fvPzpyWP34sOhHeQQYm091bXC6T6XNDQv1ypd1mP82QQQHz4NST25ThDmkXrZxA2AtJ99aZSq4Ub0I5Uy6lncAhAfnJ8QAtot1Upm355uAacl0wey11kXQ2kt57O0sY5w8bGXSA+GRo4opu3ZFnBaCpuZAr+6VnwbIadtXywAccIkt7E20rnXIJvwzfLa5bYcRquOAlwDhSGehS0A8UJBKJX94UQG+xQ3uy0A8e5JJSEPJzxubvfNKoKkOOrVIMBIjLhN3l7QAk5LIyQarWAmhsFDnAdvAYijRiS0xrDkiwblFDcAxHG23iuujmNIHETfJm4AiBefh/DOWvFxBpxzEzcAxAkm6lvILuOlMnoYm7gBnJau1NI4V96tEASyHZAFIK67xJCIu1FGB8l0M8YCEEcnCahRZJJvjSKzSd+un5aRSZed43ASWOX157abCITmyT+RuJJElA+q3uYCJgJheFIhlRgv0sxYimwGmYgOPNFr4LZzMg9pzMgwESWIrzmHRD4jrVFxNI43hgUphcOulapCCtSKUWRaZUNKIdaHLmZfNbXs8jfr56GtcTZkK12Pjda0THkLUkonOktZtTZKZ62TcAuo+CCtYRqay2BcjZLGJFgQlKhpa8wySfHJY76ECSmFo6cPa50zQnvRSJwUC1IKaSPmuIY3jxqd8jwpFqSUhsGBgknLgOvkvUaYCAShLJVciabYB4mPc51vYkJKYfIhr7Zz8xUzRWy+iQlBSVoJiUFZ8zx5eD9DC1GCxgwRHB0tBT1Pkil/C6h41fgdJE2yQ09hd0EDUHH8gFGFh2DliOoKU95AIFCmijDtiY4OleDf7bEQJaxhyJmIPrD3scvfAipeNVJEEy3zxkX4ellFO8mV7DdU4eCAZk0yEb1AwD9yzNQqdAvzXJguYSFKoL3FT5KrkdQw4h4+BoA4sVSlanpjzq1k6FnbTUQJOMnIZAdHIg01l90gC1ECjXLWbmkt+4TK7tQWordpZDcOMVQ31AT6w+luFqIEalcjoHhO8EMk7v5pIUqgCJUcmjgGB6I25Z1gIBA6XRSjGAW6sotkiDB31UK0a6dRpUUcrmS9amv7OxvAuckfgjcldXQSexvTIAs5387khDKW6TgIPGmTYCC0kxQA5k5NsXRINOV1bFFvIkpoVN6gpZRz7aOQFybBQCCQB2mUmzambF2nu9s8yUSUwPHX0antHH+oYW8rTQQCLVUII+lpcvyBAJwmWYgSaJRkaNbv2jXHvc01ESWQKaN0Jiy1lPE710kwEAik79HrIMvSzVVaOJkEC1HCoNtnIiJq6UPqOnhtBAPRsUF0RKKNcEmXQ5rJy0SUkLXURdSRSCKFaTfJQpTQsA/Pj5rV6KM0R2wEA4FAZx5bobJq/xxa1Xb3TLAQJRDeHDt5k13RPZmdjIkoIeGTZEwKQGcaCdMxbtdVmLzD+JR13zgnfp7St4CKa1jg8biv3neEMtOLiUCoOqSmjksR7HqSecvZJqKE4keTVDuTqt4SMEXODTIhKI1BZJDbMgNq0QGvzlO2ECUwsNaatbwwlWDFJRhMSCmdxjTz39qoVJJjmvtqQnpNGrURp/twupnSOdK5WSakFB2u4qDnZQeZ1km/0zATUgpZumpO1BuI0GPdX95Czre3HH5qdW0d6Z2n+M26Cjf1mRxkXRQK3+4gJqQUarHo5KmtJv458m6QgShh6G2L9u1rp8mw2KePmJDO99pwtJR1ndpUu0bNNuFbkFKYc6iBXTtNujsExnwTE1IKcxrxqLOF8LJMj33XYkGnJQViOERdp2XUUabOvGxDStF9x390por61JrbpFgQFBptumuaNcdsSNnsM8ZNRAl5/ciAxxS9/8915kETUULV8Tpp80inxO7sVyIWogStBCHSY+sNM1PkiJNgIBBosRtORj5iA2ngwuy1TEQJzFHS9DqJwCThlzmqmIgSyNi9Mi/rdULPPDdNgoEoofkc2DKd8zTn5TTfwULO3yawTmdnpmHibcwx2USUQAucR8BX9JNVUg+aBAPRmymchq6kah2kXR2z8bAAFSdpR3QN7SJp4GX20yaiBFpxWngGQ4JgMELHPgkGAoGaQ8Ff76Eqk7cw9G0EC1ECvt57YMOGznqtzlRrIhC0fDAckBtIecz2FIqNYCGn9UsMjR0makvFppR5R2Qin33ludwxroSn7r0T9+fzx/fPvmFfXVIe7pvnTdVx7ZhX9+/un9Zv79df2k/2l/bl3f5NfbVDqfb3c/NTlqX59uP93bqfLv8FqIZ8BgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI1MDQKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzggPj4Kc3RyZWFtCnicNYy7EcAwCEN7pmAE8w/75FI5+7fBHGnQk3TIiXChyznhGJx4E5Q/9AJ5Nm2QZahN5jbZ/1GtGopGEcdVWxsospXVp5nRDc8HJmsWtQplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyID4+CnN0cmVhbQp4nD1PyxFDIQi8W8U2wIwggtbzMjmZ/q8BTTyxsrgf8YEKYhaQVIe4w63ixYW1o6vjU6QdtAqLg+YGlr8SsYK8gevW6Rg9Zpt4iufGGDpjhrBwzJEMWdrFM+62L0WODYK7YVah6SmWPuR6YRsHUnqztF2hpnAupiJjhnHbaZ9bJdKO0y9K/ZquIr3D1JK1i8affX8BvPc2ZwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4MQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1UDkOBCEM63mFP7ASucN7Rtpq9v/thjBToBgcBzuDSfEhwW9ENpCJFHiCw3GNZIgxiA2qAloO0yiClzS6B79cavUSKGaJpXpISyl1XOEMltjlGjL7LqYgXZAMSA25hpZ0o3uoHE5twglGeaS25gausyaXzza6//J2SvCIduOFj9PQfJxGZdxcpHWqCHpiRs3KPTZ6CUbctRyxnLXUUqRUizpRZbDVD3M2/+7xGt8/5jc/HgplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4OSAvWSAxMDYgL2ogXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL1kgMTYgMCBSIC9qIDE3IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIC9maXZlCi9zaXggNTYgL2VpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOSAwIFIgPj4KZW5kb2JqCjIwIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTkgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjIgMCBvYmoKPDwgL2VpZ2h0IDIzIDAgUiAvZml2ZSAyNCAwIFIgL2ZvdXIgMjUgMCBSIC9vbmUgMjcgMCBSIC9wYXJlbmxlZnQgMjggMCBSCi9wYXJlbnJpZ2h0IDI5IDAgUiAvcGVyaW9kIDMwIDAgUiAvc2l4IDMxIDAgUiAvdHdvIDMyIDAgUiAvemVybyAzMyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIxIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLU9ibGlxdWUtb21lZ2EgMTggMCBSIC9EZWphVnVTYW5zLW1pbnVzIDI2IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzQgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDUxNjE4Mzc1NSswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCAzNQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDE5NCAwMDAwMCBuIAowMDAwMDA5OTMxIDAwMDAwIG4gCjAwMDAwMDk5NzQgMDAwMDAgbiAKMDAwMDAxMDA3MyAwMDAwMCBuIAowMDAwMDEwMDk0IDAwMDAwIG4gCjAwMDAwMTAxMTUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjk3NCAwMDAwMCBuIAowMDAwMDA0MjE1IDAwMDAwIG4gCjAwMDAwMDQwMDcgMDAwMDAgbiAKMDAwMDAwMzY4NSAwMDAwMCBuIAowMDAwMDA1MjY4IDAwMDAwIG4gCjAwMDAwMDI5OTUgMDAwMDAgbiAKMDAwMDAwMzE0NSAwMDAwMCBuIAowMDAwMDAzMzcwIDAwMDAwIG4gCjAwMDAwMDg3MTUgMDAwMDAgbiAKMDAwMDAwODUxNSAwMDAwMCBuIAowMDAwMDA4MTM2IDAwMDAwIG4gCjAwMDAwMDk3NjggMDAwMDAgbiAKMDAwMDAwNTMxMCAwMDAwMCBuIAowMDAwMDA1Nzc1IDAwMDAwIG4gCjAwMDAwMDYwOTUgMDAwMDAgbiAKMDAwMDAwNjI1NyAwMDAwMCBuIAowMDAwMDA2NDI3IDAwMDAwIG4gCjAwMDAwMDY1NzkgMDAwMDAgbiAKMDAwMDAwNjc5OSAwMDAwMCBuIAowMDAwMDA3MDIxIDAwMDAwIG4gCjAwMDAwMDcxNDIgMDAwMDAgbiAKMDAwMDAwNzUzMiAwMDAwMCBuIAowMDAwMDA3ODUzIDAwMDAwIG4gCjAwMDAwMTAyNTQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzNCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzUgPj4Kc3RhcnR4cmVmCjEwNDA4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "values = {w0: 10, a: 1/2}\n", "\n", "sym.plot(y.subs(values), (t, -5, 5), xlabel=r'$t$', ylabel=r'$y(t)$')\n", "sym.plot(Y.subs(values), (w, -20, 20), xlabel=r'$\\omega$', ylabel=r'$Y(j \\omega)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Change the length $1/a$ of the signal by modifying the substitution in the example. How does the Fourier transform change if you decrease or increase the length $1/a$?\n", "\n", "* What happens if you change the angular frequency $\\omega_0$ of the signal?\n", "\n", "* Assume a signal that is composed from a superposition of two finite length cosine signals with different frequencies. What qualitative condition has to hold that you can derive these frequencies from the spectrum of the superposition?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Modulation Theorem\n", "\n", "The complex modulation of a signal $x(t)$ is defined as $e^{j \\omega_0 t} \\cdot x(t)$ with $\\omega_0 \\in \\mathbb{R}$. Its Fourier transform can be derived by applying the multiplication theorem\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\left\\{ e^{j \\omega_0 t} \\cdot x(t) \\right\\} = \\frac{1}{2 \\pi} \\cdot 2 \\pi \\cdot \\delta(\\omega - \\omega_0) * X(j \\omega) \n", "= X \\big( j \\, (\\omega - \\omega_0) \\big)\n", "\\end{equation}\n", "\n", "where $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$. Above result states that the complex modulation of a signal leads to a shift of its spectrum. For $\\omega_0 > 0$ the spectrum is shifted to higher frequencies. This lays the ground for wireless transmission of signals. Above result is known as modulation theorem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "Lets assume a signal $x(t)$ which has a triangular spectrum $X(j \\omega) = 2 \\pi \\cdot \\Lambda(\\omega)$. Due to the definition of the triangular function, the spectrum has only non-zero contributions for $|\\omega| < 1$. Applying the duality principle to the [Fourier transform of $\\Lambda(t)$ derived above](#Transformation-of-the-triangular-signal) yields the corresponding signal $x(t) = \\mathcal{F}^{-1} \\{ X(j \\omega) \\}$\n", "\n", "\\begin{equation}\n", "x(t) = \\text{sinc}^2 \\left( \\frac{t}{2} \\right)\n", "\\end{equation}\n", "\n", "Now lets consider the complex modulation $y(t) = e^{-j \\omega_0 t} \\cdot x(t)$ of the signal $x(t)$. The Fourier transform of the modulated signal is given as\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ e^{j \\omega_0 t} \\cdot x(t) \\} = 2 \\pi \\cdot \\Lambda(\\omega - \\omega_0)\n", "\\end{equation}\n", "\n", "The spectrum of the modulated signal has non-zero contributions for $\\omega_0 -1 < \\omega < \\omega_0 + 1$. For large $\\omega_0$ it only occupies a small part of the spectrum. This is an important property of signals used for wireless transmission. The signal $y(t)$ is defined" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIYAAAAyBAMAAABrDL7BAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEIl2mUTdMiJmu6tUze/kkN0jAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADpklEQVRIDZ1XXWgUVxT+ZrO7s8nsrotIMRXcwaIt1JBtFLRIcRFRRGwXBV8EsxXpg0VZilgQJGMV0UAxxSKoYBTBnwpliyBYoQYE8UWzQp/Eh7T4YNnGJsa/pGKce869d2bcNebmPpzzne9+35mdO3d+FpjBcErSZJ2dgZst17RzX05DM+C4Wp8ua2gGjpP8A0+k9YSNQ+oFWQYpJvuM/cKQdMm2gWL6L0qm4TQbtnH609RO+r9FTPw+cYWqbo+SWWgZJX16hG2Zopmd1MkqpXiNvWlu6ReWx8w0Yk+FRHJlYY0pT6ygEJDxAhyg2Z/+xsUfnPIlOXc+0AQoH8AQKmINV3VO3bAY9HucI/FOpFLFMxylk7DHmenAbQb5Ps6JFbAHgFOi+mHnx0xG40+yR+wl89ctefrZKhOxfC7uoz1UPWCuIS4ipm2IJ3pPSEFbmcH+WziCdsRTiz8B1MVK/SNVnOyvKWfPRFggNiKJc/7ZHUN7BhkkhiSXeBpR9+aozBcjLND6jAlrtLIMa7F8PrK5lupcqWKTLFJV2xOwpyAJlWy5QdI1d8vuHZvcQ0hW4gVXTYdz7/e7qefgQJj1sSV/rnXFyzx06vB/h5dYV3lLReV/k5OU+xtm//f7fLSUDiAUYj1o2J8vqf1Yx56HB1YUgDkLFjPtx5WehhJMAJsrtqtoui6i+BAo41ugXrBfIvUvtuqjd+oDKtMwUuNoKalS5605uLgM/AqMI1PDXU9NfdXQ4xu0jXUtVPNBTk4sh+jxCzCGvBtM4AbjSTFGCO/CrGpIoKHVMVnUPSKXU/bQSsDv4YZKDfej/YXuEdlWzc5FPEsGtFeBm8A13cNfj0DS6SmNysNorWFOA427OVwUi3FfrId/48S0ZGVFeVWuA11LCqoK8sZjXaW9j8/ufX3h5PMq5q3yb0U5GvdY9LZSuqnyYIlnD264wMB6MpW86VxPH9GpKjq5m7rnmqqbk7OKxDs5ZIcIpV9RMgnJGqmzo3D4qdgiH44GTZwhEjtlOPz+d0YM3CxtVY9KJNmcPWPcw9anL2+BowXjHvC3FI/tnJq+o5TmHflLyceLDK6+QzcV3V3i2Z+lSL+zpzK9NZcsEpF2cViAYI2Jnl6Qpu+Az4RBfo5Mz6tV9C2V2r56fVlQ3Z6IpqM/5zsy/qOwJpyXTe2kz7ghW0JvuRD5fmg/CmmyA6HCAH4R0l4PYRMY/uanNTExK+0lBTDj/x5ok1sV1j3R7Q2xEshA9JphigAAAABJRU5ErkJggg==\n", "text/latex": [ "$$e^{i \\omega_{0} t} \\operatorname{sinc}^{2}{\\left (\\frac{t}{2} \\right )}$$" ], "text/plain": [ " ⅈ⋅ω₀⋅t 2⎛t⎞\n", "ℯ ⋅sinc ⎜─⎟\n", " ⎝2⎠" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = sym.exp(sym.I*w0*t) * sym.sinc(t/2)**2\n", "y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the real part of the complex modulated signal is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4OC40MjYyNSAzMDMuNTEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nLWdS89tuXGe59+v2EN5oN28kzW04LiBTALJjWTgeKDoZnV0FEgtRQiC/Pe8bxU3ybNZ3ceCbBmyvsN3PXtxcZHFKt5WfHz7ER+/eYTHt/jvXx7//PgX/O8vH/HxNf77m4+Af336yGM8S2qp4l+/O/6VQ37WmJAWjr//9ePj1x9f/T3w73D91x8fsT97aaPXRwzPzt/r5TnaTvndmZJ6ew79oc3ttPnjyX78N8gkMv4cR9ZxSyrnXUt89t5zz7j3kZzHM1ny7z4+foJy+MvHH/D/w+PHAb/bn+kRU3/GkVtKuGw8fvHp4yffPL76x4hsP7759cd4IlWCFcw3v/z4UQp/9/jm24//9A1+KDwDfwv/9/oD+Ff/8Ktvf/5f//xPP//9dz/+9Nvf//m7xz/8r4+f4v/0GT5aeuZx5/lI/uE81/gc5a/Odax/W65j6M+QnKI+0n8439KeZfz1+f4bSzuiuFpz8n2k/3C+YynPJGKX/pW5/1sLHWWWg5P5I93J/Gd5ipKfyHZ0ss8cavE+kEO7YyrhKU6LOtO/dMeU0fza996xvt1x1Gd12sOZ/sU7dnniDu7t4tsT5hxw7X2/M/1L98spw5J9z/3enu+0g5/d70j/4v3aeNbg3y+t5zvqbO5p/XikzY699F1lafKfMkqGjt/46h/TvNGP/vSqsF4VHM+RQyhWA3GD92S39dTBdoYWEesz5BxRbB3XfrnhP8Pf2vR31os8qxXHZ1nfyT+c9VLx3gL+E2NNX846urt/v4Y/Av7KPYzPs76Tfzjr6FQriJxabfHfkvX671fqMeIlllDLW4VZyV+oMOhaUsmtVfym/Fvynv7D7O3O/E7/Hnvb0CGWyPzDDsoIRfq2trNSb/Nw3hKNtsaSwlstPdK/eEsYih47bFnqo39WKu4tExy6VGPIb7XrSP/iLUWepZbY0sAPf1aJ/FvmjFJh7j6/40r+0g0TDHWUIFJzC+WzBuffsJVnT6WHtzd5pH/xlg3mEiWKfibE/Jl5MsPLivtj1rLpVpCp/ZnjtBaorDFLK2Zyw7NotVXT+7rbj/6v1l1ku+EJrasNb9b5/+gl9Smxy3nB+o3//iO9AkWJfM4u+P1H/vS6JIUx+4DrZ/7ue37mR/9vNbDH1cDmU701s//yP3732z/8+Vc//tmv//jz//mnP//x1eL+8HgLGTIKDOWVWntG/O8ff/X4b4/fP+Kzwu/HG0+xttGSFV+b/+l43T3UMVKuSR4/+/qBW//v3/7iVz/7+iePX3z3WXyQnkFiLKzp6L5rlz5mc44wMpGV4J98BZ01MoBOFNnS5FFQFwxwFQAVzm5Do9DkVoMswFM+feBvtNkSu+Y0tpqyXe8JuLyh7qI2iv5KTE3GvNwRcDk7OrgYSIQ3CAsh83k94dMHKnEKrRfR5FxLDcWudxUACdVJUhLLJFpZrRPwFADoUVuoDTfO8hwplTrLx1UAtCfsKAMfeKIhhdjn5Xc6Lh7qyqGpshBQK6O8LvcUBF8R1gIWxcqhhyZxFr+raLTWSx01WjkUQSc1AU8BgCAixob+WmtiQVWcb8xVAHTeOIs+WMrqbtr1jvDpo9PoIoSeP9IHLtDLPQGXIxjLUhmQoRzgZzeZP+8qnz4G3yNetsx63kVmCbkKAHTjKOliJQ1LDUdrAp7y6UMKml5Gh645HTmOWaKegMvrcwhafbGq21p5FairAIB5KWwO/JWOEkdvZdc7Ai4X9PO59FkPQ+1hlpCrMBJmexvF/HmJ6GbmK3AVAgj58Tsl6g8VOGkLcBQCBZ1LzWrO8rPROo8X4UlEGjqq2vTtoFzgMb4qqi8ZwhYV+FMNzR0RRNvILdkgQEkx52Y/1WIt61E8ichA82ulVQ2wJaOZ5BfiSYa0OmKzF4vUUsZGbokI3hVau3RtLehB4n4pngQEnZHkjmBXHbiWS+ivjLkSEVTjUnpFjc7wtwveX3ohnkQkoe2GzG4A6ei+5FUdfcmQ0dFLzp+SGkLayC0RQXcGvz+aM4pKW1YVcyUiCEvxcml/0TpZa0t/IZ5EBLkcCE+tIrWOurcy5kmGoJctmVYSXhYMd8gbuSUiHdYoWt3DnzAbpbwQTzIEhiDqK0Y1FPT+spFbIoKwIguMhqbDuUXDfSGeRERQXWuNQ59RZKBPfyGeBCTBS0VEyVpR+OeI6fUsrkQE1jvVRCsIIxJKWU/vKQZ0uMHVKis8Aby5TdwSEXRYcMR71GokBQHmi3AUAwYMbSz6Q/gDvsEmbolIecIeh55mfMRo5YV4EpHK7ArTC/29EVdlcSUiqDnsqq0XrnA6Xr2JLxkC/2eEpFYH/c2yrZ5CYLBMtBtDJDEkxlet9xQCqA1oZcnsGrwEZP1FeJIhTfBbdQ5D1pE3cSkAMryakWo2j7fBQ1t2xZWIwN4gdovWrGF5Yl+IJxHJzGMUq6SId1J75cuViDSYZfgGdfb6zPkkHAUAvY+olZl/jiTxBXgKATUc5nkxJpH+Kl1P4RAwe1kR/gzC5pbbeL1xTzGA4YT67ojoKmLyvolbMoTxfzFrVkdHvdjILRHJNPpF+2X0t1XKK3bwJUMQrSNOMzOL31pG25UMQZmnMOtP41DKRm6JSGFtKGKhC4LZUdezeBIRWL2eOPTECosfym0hnkQEIXAc6pag4SFEDbJeiycZAucn6PQCOhxYjlE3ckuGoMBtzLjCv4T9TBu5JSIcDmDV1nSGVsvOu5IhCc6LptMSjLzarysZkgc6DktvUnI57nJLhqDDV3Ou6am0TVyKAQ1Fz/qNZHp+fQOXYkBHerHfQd0YqzG6kiEDhc16hyKBlU1y3OSWiLD3iqMkTe8IovJ6dE8yJKUKE6uvt+YdBfiSIQXZ1TLB0yLorcddbskQdpGxaVWF61RT38gtGYIm0BM7THRM47zHu8DLRSM/dsgJVS7V5XN6CgCEmQg8Ct23Bkc2wrV6NSxXMiT2kuCARQSFcMT7avGuZEgOXRKMeYfRRdhZ6kZuyRB0+ogzddwSPV8+bnIpBtQE76BpcoMPsyqKKxnSMvwJVKCeac/zOJBbMqTDWIqlZ9idkjZyS4agLjdG2khHUJyOZ7+UCcA1ipaMxt3yka1bMkSajh4xOSH6zJu4FAJ4qITwoNmtZdDmTsKTDIl4OWk+X8lpP4gnTUQqB4OYzlGVnS9PMiQhvBG7e2Cn3DdyS4agVYZhFaKhgS9L70qGlJ4je4DOap7S8uhdyZDaEKsNragI21s87nJLhjQ0IBooNgcY2nA8yy0ZAg+xchSBjU767rRdyZAxGv1QjtoPlOlBXIoBMuiOPTg03WTkeLzIWyJS4POx/TQGn2Usn9YR7HLUNDhs/AsRclrRsqcYUGqjax85UlakHDe4FAM4Ps7RLnYDaeRaN3FLRNCjZhSCeWMNQcXyIVzJkJpRe2yQLMAo17aRWyLS1G/lCEKkaWvb0jnKJ50dgHHW/iWgcErZ3a4rGQK3Eu/pwSGhFPt2513JkFpCgl8p6M/QEFaX6CkGNDbj8hAGOvh32sClGNBzSLB5Ao8spD1C4ikGwNVj8IvkEODDxg1cygSko0t9CEojRVxyAO+KAdJCRgwhaG6D4+UbuBQCg3PLFfWFqx3Y1S/AUQxAPE+XS9DHCB4ub+BSJiAZ/2FyQj5FDuBdMQBBLzoJJgeE9bt/dpQJjF5RxhIZOsOWHcC7YkDOsL+VyTogeTzDpUygxwCDJRyVGochdBQD4BS0wdTa2xqC9oR5OVoKvGUmo8XXo4wuxQC0K4RXmgynrhwZupQJ4J2I5rNycrUdwLtiAAPKor9D67IdBUeZQGHwzZKDF1SPMn0X5uXCKTImC2xROoroUgzomUMW+vIHIurjLV/KBAZjMK1eo4+jTN8Fu3zgxQSrvl1aPkroUiaA9wGvAclyDCs5gl0uKAYYQ1Ff6Wj8jkJA2OOzQqGJB1b7ZY8cxYDIdRaFyYNLl/oGLsUARGgc/+LIf0Kv0zZwKRMQ4VAGDWGlr3wA74oBWaqAhqnlioRwAJdiAPxcbeLo8WEb0gFcigFwJzsjj8C3E/quSJ5kCF8iHfCAkAh1ORwFdUuGcN6YY3JBOPy7jZijAICLA0NCF5qjn4MDba97uBIRzoxnXRyVOVGStvF2JSLoVfF8dBUG4sGe4MW9EE8yBC6ojl5zXWEPcbUjVyIC15MT1P0Bp/WJ1lXXIIErGRJDLygLLojIidHXRm7JkMTVCQ3pVQeRlk/rSoagFkhNSG+IoOM2Iq5kCOwvQzy4S/gTkduB3JIhNdJvTXzB8BvWuKCnTABNAU4CQjA4cDBhx5PckiGNIz+Wjlpe+pGtW5oIF1ciuxF+T0txdXuuZEiHswNTzPTa+ijHo9zSRKTQ4jEdfu8yQp5iwCiJ/0iRCwd6kONJbmki8Bvg/DAdbhZcuAO5JEMkB7xVTUchSjzq1y1NpMMW290LzH85HuWWiNC6ImSzn6qhh2XjXWkiHLq1dISScXnDrmQITAccIUtHx7GGX11pIpzbLPaMDYV63OWWJoI7InjWkoQrno9nuSVD0AWwoUaOOpS6huk9ZQK15zq0SqDnk9XHudJEEOD0oukd3mM4snVLhnCKN1vtxrOeD3IpE2iI66ympqKO+SYuyRD+rZUowMC3seINV5pI4XQzkxl3nw9yKQbUOAaLBOYDr2zXekcxAI5XUXuDjiO1no+KcksT6Vx4kQJHGxGvtoN4VwzonDWOajcLOquzdG/JEOF0dlGD3tFvnDe5JSIIcjrH15DOZUCjLEfClQxJPTAwhEeSMixP38SlGNBgzivX2eIFwKtvaRO3ZIjA7Qk2qNNDqGucz5WIIMSlsbEJklj2yKCnEEDQM/B26qNzRXIIaybLUwwoEhDbPhi3StoBuacYwIF73I4jYelwiDzFAPi3XKnDIVOUxbbxjmKA1IJu5VHxkI0DjRu4FAKgKwKx+qiVa4f6ipQ9xYCI9whnr7LTkLwm1jxlAsLVf0yG2egrXPEUA9DWGclzAqrBHuUNXMoERq2o/pzjgvMtxzNcigEZuZPCjSdSQhjHHS5lAvC1O1NbHm13nLdglyNk7nAgkIxK3Hb/7ygT6InhiC5GK3GNBnmKAYglOzwiJMNnG/3I0aVMoDHYe1SYRmm1pgN4VwxoMXC1J5NHq0eO3oV5eRttaD5DlcN5cxQDOvyfrCWRULvG8dIuZQI0n7pbiOF8Ol7apRgw8AZh3XV7Uf7sLVzKBEbkyFvlqsRjHNZTDJDUGW9XRjGxnHe4lAkMuAqdNR42OJbjLVwKgMHhPAQkicnwsODXTcBTJsCFJnj9tJ81r4kHTzEgwhNBtMdmjrayughPmQDKogwmI5huazGJpxiQch+w/VzYiDu/Vtm5igE5c1nlow56sjEcd7gUAwoDnPRo4Yn/2ZXbUwzQ6bb+aHy0sBu0pxgAe4OG+ECMWNB3lCNLl0Ig0o2GbXiMxBnqtIJMTyHAySD0k+gsm+7a6btcPYmIRlKIONG/cmKQS0VfiCcZ0uDdM/iKXLtUeh8buSUi8EERpet69sjFLHsphSsZgnpGo8V9U7r6oW7klgyBORx0YbhyjWshDuSWDEGd5JK6xDWUVdrqsF3JkIZWQ0efqwDQQefjLrc0kcY5dqRzYheV7nj8WzKkRwQqKMnS6F+04yaXMoGexFIR4uyxGE8xYOQS4CIWDoDnPTzkKROQYQXCjVlS4pGnWzJE0IKLaDpbqRw3uSUi3A7VAr3jwr4dVWi9EU+aCEcPCgedSlj93p1uF8ciTaKmlyZrzZSnGIA+U+AbajICqdQ2cUsTqYWrM/XemYu1D+SSDMkRPZtlN/JX00ZuaSKVpa4lOGLbw8SuZAg8e2sGHNoOa72+L00E3kmz2tC5FzceyCUZgpbDwInp3KEwjjK+pYng3jFqJS09HuX1LtjlLRfROl0531HOl35LE+HgX9W2KchEPJFLMgSxSg6souhQ8XhylNYtGQLLPwYLPqIUy/nkl2IAXOrIMDjjTfW2l8i6EpFGF4jtP3PLCxfGvwhHMSBx6B9lmFDnOMHVNnFLhsDcBY3OYaEQqPYDuSUiiFJy4qotTnEiwFm+lacQQGWu7ExbY2wwdoW/BbucNSE/UA/g2bW1/McR7HKEERXOUIZbBKu6rbSjGCAZ94qPzIi+x11IjgJA4AzJ6OiGuEW21+0xeIoBXF3KsQUEgzDJ+QAuxQC4rlxTkBrH/OJyoD3FgMw9sHg3rDzSVujmKRNAN83uh1bmCN08xYACA9FY8RGVhnBc/y7MyxH0RlpIvMuR1tiypxhQYYb4M1xRgHBrbOBSJtBKxcvhWtw8ynGDd8Eub9zNo78S6naeHWFejibBITruHO6Sj5+/FAM6vCuYWy4m5j6yvIFLmUDPHDXFz3DbylGg74JdzrWqfPEI8uFbxuMBLmUCY2hNyRr5hqMOXYoBwlG2ruVcuHliA5cyARmJg6Uc0NxeqiPwcu5yla7+C3yfeLwCRzEgBs7ja00cLay1+p4yAcTrNbNxBGRgdfGeYgAX7ATuaNQVJvXI0qVMoLaAcInrLYfslUOeYkCOHCPiYrjCKbp9/btgl5dUOTAIn7gJPMnj9y/FAFRZ1vFMf7rHcZTRpRjQYHHMCI6RohyPfCkGoLFmmCi6B7nVcDzCpXzSHaWI+xjacxItS16etacQqFyubU4knRH0GCtPnmRIjakyeECM3EbbjrUrGQJ/m6vaEiNM9hdjI7dkSK8cmUE6p/TgVOaN3JIhIwXuv+MeWXSrY79BT5qIBDo6XBfENakn8a4YgOZIPyK1xJBuL3lzpU+6+5cnEkjVdKnHqLQrTYQLiNCIuSxM8p6ZdyVDEC839JLcSxy4sylt5JYm0mLmnENjdAe3px/IJRmC6NSaJnqcimyXjdzSRDrnqGyTc0BMcDzLLRmCeG7+Ut+16z15XtoRMduztcz9ncfll2QIOs2Q7a4Fbowcz3BLExnafWsJIrLb1s2TDKnc4Fjme5Jaj8e+JUMaXDzOM7E29NrPinJLE+Eu3FnnShjHTS7FAJRcEKvXyHk873FLE4Hvkoe2HTpAu1l5kiGDO6Hpx3BA7Zi5caWJwCkWa9O59xN4E+xyqa3SOHFVfToL913g5VxkVtivc9ANb2s7dY5iQA6l0GBws1SKe+WHKxlS6aYWjQRgOnac50pEBmoMzaTNMQ2YpfU2PIkIu6zKFbu6GxOlv/LlKJ8+OOUTEATV9tCZhBpea/BcxYCKHxOdcECFWMN+rmIAfBounOPBPAF1s2zgUgjQhRicWsuccNBp4gk4igEpRe4Whm8/GnfIbuBSDIDHwS1biSuZ9qoaV5lA7xojc5sC1+YdwLtiAOoAXGI6KfAgZLQNXIoBNYjalkovv73CbVeZgK0zoGc21mYVT7DLYXFRzdS3j3nZTVeZAN46vSYu05BwPvKlGNDhZ/DBuOCER/9s4FIM4OB7Uu94oAHI8QiXMoFe6e+pu348wOfJdqnAsg0LBXKv6bj6UibQddmouuojh6MOXQoBbmVE/5H1oUbNq3huYV7eOnPHQmv5ZS88wS5Hp4zgh6mov/W1GtpVJgC3W9Sx5wlNqR7Au2JACtyHzeQR4trV6ioTqEMdGB1kip8B74oBOeTEG3NQlIv8N3ApE0DAMNRRj0FXJG7gXTGgRD36Ba0VAeKaB3cVA2oIow369gjIxrZ2jjIBSfg7J55mldJxg3fBLu898NyIzG4AGS77+ksxQPLgehOOWbHn29e/C7ycOx8qgiSd9whl1HW9oxDg4hTh6hour+N6XFmEJxHBPziaxOl9ZDrl3lZd9SRDYMa4wITjTzwwodWN3BIRuF+jcIqVh+RkCWtphS8ZwhMYkk4x5L4GszxhXo5oTwcnBLFxlG1SPckQrsez6QVUgbaNqqMYMBAEaXiMp4OzvSuIJxnC0+mizS7A2+5yPPgtEeHe8t51UBftBV3y7kI9aSKtc4Is6Y7SfUiLLxkSOeRQbI6h0avfyC1NhJPj2eYYhJ3+gVySIQkhTbF0DmYdxKVMQLi/lSPtYbATP4B3xQD0BXHOGcBa1yGbuCVDEIpy55pOGtQs56Pf0kS6lDnNQNelHcS7YkDlvESa965r/5QvGaKT3vp8qEXhAN6FeXlPI1kBImyuchTVLRnSU2s6HMRRTo0IFnJLhnCHEJcLlW7TtnEjtzSR3nlSEWtcHuPozTzJEEGzZFDK0YVQ14EjvkQEhj5ywZ42uMh1patqedJE5jq8ovvkQhoHckmGRFQCLcnIwy+Ox/ckQ3iODxx0ThqgW5JdIT3JENScwglY9AOIOnrexKUYACdicOiW+1Q5aXRk65aIMCAQnpNAIx2brlKYiCcB4Wl4XEpSdOcPur3tA7iSIRXlDRdx6CrEtt6jpxiA1ib1oTtDytqt7wm8PHFxMw8wYOQb6Ze+rncUAxKPhxjsKAM62LGvfxfs8sytWulRO4+HKq8xNlcxoAQ0+sIoCEVYViP0FAPgedBS1sL1Vf213MxVJmDrbZAMl6KlI0uXYkCLGjbpgqxQ91tzlAk0nhrE9VicZj/K9F2wy7n9uNlyrBDS8qo8ZQLcfZ24UAcFEeLxyJdiAEKm2DUZVSv2o1AvxQC8QY4vcnXSqGtzjKsQ4Lr6wNO2dPlTX/sNXGUCGoDzZ+Db7Ge+Bbucq+iqLfiC25Hbvv5SDNAdWpoMq7iMmSPMyzl1UFnSdJCP7LwLdnkuJcKkcyETj1bal78LdnkJJbBiZd1Sua9+S58X8yS+oQsGa5Q4jsvfFQMqp51Zayt6g5L39e/CvHxwWIzrkRr3jh1FcykGwMnhBADHfPJYG4dcxQBOR6K/4HqkUtZWclcxgCvmKk0Hly8ddect3S7mgTY1Prh1uKCjOH79Ugigz+KZLsLBea5T7ev3HcWAxrHQ9tC1LCIjb+BSCDQdzOdGFBizwu3ri/AkQ2AvuNCCS58qrMi2jJ5EhEcRcd/zQ+eVahkrGHElQ9hH8NA8TjgErkXayC0ZgvCY44Yc82qIPvJxl1sypAlipqarpmuQdSqULxkCS0C7wy6SK8FlE5diwICXx90b8PMrxwXjJm7JEHgTtnGHi6pCWdGFKxEZNFYyxwWRjdEW4kkT6Z0b69nv8wCZXA7kkgyJTYMmLrCv3MPTN3JLhuDhgu2pEW4uOm5yKRMoWd2WqOtFx6gHcUkTGTrrq85FyXU7D55kSM5hiKUP3cu4kVuaSNdjInVTDV5cPx7llgzhITu2QyQh7+XI16VMoGUeGaNuBkxCPV7jLRnCDVEtzp0r3Di+kVuaSK488UzTORR73OWWJsLYsc1dOLImBH3JkBbb0BrBXTi51aOy3NJEKs8qtfS610T50kRQc5LtKMo9HI6mJxnSucEpzl04so6P86WJtD73U0UeiXPUyUsxAEU3slVV9E35bI+3NJHCY7BtF07kfMCBXNJEIDRLL51bFw/kkgxBP9nSbHZcV7KJS5kAjy+15Ar7IUe2bokIz4MJOswXOa0a+jq71pUMiYk7RdTioM6O7at60kTgiOouGTbZWlYc40qGwMfUdSscpyjhqJKeZEhuOggcOPUbz2y9C3Z54aIAWs7C8bjDJ/AkQ1oM3DKs0xbcgXggt2QIzLNuxOGpXPAYxiYuBUAKXG9QeKbsGHp22+rnXYlIfHJvIk+VzXpg4Vpl4EtEtJXpOcCRZ7qv/TCuYgCaDo9DsaGQtQ7QVQwQ1AJOZgXd4LmHB1yJSGaAqme/Bi43L2vLvy8ZEhEgILeCGp7GdjQ9xQD4VoimWOhR1pDQnW4XZ65Da/zcCDcNrhboKQYUznDaiRW9tSM374JdXtF2a+IWdFjZNU/nCHZ5KygG4Z74ynmCo3guxYAeeZqubrqXdZyiJ8zL4W6ipxa12+tYZFcxYMACj2KHVYQ8juK8FAM4F5X1FAO4UOMon3dhXm7H4PGoCtj4FTJ5ygSkIB7RcxVCyuME3hUCCMLpMOvvNISQu8Y5ygREz6zVoyT6WDOfnmJALLoxX5PDWpTkKhOQyAEnPQ7jGOH2FAN4KEzWwkPPm5bL7ikT4A5i/Z2ux58fwLtiQOZWUz0Og8sKwnGHS5kAT6jq8/SJHQ55igE8O75ErS9S6ugbuJQJSE2vg1VGLUexXooBXNLSh1b5ihoZN3ApBvDosqptCiF/DsebvhQDGLhEa7NV2lFI74JdPkLlUnvaBLydeLznSzFAYuF2Ltqc2ls6MnQpBLjyP3DZgTBEiutIB1cxIA4JPBJD0B6l74rhKAZwar10PU1CUl3jXJ5iQM92hC2PB0B4vkvVk4hw0oRLRfVoCPR/shxtVyLS8XhSux14jWa8DpLyJUOKtK6nsnK7AMepNnJLhsBv4wSmngsp4TD3nkQEMU5kDeaBbPRe8yIcxYDMSUbRVeADxbgG+lzJkMozwZse3gUTLMv/dyVDetIpXj2nhUN0fSO3ZMjgMcdDTy7LoeTjJpdigIzETXB6ckcKYU2uuBIRPe9YzxXjoYCy1037kiF4r1W3JPOA+rZOWvAlQ7hvfx4kyDNn1gSLKxmSQ9YztflppIQO6LjLLU2kJ84K6PkgPeY1QehKhsB48+B5nvXRuDFzE5diAD9uM08rLLG0A7iUCcAr4VlyesYfamA8iEsypHGbbp8nCeZejke/JUN6iDXnmR73mJIrTYQnTszDBzud8QO5JEOGnkM0Dx/kkX0buSVDhONTlo6Xm8qRsVsCkvlZiJqHHQs4OND4enxXMoSzbHFWIpG03qMrGZJ6CFa5O9rHMqueYkBJekAA2xzP3SgbuBQDGpwszgVxWFK4tmATt2QIqgOXO+hhcaiwctzklojwiJ5GV4sH5WXEBsvau5IhCG64PkAPeixtHVHlS0R0eY6WInch80DFlTFPMgTRbBr2WYrBs+fTRm6JCJumLoLX48S5unLdxZMM4VcvaT74PaLWd5V0JUO4359nSGZ6wmFXSVcyZCRdZ8cjYJH/scZIXMkQlLee3U1DCnOw4iBXIlJ4CGGa31yk37Z8QFcyJEc99pq7APh1hLKJSzGgdOH6UKbHFNf+NF8yBDY567HP9clTFsKB3JIhg6uz7PBfTp/0A7klIgzaEnf56enKeAdr2ZMrGRJH1yNHbY2fpLKRWzKEJxoEO5B5xHgUmCcZUvl5mGEZ7r0cxKUYAG+ES6GYzBMd8gYuxYBRM0fmmIwIKpyZuiUiXDCWOW6gHxjEn8sTdiUiujC46LcgGCD0NTjmKQTYmVe1BfycntR1PLsvGVLoJRX74AJP94kbuSVDuGo322cdBE7/zpcnfdIvW4ZRWOnK4Ac69kJXTzGg8KsBVdPhzK4vw/iSIZzi7JYMy7PWN3gKAZ5H0dR0cG1JXuvlXcUANJyu332CY5p1l/0ibokI57l65MFyPLM9xbRGJ1zJEEGRBPvcAg/lXQGKKxHhofOIrV9n77e0nFtXIsJPymZWZ/0pHq+9nsWTgFR+5k64/kr7gELvbCKuRKQyJuSOW/3sACz6qiquRITjnWjW82sT3OHxevOuRIQHdHQ9/Lfoyuy9CsqVgDSu+mj8PqJ9tKxsZ8KViKAP4ArOoW1ucDJyIZ5EBLav8oAATYevufZX+BKRqvuLmn38K3EX3quQXYlI5zg0D1TQVyyxrhEtVyIyuAhUhg2Awkbt8RdXIsLYQudQmc4Tzda4nCsZUjnE3OcHTdo6QNCXDOFpNNm+aBJ5NGzfyC0B6Xo63utjkNyvvRBXIpLZIYdgn3jg2MYaQnMlInhJXGxun7/hcShrFsGVDNFtCPPbE3gZq1txJSKV4/6hWzpixLF8I1cyhBuf9KsQtNI5LHPhSoYwlaMQfEZEZquDdCUi/EfSmK/owqp19LYvfbLvBfPAByt83ZywMuZJhsBfVvuGWlFK3g6oKwHh+Sh4z/bNHHYLywfxFAJRvxzCQYjMbT7cdPYiPMmQxjl3sWrEw07TRm6JCAcla7Sv06S4P+7nKgYwptAPlcxjCtombumTfryZVbXZu2JnsLPlSUS4377ZJ3C4dXCUFXW5EpGuS754qr5+aKet0298CYjoAAe/I2A7dtr6uogvEYn6hXP1yQcchxzWUKcrGQLLrO4Jx6y4W7Js5JaI8CijEOeXjPiBzzVT5UpE+EkpXQpBoxvC2F2rK/E7lty2G9LrOy08P3w+iy8R6c/E5dCvL1zKmoLxJSBccFY7vXftP1tYq0Z9icjgyeqv70Sm9bXMOx0X8xtZ7G00jQvmXlc7wif9Wjf6Zm6J0m9i8sTO1xO4EhFd/FLmV4zgaI7XqJQvEYHlQ1yU7LOGPM64rrt4EhF4AFXPaNNes6ewbuIo9o3yAZcna2rHnV97jV2FAIfsI4900K9R8hO28UV4EhF+40+aWjN+3rCP1xyRLwHhytwOT8Zymzn1MhuVLxHhRsHB/UXqL/F4ldezuxI/qcovUHV9xKSnK76exBF4edPjn16Vs8la6u1LQFrgeOko5vfxJNmXCfIlIvzmTRsy07nJ+ZUtVyLCvTBibZNNoKwzun3p82/F7+/YKvLTxx8e6fGfH+Hx7UM/ffz458e/4F+/fP8S7vd9x937TrL+8ld/Hx+/+Q4/9Rf89+vP8sDP9X6WK3a0w4zP7wEmBTU3RM+v8B5f1f7sqc6val/33j/wutH33/2nH/8fQUH2qwplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjk0ODUKZW5kb2JqCjE2IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUzMgovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw9k0tuJjEIhPd9Cl9gJAMG2+eJNKs/99/OV3Qyixa0ebqq/JTX+GMxvp+8d6wceWrYtNdmjK+nvXs48eFRI3cOr1KkfITPkStGrD3Sdlsi8z1Z1MSaNFamauLGcLp9Xo9Jr2exRuwaxyiIsTQ55h2adXtF99X267F92rNgK7bNN32bqpMTv22OVqHaToyzhm3cObGpJvKCLJt9YQsbu7unCQjjhyO7W+brcS6K48sV9Yo32+mtcr8M4KZtz1UELy25X3sUKLeUi18xlUO3yjMc5Ip+dk5btih7T2J3hln91NykiY8DV7oxJjROzqxBdAGj0tc6agRly7h5QcPMHiHLcANyTj8My/bMRcIdFwSseYRCkFzAClwyKSxwtALRgmSy6zSklG9nZ9ptbqYBsoxCL/LEqDJE8VsTKEP3jLyjpCdqK1Wz6ow9tV66quAa3rcqu69QKkV0wrdBv1h2RzXteFC2hRu4t/VsmaBhWN2AIFa0R3p340+KLXhe0vN/HMpme+UCj00XQN2uYWIguxKEKfaIgAMRJOd8dWerpu2cvRtQK5ctzLiTQacCm+GGsD/PmVoM5/eB8kpaPZenGugrz7tBQkJb3z+vK1KYCb04Up80uFCGqFu8skQeirIH2yR6LOandCa73/uyL5OVUVldU9WKoLJK7wsU0F+u1xLx856oo5BUZkvwd/PP8/cfiKjUdQplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzkgPj4Kc3RyZWFtCnicPY+xDcUwCER7prgFkAAbG8+T6Ff++7fBcZIC8XSgO/BhELDVLOloUuC141SyGmAX/MmkgdUE2i2hFWhdSigOWjrrCETbFvXpB32uk3jkUrGkai+1viliuTv0jtFtWsCjZ072rtDm4HJPRkEmTspT1qGTNH02mQfUIsllPNr70Pz+mfS7ALu8LdsKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTE2IC90IDEyMSAveSBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNyAwIFIgL3kgMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI3OSA+PgpzdHJlYW0KeJw9UjuSxSAM63MKX4AZ8BfOk52tsvdvV4K8V2SsREaSHdJSugwNaSNVYgyp7PIzLsK2VP4OIvtcPr/Q1jrQnIeji40JoCn3pasDdhWtkha+6ygyBOYQ2GiaaE5RcAoJtX3acJCH+gDrMiJ2vS8GJXo2sq1D9iD2E6kZUkE58I6EUISHzb5j+DhxPO3NE2BOngw4I3v1M04pXTlhORQwMrfDLbDe12dfz0a5iLzmB2EOIscicmJTEwySQLEcXo508NRTozYD5FFcMFHHbLHAz71nPugxpFPoke3YXC6kXmTwhfnZofBgP7cABiqqtZ0GO1i9v45jvYYNv4/hWuSO24otHKBNFw7EO8ERWe/vLXmu338Hcm4GCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzYgPj4Kc3RyZWFtCnicPVJLjugwCNvnFFwgUvgmPU9Hs+q7//bZtJoVFmBjSMpLlqilTC2TVJVdS350dO4y+Tc0r0bPsPXmzEPmSbE4MrfKPQzkmVus0Gtv1KsLALFI7tQS2yXGlkvFkmSHrO0Qd2TQ4cUq2cz42sION2uOR1IXKl6nBwX5jDDwTsx9vollITRXGW23wEEPFqgDPTALE7ki491rEz2NeAugrA+Zv4guN9Rcj2xMgFO42gveqZTWMQ8ViaIc7EYavZ+j5jihw9s9Yjn2cglHBt7iaMd78EWInkZWRKx+yLMR+YYNqUiPmMob6m4fevyNrdhof3YmScHXX9bbTDXSueDUXK3WX4NHaPDeqOHz90ue8fsfISZuEgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILrSAHL4EpEKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUzIC9maXZlIDU1Ci9zZXZlbiAxMjMgL2JyYWNlbGVmdCAxMjUgL2JyYWNlcmlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvYnJhY2VsZWZ0IDIzIDAgUiAvYnJhY2VyaWdodCAyNCAwIFIgL2ZpdmUgMjUgMCBSIC9vbmUgMjcgMCBSCi9wYXJlbmxlZnQgMjggMCBSIC9wYXJlbnJpZ2h0IDI5IDAgUiAvcGVyaW9kIDMwIDAgUiAvc2V2ZW4gMzEgMCBSCi90d28gMzIgMCBSIC96ZXJvIDMzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtT2JsaXF1ZS1SZnJha3R1ciAxNiAwIFIgL0RlamFWdVNhbnMtbWludXMgMjYgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozNCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNTE2MTgzNzU5KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDM1CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE3NDc0IDAwMDAwIG4gCjAwMDAwMTcyMDggMDAwMDAgbiAKMDAwMDAxNzI1MSAwMDAwMCBuIAowMDAwMDE3MzUwIDAwMDAwIG4gCjAwMDAwMTczNzEgMDAwMDAgbiAKMDAwMDAxNzM5MiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA5OTU1IDAwMDAwIG4gCjAwMDAwMTE2MzYgMDAwMDAgbiAKMDAwMDAxMTQyOCAwMDAwMCBuIAowMDAwMDExMTA1IDAwMDAwIG4gCjAwMDAwMTI2ODkgMDAwMDAgbiAKMDAwMDAwOTk3NiAwMDAwMCBuIAowMDAwMDEwNjQyIDAwMDAwIG4gCjAwMDAwMTA4OTMgMDAwMDAgbiAKMDAwMDAxNTk4MCAwMDAwMCBuIAowMDAwMDE1NzgwIDAwMDAwIG4gCjAwMDAwMTUzODEgMDAwMDAgbiAKMDAwMDAxNzAzMyAwMDAwMCBuIAowMDAwMDEyNzMxIDAwMDAwIG4gCjAwMDAwMTMwODMgMDAwMDAgbiAKMDAwMDAxMzQzMiAwMDAwMCBuIAowMDAwMDEzNzUyIDAwMDAwIG4gCjAwMDAwMTM5MjIgMDAwMDAgbiAKMDAwMDAxNDA3NCAwMDAwMCBuIAowMDAwMDE0Mjk0IDAwMDAwIG4gCjAwMDAwMTQ1MTYgMDAwMDAgbiAKMDAwMDAxNDYzNyAwMDAwMCBuIAowMDAwMDE0Nzc3IDAwMDAwIG4gCjAwMDAwMTUwOTggMDAwMDAgbiAKMDAwMDAxNzUzNCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM0IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNSA+PgpzdGFydHhyZWYKMTc2ODgKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "values = {w0: 5}\n", "sym.plot(sym.re(y.subs(values)), (t, -20, 20), xlabel=r'$t$', ylabel=r'$\\Re \\{ y(t) \\}$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Derive the spectrum of the signal $x(t)$ modulated by $\\cos(\\omega_0 t)$. Hint: Express $\\cos(\\omega_0 t)$ by Euler's formula and exploit the linearity of the Fourier transform. What is different in the resulting spectrum when comparing to above result?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Parseval's Theorem\n", "\n", "[Parseval's theorem](https://en.wikipedia.org/wiki/Parseval's_theorem) relates the energy of a signal in the time domain to its spectrum. The squared absolute value of a signal $x(t)$ represents its instantaneous power. It can be expressed as\n", "\n", "\\begin{equation}\n", "| x(t) |^2 = x(t) \\cdot x^*(t)\n", "\\end{equation}\n", "\n", "where $x^*(t)$ denotes the complex conjugate of $x(t)$. Fourier transformation of the right-hand side and application of the multiplication theorem results in\n", "\n", "\\begin{equation}\n", "\\mathcal{F} \\{ x(t) \\cdot x^*(t) \\} = \\frac{1}{2 \\pi} \\cdot X(j \\omega) * X^*(-j \\omega)\n", "\\end{equation}\n", "\n", "Introducing the definition of the Fourier transform and the convolution\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} x(t) \\cdot x^*(t) \\, e^{-j \\omega t} \\; dt =\n", "\\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} X(j \\eta) \\cdot X^*(-j (\\omega - \\eta)) \\, d\\eta\n", "\\end{equation}\n", "\n", "and setting $\\omega = 0$ yields the desired relation\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} | x(t) |^2 \\; dt = \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} | X(j \\omega) |^2 \\; d\\omega\n", "\\end{equation}\n", "\n", "The integral over the squared absolute signal in the time-domain is equal to the integral over its squared absolute spectrum divided by $2 \\pi$. Since the left-hand side represents the energy $E$ of the signal $x(t)$, Parseval's theorem states that the energy can be computed either in the time or spectral domain by integrating over the squared absolute value of the signal/spectrum. Parseval's theorem can be generalized to the [Plancherel theorem](https://en.wikipedia.org/wiki/Plancherel_theorem) which considers the product of two signals $x(t) \\cdot y^*(t)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "The energy of the rectangular signal $\\text{rect}(t)$ is computed in the time and spectral domain by evaluation of the respective integrals. First the time domain is evaluated\n", "\n", "\\begin{equation}\n", "E_t = \\int_{-\\infty}^{\\infty} | \\text{rect}(t) |^2 \\; dt = \\int_{- \\frac{1}{2}}^{\\frac{1}{2}} 1 \\; dt\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOBAMAAADgeEClAAAAIVBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdcGRXAAAACnRSTlMAMt0Qq5nNdrvvxbMB0AAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABtJREFUCB1jYGBUZmAwCVvMwMDAThbB0rnIHQBAqQoWQ8kakgAAAABJRU5ErkJggg==\n", "text/latex": [ "$$1$$" ], "text/plain": [ "1" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "E_t = sym.integrate(1, (t, -sym.S.Half, sym.S.Half))\n", "E_t" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The energy in the spectral domain is computed by evaluating\n", "\n", "\\begin{equation}\n", "E_f = \\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} \\left| \\text{sinc}\\left(\\frac{\\omega}{2}\\right) \\right|^2 \\; d\\omega\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOBAMAAADgeEClAAAAIVBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdcGRXAAAACnRSTlMAMt0Qq5nNdrvvxbMB0AAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABtJREFUCB1jYGBUZmAwCVvMwMDAThbB0rnIHQBAqQoWQ8kakgAAAABJRU5ErkJggg==\n", "text/latex": [ "$$1$$" ], "text/plain": [ "1" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "E_f = 1/(2*sym.pi) * sym.integrate(sym.sinc(w/2)**2, (w, -sym.oo, sym.oo))\n", "E_f" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "The notebooks are provided as [Open Educational Resource](https://de.wikipedia.org/wiki/Open_Educational_Resources). Feel free to use the notebooks for your own educational purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Lecture Notes on Signals and Systems* by Sascha Spors." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }