{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Sampling of Signals\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Comunications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ideal Sampling and Reconstruction\n", "\n", "[Digital signal processors](https://en.wikipedia.org/wiki/Digital_signal_processor) and general purpose processors can only perform arithmetic operations within a limited number range. So far we considered continuous signals which are continuous with respect to time and its amplitude values. Such signals cannot be handled by processors in a straightforward manner. In order to obtain a digital representation of a continuous signal, a discretization has to be performed both in time and amplitude. The former is known as [*sampling*](https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29), the latter as [*quantization*](https://en.wikipedia.org/wiki/Quantization_%28signal_processing%29). Sampling refers to the process of picking amplitude values from a continuous signal at discrete time-instants. The sampled signal is referred to as *discrete signal*. Quantization refers to the process of mapping a continuous amplitude to a countable set of amplitude values. The quantized signal is referred to as *quantized signal*. A signal which is discrete and quantized is termed a *digital signal*. This is illustrated in the following\n", "\n", "![Sampling and quantization of signals](analog_discrete_digital.png)\n", "\n", "The order of sampling and quantization can be exchanged under the assumption that both are memoryless processes. Only digital signals can be handled by digital signal or general purpose processors. The sampling of signals is discussed as a first step towards a digital signal." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model of Ideal Sampling\n", "\n", "A continuous signal $x(t)$ is sampled by taking its amplitude values at given time-instants. These time-instants can be chosen arbitrary in time, but most common are equidistant sampling schemes. The process of sampling is modeled by multiplying the continuous signal with a series of Dirac impulses. This constitutes an idealized model since Dirac impulses cannot be realized in practice.\n", "\n", "For equidistant sampling of a continuous signal $x(t)$ with sampling interval $T$, the sampled signal $x_\\text{s}(t)$ reads\n", "\n", "\\begin{equation}\n", "x_\\text{s}(t) = \\sum_{k = - \\infty}^{\\infty} x(t) \\cdot \\delta(t - k T) = \\sum_{k = - \\infty}^{\\infty} x(k T) \\cdot \\delta(t - k T)\n", "\\end{equation}\n", "\n", "where the [multiplication property](../continuous_signals/standard_signals.ipynb#Dirac-Impulse) of the Dirac impulse was used for the last equality. The sampled signal is composed from a series of equidistant Dirac impulse which are weighted by the amplitude values of the continuous signal taken at their time-instants. \n", "\n", "![Ideal sampling of signals](ideal_sampling.png)\n", "\n", "The series of Dirac impulse is represented conveniently by the [Dirac comb](../periodic_signals/spectrum.ipynb#The-Dirac-Comb). Rewriting the sampled signal yields\n", "\n", "\\begin{equation}\n", "x_\\text{s}(t) = x(t) \\cdot \\frac{1}{T} {\\bot \\!\\! \\bot \\!\\! \\bot} \\left( \\frac{t}{T} \\right)\n", "\\end{equation}\n", "\n", "The process of sampling can be modeled by multipyling the continuous signal $x(t)$ with a Dirac comb. The samples $x(k T)$ for $k \\in \\mathbb{Z}$ of the continuous signal constitute the [discrete (-time) signal](https://en.wikipedia.org/wiki/Discrete-time_signal) $x[k] := x(k T)$. The question arises if and under which conditions the samples $x[k]$ fully represent the continuous signal and allow for a reconstruction of the analog signal. In order to investigate this, the spectrum of the sampled signal is derived." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spectrum of Sampled Signal\n", "\n", "The spectrum $X_\\text{s}(j \\omega) = \\mathcal{F} \\{ x_\\text{s}(t) \\}$ of the sampled signal $x_\\text{s}(t)$ is derived by applying the [multiplication theorem](../fourier_transform/theorems.ipynb#Multiplication-Theorem) to the representation of the sampled signal using the Dirac comb\n", "\n", "\\begin{equation}\n", "\\begin{split}\n", "X_\\text{s}(j \\omega) &= \\frac{1}{2 \\pi} X(j \\omega) * {\\bot \\!\\! \\bot \\!\\! \\bot} \\left( \\frac{\\omega}{\\omega_\\text{s}} \\right) \\\\\n", "&= \\frac{1}{2 \\pi} X(j \\omega) * \\frac{2 \\pi}{T} \\sum_{\\mu = - \\infty}^{\\infty} \\delta(\\omega - \\mu \\omega_\\text{s}) \\\\\n", "&= \\frac{1}{T} \\sum_{\\mu = - \\infty}^{\\infty} X \\left(j (\\omega - \\mu \\omega_\\text{s}) \\right)\n", "\\end{split}\n", "\\end{equation}\n", "\n", "where $X(j \\omega) = \\mathcal{F} \\{ x(t) \\}$ denotes the Fourier transform of the continuous signal, $\\omega_\\text{s} = 2 \\pi \\, f_\\text{s}$ the angluar sampling frequency and $f_\\text{s} = \\frac{1}{T}$ the sampling frequency. The second equality results from the definition of the Dirac comb and the scaling property of the Dirac impulse, the third from its sifting property. The spectrum of the sampled signal consists of a superposition of shifted copies of the spectrum of the continuous signal. The resulting spectrum is periodic with a period of $\\omega_\\text{s}$. It can be concluded, that equidistant sampling generates repetitions of the spectrum of the continuous signal.\n", "\n", "The spectrum $X_\\text{s}(j \\omega)$ of a sampled signal is illustrated at the example of a real-valued low-pass signal. A low-pass signal $x(t)$ is a signal with band-limited spectrum\n", "\n", "\\begin{equation}\n", "X(j \\omega) = 0 \\qquad \\text{for } |\\omega| > \\omega_\\text{u}\n", "\\end{equation}\n", "\n", "where $\\omega_\\text{u}$ denotes its upper frequency limit. For ease of illustration, the generic spectrum of a continuous real-valued low-pass signal is depicted by a triangle-shaped spectrum\n", "\n", "![Spectrum of continuous low-pass signal](spectrum_lowpass_signal.png)\n", "\n", "The spectrum of the sampled signal is constructed by superimposing shifted copies of the spectrum of the continuous low-pass signal $X(j \\omega)$ at multiples of $\\omega_\\text{s}$\n", "\n", "![Spectrum of sampled low-pass signal](spectrum_sampled_signal.png)\n", "\n", "It can be concluded from the illustration, that \n", "\n", "* the shifted copies of $X(j \\omega)$ do not overlap if $\\omega_\\text{u} < \\frac{\\omega_\\text{s}}{2}$. For $|\\omega| < \\omega_\\text{u}$ the spectrum of the continuous signal is not affected by overlapping\n", "* for $\\omega_\\text{u} > \\frac{\\omega_\\text{s}}{2}$ overlapping occurs which changes the spectrum of the continuous signal within $|\\omega| < \\omega_\\text{u}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ideal Reconstruction\n", "\n", "The question arises if and under which conditions the continuous signal can be recovered from the sampled signal. Above consideration revealed that the spectrum $X_\\text{s}(j \\omega)$ of the sampled signal contains the unaltered spectrum of the continuous signal $X(j \\omega)$ if $\\omega_\\text{u} < \\frac{\\omega_\\text{s}}{2}$. Hence, the continuous signal can be reconstructed from the sampled signal by extracting the spectrum of the continuous signal from the spectrum of the sampled signal. This can be done by applying an [ideal low-pass](../system_properties/idealized_systems.ipynb#Ideal-Low-Pass) with cut-off frequency $\\omega_\\text{c} = \\frac{\\omega_{s}}{2}$. This is illustrated in the following\n", "\n", "![Ideal reconstruction of a sampled low-pass signal](ideal_reconstruction.png)\n", "\n", "where the blue line represents the spectrum of the sampled signal and the red line the spectrum of the ideal low-pass. The transfer function $H(j \\omega)$ of the low-pass reads\n", "\n", "\\begin{equation}\n", "H(j \\omega) = T \\cdot \\text{rect} \\left( \\frac{\\omega}{\\omega_\\text{s}} \\right)\n", "\\end{equation}\n", "\n", "Its impulse response $h(t)$ is yielded by inverse Fourier transform of the transfer function\n", "\n", "\\begin{equation}\n", "h(t) = \\text{sinc} \\left( \\frac{\\pi t}{T} \\right)\n", "\\end{equation}\n", "\n", "The reconstructed signal $y(t)$ is given by convolving the sampled signal $x_\\text{s}(t)$ with the impulse response of the low-pass filter. This yields\n", "\n", "\\begin{align}\n", "y(t) &= x_\\text{s}(t) * h(t) \\\\\n", "&= \\left( \\sum_{k = - \\infty}^{\\infty} x(k T) \\cdot \\delta(t - k T) \\right) * \\text{sinc} \\left( \\frac{\\pi t}{T} \\right) \\\\\n", "&= \\sum_{k = - \\infty}^{\\infty} x(k T) \\cdot \\text{sinc} \\left( \\frac{\\pi}{T} (t - k T) \\right)\n", "\\end{align}\n", "\n", "where for the last equality the fact was exploited that $x(k T)$ is independent of the time $t$ for which the convolution is performed. The reconstructed signal is given by a weighted superposition of shifted sinc functions. Their weights are given by the samples $x(k T)$ of the continuous signal. The reconstruction is illustrated in the following figure\n", "\n", "![Interpolation of sampled signal by sinc function](sinc_interpolation.png)\n", "\n", "The black boxes show the samples $x(k T)$ of the continuous signal, the blue line the reconstructed signal $y(t)$, the gray lines the weighted sinc functions. The sinc function for $k = 0$ is highlighted in red. The amplitudes $x(k T)$ at the sampled positions are reconstructed perfectly since \n", "\n", "\\begin{equation}\n", "\\text{sinc} ( \\frac{\\pi}{T} (t - k T) ) = \\begin{cases}\n", "\\text{sinc}(0) = 1 & \\text{for } t=k T \\\\\n", "\\text{sinc}(n \\pi) = 0 & \\text{for } t=(k+n) T \\quad , n \\in \\mathbb{Z} \\notin \\{0\\} \n", "\\end{cases}\n", "\\end{equation}\n", "\n", "The amplitude values in between the sampling positions $t = k T$ are given by superimposing the shifted sinc functions. The process of computing values in between given sampling points is termed [*interpolation*](https://en.wikipedia.org/wiki/Interpolation). The reconstruction of the sampled signal is performed by interpolating the discrete amplitude values $x(k T)$. The sinc function is the optimal interpolator for band-limited signals." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Aliasing\n", "\n", "So far the case was discussed when no overlaps occur in the spectrum of the sampled signal. Hence when the upper frequency limit $\\omega_\\text{u}$ of the real-valued low-pass signal is lower than $\\frac{\\omega_\\text{s}}{2}$. Here a perfect reconstruction of the continuous signal $x(t)$ from its discrete counterpart $x[k]$ is possible. However when this condition is not met, the repetitions of the spectrum of the continuous signal overlap. This is illustrated in the following\n", "\n", "![Aliasing](aliasing.png)\n", "\n", "In this case no perfect reconstruction of the continuous signal by low-pass filtering (interpolation) of the sampled signal is possible. The spectrum within the pass-band of the low-pass contains additional contributions from the repeated spectrum of the continuous signal. These contributions are known as [aliasing](https://en.wikipedia.org/wiki/Aliasing). It becomes evident from above discussion of ideal reconstruction that the amplitude values are reconstructed correctly at the time-instants $k T$. However, in between these time-instants the reconstructed signal $y(t)$ differs from the sampled signal $x(t)$ if aliasing is present." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling Theorem for Low-Pass Signals\n", "\n", "It can be concluded from above discussion of sampling, that a sufficient condition for the perfect reconstruction of a real-valued low-pass signal $x(t)$ is given as\n", "\n", "\\begin{equation}\n", "\\omega_\\text{s} \\geq 2 \\cdot \\omega_\\text{c}\n", "\\end{equation}\n", "\n", "The minimum sampling frequency has to be chosen as double the highest frequency present in the continuous signal. This condition is known as [*Nyquist–Shannon sampling theorem*](https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem). Only if this condition is fulfilled, all information contained in a low-pass signal $x(t)$ is represented by its samples $x[k] = x(k T)$.\n", "\n", "Depending on the relation between the sampling frequency $\\omega_\\text{s}$ and the upper frequency limit $\\omega_\\text{u}$ of the low-pass signal, three different cases can be distinguished\n", "\n", "* oversampling $\\omega_\\text{s} > 2 \\cdot \\omega_\\text{c}$\n", "* critical sampling $\\omega_\\text{s} = 2 \\cdot \\omega_\\text{c}$\n", "* undersampling $\\omega_\\text{s} < 2 \\cdot \\omega_\\text{c}$\n", "\n", "In practical applications sampling is always oversampled to some degree since the ideal low-pass used to reconstruct the continuous signal cannot be realized. Examples for sampling rates in audio are\n", "\n", "| Application | Sampling frequency $f_\\text{s}$ |\n", "|---|:---:|\n", "| Telephone service | Narrowband: 8 kHz, Wideband: 16 kHz |\n", "| [Compact Disc (CD)](https://en.wikipedia.org/wiki/Compact_disc) | [44.1 kHz](https://en.wikipedia.org/wiki/44,100_Hz) |\n", "| [DVD-Audio](https://en.wikipedia.org/wiki/DVD-Audio) | 44.1, 48, 88.2, 96, 176.4, 192 kHz |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: Ideal Sampling and Reconstruction of a Cosine Signal\n", "\n", "The ideal sampling and reconstruction of an analog signal $x(t)$ is illustrated in the following. For ease of illustration a cosine signal $x(t) = \\cos(\\omega_0 t)$ is considered. First, two `Python` functions are defined which ideally sample the signal $x(t)$ at equidistant time-instants $t = k T$ and compute the reconstructed signal $y(t)$ from the samples by applying an ideal low-pass." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sympy as sym\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "sym.init_printing()\n", "\n", "t = sym.symbols('t', real=True)\n", "k = sym.symbols('k', integer=True)\n", "\n", "\n", "def ideal_sampling(x, k, w_s):\n", " kappa = sym.symbols('kappa')\n", " xs = sym.lambdify(kappa, x.subs(t, kappa * 2 * sym.pi / w_s))\n", " return [xs(kappa) for kappa in k]\n", "\n", "\n", "def ideal_reconstruction(xs, k, w_s):\n", " T = 2*sym.pi/w_s\n", " return sum(xs[n] * sym.sinc(sym.pi / T * (t - k[n] * T)) for n in range(len(k)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Furthermore a helper function for plotting of the sampled and reconstructed signal is defined." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def plot_signals(xs, y, w_s, k):\n", "\n", " plt.stem(k*2*np.pi/w_s, xs)\n", " plt.xlabel('$t$ in s')\n", " plt.ylabel('$x_s[k] = x_s(kT)$')\n", " plt.axis([0, 5, -1.2, 1.2])\n", "\n", " sym.plot(y, (t, 0, 5), xlabel='$t$', ylabel='$y(t)$', ylim=(-1.2, 1.2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the continuous signal $x(t) = \\cos(\\omega_0 t)$ to be sampled and reconstructed is defined and plotted for $\\omega_0 = 5$." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyNi42NjA2MjUgMjkzLjAxMiBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJytXEvPJbdx3d9fcZfyQi0+iq9lBMcCspMlJIs4C0OWFQsaBYriKD8/51R1k30/1qfxQgMImuHhabK7yapTxeobn98/4vO7Z3h+j/9+ef778z/w/7884/ML/PfdI+BfHx6S6lFrqKngnz/c/5lGPkJMaAy3v//n4/HXx2f/hAv8DMIXj0fpRxclxHA0XjGWY9TV8sO9JbV6dL3Q4q228+LJLv4dpompH/02eQxJ5D6q5KOVMmrF2PfmcCRr/uHx+BxP4pfH518/P/tDxKyeX//1UQpvdOSGvmkcsaYUS+2hPL/+y+OT8Lvn198///nrhw7/iBlXq7KN99L+kQFjakfo8t6I8XXEFOJRe99GfGn/2IijHyX090ZMb0Zs+Ygx7SPe2z8yYqrjGDm9N2J+HTGLHCXXbcSX9o+MmCUeudT3RpTXEe9r8z7iS/tHRpSYjtbfXTnlGvEnUMPz04BVLDHPy2MkGSFjlZLxzQdcnFvxGF14RVzisz+kc6hP/ocXe+BiX543cNs1mMUoI0cu+3Lkt61z8rd5pHjg0v0YY4RSc402/u3m+pFbH6c50GV5hHBN4idMIvBinO/5F1zgs99/+/2f//XvX/35x58//fC3H//+8/P3/4UJ71MuMCK5DHmZ8Wx8d8IyjpQxJxkSxsdnDJtTfqsZ93ykhsmNlymv1nfn3MYhbYSWSwr9H5lz+c2ecsRiK7GM0l4mfWt+f2mEcbQ4Qk8xhPqPTDv9Zo/61Y6vaa/md0zOOAp3YoblKSOMsGz4uXTX9r+NBqM20L+9LsZb86+P1sIRsYnGSDXIy7PwRktBsITL6Pl1s67mXx0thXBIHjE0XC+/LBh3tCxYfGWMN6ZhNf/6aPBptY0Yq8DZvGwpd7QqWDOvL+1q+/VxKoxeHDGVF0NjppNL8lMuIpjLmGLX/k1lwjKZNtirxfw/XY+w5rGNSlqwDtfgn/zpE+2B9xxiri3e+rwxu+iCzXva5e0yv1um+afnGxGUS8OsMeNKz/n872+f//b88RmPAiUTeD9wFzXxqofU80/Dk22h9I4Vkcbzj188sXX+92/ffPvHLz5/fvOz/8QHFEXsMJ5sq6M30d39lY8oIfWSJVlzabkvwo4oQVoIuWozlmoNaRJ2RAl1lBLtOjKGFJmEHVFCxzyj3RfsPHzqJOzIhweWDd5KiVmbU5EAC6sEF1FC6hEOT5tjiDAnk7AjShCpmB+asQhgwiVOwo4oocFmFNHm0hPWzCTsCAhRV0G35thaSudTchElCLR5bWiGi49wLm0SdkQJrUpOSZu5zfqYhB0BIR2wL1gzaIbETDG38027iBIEDyMn3cmQpHW+Bw8BAZ4+wLKgmWshtJHLSfAQJWCiuvexoYbAK41J2BEQsEwaJojWcjSp2LxnfwdA9wLxnkbCoyuJi7PKNSEPAQH7OYee0QxRkgOl/0nwEBBgsrDDuV6gUxEnhH6N4CEfHvArvXE4KDksYYk1nkvPRUCoB+T2qAO6DqYyNrkeqot8ePR00KbBjzB4gUJp7VxJLgIC3H4quNCz10N6yO18CR7w4YFIEcKSLxDKDmslXnvHA9AdtgyPrfWnICCDR03nE/UAdK9Q+yHg1jNimzwXhNOOzg3jNAwEg4zdXcJ5o047OnfccuDdZOwKLKt2zdsBtHuXgjuGN8PK6inN3m/b0RkeL8G0Y3VgteKtX5vXAxBVwt8nwfPHesV9CR7CeXUXMQIce8WrSwxrsYPyImyIEUbuETeFZuqKa9W4CAnQh9BWNDMMzlqROYKDGKH2qOZejpCwIVb/t4B17zVSuqUMN1/yZUxchARYpZJg79hcY4VEvAgOYoRcU+56nZyhg/IibIgR4EKkRDYnxB9ZFmFDjFBHEhoBmG486bT6vwWse5cYYSjQGuD2621CG2KEMTq9IMI8hB/01pOwISTQg0BgRjb3nmuZBAcxQo4NC1KbJaN9ETbECCWkGHVgBMV1jEXYECNUrBCoEQ1VGztMwoYYoSdIuW7N4+UeNoQErCo40KrjpjT9ngdYd7j9brFzL6mvt+wgRoDzpLnmsw7rHWzt1rnEkehs0dhrjn113xAj4L3kKrZUUut1ETbECCOpD+daTOW29R2EBDqDDM+gq73lnOYdOIgRBJep2gy/Vsfq/xaw7rXpJAcVZVudX5utK1YtxRGeXYw91tX5LcDu8Gh0Sp3NtWWRuTodxAgwF5nNuDXcz+WLXMQIXSRXNX6wUmP0RdgQEiD0YZpyVnucU1tm0UGMUHopJdPipwBPVRdhQ0josPid5hieJYfbetgB6z56FzzpTEPeYsqr/4aAgIAF+/qJ4BCyln7Cem/N7IoIBjYGqkACLKbM1+UA7M5t0JnakcrXOZWAi5AAEdUGYqAn9NdohcHOSXAQEFLEk82MUtV6dKjUa/O6ECnMb7daEesJHDv33bVCXYg5XtgBeFCuRj7z0aas9CFS8PKzMLBPeJkdhvYS0z4ECp4chS8UTBIqN0Sm1927EClwdDULdTZUahrximtchARsawT1g2IAN5uDyGR4ECnUmql2k+YR0ibOaXmQUSoCmG7yP8JwymJsCAkQGhi1nDkBBJLpWikuZBSBFQlVYxLog1ZkUXbIKB3KaVigxLHn1nMhUvC0C15T12AMD0cuCelDRkEEligA0Z5hgGNalB0ySu0IVZu2Y9XFaWFdiJSGx1JLsCgR0X2v8148yCh4dp0SgbFuaX3uLhcyiiQ1jRqAh1GmKHMho5RWg1jMLtzkbVF2yCit4GFY1F7CiFPtupBR4GCHxrzCZFLIt1F2iBTsaKjIM31Cb1vmvXiQUdDAMEHbKZLKouyQUbD2rgnDxN42mAcZpTZo+nG2YxPWRdkho/SMMdOV3MnjNsoOkTKwKgJzCdoOtZsmxYOMEhHKZHvFdSUQXMQI8I9yPkcEhiXGxdgho0Bg1TMBQ2MSyqLskFFaE+42W3m5pRtlh4wy4LuLjR5blZ4XZYdAKYE6vXZrDwiIpix0IaPkEKrmVaBMi6x370JGgcdJZztES5i7xYVIiXhbfQy1VKPmPhW6hxghI1Lp2owofcZhDmDdW4TNTGY9+abqIuwQKQifQqUBoI3GTsjT0buQUUasmeEHE48prafrICTA+gUolqwJH6zvMnWNC5GCLVNy4XsqKk8hni+KB5FSKbwCk2+0I5A903W5ECkwhBnrlNEvPG3FPV7Wy4VA4ZMIfXBbU97SnV8UFyKF0RcsFO6R0rhQdl8UDwKlMbeJIDU/uZYQf5UZGLgQKfWA2w+ZeXBmBkOcQseFQOmRu1kQ7NBxQsrNneUhJAjfFuIwpnWgv2ueBAchAb65C8LnZx6HlLEcioeQgEUwMvbOMzPjir06CQ5CQmfYgwDymSNeMpTsteI9xAitZebWsUJbnxHs3s7OmBtEN14K5F6BDZzaxkOM0OEo1R5rVDXjMw8BYeB1BgucsQCkpn69NQ8xAp5V5yorPIAqU9J5iBEgumUUDa9yD3IjbAgJPJRPRVvh6ZYjcADrDo0nFJ8wj42hxOq/IUagktJ8CrXqdGYOwO6Qw3y8Gn5KiCtG9hAjwJiIjgp/iKhg9X8LWHcRGEYLzbFDZkzhIUaANeDmZvAP8dj6ImyIEaCXRq6WXKg930bYEBIgSqF9gmU7oDzKJDiIERJC7jMjFOitF2FDjCCI/WO09EtdvV+brWvtCMv7lQvKt8lsiBGY86vZ5hjDdKUeQgJTiTwhsnxWm4bLAax7SlBjog8NIqOm1X9DjADFysQdM3IIiHtchA0xAv5a6V6ZaoOhuo2wIUbA08pJc4oZ/matIQchAaFRHLqwSigpzCe0tVtneMbabR8VLPm+um+IEVroLF7gaQO2uNwIG0ICQvSQVR0IXkya8ZgDWPeSWtATnAOOMU/h5yFG6A1/qD4ORishLsKGkMAETB169IY1IytT5yFGGHi2XIsw5JAetS/Chnyw8ioGfppREURay0w4CAnwC3U0pmCwzRMkxCQ4CIu9GPOycIguDgpNrnXtIiTA3iAqjfShDdHWlc/xAHbHE+Y5f31SRoQ6rn3mIiBEpspbgvSPURg21Suh6UOkICQZ0mDzY+XhiMzEuw+BwhQbgkvG43HQ7Jcr9vAhUvBiJGvcl/uRNaV9UTwIlKyn73YQUXkmCgd/UlyIlEjpJ1SBhUnk0Oa9uBApiVlYyBNNrIQR5smGD5FCV1eZzk489WfkVC+KB5ECtQhTHiyzEoLES+f7kFEQxSQeYjC1AiNwZSp8iBQWY0gNFgEgVprnbz5klMIDY0utQP7XJouyQ0bBamMNjqZW8IB6XZQdIoXqfNileMyImbSL4kFGQdyXeTCmqZVEkTEpO2QUrGnRuFfPHlqqi7JDRuk5pRHPYLGE1hdlh0hpkCQjnPFlQhiR57L0IKMkixA18KV+kEXZIaMU6J5wlm9E3G9flB0yCvy6BMstFPjSehtlh4wCcVKiZTAqJtLaouwQKR1rFDLmzKyEee9bu3XGqHJWrTS4Gcmr/w4ZJTcpKZ5JldLDjbJDRoGWjOXMdwxs8LIoO2QUiJPRzukiDhy3UXaIFNrxejYXrLq1txzECDlnyOMzQ9KnrPIho5RSe7eHnpgoyouyQ0aBRkndniMUbBp1UXYIFGEB4AjFqmT6wHu7FooLGQVB8rWxK09X66LskFHkqmNhOhUL+zbKDhmlIprLtrFj6DN28yFSIgyz6CZllgTR15yXgxhBeo6agIw8r67TZ7uQUVhpVixLMoqGqJOyQ6QgDumDJy6aSedh8fXuXcgoDf6JO4jp+oyNXRdlh0ihOseuNgeVW13uzoVI4QpFDCKaWhEY0TEfsQeRwvMx+M5hxxuI/ON8kR5ECg9bIs+ZaEYLzE2Zo3gQKMx0lFA1TmLpxMhXRORDpGT4Pqyi+qQ+K4PHbRfFg0jpPKgSrNBYC01IuUJlHwKF2TqIGCzWCHEjueWrDsCHSKmI9Ab87VOjLWjTaxAPYQl/gM7l+QZGhp4uUxs5ALtjPUDjw+njPiGsZVphDyFBVI0iCMJSEkrf69l6CAkIChBcwWHQQTUuuYvgICRQs6eI1woJJBV/uRavhxihWy6buRv8mZ7BQ0iAZhdWKGn6Bp7yqnR0ERKYBmc9EPM3COl6mDftIEbAs7PDrENYVloWYUOMMMZQVVH0PfW4CBsCQmeiuVPgoTnHEK8g0kWMUHjkGTU4q2NuVgew7p1Jea31gROTdrv+hpAQYYFa0bo4LSmr1x14iBFgGaoFuw06f43gIEZosWpKKbMidWoSB7DuI2BjdQumoQ9u198QElhNhHdfrNYn3h6pgxgBK0qT/ZlFuG2uIw8xQmbo1y3lM8JtgLeAdS9NQrMMUYq3J+QgRmhZjx2TLhW59X8LWPfeiiY0kirUPFb/DSGBX3A0mfmhWSflIkaIDL/rmSLqU6x7iBGYy+tnc7vibA+w7hD5DKY4bMREb9ffECNUGUw4a1JpzKN3FzECBNI4U24zQ+u0W+cxegvW3CBlbtPfEBIgpliBp3U1uMzMHbmIEXJjxK0pJTROf+AhRigyNIumKaWUbiNsiBFgk4JVsEnn6d8ibAgJzEKFajNt0LhjTslBjMAkkVUFDuwmWf3fAtYdd1WbZpKFtRq362+IEVgrpgYTEjRN7+8A7A65AWUftEAIUUqfftxDjFBqa1q4jXnGPKWlhxhhIFrQKJOF7rPu3UVIgD/sLFxVrwLtNT2ah5CgVSycH4tREcaGeQ8OYoSGHU7fG5kaPr8V+cpHQBhBzxARmjBojEGmcPUQEhJLjxjpyuB3jHm6cQ8hAW8HohTLq+I60GbTZ3rIhwdeDM/jBQs4as5r6TwfIoWlaS0X0a+NOpbmJfJ9CBSWR+EPa6Xp+cLSeT5ECtfxYDktM1cYfVaG+BApjambFrm34GygvvrFcBAS+I0FrCz1MqN9rJ3rTlwIlMSH0ruWzulLjpcU8yFSsARS7ForxFJuvLRJ8SBSMs8Pe7JD2gSBem0PHzIKhL9oHpijs4J9UXaIFJhHFeWa6WpYgNcT9hAjQNpEWrvKMmbsibYYO2QU/fArWhBX2jxW9iFSCoQsv284E111Hl77kFGolbX6gQc8UiQuyg4ZZWDTVIt5IchCWowNIUE/EIDK0/YmLdZ58x5kFAgwCgXNWeGaRRZlh4wCrxlDPosywlzDHkJC45F0DlaPIkzwzjE8yCiIQsM4M1b8nrQtyg4ZRRi9nBUpED99MTbECJXHj1e+SqZO8yGjNESVZ36ERaPpdic7ZJQheBLtzFr12270IFL4fYKE3q+sVSvXnnchoyA4jvmqRQrLsLiQUZio6u1MdCFGi4uyQ0Yp/J7tfCwIoaYldiGj9AD/Fc9nH/iR3KTsECmDn2e0M48oeZX1+ZBREuLQZGsi5yopLsoOGSW3noONji5h5EXZIaNUaPdZiCeplkXZIaMMHm7atqsjB7lNbIdA4Q8QBK0CZpkQlvd1tO0iRijRvs3SA+ZSboQNMUI7wwS0I5rNcz+6ECmaGitimX0soRn2+ZBREHGFLGo78UDCtCwuRIo6vmA2Hb4We+hiOIgRsOiCSj2uprRskQuRomff3M9Mc/FcuE2KBxkFSol7IBWhqp+lYz5ECmvQGy0Tc1Gsw5VJ8SBSeOCgp99MxXV4pyt09yFSOmvdmhbhR3vV84F5EH+IgatTTTTPQCEIyiW/fIgUbLpYWbLKminWVk0x5UKglKzl49AjMVoJzTWIh5DAnzAoPPriR25YgVfFi4uAUDXSgLlhqWvu5ZLaHsDulWEWS5x4epSx664JeQgJjTWwLCHlN2II1a96AhchgcX7sBrxqeYjzXS3ixihs/5Tnlo1LvPsxUVIGJoDt1Nxlm5Ns+ghRsBeDMVSSiXPyiwXAaFBSVEP60E9BFK4ksMuYgTMNlSNzHpM4YpHXMQItcXI2jbGsRSWi7AhRhh9hKKxJdMHc4V7CAmRJRh8nwxGy03PeIgRcqnJvhWDQMpXatRFjIAgUWsHYIYh1Kds8BAjNH4BqyE7nFy4T2lDjDCC+mnG+FqMsggbQgK/YxzcfNTeiIWml/EQI0DesFCIeQpYi2kFPMQIUnuxb7kwal4vzkGMALOo36vz8Ly1cRthQ4wAdz7kTC3F+emuixhhDH3GlloK6XbTG0ICEyYhX6VJrU9H6SFGyNQ0NlMpeaz+bwHrzuVi2beByFJW97eAdWdtczgLk1Zs7iJGGDCxzd5lW58muQgJiJFo3KIVJrEO8CI4iBHSgHBNliuCvIyLsCFGgB2pVj5Xep7ltS5iBMTCYilWLOU0DbeHkMAPenu2j1EjLNVUqR5ihMzzIv3UTODQ61iEDTFCiwh0LF8EobC2p4OQwPonCWYMa2szJnUA687P+fUzCQ2K1mtzECOAqz+TwPIAlpEswoaQ0A5sijDUYSC6SXUSHMQIA/acMcHgcWRqbRE2hITBr0gS62Z5Thbn984uAkLXb3t4ciORtVkrNeIhJCQKgwgvycwEUzlX/x1gd/40Sean7VX/lmbCwkNAGCzE1lIRfj6G7XVlhF2EBD6wIqypxoUCj3CuIVzow0MCY5KkgQN/5SQumeFDpCA2DSMxV4Ln11jCLBfFg/jLVnCtvWlwKoy6yoyNfYgUuA3qg64ytYQwy8h86IP+JlbNMal+rtwGpc9RPIgUfmvNugxL4tBIjIviQaQI619YmJD0lzjKnNYOWPfME1ALHGJfn4r4kFEav9SwI3rsnlm67EP202EBL0jrE5KFjOmieJBR0tAKR/5kRx2ziM5FjACx3LIFc6noR7eTsUMvv2hmZRNwoee0vnz+9EzPf7EfBnz5db13f3Hm/ltj2+/Q6EXnTwL+oj8L+PZHAD/4PwL4+HH+3J9OhNR3fhLK/+k2b+z9lwXfH/3Lx/8D11DaJgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjU5MzIKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTE2IC90IDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNiAwIFIgL3ggMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIKL2ZpdmUgNTUgL3NldmVuIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2ZpdmUgMjIgMCBSIC9mb3VyIDIzIDAgUiAvb25lIDI1IDAgUiAvcGFyZW5sZWZ0IDI2IDAgUgovcGFyZW5yaWdodCAyNyAwIFIgL3BlcmlvZCAyOCAwIFIgL3NldmVuIDI5IDAgUiAvdGhyZWUgMzAgMCBSIC90d28gMzEgMCBSCi96ZXJvIDMyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjAgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtbWludXMgMjQgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNjE5MTAxMDIyKzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDM0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzMDEzIDAwMDAwIG4gCjAwMDAwMTI3ODMgMDAwMDAgbiAKMDAwMDAxMjgyNiAwMDAwMCBuIAowMDAwMDEyOTI1IDAwMDAwIG4gCjAwMDAwMTI5NDYgMDAwMDAgbiAKMDAwMDAxMjk2NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTYgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA2NDAzIDAwMDAwIG4gCjAwMDAwMDczNzAgMDAwMDAgbiAKMDAwMDAwNzE2MiAwMDAwMCBuIAowMDAwMDA2ODM5IDAwMDAwIG4gCjAwMDAwMDg0MjMgMDAwMDAgbiAKMDAwMDAwNjQyNCAwMDAwMCBuIAowMDAwMDA2Njc1IDAwMDAwIG4gCjAwMDAwMTE1NjUgMDAwMDAgbiAKMDAwMDAxMTM2NSAwMDAwMCBuIAowMDAwMDEwOTg3IDAwMDAwIG4gCjAwMDAwMTI2MTggMDAwMDAgbiAKMDAwMDAwODQ2NSAwMDAwMCBuIAowMDAwMDA4Nzg1IDAwMDAwIG4gCjAwMDAwMDg5NDcgMDAwMDAgbiAKMDAwMDAwOTExNyAwMDAwMCBuIAowMDAwMDA5MjY5IDAwMDAwIG4gCjAwMDAwMDk0ODkgMDAwMDAgbiAKMDAwMDAwOTcxMSAwMDAwMCBuIAowMDAwMDA5ODMyIDAwMDAwIG4gCjAwMDAwMDk5NzIgMDAwMDAgbiAKMDAwMDAxMDM4MyAwMDAwMCBuIAowMDAwMDEwNzA0IDAwMDAwIG4gCjAwMDAwMTMwNzMgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzQgPj4Kc3RhcnR4cmVmCjEzMjI3CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w_0 = 5\n", "x = sym.cos(w_0 * t)\n", "\n", "sym.plot(x, (t, 0, 5), xlabel=r'$t$', ylabel=r'$x(t)$')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First the case of oversampling $\\omega_\\text{s} > 2 \\cdot \\omega_0$ with $\\omega_\\text{s} = 50$ is illustrated" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMC4zMDEyNSAzMTQuMzU1NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic7Z1NbxRHEIbv8yv6aA4ud1X15yGHIIKlSDlArOQAHJABBwc7AoeQn5+a2dmZ7vbu2o5IOpEKybL3nZ56qr+qprDag+ZyQHNhrLmUry/mhXkl398YNKfydTFY+XQ1OLLAFsnLpw/FJ0YH7H30otrq0y/D8G44+VZM3Mg9p8PgCVya7ongHUsjMWszBFuJH0rRMoTZ3np7Ic4Q2kAuxGHpBKSiG4Ier+ykr5oDO8OHxzIaX4bHZ+bkKRq05uzd4PLYWx+kJRFkb87eDEf2kTm7NN+dDRNvQGLI1teAQjxMQBnQSL5BYIPIHphyg1jFOxCZAF1uEFQjKASInmtEIR5GUGDwkRsE1wjmBBhjjSjEwwiW6znHBuFqxI5VVS21O2bbBnDUTrffIj7KHdYcW1lrhEnMjyYzUJxW0vmVGBv3DIgZmm49eUqz5aPfRyODrAmyKafJB7tpsoUfmbkJxhTR5qXJ0fvpAkGMicnyZiuOF66nCwGYY8oTdKPvtXQzXZCuPJvHa9kHPkPEvBmuBLnWltGqRgDIeC8dohTn3hdDmaDxCcFu4R8FbkdD42DNP8j9J0/eXr7+6fOPr69vjq/eX3++MU9+E0dvuYroAX3j6yrudRYRgcP9vLXgv5a3UWzl1ttF3LOdMoxRDmX7JTt5vHGqiTwLhCiA5QayigchJCudXAHx+yAJwcUWsoiHITFCSAsE157I8MoEHY/jOk6hbKyx4+Puncbn8K76c5okWYQYcxhvPEYIVcM4tbtZd5/DKZ6buuGyCV9sW1rkECdnbAP9dYbGjHNqaHfyq7lFcjmU2++bSUfJoBTRVVHgH+zSy6O/3aejsznCoE28J2y9fLQGlY/mdrJlH2VazZhKUL5/emt+NtcynzgG2hRoNAkuzP+irLpofUrEnrL5dLG/palaPj+tWg77W366mEPDuPBkWVpHFEnGb4l351fm5Ac7buhtM1nu0TvrvIthjCYYg6TfEDje1VhCpHN3NQqSTSgGm4I48lUsPsjH44e1vpcDxw/q0z1tPshPnSadJp0mnSadpv/JNMnTs7n/EwSZ7+WJx0vBf8+8L08I8tD+x/vzt89PH5vzm2H4UYEKVKACFahABSpQgQpUoAIVqEAFKlCBClSgAhWoQAUqUIEKVKACFahABSpQgQpUoAIVqEAFKlCB/2Hg9qhHdSRrEcvDbv+2ZxjAxxyYKtdWNVlI2WcXejhHHrz3lkPlXKHyeACxl3fswLN1DivvVpWsgxTYe9fDO8fg5bJrjgEuKoXxNHUv73aeUdxx3K+Da0HYPgRf+7aqfQdOXHJM1uc6lCxq30UXMzgbXXC1d6vadcOmBJwohVR5t6pdY12OwD5R5Mq5Ve2aJOw4bRxincAKuevQjQew2WabmiRWyF3XHZIDSs6lOo8Vct9di8xAPqdcZ7JC7hvz0BFMl+qQXMhdEwZ6BELb7I2t2HnohI4poG2GbpU7L72QAQN6mxv/Vrnv1o0JxIOMdUYr5L6RL8XRIGOd0gq5a9rIAWyKkeqcVsh9qwvrwQbGpiwr5a5rj9CB5eSb2qyQ++5dIgaLnNvybJX7xj5Z/yDZi5sCrZC7pg1yFnJwsanQCrnz8LkM2Vls3duqnRefT5DR+6ZMK+W+mzdECW02N4VaIfeNfTHI5AVuKrVC7pk4KI1/wAZjU6kVct/By7LyMWJTq5Vy3/+Ysgwxk2/KtULuu3clt0IMMTf1WiH3jXxMCNExN/VaIXdNHMxyXR7xmnKtkDsPH2cI2cljXuPfIndefi5BCK13i9h364rd4Lxt6rVC7hr5WAwGmb2mXCvknmlDbItLPjXFWiH3HbzkwEe5t85qpdx37WUWQghNuVbInX+jYQk8kW3qtULuG/ccSlLIkiHqtFbIXdPG+OdzXaTUlGuF3Hf4FKhABSpQgQpUoAIVqEAFKlCBClSgAhWoQAUqUIEKVKACFfhwYOK8QbIAUaw7xBjGdxvNjjiPt4HH2PzGCOf3MFbvEtt4NdLsrfch7jn8s3h+tftFi2Lzrrfq1a13Wd75tseq7WLjgOVnw18y72MbCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTU0NwplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJw1jLENwDAIBHumYAQw+JH3sVKR/dsQyzT86XUPVFnYrQ4CHGPxVprr0EvdJQFlOIpcmkbM2iVpWX+aaDt24X5Kej41cRR9CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4NyA+PgpzdHJlYW0KeJw1jcENwDAIA/+ZwiPEECDZp+qr3f9bSNSPfbKMsVjoUEtxCsI7LjZO3fg2iUNPZgFlJI1lsFFUJ4fEJ2RakrEWs8W+nREQrw7FdqLH/idPuz+4ThnECmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjUgPj4Kc3RyZWFtCnicNZK5cUMxEEPzX8U24BnuxaMeeRzZ/ad+oOxAA4jkggA+O9yGuduHp/UY1nPYpz+XptvPUzutatr3U32selslKxMcy2q1vZ7cbsUvu8C2jHnx9cTal0VxYi0L58R0dnwzXW2+WIm8mEczl820GCjltpgHRb9qaenHAqV0dta5iIOxLcfBZeIsTuBO+9IGe3KmCoaeMgRxhb5DO2LB2WyT9Cao7suiFAvOqJ5AUSiH5zIvofpb9iHrJB3G4lalMWT5QBNfhCbdKUPN6QdrCHHxpIMNMOAXGJpx/59la5C9DUfYaUYVdE7zjDfegcsInTlQoWZFzCUp3ESqGKlHLZiv4ATG8l2R7MeRnzPpE4sAM4KlEBDV6H8f3Nt5K3LkRGpKCj68Xo7uF8rRm6nLbua4o/uWXZqRUoDD/p/a6/n6BZgxebsKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDg0IC9UIDEwNyAvayAxMTUgL3MgL3QgMTIwIC94IF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9UIDE3IDAgUiAvayAxOCAwIFIgL3MgMTkgMCBSIC90IDIwIDAgUiAveCAyMSAwIFIgPj4KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicM7Y0UDBQsDBT0DU0NlQwsjRWMDczUEgx5AIKgVi5XDCxHDDLzBLEMjQ3Q2LpmhlCZZFYIONyuGAG58DMy+FKAwDxtBYjCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NyA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuNIAzoMV0wplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzEgPj4Kc3RyZWFtCnicszC2UDBQMDQwUzA0N1IwNzZSMDE1UUgx5AIJgZi5XDDBHDDLGKgsByyLYEFkQSwjU1OoDhALosMQrg7BgsimAQDr5xgyCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjEgPj4Kc3RyZWFtCnicRZBLEsMgDEP3nEJH8EcGfJ50ukrvv60hTbOAp7FABncnBKm1BRPRBS9tS7oLPlsJzsZ46DZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+Udw9V/1R7HunM3EwGTlDoRm9SnufJsdUV3dZH/SY27Wa38V9qqwtKyl5YTbzl0zoATuqRzt/QWpczqECmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDI1IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlCi9mb3VyIC9maXZlIDYxIC9lcXVhbCA5MSAvYnJhY2tldGxlZnQgOTMgL2JyYWNrZXRyaWdodCAxMDUgL2kgMTEwIC9uIDExNSAvcwpdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMjIgMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjIyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjI1IDAgb2JqCjw8IC9icmFja2V0bGVmdCAyNiAwIFIgL2JyYWNrZXRyaWdodCAyNyAwIFIgL2VxdWFsIDI4IDAgUiAvZml2ZSAyOSAwIFIKL2ZvdXIgMzAgMCBSIC9pIDMxIDAgUiAvbiAzMyAwIFIgL29uZSAzNCAwIFIgL3BhcmVubGVmdCAzNSAwIFIKL3BhcmVucmlnaHQgMzYgMCBSIC9wZXJpb2QgMzcgMCBSIC9zIDM4IDAgUiAvc3BhY2UgMzkgMCBSIC90aHJlZSA0MCAwIFIKL3R3byA0MSAwIFIgL3plcm8gNDIgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyNCAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAzMiAwIFIgL00wIDEyIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JCb3ggWyAtMy41IC0zLjUgMy41IDMuNSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA2MTkxMDExNTkrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgNDQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTA5NTEgMDAwMDAgbiAKMDAwMDAxMDQ0OCAwMDAwMCBuIAowMDAwMDEwNDkxIDAwMDAwIG4gCjAwMDAwMTA1OTAgMDAwMDAgbiAKMDAwMDAxMDYxMSAwMDAwMCBuIAowMDAwMDEwNjMyIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIwMTkgMDAwMDAgbiAKMDAwMDAxMDY4OSAwMDAwMCBuIAowMDAwMDAzNzAzIDAwMDAwIG4gCjAwMDAwMDM0OTUgMDAwMDAgbiAKMDAwMDAwMzE1NiAwMDAwMCBuIAowMDAwMDA0NzU2IDAwMDAwIG4gCjAwMDAwMDIwNDAgMDAwMDAgbiAKMDAwMDAwMjE4NCAwMDAwMCBuIAowMDAwMDAyMzQzIDAwMDAwIG4gCjAwMDAwMDI3NDEgMDAwMDAgbiAKMDAwMDAwMjk5MiAwMDAwMCBuIAowMDAwMDA5MTQ1IDAwMDAwIG4gCjAwMDAwMDg5NDUgMDAwMDAgbiAKMDAwMDAwODUwMyAwMDAwMCBuIAowMDAwMDEwMTk4IDAwMDAwIG4gCjAwMDAwMDQ4MjggMDAwMDAgbiAKMDAwMDAwNDk3MSAwMDAwMCBuIAowMDAwMDA1MTEwIDAwMDAwIG4gCjAwMDAwMDUyNTMgMDAwMDAgbiAKMDAwMDAwNTU3MyAwMDAwMCBuIAowMDAwMDA1NzM1IDAwMDAwIG4gCjAwMDAwMDU4NzUgMDAwMDAgbiAKMDAwMDAwNjA0NSAwMDAwMCBuIAowMDAwMDA2Mjc5IDAwMDAwIG4gCjAwMDAwMDY0MzEgMDAwMDAgbiAKMDAwMDAwNjY1MSAwMDAwMCBuIAowMDAwMDA2ODczIDAwMDAwIG4gCjAwMDAwMDY5OTQgMDAwMDAgbiAKMDAwMDAwNzM5OSAwMDAwMCBuIAowMDAwMDA3NDg4IDAwMDAwIG4gCjAwMDAwMDc4OTkgMDAwMDAgbiAKMDAwMDAwODIyMCAwMDAwMCBuIAowMDAwMDExMDExIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDMgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ0ID4+CnN0YXJ0eHJlZgoxMTE2NQolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMS4zMDEyNSAyOTMuMDEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK1cy64tt3Gd76/YQ3mgLT6Kr2EExwIyky0kgzgDQ5YVCzoKFMUx8vdZq6pJ9jksXWQQw8K9l6tWk81HvVi94/OHR3x+/wzPH/Df35//+vw3/PnnZ3x+hf++fwT86+0hKb5yiKngXz/e/pVGfuEvaAu3v//74/GXxxf/APovkP/qUfJLOsVjeDU+DX/WsBp+vDWkVl9dH7JIu+l6brLnfo/xYcyvfhs1eiNy61Hyq5WKTm9N4ZXQ9OPj8SVe/e+PL795fvG7iLE8v/nLowS+WqkUTOMVa8Lfvvnz47Pwm+c3Pzz/8ZuH9viISV4jlHdd3Ns+1UfE/LVUnE7ih05GfeU03ndya/tkJ1iOKMPpJL3vJNWGR+d3ndzbPtVJqvIqLTud5Ped5AywtXed3Ns+1UnO5TVGczqR953c9tXq5N72qU4ktBf2tdNJmZ38DFZ4fh6w7yT0+dRYXjJCbuX57RseyQPzGl3YAPYXv0tXB5/9F5/zwHO+voa7dmROr950sAPUW8sa6q3rlF4JZ+0V2qCkdnp7j/7KrY9Q9ajqlnqF2fHP6DjwQRzj9Rfwv/jtdz/86Z//9oc//fTL529//elvvzx/+x8Y5DHMjmfHd8O8Wn51mB27I/7fhhle5f9pmLe1n+OcTb+yv9A3VitiO46io7UBfTjxu4OB7THed3A1fbqDUV553Doov9JBKvKq+V0Hs+mTHSQor55XB3G/AaYUa/I55xL7FfsH55s6dW9Z0bV4v2P/R1cEhy+2UXu7lmp3+9kfP1OJDK0Xc23xJvNh20MkhX6di+Mxv9lH4+fne2uRS3tFDri+Iv78z++e//L86RlfBVo/AMGJ7TXxoS+p1/8aJrSF0nvKJY3n7796Yu/891+//e73X335/PYXb6LRhKfUMaxNeio0TI8/+IgSmoxe+9U8oC0X4USU0NsQaVczdsPu4URAkFcINaZqzVBdeRI8RAlRSolZm8toUmURTkQJqY2W7TkFCq2XRTgRJWCYPYg2yxgY6yKciBJqyOl6NYHZSnURTkQJWLY+7DmpdpzIRTgREApUxGjVnhOblDzfwUOUgJdp1+QFwYlf8geg4oL373wK1inkGLb8iSgBByFEay6pS+qLcCJKGD2lXrQ5xdhrW4QTAaG+kgyofzTDTpQ9IgdQ8RJrHElbpUT+dcqfiBJ6xIbnYyJUYkxb/gAgjgPasRramCoGOVfMAVQcA0vSVV1xD7S+5E8EhI6Tj6nCKKEOU2h1DscBVJyz3LDXpeEpcMjykj8REMCV3hsfU18h9yzz2HjI26OqqukD6yjx1WtN9dpyLgJCwmRB/WFnZSjlXkK6VsxFQGhYeIwPEx0w0UlKmwQPeXs0aLTUsByxYqPgWMVL3gMg3nG8exE0J2zKOkq/1sxF3h4d1rwErM1z0BcbI11z6gEQ58ZKKZRn7dAenfrZxB0A4nCm4N9hp3DLjNrCfLoDvD1G4DpCYTylcwOPqVM8AOIYInYJlDC8AKx/CdfyeoCK4yVwGJ5YQvgE6SZ+ABDHSS659viE+yASpF9j9wCIQ3XhIOfxzLDAAkV5TbwHqDjXGLsow+sfEuZR9wCIw7aPGHAi4DK3nNPcBh6g4i2HgelFa8BatLbEDwDiOANdsBzPDJuQsVXn2B1AxaXFHBpbAx2rvsQPQMVbDAJ3MlObllHjEj8AFR9Q0VApaC3YsVv6YzuEVRMFOtb5lXvveQ7FAVRcEGJxtrKuSk9L/ABUvIaEaWJrTHkZdg9Q8R46/CW2outR8xI/AIh3aB7oiMGgAF5CXlvAAVQclrRE0Rhi4MT0JX4AKo6900e2kAP+VFriB6DiWK/ItUArTEfYTz8AFYcXgb1sD4FPIEv8ACCOqAY2S/QheFqWOZEOoOIJFhuvzdYWx/RePEDFBUscu05vpTJc4geg4jXBoRFdvBrLTfwAVBympepSpyYp1yX9sV2FGdAGbRUchWmiPAAhf4CnC99HNwa0Zpzn1ANMHF7noOqhayk5xy1/IEaAEx2gLnEicX7rNAcuQkJUtd87mxFyjLoIDmKEWvAkoUaBdxyn0XcREhKXAiaaCg5qekyj7CJGkISgPbEZPso6Jy5iBHgzcmlc+K7p1sOBkIA5lpp4ggZMI9zdtQwOQgJ0OpqHWoxOlZ4mwUFIKNQvtNECa9rayGtaHYQEeGShNjgNcLGqwMevk+AgJHT6kRE+FrwhqDIpa0gOAkKERk+N+xCaFXapzElyAIrjcPQcMDoc0hdTFDJH5EJMmhVsAGys/oQNfjUc1zUmFwIF8S6clMGQl+kXKNk4h+VCpOBow3+r8LQSfKhcR5870IVIAb+NjjOVMtSbSJ2K3YdIgT2Bx4RYURDUQDOENS4HMQIdHCnqYkJxtj0sDyKlvzoc2NTU7Q253l7eg0jB1EfJNapn3UpawaoPGQUxvwx13sVcjcU4EBAkaHIjWjBh72oEDzFClyixW7QSWyllM06IFCiXjDFqPJQx9dNRdBEjIE5G1KjtDQdubUcXMkpP3ATaPjKcphvlhEiBRhK4A1ekGWQpNw8xAvz9fIXXcAxkui8+ZBQJOAkW/sIAllY25YSMgvg0l3qF2L3lG+WEjIKZmLmLEjI2+aackFFG0LVlokDCTFJ4AMVx2EqB3rDcBdziuHrwIKPgLF8zUnOWkDbjQIyARcKZvBIqra/N60JGKVDDeSZ58KzNOBAjtFhG6rPvZW48xAgwuCW1+XYrsPAhUpiG6OUaLDR43Z14kFEQGLbRrlUKrd8oJ2QUKIrQy9wLEsqmnJBRSoKWtQ2Hw5bGZhyIEWrTnJDuaoSk5dbHCRkFnvncb2HgHW+dnBApCFYGTF628xnTVg8OYoQMF0ismf5TrJtxQkYpDd2aDpBY2o1xIEYY8BJTVl0G0x2X2+BCpCCkQ3/J1B912ZosBzFCi63qhECtYe8tj8+FSIE9yojVxLLGsC19nSoPMkqHb5qGWpe4M54uQoImXErpasFGwElYC+JBpAzuTO2bdhKafPm6LgQKxohICXpAbTH6LksFuRAp2DUdvi3aE7ZDLWu6PIQERhQIcPIzjohmqetYuRAoFVuOuQ74LnjZkRschoviQqC0iCgxICx60gVF8/aEXIgULC+iMxxqPLS2GFcnHkICHNTSMnQNtkNG1L7m10NA6Ow51VCfwhQ8gpmptjyEBIxPaoYOgAWIzNDPIXkICdDidG6f6ouksVSDA5g4XHKNYeCyDpmpMQ+gOOOWGNSXx4bghFziJ2DiDbsEbi2ji4JoLG/5AyGhvFKtw1IrGZp/j8dBjFAlwjHVCAkO9NIgHkJCRcDTJWkzjssM0T3AxOGkdE2AwJMNy746gIkXroU2t5r7kC1/IEZA4KgpkFJu+u9sN+HRR2kaW8PfaCVu8QMhgRmZTA9cUyxFlrb0ECPAl6b/wnA8hCppEw7ECPgb9QizAzhHK8jyECN0mM1qzSmEcSMcCAmdF1Op1Su70ZdP7yFGyJiyWq7sSRp1Ew7ECAiV0bc1M0TdhAMxQs3qxrAZ4doyjR5ihA56zZZdSmHPkoOQMKihYMs0eQV3dC30CZg43IMWdL/A3213+QMxQqkZ+9cyKXFP0QmYeM+pDs10SIM5Llv+QFhWEV4hYL/obqnQOytS8BAjRGYTtN+Op6yD7yFGyAN6SdOkgSNIm3AgRig9M/3N8816kRvhQIyAh7SmzYiGxvJiPYQEaPqKk501+RJjXSbdQ4zQ4Koi1oASjHhOGJtwICQk3qoJU3dMvkhZORAPMUKtOIaNWjyGGMONcCBvVudSamQ+CDunwgrN0+YhRhjQrtDLCOh4QEbZhAMhQZgwrXAj6HlC8S+b4CFXiQ4aMReMqW/uhQNQfGCGR0CgV6HRYcD2KzvI2wOnCQqwszynU7PBTb0ILkJC18gVz2GCJKaZJvIAiEeNkuDuP+mrJL7Ytcw+RAocOmibwospemdhzHSaD4GS4C6Fiv+rr4U4rs+Q1odI0essqvRkiZ40gwIfIqVAiTT1TbltaugzNetDpGCVhDkaeJoIlOFFzQyLD5HS0CUcHDF/FjPaFsWDSOnwZ2ulLw8vsJcMHTYpHkTKoAVvGsZAAwxM7erFg4wChzSK+f9QrD2PTTkhUDB9AdOZ7eJ25NLmFbkPGUVg/YrdPGNbh5m69yGjNF0wDZcQjb6jnJBRcDyb3Z/nkGu/MQ6EhPjiDalmRqC6A2PeyfAgo5RUZiYJJjpMpetDRmnoUFNoUN9tmXsXMQI0BRy3K8cTZL+6B5GCcx1TvVIEGW56XJ14kFGk556uog+E/nkzDsQIINerJKP0su6OfMgoo44ms5QmY+Y35YRIUV8s9pmBqWMpIxcyCv6TWe9S+LabckJGkSpWqsDeYQb6ppyQUUrv9CO0PeJZY1NOyCgtpRTiNS255tu7nJBRsMDtKnsZrF7ajAMhQRAq4WxeqbqMw7Re3oOMkhqToFdCsNfUN+WEjFIEwXu6imVgeW6UEzJKh665ThAcwdureBApULip05XQQ8fs/KJ4kFFwTEuxR6XK/MpiHIgRGiseLNs8QitSNuOEjMLChWB5GLjbae9iDyIFdgB2MFgWHM5LbmtVPMgovI8pl7pFBLmUtwuR0qDMWNKgeRXujrh68SCjdIa+ZjpK0pqsRTkhUlgsISNYmQvLMpftciFShvLZnJmVKVvlOQgI9Kfgy3Mes5aslTVfLkQKPVtMN9Y38Y4w1ji1pAuRMmCe6EhrLqYIgpS5W1wIFGpymAGo6MjyqYxdNI2dC5GiiSgm9REdY8CVV0cXxYPetEwaJqbCI2mVtzppplhdhITK+o6EIKvSOrV1We0iJMDDlYD3evKOJUidpR8uAkKDl8DIZDyl0Y9bl+0uQgLWKWjNsybRsbTzHTyEBAbRlcEP8zcZbzkXw0NI0PqOUBpTMnVfKnsAxaHzGrP/euIQSy/xEzBxbN/OuK8gYsRD8pY/EBIY+CRWNOl9Zeqz2MFFjNBZhKqFLfD7tk7wEBKwreDeZ7FAEc7YGpKDGEEQsFp9ABa/9C3/ETDxWoIMjb152b/ceA8xQsfbDC0oyCFtV8ZDSGivAD3UrRiiyfZkPMQICdu9Wjqgh7rFP7SbMPNh7UrIBDgRW/xAjFDgPlmdCOLXGZJ7gIm3KhpGsyZmFad6gImPOJgG09zKaEu1eggJGqfyQoPNTBmuI+MgRsDJrnAC9Dl1pdhdxAgSqZkse1NkuWweYoSCcdpEQOHe5T8CJs7EfmhWSpNjyVv+QIzASu+oyRJWbcmNcCAkDN7g5FCtSAqu5VoEBzECgohkOxEaN+xVcBAjaLZdE0rQhDmMTTgQIzRYvWplNY2VuptwIEYYIV4ZolZYkrMJBwJCD3RYWJBMH65IXarOQ4xQoDGtrKawGOBGOBAjQHPTT9USvtJn4tVFSGBAxBp+NsPFbTPB5iJGqDDeONZUs6yklE04ECOMPCJHWtVj6bceDoQEeFxtMKyDHyIIopcR9BASsE+0JJh2hZfPeb20gxiBPme0G4kG9VM24UBIsHgpRSZ8GMkvo+MhJLCERYNsXnl1bPupID2EBGqGwUxyDS9GNkvneQgIIzCSRTj6hFmF7xiXkvEQEqgLtZYcex8+dFjXTD709oBz9oLKGdCaEe4E3e5rg7sICThZwsKmZ4qMzXmLPBkeBAocJsZlrNxJcG5TWObTh0jJTNOr3wg3e3luTjuF4f3DrWlVi7NzF5mL7UOkwOdNDJX1yrGGujxjHyIFDkqpSUvM02DOdRJOgOJabz0Y9jDT09a9oosYoSGg0sqNADUq64LEh0jRMna8n7YPhibrLTzIKFBWevkd2XeeR9VFQEhUW4gwROMkKIs0C8V8yCiN9dTV4je84DQVPmSUgf0j1s5hxM04EBLiK4qEcRX5ZDiFa1geZJScYEMsEEXos+p/fMgoMB3xisNDWzd0LmIETGK6PmXJiMHbJhyIEXDEcolXjickuTFOiBSorVponzU5YBeRF8WDjJJzCdeHUbBBqeZNOSGjQK3EdrWPmOONckJGwSbQrKt+vSTtNq4DMQLisHpNShX9hGYxToiUzOq3cH2OhHctshbRg4ySsKevKirs67SOrgsZRVhWMut2yqpM8iGj8Abp+q5KsqQb40CM0KH65PqwipdPcTNOiBTsNKjka1KwbHHvYA8ySqpxFeGENnYvHmQUweT1qwiH3+DJppyQUeBUl2SHtMO2pLwpJ2SUDlsdrL2hVW7vckKkwKvJmoHQ7/z0cuNiOIgRBM54udLNOOFBNuOEjAKXK1wFipWX8DfKCRmlD702ZTtz9ek2rhMihZcNiZ8fQdfC+80ze+0iRuiM8O0LqlK65LoZJ0RKo3Zm16yvYeHk6sNBSOjcBEzm2nVGzFtte5BRxoCbGa1yh4WTm3EgJAw6RPzQkva44ryldRY9iN+SQzcPqwCF1R8V7uRcERciBSs6uGl4qwONsCqCXYQEfgTWKi0ZnZiRSl99eBAoGCNr83i/1liHzW81L4oLkcLP4PhplH6CNfCys3rRh0Dh8Q/ShiaRKu8lLq/URUiAF0VfjZ5kRDS8rIkDUJy3hA0AP87FSYjLDfIQEPghHLx60dKg3m6unIeQwAs/zTRhWrAj2iy1dhESEr+y5ccCTCFhwuclrouQwIBNOmyQ5pCY75kEBzHCYDXI0KAEz2ttEw6EBOEnRDHrhwlM6dXVg4MYocfBn3JggRD220ibcCAkFIQiJdnXGD2Evt75BEwcRoifbNAR7lpgsOQPxAi15FE0lmTSKd4IB2KEEcu40lSDqnITDoSEyk9msn0Pg/AnzPIhFzGCIGq2Zsl6dbEIB2IEek32iUtihWTahAMxQoe5GvaVlrR7Bx8BijcrJW1Wz5L7WG/gIEZIvFu1REkdOadNOBAjSIwl2oddseVliz3ECAWLE68SHiiVvAkHYoQWWZCvuaT17ZzTbsJMvVSrWSrY7benH4gRsHVHnt+CxX2WHYQEvXxn8atWRa3KAQ8w8RxCS1aAROMXt/yBGKFA6ViybbTel3/uIUaoZmSyeosp9U04ECN0LYjPmmfIcuvgI0Dx8QqdP6mgO7HuulgXMUJmcYaW4sHwx61PHcQIpUqzRBVrUvcudRAjUJFXTVTBQMZldDwEhBb40SfPN7zCmJcqOttNGKalZktSNdnH3kOMwKLlpin5iB2TboQDISHCR2cO6alXdiPNKiAXMQJUQYPDwfpPYX5hEw6EBFavBkaJzDnVIWUNyUGMMFhPmJ4SWIi0vQUPIYGGCK5cYc4psNZvHhwPIYFmIrOuEcZUcFDmx8cuQkJlaTccuqeWb8DdnEfHQ0BgjW9lEoip0rzqhpx2CrPWXBDrP2NkZWSWtYlcCJTBD1FS4bUc7HZP6zMjFyGBX0UlfifNWico5bAiehd6e+Dt4VmmzrCdQVaIdd4I+xAp/NoBgSjvJJumSKa34EOklFezNCErg/i19Sy+8yFSKssPNBrjBwpllD0wD3qzXymCgtNK+/bSi+LViweR0vmrEBrwCq8CR5rbyodI4fe2MN/J0kItrLSJDxmFX8FpJgnnh59Alk05IaN0FsNZZZDEHXT6kP2YU+JhHnaDnyEy38WF7r//pEEfP2m+xvX18+dnev6T/fLZu18R+5Vfi7kbufc/IXPLL6yfPfu7/vTZh586e3N/6uzx0/pVMx3H+99Mc3/Kav2e0dHj8btpv9rn14//BVi5NWcKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iago1NzkwCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTM5ID4+CnN0cmVhbQp4nD2PsQ3FMAhEe6a4BZAAGxvPk+hX/vu3wXGSAvF0oDvwYRCw1SzpaFLgteNUshpgF/zJpIHVBNotoRVoXUooDlo66whE2xb16Qd9rpN45FKxpGovtb4pYrk79I7RbVrAo2dO9q7Q5uByT0ZBJk7KU9ahkzR9NpkH1CLJZTza+9D8/pn0uwC7vC3bCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExNiAvdCAxMjEgL3kgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL3QgMTYgMCBSIC95IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91cgovZml2ZSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTkgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTggMCBSID4+CmVuZG9iagoxOSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE4IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9maXZlIDIyIDAgUiAvZm91ciAyMyAwIFIgL29uZSAyNSAwIFIgL3BhcmVubGVmdCAyNiAwIFIKL3BhcmVucmlnaHQgMjcgMCBSIC9wZXJpb2QgMjggMCBSIC90aHJlZSAyOSAwIFIgL3R3byAzMCAwIFIgL3plcm8gMzEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMCAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAyNCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMyIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA2MTkxMDEyMDArMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgMzMKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTI3NTQgMDAwMDAgbiAKMDAwMDAxMjUyNCAwMDAwMCBuIAowMDAwMDEyNTY3IDAwMDAwIG4gCjAwMDAwMTI2NjYgMDAwMDAgbiAKMDAwMDAxMjY4NyAwMDAwMCBuIAowMDAwMDEyNzA4IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDYyNjAgMDAwMDAgbiAKMDAwMDAwNzI3NSAwMDAwMCBuIAowMDAwMDA3MDY3IDAwMDAwIG4gCjAwMDAwMDY3NDQgMDAwMDAgbiAKMDAwMDAwODMyOCAwMDAwMCBuIAowMDAwMDA2MjgxIDAwMDAwIG4gCjAwMDAwMDY1MzIgMDAwMDAgbiAKMDAwMDAxMTMyMCAwMDAwMCBuIAowMDAwMDExMTIwIDAwMDAwIG4gCjAwMDAwMTA3NTIgMDAwMDAgbiAKMDAwMDAxMjM3MyAwMDAwMCBuIAowMDAwMDA4MzcwIDAwMDAwIG4gCjAwMDAwMDg2OTAgMDAwMDAgbiAKMDAwMDAwODg1MiAwMDAwMCBuIAowMDAwMDA5MDIyIDAwMDAwIG4gCjAwMDAwMDkxNzQgMDAwMDAgbiAKMDAwMDAwOTM5NCAwMDAwMCBuIAowMDAwMDA5NjE2IDAwMDAwIG4gCjAwMDAwMDk3MzcgMDAwMDAgbiAKMDAwMDAxMDE0OCAwMDAwMCBuIAowMDAwMDEwNDY5IDAwMDAwIG4gCjAwMDAwMTI4MTQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzMgPj4Kc3RhcnR4cmVmCjEyOTY4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "k = np.arange(-100, 100)\n", "\n", "w_s = 50\n", "xs = ideal_sampling(x, k, w_s)\n", "y = ideal_reconstruction(xs, k, w_s)\n", "\n", "plot_signals(xs, y, w_s, k)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then the case of critical sampling $\\omega_\\text{s} = 2 \\cdot \\omega_0$ with $\\omega_\\text{s} = 10$ is illustrated" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMC4zMDEyNSAzMTQuMzU1NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic7d1Nb9tGEAbgO3/FHpWDVjuz34ceaqQxEKCHJEJzSHIIHEexGzmw1TT9+Z2lKJJLS7JRNBWKvAEMW8PlPMPh7ioH0yJ13ZBaKaOu5eubeqPeyfcPitS5fK0aI6/WjWOjrSH28urz6JUlp6330UvUVK8+Nc3HZvGzpNjIOedN41m71J4TtXdWBklak3UwVfDzOGisDl2+4fRRsEN4i6ykYLkInUaXIXQ5slcfYk6bDm/OpBvfmrOlWjwjRUYtPzYul6v1QUYy6+zV8kMzM0/U8lr9smxaryG2OhtfA6PgcYGkoZH9hKAJkb22nCfEEHyAyKzJ5QnBNcEh6OhtTYyCxwkOVvtoJ4StCWuTphhrYhQ8Tlg5nnOcEK4m9syqaqo9cLdN0I6nt9vviFs5w6i5kbnGlCR9SZk1x3YmXawlWVkzWtJwe+riGXeZZ3+UJI3MCTYpp7YGsx2yw2eqG0IxRTK5HzK7ag+wjjFZNna7FMuBm/ZA0NbGlFt0Gz+YadMekEt50fWrXwc+60h5266kcx3ru1V1QLPyXi6IU+yuftTKpCc1kTY7/FZwUxKVZnU/yPmLp5fX73/7+ur9zWa+vrr5ulFPv0ih90ol8pr8pNYheLBYItI2PK5ao/2/VW2UXHlabR88sJyyLrscyfJLpq14W9Rk5+kR5qCNnSBD8CjCMtPZjRB/CEmkXZwiffA4EqMOqUdouBJpr9ygeelruYWysMqFl9Xb9uf4qvqrvUkyCSnmUE6ckw7VwNiO2wyrz1G7n6t6YL8I3+xGGrIhtsWYCfp7h8ZM3VvDdCW/60Ykl8N4+f3UxkneQTmSq3aB73hJb2f/+Jpmy26HIZPsgW3r7ZNhU7lV999srY9yW1V5KyH5fnepXqsbuZ9UNtoUuKTULnT/osy6aHxKbD1ndbc6PFJVI1+eVyObwyPvVt3WUCaeTEvjmCNL//r97mKtFr+asqB3w5zTKUYjA22SFUM6hodGzR837EdNJlulevx0YfVcpreX/9098ibLdJAd+s+ri8uX52fqYtM0rwACBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPgdwd3vZlfPUPTB8dMp/3Vle5/u2POgxAlKy1FbnzjaqrYhesq2kWPdHqobNwqftHWUYkloKdXlDeFTNk8K0Dll66iqbhQ+afM4Bp1CsMHV5Q3hUzbPlscPnLUpVNWNwidtnpWEgY0zuS5vCJ+yeY6kNVn6xPXTbEP4pM0DCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAf5PwGTzlrQCkmR3RDGUPxDeFeI83Qfn9e/OOqbuw0yqP8i/rapo5t6Hihz4PfC+8vX+TyuRnA99NEU9el/mvR+ZUo3tcxzJ/KL5GxqM1nIKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxMDc4CmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsQ3AMAgEe6ZgBDD4kfexUpH92xDLNPzpdQ9UWditDgIcY/FWmuvQS90lAWU4ilyaRszaJWlZf5poO3bhfkp6PjVxFH0KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg3ID4+CnN0cmVhbQp4nDWNwQ3AMAgD/5nCI8QQINmn6qvd/1tI1I99soyxWOhQS3EKwjsuNk7d+DaJQ09mAWUkjWWwUVQnh8QnZFqSsRazxb6dERCvDsV2osf+J0+7P7hOGcQKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyNSA+PgpzdHJlYW0KeJw1krlxQzEQQ/NfxTbgGe7Fox55HNn9p36g7EADiOSCAD473Ia524en9RjWc9inP5em289TO61q2vdTfax6WyUrExzLarW9ntxuxS+7wLaMefH1xNqXRXFiLQvnxHR2fDNdbb5YibyYRzOXzbQYKOW2mAdFv2pp6ccCpXR21rmIg7Etx8Fl4ixO4E770gZ7cqYKhp4yBHGFvkM7YsHZbJP0Jqjuy6IUC86onkBRKIfnMi+h+lv2IeskHcbiVqUxZPlAE1+EJt0pQ83pB2sIcfGkgw0w4BcYmnH/n2VrkL0NR9hpRhV0TvOMN96BywidOVChZkXMJSncRKoYqUctmK/gBMbyXZHsx5GfM+kTiwAzgqUQENXofx/c23krcuREakoKPrxeju4XytGbqctu5rij+5ZdmpFSgMP+n9rr+foFmDF5uwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgODQgL1QgMTA3IC9rIDExNSAvcyAvdCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL1QgMTcgMCBSIC9rIDE4IDAgUiAvcyAxOSAwIFIgL3QgMjAgMCBSIC94IDIxIDAgUiA+PgplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4UoDAPG0FiMKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY3ID4+CnN0cmVhbQp4nDO2NFAwULA0V9A1NDZUMDYwUTA3M1BIMeSCMXPBLLBsDhdMHYRlBmIYGZogscyAxoEl4QyQGTlw03K40gDOgxXTCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgL2ZpdmUgNjEgL2VxdWFsIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDEwNSAvaSAxMTAgL24gMTE1IC9zCl0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMiAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjUgMCBvYmoKPDwgL2JyYWNrZXRsZWZ0IDI2IDAgUiAvYnJhY2tldHJpZ2h0IDI3IDAgUiAvZXF1YWwgMjggMCBSIC9maXZlIDI5IDAgUgovZm91ciAzMCAwIFIgL2kgMzEgMCBSIC9uIDMzIDAgUiAvb25lIDM0IDAgUiAvcGFyZW5sZWZ0IDM1IDAgUgovcGFyZW5yaWdodCAzNiAwIFIgL3BlcmlvZCAzNyAwIFIgL3MgMzggMCBSIC9zcGFjZSAzOSAwIFIgL3RocmVlIDQwIDAgUgovdHdvIDQxIDAgUiAvemVybyA0MiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDI0IDAgUiAvRjIgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDMyIDAgUiAvTTAgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDMgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDYxOTEwMTMzNCswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCA0NAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDQ4MiAwMDAwMCBuIAowMDAwMDA5OTc5IDAwMDAwIG4gCjAwMDAwMTAwMjIgMDAwMDAgbiAKMDAwMDAxMDEyMSAwMDAwMCBuIAowMDAwMDEwMTQyIDAwMDAwIG4gCjAwMDAwMTAxNjMgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTU1MCAwMDAwMCBuIAowMDAwMDEwMjIwIDAwMDAwIG4gCjAwMDAwMDMyMzQgMDAwMDAgbiAKMDAwMDAwMzAyNiAwMDAwMCBuIAowMDAwMDAyNjg3IDAwMDAwIG4gCjAwMDAwMDQyODcgMDAwMDAgbiAKMDAwMDAwMTU3MSAwMDAwMCBuIAowMDAwMDAxNzE1IDAwMDAwIG4gCjAwMDAwMDE4NzQgMDAwMDAgbiAKMDAwMDAwMjI3MiAwMDAwMCBuIAowMDAwMDAyNTIzIDAwMDAwIG4gCjAwMDAwMDg2NzYgMDAwMDAgbiAKMDAwMDAwODQ3NiAwMDAwMCBuIAowMDAwMDA4MDM0IDAwMDAwIG4gCjAwMDAwMDk3MjkgMDAwMDAgbiAKMDAwMDAwNDM1OSAwMDAwMCBuIAowMDAwMDA0NTAyIDAwMDAwIG4gCjAwMDAwMDQ2NDEgMDAwMDAgbiAKMDAwMDAwNDc4NCAwMDAwMCBuIAowMDAwMDA1MTA0IDAwMDAwIG4gCjAwMDAwMDUyNjYgMDAwMDAgbiAKMDAwMDAwNTQwNiAwMDAwMCBuIAowMDAwMDA1NTc2IDAwMDAwIG4gCjAwMDAwMDU4MTAgMDAwMDAgbiAKMDAwMDAwNTk2MiAwMDAwMCBuIAowMDAwMDA2MTgyIDAwMDAwIG4gCjAwMDAwMDY0MDQgMDAwMDAgbiAKMDAwMDAwNjUyNSAwMDAwMCBuIAowMDAwMDA2OTMwIDAwMDAwIG4gCjAwMDAwMDcwMTkgMDAwMDAgbiAKMDAwMDAwNzQzMCAwMDAwMCBuIAowMDAwMDA3NzUxIDAwMDAwIG4gCjAwMDAwMTA1NDIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDQgPj4Kc3RhcnR4cmVmCjEwNjk2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMS4zMDEyNSAyOTMuMDEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK1cTa8tt3Hcn19xlvJCR/xossllBMcCspMtJIs4C0OWFQu6ChTFMfLvU8UeknMvWw9ZxLDw3mOxhhyy2axuck58/vCIz++f4fkD/vv781+f/4Y///yMz6/w3/ePgH+9PSTFVw4xFfzrx9u/Us8v/AVl4fb3f388/vL44h9A/wX1v3qU/JLG6jG8lE/DnzWsgh9vBUnrq42HLNIuup6b7Lnfo3/o86vdeo3WiNxalPzSUtHorSi8Eop+fDy+xKv//fHlN88vfhfRl+c3f3mUwFcrlRVTf8Wa8Ldv/vz4LPzm+c0Pz3/85jFafMQkrx7KuybuZZ9qI2L8NBWnkfihkV5fOfX3jdzKPtkIpiNKdxpJ7xtJVfHo/K6Re9mnGklVXkWz00h+30jOAFXfNXIv+1QjOZdX7+o0Iu8budnVauRe9qlGJOgLdu00UmYjP4MVnp8H2J2ENp8ay0t6yFqe377hkVwwr96EBWB/8bt0NfDZf/E5Dzzn66u7yyJzejUdne2g3kpWV29Np/RKWGuvoJ01R6O392ivrK2HOpbqMKlXmA3/jIYDH8Q+Xn8B/4vffvfDn/75b3/400+/fP7215/+9svzt/+BTh7dbHh2fNfNq+RXu9lgHfH/1s3wKv9P3bzN/eznLPoV+0LbmK0Ic+xl9NY69GHF7wY6zKO/b+Aq+nQDvbxyvzVQfqWBVORV87sGZtEnG0hwXi2vBuJ+Awwp5uRzjiXsFfaD9U2fuk1Wxly8t9j/GTOCxRe116bXVO1mP/vjZ6NGhteLuWq81flg9qiSQrvWxfGY3+yl8fPz/W6Ri74iO1xfEX/+53fPf3n+9IyvAq8fgGDFtpr40JfU63+KAdVQWku5pP78/VdP2M5///Xb737/1ZfPb3/xBhpFGqTVZmVJexcO9h98ZBB6LiHLKIbZwNUuwomAIK9QW+K7sLhoanoRPGQQUki9dSuGUwp5EU5kEKTAM1mxBAmpLsKJDEKVVJMVp44nxkU4kUFomOVorxZFpckinAgIBa+WoAxQjGHpHcN3ETxkEFKrWnQUY6yL6iKcyCBUiTY9mNZE+1+EEwGhvkKh70ZxgmmHVGYLHjII0lrrMoqTojwvwokMQs+1ZL4aDBXPzLIIJwKCYohFotoKjtp0tuAhg1A7DKA+Ez2EZgCLcCIgNBpiY8OCnb1q0NklDwGhv7Jogh+XggpjW7T6DvD2qPCWKWOZoBhjHRNG2+q7CAgRu2bpGK+U4YrQg3pNm4uAkF8JHkTQMLxdrKWUdBE8BAT4rdIkYXLg8nLDcy7Tc5G3h0K+SqahRzgb+NMarzFyERAwFBA/sUMEtLGEw9WCi7w9uB2KYPE9G19S4dSsvgegOhRJwBKRJ1VWLmWOqQe8PTqdHoa3PaXBIcN4r+oegOoJY9Xw/yfmpWBW8qzuAKiOMSgq0qF9Xko7uQbHA0b1Bs8Kj5OhlBJVwKp+AKgOf1O0t2eG1oekWA8/y1EZriMGaGCWRgg8nc92gFE9Nwl8CKQaHpZ1VT+AUZ3aPKIUal5Czm1VPwBUp9NIcJUsxa4CoXpVd4BRHQ4ywqRRmpKmHFf1AxjVpYUOL5nhJGuFI17VD2BUh5droiytMV6K4Q8ugOoK26y9CEslpbWFecConlA4npFUEWCs2h/LR2UpeJ3IUi7KtGsfwKgOY6ihsDRoKaGt6gcwqreMRRWplLE5Iepa1Q8A1bEIwcUyZylEwVoaDjCqp4CtJg0d3jOW5qp+AKO6yCrVWOqq/bF8VK4M/S6ND3vqq/YBjOrQ+VqjtSh4yqp+AKjeuQIaJw7vgz1v7m0eMKpDdtTSxuDGEKeL9IBRPcM5XXPRYX5lVT+AUb107r+0i4BdoK3aH8tHZUVE0IYVYaWvfd8DRvWuWADD/qVC3MiqfgAImgN2BqlZh0XXoG2uOxcxQs7TqrHtlqibcCBGwAgoPDcXMIY61E04EBKgz7FYIF1RXKlhyyQ4iBFEGiUT/FVKELe6CQdihBZKCKO4YZOsu/5HgNWhYfBmUug+a445rQ45CAmY7BwqH4N4DtHcFHcuYgRECX1sFUHWnDnlrCwcZ3jop0TMab1130FIgIPGYGNrEfSyIjZY4+MgJCC0oO6WJ+RbhaiJq/8OQgLWKKNWfUIGAe+6uuQgIEBfwF65OXIMW695OnAfehu5IQRTIaNcEBjAm8psxIVIwSS2ggDsCQUOuQUnkibFg0DJEa/VsEzRVdh/KjPccRESBCIiB5bjr4VjM1eQC5GCTbhLKQgiMK/w9NCNk+JBpChXFCOshJkKWJdzs/YhUiBg4ak6H9UQI/a4pt2FSOnY1EqlYoSqhthSXW/vQUZp0OFpCPeYaH2bcSAgMNmkGVJnlPfQlvV6iBEqQvcYRzBRtJapiH2IFPoJjGIZEU7ErjcjRB8yivAfVl4CfGXalBMySoVzFytHb7HBbsoJGQUBXRzBHYNb7E6yKSdEClRngXVHCyBbLssdupBRMiR/1itIbUlkU07IKNAblKgjEI4xprwpJ2QUqCuEIVaOwCTeKCdklAbZrPkK6HuYgYEPkZKHy2+WA6ihLQnsQ0aBq6estDSGSO6bckJGkRDMKhjh920vDmIEeMsy25ahlhfjhIyiDDL6lS9BxHfr1gkZpefQtMyMSUibcSAkwHIgeeo1ioKBX6PlQUaBW9JoRiStpp435YSMkpn4ssbxpKCbcSBGgGTK2dpOFRtZ2owTMkpL0G555k1ybJtyQkbpEDjBJjckxWxtygmRgkgn1NSi5U4yQv318h5kFHhYLLZRnhV6TTblhEipFNPcNEf+JCBiXq14kFHwJMjRUS456rYvDzJK05zFHC7CsaWCPIQEBBxYpNVyKBjRVpdn8SBSsFsoRkXGxqFBERpMigcZpUFhcB/AUwMWX6+bckKkQKpiXec+UiPwBWUJLhcCBe+F/UKwhyfsO1DDea1gFyIF67RKRX8TQqkKKT9t0kNIaK+esD3lkbCGPRWZc+JCoFRm8Ap00pNVKESXOHAhUnj2gybrSJGwykxW+hAoii3GQtcGVSOpzqSXi5DQmE2FuHgWBm6QD9OEPQSEho0WewA0BjMlIpivi+AhJGCfwVqGMXMvgLZassBDSMCCabXDfDBJFVJ07XIeYoQOCQZXDjWTuPnVTTgQEuD1qgoWNHMmcDp9teAgJBSE4RpHLIA4pS137QBWXQpsK41YQ2B3adc/ECMoQ8mRN2mQiLFuwoGQAGeB4jrCH4kQ1WsWHMQI2Q4BmAzBFrNclYcYoTYNYeQg8IqyB9VBjNAxdIgCsqWS7106EBIQQEB+QZ8zyMU8ldUlBzEC379caRHo3L4JB2IEgbRvoxihTVxLzkOMMLagdMX0OdwIB2KEBp9NA2ByZKdBXISEBqWSEP2MnAS04B5WBzECNqqQrbhA5JZNOBAjCBY3c3AoFq6XTTgQI6C09NHTVqWFWwsHYoTWEKyP50CstD1xDkJC5xgzyGBxLXltrR5ihCwY5WoZLWxCfRMOxAjoJrzasJhbWO4AVr1BCZRh85me59ahAzFCh7yMIyFT6EdvhAPhDQTslXDNeaRMoJh3uOkhRkDUgrid6xb6JK9gyEOMgI0mYC0xoswBcnwTDoSEiLWEjW84q7Bjh7PcKivTftE8G0I83dUPhAREIBnqYCSWi8zjHKfcKkPaZjhXhKwIJftSdB7yNi5qYKaz1uH5lTH6JDgICZCDAfu1Mv8hsPWVIfAQI8AxMTFOCV771qUeYndMMIs8IqXIiez1JDgICdizE2RketbEhE9czsVD3h4pQAUjOMcLdXpmxPRXl1wEhMizHeFMMhXQoSBnUOVDpECoMkUK7aFYKhKXLPEhUFJkzqM3ng1VqE5NM9j1IVKY1MsFXhkFmNa0cos+RAovAqjkMs64lB66TYoHkYItG0PT01CEEEfrOMuHSIGRYa1QQVOyMya6CCfA6nC5PTKlRJkKU6jTV/qQUaC4MVM8bIRGapI340BIwFgDC30Ibgi2taf4ECg5wC8giotD1cNUy3RPPmSUXCOzjwwd4t4aXcQIWI31OshlJi61zTgho/DWj1pA06EZymYcCAnwRKF0tUArw4XlxfAgo2AjH8NOrY5IYzoqHzKKYqxrt2N1Sty8KSdklA7ZqemKMyGMZVNOiBSMXYsM+Ec0q/02Jx5kFMHykXylV6BPZFNOyChQ0KFf9yIwnD1uygkZBRaU1FovECn1RjkhozCQ4Ym55UpCvlFOiBSsMgTZxVJFtY5A7aJ4kFEgRGciYxyv6qackFFqwN57PQqhZiybckJGaUm5wViHEXTcKCdECrZd3vSwdyyIu8KaFw8yCvM+YeZLUl2e2IWMIggIumV+cmsS4qackFHwjm0aUg83G/Mgo0AAtmLpD+wFZcaUPkQKj4yLtnItCvR3vYsHGQVTDAFoSc9YQtJNOSGjYLiLrW/4H50JLhcxAgIDhsCXR8g3woEYoUWFx73yvXCfeTNOiJT6SjXGZFll0ayyXt2DjALNLCNFTG9Sbq14ECkId2A6/bqdRum/KB5kFG5hdOvYPBQypmzGgZAAKV9k3EnhfZmVDPQAVh/JlZGMEuavSo9rAj0IFKgp6Lyotiv3lNaJgQ+RQssU2POTMoAn18tJuBAoGIUO9VJ4WEOZG4LMN3chUpjzQmj+HEcqMa5cjYvwYi8z412xPfXCiCmtfctDSKhQIbUEfVbMF4LEqX5dhAQeiGjBwochNKjXeQnBRUBQCquWUhqnc2kvDgdgdVgkbAVGIImSft3fchESeCaNbo7jRdgY830XwUGMoLzkMzIrojHMkM5FSGBmBTpMGQfAG7flqT3ECLAsXqtAMeR6yrv+R4DVC70cJ5P+okrs6w0cxAhQeEyI0fE1XTGIixgBoSqvFNEfI4JYxuohJFQeZfc0nhPqzaF7iBEKypuFhnn7WQew6spb1SNWpe5YcsFDjNBjCJaIyY1H9JtwICQoll5Wi7bh7sra+DzECDBh6SMahhre+7GHGEFglGncRQiiNfVNOBAjIMTr1W5pIPBeS8dDjICn9DIujcArFL21cCBG6AzQ9cp6YE/chAMhgZkbzGIdxXkck1wEBzFCorcZWY8WJW9LchAjQJNfiZugtciu/xGw6iVXBOn2FJhO2vUPxAgI0aVYsxJ0iQIPMUIPDT21ZFXNt/ofAVZnmifolQzDnhTW4nQQI2CdV7tdFeByt+E5iBF42asOi4dSztuOHMQINMc0MoC8wdfbJhyIERrMKwwDRjDcWt6EAwGh8aJGvdKeBYp1ToIDWPWsPPYdedhwE5keYgTsozmM1HDmZe6+CQdCAvYKXuYrdjuv1pmxcBEjQDbSRiipguq8ceYiRmgNoU2z24USZx7ORUjAhgpjoW+GB8K7pTVIDkICJ11585LCJe/V7wBWHe/CnBx2L2wVNeRd/0BIgO5oyrPgcaSubYWTHkICL2kLbxtAsuAxugfVQUjgLcbW8Q/osyRYLGvaHIQELqnKREHlqPedCPEQEKBNoDUjz5NCHCeEy/Rc6O2R8Y8On4xQPzLol5GBGxQfIgWCBtoG63VkEOGqZ57Ch0CJETPThnSMWGTQIXMN+RApMOASIiOMsVh0SisXIQFbZUNQiSiGp0pwuWkSHIQEZXDF5DkzPVLifg8XIoVeOtOYLdfDc8FJ8SCjdN580SHLhaqzbcoJkYJxGFpthAuBl9z6pHgQKImepfGuF8uxf5QpXX3IKFKGnx5xDO8FpE05IaNQ1M6T6qZ6YxwICXAvWJLBQjjBDjRPvX3IKAJfbQEZ4kqZ8bOLGEEbfON1aUbhnupmnBApUMBQkmopAphgXbbiQkZBNHPdmZEw7kQuxoEYgYdw1w0FgSObqRMfMkpp49ab5RQgE2+NnJBRFEZwJQgQVqZlXS5klF6UEc8otxTWopwQKRRuNVRLdjD4qasVDzJK4ldNV/mWtC5ihHFtLV0Pguu4tXFCRqkZwsOGntcNZqzqQ0ZpkNN1JodiLrIpJ2SULmXeSoLJSrm1ckKk8KShzwtDTA4tN+FCRsFSxnxdNkG1uSknZBR451DjlRyK63Tah4wCI4rX11Sxj4lblBMihZvZ+OpqZHpSCmuDcCGj5K7dEj2lrWDDA6w61n5XyyUlGISkTTgho3R+pmI5mAag5E05IVL4ZTB0hZVDC8a2uuVBRtGOyMLSNiW0vE3Sg0hRyPKUil2agWXEPcAeZJSmUa68TYqh7CXsQaQgvkZwx+t4/C4pxvXpgw+R0pntoUmncQusaV1W7EH8Ajnw7vzIpvGELcUlZH2IlMSrzYUzPCLo0tdacSFShMmbyDtW2Nw6P8CZ8+JCpPAriRE68zys8z7IasWDQGHOA26Kt4MVfhG+dB7L+hApeBR2mdyekacW0O1ldsyFQIH1QO5Bsj87NoWCcZxW6SEkFPgcaRgUpmegeecVGRchgR8TIOgWfgkK6VNnCt9FQKhMiCnUz1OozeCrZwseQgKbk17HKSkmOcxcvIuQkPnxKc+wmCBUKcsLeYgRYC78pBOCHVvf3kw8hIRxS5WOMjP5gL4ugoMYAQPMlBtCiByg3/ImHAgJ8GQIcfnZAjxO2rfvXcQIiC2Z4aKRBlkX2lzECA3qzQItfmKa8yYcCAmIlgoHm6Ef3N5u4ASsei6Nn+ExUaRDkKz6B2KEUloJI8tSFNtK2oQDMQKCoGr3HXh5a4+RgxihI/xL3TJF6fYCH8pZGTYYtZVkWaLQ+uq/gxghoaV0pQPqvNXgAVZdVKljx60ckfldnIsYoSKeCXbJBlYZbh06ECNo63DAozgxqbYJB2IEJjH6aFiZbLy9woGQ0PjhRbUcDrxUW27PQ4yQi0b74AsTKSFtwoEYoWCsw0hbwcM1KZtwIEaoJVACsLiFtqt/KLfK8GlyJa1gxC3u6gdihC6NX/iOtFvYStVDSOB9ipyva0hYGmn130GMkPhF6bBFzMuOMj3ECFLt453x6UDNu/5HwKpXnt9athQCUfqufyBG6NhO01je2MlT0k04EBCUX2LE4TP5xVViztEIHmIExGnjK0DGRG3Hox5iBGwTvMAzLhbGtIzCQ0iIvGaOP0YaHbHnMmwPMcJIVg0ny3sgy9l5iBEQnI/kJFMnfUdjHkIC4ie4hD42CmllfTfkIiTwdqCO65e82lampZ7lVhkbLqdGAk8+9rLxEBKYnRNEyUwpFdW2Mg8eQgJPJvhdP097ULZFkoeQ0GC+gVd3+RF7g3Jcb+AgIDCxFytPfnmGUMvWhx5CAvwspl6fkfkV9GMFqx4CAm94hUZvGYvytnNfIY4LkYIxjiHyMDvQE4Z1CdKH3h7C7JblBrBY+DMCOo9hfYgUGZ8X80I5lxaixZlz8CFSeJW6jHPjkUVUqYviQW/jN3QoaJgo4NcLMYawOuZBpPALXKnVfn8gl32Q5ENG4a8oMCTlKXBuXW+UEyKFH+TnnO2omVeO5xmxDxkF+5i0K/zh59NxU07IfmoIRpFGOTO8eNR8fRe6/zrRiORqW5+Zfv38+Zme/2S/y/XuN65+5bdM7pvcux84uSUm1m9y/X38LteH3+F6c3+H6/HT+smt0Y33P+jl/s7S+rGdo8XjR71+tc2vH/8LMrzv5AplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjU3MTEKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzkgPj4Kc3RyZWFtCnicPY+xDcUwCER7prgFkAAbG8+T6Ff++7fBcZIC8XSgO/BhELDVLOloUuC141SyGmAX/MmkgdUE2i2hFWhdSigOWjrrCETbFvXpB32uk3jkUrGkai+1viliuTv0jtFtWsCjZ072rtDm4HJPRkEmTspT1qGTNH02mQfUIsllPNr70Pz+mfS7ALu8LdsKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTE2IC90IDEyMSAveSBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNiAwIFIgL3kgMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyCi9maXZlIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2ZpdmUgMjIgMCBSIC9mb3VyIDIzIDAgUiAvb25lIDI1IDAgUiAvcGFyZW5sZWZ0IDI2IDAgUgovcGFyZW5yaWdodCAyNyAwIFIgL3BlcmlvZCAyOCAwIFIgL3RocmVlIDI5IDAgUiAvdHdvIDMwIDAgUiAvemVybyAzMSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDI0IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzIgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDYxOTEwMTMzNCswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCAzMwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMjY3NSAwMDAwMCBuIAowMDAwMDEyNDQ1IDAwMDAwIG4gCjAwMDAwMTI0ODggMDAwMDAgbiAKMDAwMDAxMjU4NyAwMDAwMCBuIAowMDAwMDEyNjA4IDAwMDAwIG4gCjAwMDAwMTI2MjkgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNjE4MSAwMDAwMCBuIAowMDAwMDA3MTk2IDAwMDAwIG4gCjAwMDAwMDY5ODggMDAwMDAgbiAKMDAwMDAwNjY2NSAwMDAwMCBuIAowMDAwMDA4MjQ5IDAwMDAwIG4gCjAwMDAwMDYyMDIgMDAwMDAgbiAKMDAwMDAwNjQ1MyAwMDAwMCBuIAowMDAwMDExMjQxIDAwMDAwIG4gCjAwMDAwMTEwNDEgMDAwMDAgbiAKMDAwMDAxMDY3MyAwMDAwMCBuIAowMDAwMDEyMjk0IDAwMDAwIG4gCjAwMDAwMDgyOTEgMDAwMDAgbiAKMDAwMDAwODYxMSAwMDAwMCBuIAowMDAwMDA4NzczIDAwMDAwIG4gCjAwMDAwMDg5NDMgMDAwMDAgbiAKMDAwMDAwOTA5NSAwMDAwMCBuIAowMDAwMDA5MzE1IDAwMDAwIG4gCjAwMDAwMDk1MzcgMDAwMDAgbiAKMDAwMDAwOTY1OCAwMDAwMCBuIAowMDAwMDEwMDY5IDAwMDAwIG4gCjAwMDAwMTAzOTAgMDAwMDAgbiAKMDAwMDAxMjczNSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDMyIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzMyA+PgpzdGFydHhyZWYKMTI4ODkKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "w_s = 10\n", "xs = ideal_sampling(x, k, w_s)\n", "y = ideal_reconstruction(xs, k, w_s)\n", "\n", "plot_signals(xs, y, w_s, k)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally the case of undersampling $\\omega_\\text{s} < 2 \\cdot \\omega_0$ with $\\omega_\\text{s} = 7$ is illustrated" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMC4zMDEyNSAzMTQuMzU1NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic7d07bxtHEAfw/j7FlnTB5c7su0gRwbYAAylsE0lhuzBkmZEsypAYx/n4mT0ej7cnvhAkIZD8BQgS5/bmN/ukCookdduQWiijbuX7u3qnPsjPT4rUpXwvGiOPlo1jo60h9vLobvDIktPW++glaqpHvzbN52b2o6RYyT2XTeNZu9TeE7V3VhpJWpN1MFXwbhg0Vocu3/b2QbBDeI0spGDphE6DbghdruzUtzGnTYc3FzIa35uLuZq9JEVGzT83Lpfe+iAtmXX2av6pmZhnan6rXsyb1muIrc7G18AgeFggGdDIfkTQiMheW84jYhs8QmTW5PKI4JrgEHT0tiYGwcMEB6t9tCPC1oS1SVOMNTEIHiasXM85jghXEztWVbXUjsy2CdrxeLr9hniQO4yaGllrTEnSl5RZc2xX0tVSkpU9oyUNt7fOXnKXefJbSdLImmCTcmprMOsmG3yiuiYUUyST+yaTm/YC6xiTZWPXW7FcuG8vBG1tTLlF1/G9mVbtBenK6268+n3gs46U18OVdK5j/WhVI6BZeS8d4hS73g+GMulRTaTNBn8Q3JREZbC6X+T+2fPr248/f3v78X41Xd7cf1up51+l0CelEnlNflTrNri3WCLSNpxWrdH+76o2Sq48rrYP7tlOWZdTjmT7JdNWvC5qdPL0CHPQxo6QbfAgwrLS2Q0Qvw9JpF0cI33wMBKjDqlHaNsTGV6ZoGkZ1zKFsrFKx8vubcfn8K76o50kWYQUcyg3TkmHqmFs2622u89Re56rumG/Cd9tWhqyIbbFmBH6pUNjpu6pYbyTP3QtksthuP1+aOMkz6AcyVWnwD/YpfeTv9ynybw7Ycgku+fYev9se6g8qKdPttZHmVZVnkpIfj5eq1/UvcwnlYM2BS4ptQvdV5RVF41Pia3nrB4X+1uqquWby6pls7/l46I7GsrC27G6r5Zq9pMp23nTKDgp3RjLLsn9U7Jeey/nsBw6kY63j17LXrQmZDmhjjankGXbyrkb5c+dE7KbEwrel1LOK3X6nLF6JWvMy59YJ460zIkck7/fXF2/ubxQV6umeQsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIMD/ErjzPyd2vEz77t8vjShIRcSJq+KGYVf+IyYEufsc9aVynSzVgzcIx/KbscznKI+d04nIuliVNwizzTpKdfksw2dNkskjm6ryttEzVxdteRG/o3rxDcJnnVyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIMD/K5hsXpNWQJLsjiiG8s7XXSHO01NwSvUbzTN1n9JRvdP8uqqimSeflrHnRdh95cvdH8MhOY995kLdelfmnZ8FUrXtcxzI/Lr5E7ILmtkKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxMDYzCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsQ3AMAgEe6ZgBDD4kfexUpH92xDLNPzpdQ9UWditDgIcY/FWmuvQS90lAWU4ilyaRszaJWlZf5poO3bhfkp6PjVxFH0KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg3ID4+CnN0cmVhbQp4nDWNwQ3AMAgD/5nCI8QQINmn6qvd/1tI1I99soyxWOhQS3EKwjsuNk7d+DaJQ09mAWUkjWWwUVQnh8QnZFqSsRazxb6dERCvDsV2osf+J0+7P7hOGcQKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyNSA+PgpzdHJlYW0KeJw1krlxQzEQQ/NfxTbgGe7Fox55HNn9p36g7EADiOSCAD473Ia524en9RjWc9inP5em289TO61q2vdTfax6WyUrExzLarW9ntxuxS+7wLaMefH1xNqXRXFiLQvnxHR2fDNdbb5YibyYRzOXzbQYKOW2mAdFv2pp6ccCpXR21rmIg7Etx8Fl4ixO4E770gZ7cqYKhp4yBHGFvkM7YsHZbJP0Jqjuy6IUC86onkBRKIfnMi+h+lv2IeskHcbiVqUxZPlAE1+EJt0pQ83pB2sIcfGkgw0w4BcYmnH/n2VrkL0NR9hpRhV0TvOMN96BywidOVChZkXMJSncRKoYqUctmK/gBMbyXZHsx5GfM+kTiwAzgqUQENXofx/c23krcuREakoKPrxeju4XytGbqctu5rij+5ZdmpFSgMP+n9rr+foFmDF5uwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgODQgL1QgMTA3IC9rIDExNSAvcyAvdCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL1QgMTcgMCBSIC9rIDE4IDAgUiAvcyAxOSAwIFIgL3QgMjAgMCBSIC94IDIxIDAgUiA+PgplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4UoDAPG0FiMKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY3ID4+CnN0cmVhbQp4nDO2NFAwULA0V9A1NDZUMDYwUTA3M1BIMeSCMXPBLLBsDhdMHYRlBmIYGZogscyAxoEl4QyQGTlw03K40gDOgxXTCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUKL2ZvdXIgL2ZpdmUgNjEgL2VxdWFsIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDEwNSAvaSAxMTAgL24gMTE1IC9zCl0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMiAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjUgMCBvYmoKPDwgL2JyYWNrZXRsZWZ0IDI2IDAgUiAvYnJhY2tldHJpZ2h0IDI3IDAgUiAvZXF1YWwgMjggMCBSIC9maXZlIDI5IDAgUgovZm91ciAzMCAwIFIgL2kgMzEgMCBSIC9uIDMzIDAgUiAvb25lIDM0IDAgUiAvcGFyZW5sZWZ0IDM1IDAgUgovcGFyZW5yaWdodCAzNiAwIFIgL3BlcmlvZCAzNyAwIFIgL3MgMzggMCBSIC9zcGFjZSAzOSAwIFIgL3RocmVlIDQwIDAgUgovdHdvIDQxIDAgUiAvemVybyA0MiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDI0IDAgUiAvRjIgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDMyIDAgUiAvTTAgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC0zLjUgLTMuNSAzLjUgMy41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDMgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDYxOTEwMTQwOSswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCA0NAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDQ2NyAwMDAwMCBuIAowMDAwMDA5OTY0IDAwMDAwIG4gCjAwMDAwMTAwMDcgMDAwMDAgbiAKMDAwMDAxMDEwNiAwMDAwMCBuIAowMDAwMDEwMTI3IDAwMDAwIG4gCjAwMDAwMTAxNDggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTUzNSAwMDAwMCBuIAowMDAwMDEwMjA1IDAwMDAwIG4gCjAwMDAwMDMyMTkgMDAwMDAgbiAKMDAwMDAwMzAxMSAwMDAwMCBuIAowMDAwMDAyNjcyIDAwMDAwIG4gCjAwMDAwMDQyNzIgMDAwMDAgbiAKMDAwMDAwMTU1NiAwMDAwMCBuIAowMDAwMDAxNzAwIDAwMDAwIG4gCjAwMDAwMDE4NTkgMDAwMDAgbiAKMDAwMDAwMjI1NyAwMDAwMCBuIAowMDAwMDAyNTA4IDAwMDAwIG4gCjAwMDAwMDg2NjEgMDAwMDAgbiAKMDAwMDAwODQ2MSAwMDAwMCBuIAowMDAwMDA4MDE5IDAwMDAwIG4gCjAwMDAwMDk3MTQgMDAwMDAgbiAKMDAwMDAwNDM0NCAwMDAwMCBuIAowMDAwMDA0NDg3IDAwMDAwIG4gCjAwMDAwMDQ2MjYgMDAwMDAgbiAKMDAwMDAwNDc2OSAwMDAwMCBuIAowMDAwMDA1MDg5IDAwMDAwIG4gCjAwMDAwMDUyNTEgMDAwMDAgbiAKMDAwMDAwNTM5MSAwMDAwMCBuIAowMDAwMDA1NTYxIDAwMDAwIG4gCjAwMDAwMDU3OTUgMDAwMDAgbiAKMDAwMDAwNTk0NyAwMDAwMCBuIAowMDAwMDA2MTY3IDAwMDAwIG4gCjAwMDAwMDYzODkgMDAwMDAgbiAKMDAwMDAwNjUxMCAwMDAwMCBuIAowMDAwMDA2OTE1IDAwMDAwIG4gCjAwMDAwMDcwMDQgMDAwMDAgbiAKMDAwMDAwNzQxNSAwMDAwMCBuIAowMDAwMDA3NzM2IDAwMDAwIG4gCjAwMDAwMTA1MjcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDQgPj4Kc3RhcnR4cmVmCjEwNjgxCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMS4zMDEyNSAyOTMuMDEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK2aS69UxxWF5/0rzhAPKOr9GAY5RsoMg5JBnIGFMTGiiQhxUP59vlV96nQ3d3OVQZDQ7d6rVu06VftZp8P2/hS2d5vf3vP/y/bX7W/8/WUL2wv+vzt5vp1POQaXfIiFbx9uvsWRHB+Q+ZvPfz+dfj09+wP0z4x/cSrJ5a7hwbum2fhb/SH4cCOIrbo+JzlIV9E+b7zM+471sWbXb1aNNiE3GnNyrVSU3oi8i4g+nE7PefQvp+evt2c/BNayvf71VLwerVQNjMOFGvn0+pfTE//d9vr99sfXp6nxFGJ2w5c7Fbeyx3QE9q/FYigJXykZ1aU47pXcyB5VwnGEPAwl8V5JrI2p052SW9ljSmLNrrRkKEn3SlICbO1Oya3sMSUpFTdGM5TkeyU3dnUouZU9piT75rBrQ0lZSj7B8ttTj91l39esobg8fGple3NmSjmMGz1LAPvZD3FX8ORfmufEPC/35R4WmaLrbS52QL2RHEu9UR2ji/ia821o5FR68xzdpdaHr9NVp0k5vxR/QrHXRFrj/gH+s+/fvv/5z7+/+vnj56fn3z7+/nn7/h8s8sEyO3OHu2Xukm8us2Md4X9bpnfl/7TMm7Nf61yib9gXujmtgDmOMld7WdBXHn9VMDCPca9gFz2uYBSXxo2C8g0FsWRX052CJXpUQSR49XQoCNcnYEs5k6faS+wV+8G/FVOvJpvnWdxb7H/mieB8oY3a235UV7VPfnoyRySiXki1hZsxX5k9Q6Lvu188mOa7q2t82u6zRSrNBS24usDff77d/rJ93IIrRH0Pgsf2GjWpy3X/19jQ5kvvMZU4th9fbNjOv3978/bHF8+3N5+tjS7F+dj9GFNW5Fxdm/3KRiBUV3NsOUxxKLHNFCWChUBoDuPyUeLEMfWRx06wEAjdEbzGyFNcfAlpH28A51NlN0g+ReuMrvQY+v4EJgIhuNp60yx88in6so83AIYnHUCOaZpZ7im1/YFNBAJ7G+bRRMyYAbnsD2wiEIqMpHWJST8jt5x3goVAaI5JcpK4Omya6L0TLARCn9vrJc5kUdbbdoKFnE8tEmc9HyPBobLlHNIcbwEMzy63SHJAXJRA+yXovLIRCKyzeAwYMXmqVe/3QzOR86lj2SF0Hj/G5Cq77vc9MhEIKE4hdw5fnh96KvsjmMj5NJinUWDsQa35upuFBTCcdabO2WyhE3ByOBzHRKhfPLkN881ECAwBT9HHybAhUUgXfAuNSE6aziOkg2JBUAIRJ3lfK3Hd6+ly2I/ahkThqfxIhQUHPJ3tSHlRLEgFH/7aUmang/dy+1p2J7UhUTq2TM3Ut15dy4STsRgGAiFRVIaOhzSqxlLIm/t4A9DwwfoC02z4cananDXeQCBg775yOGUrs+poaS3IQkQgIuNaPm5yxj5iCotgIBDKLLx8bxt5OGE4efcKExEB7xpYTN5yILaMONZBWIgI5PfcS9x4Rh6x5LVHBqDhhfqujJS21Mj5vi+fMBERiOlY8UDM0RAi4vEEBiJCd9IWOwmMAeTPZRcWIgKHMzBjMl52rWI+a/xDgOHE9JYatRdCEmuPu5NagIazbVXhKrEfClzH8IeAhiuAeIUGxMn3WI/xBiKC8mhKMUsceKrregxEBFXNRIc5T/B1nddDuQY3gm1LhA8JW+x9bY6FiEB1TuYv87Ey7nqcr4WIQJ01mC1I3FXZHxoMBAIuh8MNLJ19LjFEv5zGQkSgOS69+Kpjx9JzXhosRAROG+3aiaoqeoy1pRYiAkky1UHexnQJUCx6EQxEBLyVybTSrgqkH4/wENBwyo6OAyX50ujY8DG/gYgwnEJAl6sWTukY/kDOYFIEzWoj1hAJSs8KIpfhFiKCto2ot2XyafLjMGkD0HD2gMoEZYo5NaS+TMJCRBiqamhRNmJCG72Og2Ag6ssplsjqtG34IGG5rRBhAJc2nhTNs2Aw1Jds4Br+EKAhJ4dQZZCwt04NR5E79ulNRASmodZjm0nE2PlYxZSJQAiEArUn6mnZaLZ8RV0bEqVTZvk4SIt0rFhKPRgGAiFSWzXV7LQhHH6mYtkJFgJBCbpj7MyDJ7ZA6N/9xoZE0bFX+pVNR8vplINhIBAwwzZaYdsiBQgbqGVfGCYkSqcWIm1RslMaUCv7dlAsCAqZK0bolFtR297JAjvFhETBMomYWTWg7ln6OLSYkChdch/3wrTwuG1RLEhXPZG4PFSczdI30U8s0zIhUcgCBH/4Kq8x8FbWwkzoPC+KBumRU50lfCYArGMxIVFIqIHCesw2gUi9QoKJiEAtWENQzYwN+UjjcuiwIFHYiZ7r7F1k5P16kCYEBbf0dNl1imnVatvjpomIgOX4QVEx+7VGAB4Hw4JEofLSRswWMqWQ1okYgIaTOLDNixT7popc4w1EhKouSr1CURHpx2qcTEQEqqHaQ75MNKo/inYbEmXgn1mBTHJq4eSPp7AgKPQwJKdUL9px7SvFhERRDilk/suOkEjr2lwTEiXqlmT0S//cG43PocWCROEL/+QIRYUq8fOgWJAoVJK5KjfIGipp6zhEExJlBuYyLyYIPIk+d52jCYmidnjd/dRKMD8YBiICdTC5SBaH68QY8qrebQgKjV8nq9c+/ZNgqNRxoZiQKNHJc6pcusilQ15aTEiUogNuminIJI58ayIiNEpRNCqezWxTD9c1ofOJpo+ZEg+GXHksHjWMDYlComi+kLMJ0S5F39aT2BCUoPsTT/FK0qB+Sjmv4t+GRKm6sGIB85KQmJtXi2RDUKKqA+qWQDIjTBM59nRiIiJUtTasVlVzSYS2g2Agup73fKkK+UEXWd77ZVw2dJ439Z4OPI/LbSoGtKogG4KSdYuX8LpNr08w7LHqUBsSpVDntHkTwS76hCAvigVBwWnivK+hGOu42woSFqDhleaP02ob8ZCQ5lfxZCIQlCmLbsE2slmvaSyvMhERYPfBvqmIDJ4lr721EBGG3jOovZQ/4zXLCU0EArklj6zrkKz3JwScZYUWIgLrwz2JMVn3MOPwJxMRoToWNwgYWRc8BNy1qxYiQlOBSj2lRqHmxpdFMBARqFlSoohQJxJJR21tq4VAIE0EtSJNrU6gWVi3USYiQiBB5sjmJV0UhqPoNRERIkGLpiTMdi1h/+sZLESEdCn6ZwOP+/YjgFiICMqikY5NYvpJHw4NBiJC1XVcJ8uri+fjuvIxERHYgVb1RV1wonNbocBCRKDDo8Vos4uPPvnrQxuICKrI9fZxNuYsdA1/IGcwroesEeIuXXxbvZCJiMBOV8q5cenia1xlgomIMLuLOLXitGW19xag4YrsvWHlOpiU07q5NhERmlzQk22TAlC/JgkLEWFcrtaCjAufjfF4ZAM5nyiWHB4bxjTfHoluu2GbiAhRjjdKmFdfPR9XpiYigm7lB5WCnDyOXK4EAznPN6bULqp3qfTxLyx+EQzk9lVsmffBfSWgl9unLW5/uvwG4e59/jfe2xwvTO/e5NxWpcevD77MXyB89YuDs/mLg9PH48cFcxH3P10w3ygfrxUfaHzw84Vv6nx5+i9ReJWxCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjY2OAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOSA+PgpzdHJlYW0KeJw9j7ENxTAIRHumuAWQABsbz5PoV/77t8FxkgLxdKA78GEQsNUs6WhS4LXjVLIaYBf8yaSB1QTaLaEVaF1KKA5aOusIRNsW9ekHfa6TeORSsaRqL7W+KWK5O/SO0W1awKNnTvau0Obgck9GQSZOylPWoZM0fTaZB9QiyWU82vvQ/P6Z9LsAu7wt2wplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTYgL3QgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC90IDE2IDAgUiAveSAxNyAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIKL2ZpdmUgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE5IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE4IDAgUiA+PgplbmRvYmoKMTkgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMSAwIG9iago8PCAvZml2ZSAyMiAwIFIgL2ZvdXIgMjMgMCBSIC9vbmUgMjUgMCBSIC9wYXJlbmxlZnQgMjYgMCBSCi9wYXJlbnJpZ2h0IDI3IDAgUiAvcGVyaW9kIDI4IDAgUiAvdGhyZWUgMjkgMCBSIC90d28gMzAgMCBSIC96ZXJvIDMxIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjAgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtbWludXMgMjQgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTkwNjE5MTAxNDA5KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4wLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMC4zKSA+PgplbmRvYmoKeHJlZgowIDMzCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5NjMyIDAwMDAwIG4gCjAwMDAwMDk0MDIgMDAwMDAgbiAKMDAwMDAwOTQ0NSAwMDAwMCBuIAowMDAwMDA5NTQ0IDAwMDAwIG4gCjAwMDAwMDk1NjUgMDAwMDAgbiAKMDAwMDAwOTU4NiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMTM4IDAwMDAwIG4gCjAwMDAwMDQxNTMgMDAwMDAgbiAKMDAwMDAwMzk0NSAwMDAwMCBuIAowMDAwMDAzNjIyIDAwMDAwIG4gCjAwMDAwMDUyMDYgMDAwMDAgbiAKMDAwMDAwMzE1OSAwMDAwMCBuIAowMDAwMDAzNDEwIDAwMDAwIG4gCjAwMDAwMDgxOTggMDAwMDAgbiAKMDAwMDAwNzk5OCAwMDAwMCBuIAowMDAwMDA3NjMwIDAwMDAwIG4gCjAwMDAwMDkyNTEgMDAwMDAgbiAKMDAwMDAwNTI0OCAwMDAwMCBuIAowMDAwMDA1NTY4IDAwMDAwIG4gCjAwMDAwMDU3MzAgMDAwMDAgbiAKMDAwMDAwNTkwMCAwMDAwMCBuIAowMDAwMDA2MDUyIDAwMDAwIG4gCjAwMDAwMDYyNzIgMDAwMDAgbiAKMDAwMDAwNjQ5NCAwMDAwMCBuIAowMDAwMDA2NjE1IDAwMDAwIG4gCjAwMDAwMDcwMjYgMDAwMDAgbiAKMDAwMDAwNzM0NyAwMDAwMCBuIAowMDAwMDA5NjkyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzIgMCBSIC9Sb290IDEgMCBSIC9TaXplIDMzID4+CnN0YXJ0eHJlZgo5ODQ2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "w_s = 7\n", "xs = ideal_sampling(x, k, w_s)\n", "y = ideal_reconstruction(xs, k, w_s)\n", "\n", "plot_signals(xs, y, w_s, k)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Derive the spectrum of the reconstructed signal for the sampling of $x = \\cos(\\omega_0 t)$ with sampling frequency $\\omega_s$ by calculating \n", "\n", " * the spectrum $X(j \\omega)$ of the continuous signal\n", " * the spectrum $X_\\text{s}(j \\omega)$ of the sampled signal\n", " * the spectrum $Y(j \\omega)$ of the reconstructed signal for the case of over-, critial- and undersampling\n", " * the reconstructed signal $y(t)$ for the case of over-, critial- and undersampling\n", " \n", "* Reevaluate above example with $x(t) = \\text{rect}(t - \\frac{3}{2})$. \n", "\n", " * Hint: Define the signal by `x = sym.Heaviside(t-1) - sym.Heaviside(t-2)`\n", " * Is a perfect reconstruction possible? If not, why?" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "The notebooks are provided as [Open Educational Resource](https://de.wikipedia.org/wiki/Open_Educational_Resources). Feel free to use the notebooks for your own educational purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Lecture Notes on Signals and Systems* by Sascha Spors." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }