{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# System Properties\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Causality\n", "\n", "The [principle of causality](https://en.wikipedia.org/wiki/Causality) states that an effect temporally has to follow its cause. A systems may violate this fundamental principle which limits its practical realization. Causality is hence an important aspect for the practical realization of systems. Conditions for causal linear time-invariant (LTI) systems for both the impulse response as well as the transfer function are derived in this section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Condition for the Impulse Response\n", "\n", "The output signal $y(t) = \\mathcal{H} \\{ x(t) \\}$ of an LTI system is given by convolving the input signal $x(t)$ with its impulse response $h(t)$\n", "\n", "\\begin{equation}\n", "y(t) = \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau = \\int_{-\\infty}^{\\infty} x(t - \\tau) \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "Analyzing the first integral reveals that the computation of the output signal $y(t)$ for some time instant $t=t_0$ requires knowledge of the input signal for all time instants. This includes also future time instants $t > t_0$. While this does not pose a problem for signals and impulse responses given in closed-form, this is not feasible in practice. Without imposing further restrictions, this would require the knowledge of the input signal for all future time instances.\n", "\n", "Causality is not violated if we modify the integration limits of the convolution integral\n", "\n", "\\begin{equation}\n", "y(t) = \\int_{-\\infty}^{t} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau = \\int_{0}^{\\infty} x(t - \\tau) \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "Now the output signal $y(t)$ for a given time instant $t=t_0$ depends only on the input signal $x(t)$ for $t \\leq t_0$. Comparing the second equality with the second equality of the original convolution integral yields that the modified integration limits are equal to the assumption that $h(t) = 0$ for $t < 0$.\n", "\n", "A system is termed *causal system* [iff](https://en.wikipedia.org/wiki/If_and_only_if) its impulse response $h(t)$ is a causal signal\n", "\n", "\\begin{equation}\n", "h(t) = 0 \\qquad \\text{for } t < 0\n", "\\end{equation}\n", "\n", "Only causal systems can be realized practically due to above reasoning." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Condition for the Transfer Function\n", "\n", "The transfer function $H(j \\omega) = \\mathcal{F} \\{ h(t) \\}$ of a causal system shows specific symmetries. A causal impulse response $h(t)$ has to fulfill the following relation\n", "\n", "\\begin{equation}\n", "h(t) = h(t) \\cdot \\epsilon(t)\n", "\\end{equation}\n", "\n", "Fourier transformation of the left- and right-hand side yields\n", "\n", "\\begin{equation}\n", "H(j \\omega) = \\frac{1}{\\pi} H(j \\omega) * \\frac{1}{j \\omega}\n", "\\end{equation}\n", "\n", "by application of the [multiplication theorem](../fourier_transform/theorems.ipynb#Multiplication-Theorem) in conjunction with the [Fourier transform of the Heaviside signal](../fourier_transform/theorems.ipynb#Transformation-of-the-Heaviside-signal). Decomposing this result into the real and imaginary part of $H(j \\omega)$ derives the following symmetry relations for a causal system\n", "\n", "\\begin{align}\n", "\\Re \\{ H(j \\omega) \\} &= \\frac{1}{\\pi} \\Im \\{ H(j \\omega) \\} * \\frac{1}{\\omega} \\\\\n", "\\Im \\{ H(j \\omega) \\} &= - \\frac{1}{\\pi} \\Re \\{ H(j \\omega) \\} * \\frac{1}{\\omega}\n", "\\end{align}\n", "\n", "The convolution of a spectrum with $\\frac{1}{\\omega}$ is known as [Hilbert transform](https://en.wikipedia.org/wiki/Hilbert_transform). Above result states that the real and imaginary part of the spectrum $H(j \\omega)$ of a causal system are related by the Hilbert transform. The Hilbert transform is used for instance in the theory of [single-sideband modulation](https://en.wikipedia.org/wiki/Single-sideband_modulation) in order to express the [analytic signal](https://en.wikipedia.org/wiki/Analytic_signal)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stability\n", "\n", "The stability of a system can be evaluated with respect to various different criteria. The most common ones are [Lyapunov stability](https://en.wikipedia.org/wiki/Lyapunov_stability) and [bounded-input bounded-output stability](https://en.wikipedia.org/wiki/BIBO_stability). The latter is introduced in the following." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bounded-Input Bounded-Output Stability\n", "\n", "With respect to the bounded-input bounded-output (BIBO) principle, an LTI system is termed stable if its output signal $y(t) = \\mathcal{H} \\{ x(t) \\}$ is bounded for a bounded input signal $x(t)$. A signal is bounded if its magnitude does not exceed a given finite value. For the in- and output this condition is formulated as\n", "\n", "\\begin{align}\n", "|x(t)| &< B_x \\\\\n", "|y(t)| &< B_y\n", "\\end{align}\n", "\n", "where $B_x, B_y < \\infty$ denote constant finite bounds. The BIBO criterion is illustrated in the following\n", "\n", "![Criterion for Bounded-Input Bounded-Output stability](BIBO_stability.png)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#### Condition for the Impulse Response\n", "\n", "In order to derive a condition for the impulse response $h(t)$ of an LTI system that conforms to the BIBO criterion, the magnitude of the output signal $y(t)$ is expressed by convolving the input signal $x(t)$ with the impulse response\n", "\n", "\\begin{equation}\n", "|y(t)| = \\left| \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau \\right|\n", "\\end{equation}\n", "\n", "An upper bound for the magnitude of the output signal is found by applying the [triangle inequality](https://en.wikipedia.org/wiki/Triangle_inequality) together with the upper bound for $|x(t)|$\n", "\n", "\\begin{equation}\n", "|y(t)| \\leq \\int_{-\\infty}^{\\infty} |x(\\tau)| \\cdot |h(t-\\tau)| \\; d\\tau < \\int_{-\\infty}^{\\infty} B_x \\cdot |h(t-\\tau)| \\; d\\tau\n", "\\end{equation}\n", "\n", "Since the output signal $|y(t)|$ shall be bounded, it can be concluded that the impulse response needs to be an [absolutely integrable function](https://en.wikipedia.org/wiki/Absolutely_integrable_function)\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} |h(t)| \\; dt < B_h\n", "\\end{equation}\n", "\n", "where $B_h < \\infty$ denotes a constant finite bound.\n", "\n", "An LTI system is stable in the sense of the BIBO stability criterion iff its impulse response is absolutely integrable. Since absolute integrability of a signal is sufficient for the [existence of its Fourier transform](../fourier_transform/definition.ipynb#Definition), this implies that the transfer function $H(j \\omega) = \\mathcal{F} \\{ h(t) \\}$ exists for stable systems." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conditions for Rational Transfer Functions\n", "\n", "For a rational transfer function $H(s) = \\mathcal{L} \\{ h(t) \\}$, the BIBO stability of an LTI system implies constraints on the locations of its poles. These are derived in the following.\n", "\n", "The inverse Laplace transform of a right-sided signal can be computed in closed form [using the partial fraction decomposition](../laplace_transform/inverse.ipynb#Basic-Procedure) of its Laplace transform. Applying this to the transfer function $H(s)$, the impulse response $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$ is given as\n", "\n", "\\begin{equation}\n", "h(t) = A_0 \\cdot \\delta(t) + \\epsilon(t) \\sum_{\\mu = 1}^{L} e^{s_{\\infty \\mu} t} \\sum_{\\nu = 1}^{R_\\mu} \\frac{A_{\\mu \\nu} \\, t^{\\mu - 1}}{(\\nu -1)!}\n", "\\end{equation}\n", "\n", "where $s_{\\infty \\mu}$ denotes the $\\mu$-th unique pole of $H(s)$, $R_\\mu$ its degree, $L$ the total number of different poles $\\mu = 1 \\dots L$, and $A_0$ and $A_{\\mu \\nu}$ the coefficients of the partial fraction decomposition. Above formula for the inverse Laplace transform holds if the order $M$ of the numerator is smaller or equal to the order $N$ of the denominator. In this case one has to check under which conditions the impulse response $h(t)$ is absolutely integrable. The first term $A_0 \\delta(t)$ does not pose a problem for $A_0 < \\infty$. Under the assumption $A_{\\mu \\nu} < \\infty$, the absolute integrability of the second term is checked by evaluating\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} |\\epsilon(t) t^{\\mu - 1} e^{s_{\\infty \\mu} t}| \\; dt = \\int_0^{\\infty} t^{\\mu - 1} e^{\\sigma_{\\infty \\mu} t} \\; dt\n", "\\end{equation}\n", "\n", "where $s_{\\infty \\mu} = \\sigma_{\\infty \\mu} + j \\omega_{\\infty \\mu}$. It can be concluded that above integral is absolutely integrable if $\\sigma_{\\infty \\mu} < 0$. \n", "\n", "If $M > N$, the system is not stable in the BIBO sense. This statement can be proven by a counterexample. If $M > N$, a polynominal in $s$ with positive powers can be split off from the transfer function $H(s)$ by polynominal division. Lets consider one of these terms, for instance $H(s) = s$. It follows by application of the derivation theorem that $h(t) = \\frac{d}{dt} \\delta(t)$. For the bounded input signal $x(t) = \\cos(\\omega_0 t \\cdot t)$, the output signal $y(t) = \\cos(\\omega_0 t \\cdot t) * \\frac{d}{dt} \\delta(t) = \\frac{d}{dt} \\cos(\\omega_0 t \\cdot t) = - 2 \\omega_0 t \\sin(\\omega_0 t \\cdot t)$ is not bounded for $t \\to \\infty$. The same argumentation holds for positive powers of $s$ by repeated application of the derivation theorem.\n", "\n", "Combining the results it can be concluded that a system with rational transfer function $H(s)$ and right-sided impulse response $h(t)$ is stable with respect to the BIBO criterion if\n", "\n", "1. the order $M$ of its numerator is smaller or equal to the order $N$ of its numerator and \n", "1. all poles are located in the left $s$-half-plane\n", " \\begin{equation}\n", " \\Re \\{ s_{\\infty \\mu} \\} < 0 \\qquad \\forall \\mu\n", " \\end{equation}\n", "\n", "The locations of the zeros of the transfer function have no influence on the stability of a system.\n", "\n", "In order to investigate the stability of a given system, the poles of its rational transfer function $H(s)$ have to be determined. This can be performed by computing the roots of the denominator polynomial. However, in order to avoid the computationally complex computation of roots, several stability tests have been developed. These determine the stability of a system from the coefficients of the denominator polynomial. An example of such a test is the [Routh–Hurwitz stability criterion](https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "The impulse response $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$ of a 2nd-order system with transfer function\n", "\n", "\\begin{equation}\n", "H(s) = \\frac{1}{(s-s_\\infty)(s-s^*_\\infty)}\n", "\\end{equation}\n", "\n", "is computed. First the case of a **stable system** is considered with $s_\\infty = -1 + j$, hence $\\Re \\{ s_\\infty \\} < 0$. Its impulse response $h(t)$ is computed by inverse Laplace transform of the transfer function $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAAYCAYAAADeUlK2AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE/0lEQVRoBe2aj1UUMRDGOZ4FoHQAHQBWIHQA2gF0gI8KeNgBdqDQAXSg0AF2oFwH+P1CErK5JITb7HpPbt6Lu0nmz5eZySR7Mnl4eFgZgyaTyY3sHMjerzHsLW08eWAyRpAV4DWZvJetyZPp5dtYHlgdydCu7NyOZGtpJvLAoEHWDt5QO5NN2grvalsRhoXqgrkGUC1fja4anlp7Kb5Bg8z5q/ZZi5iqnfKutrA7Wg46Fs7aJCSB4R+c+uIaNMjB6nHcddB/8SsZqnavdvhi4QoB6d0X27qS8LKCfUV8Zj1WrkaESnasRjW7UKtKJvH1xyWwAK5qWgnArirahtMpXs5jLl1VNnJ8Vg+fAuc5nnnHpZOL4U1O3s7f6enX5XiRY971c0/x4LdD5uFXu8vxunHL1xtXL8c7MKWngFLSLuCxoGccVZIP55AP+63epfdczQQgpVNz7CZNzSYqcmrFxNM8d5KrUF59HLIVjsXvmm+Ca4wgA/SYBYjO4oUsQl+4ipVG86yhtKPuNZ9MQI1T/Vj8brhWO7YfjsXv4mmCa4wz+UJgN3W2kPHf1BaKhIvj5LkfaOAp3SmQ/5hZ2An6FUAvH5zH7zIynN/NcL0JjUgxZwWgftvxTT25EXM7novs4vwCc0rswlkYtsABfZL8tub4rCFZeF5r7EBPHMEuYRxnfVejLFJaofdqP8T7xfTy/6BrBp90g+VIDSzY3dIYtlI6kd9T+6rmSfzIgocvjJDQB5WSqx0uOcGUbBlkUVwu/DnBu9rgJVY2cEbnzAKXqHM5oa9mzneH2/JRLgmAORbsGNhRUrwDaJ6L01znscOAPHpc3z01xn0EDN6nFhvJWMSm+Wa4zE5WxpFZ3P6OBCL8jiXwjA9NOzKwQ+bL/jQwFn/O5DL/p2Q488wOR551SB+vrKGzwxgMiAT7E/TjV3Zo6JN4nj7y6IkJWejEYnnsPe7uqTDm1gNfM1wmyFLIxQJaExiyb930HnfXTCmzc80eWuy17OIovoOxR2JdajwucyWbBDpFKeeHfJT6aTgQvZMkcbJFLKbsuhIczpG8/nhhQusDDyX8lH6BmuFyQTYLkVOfO78KmHpPbUsD9wGwUM740eCrMHEu/hOyAXFVroQhFxACGldCd0ErVZeSLZco1bhWA22l0hGwtX+VM80uYOeqEey3agT3UHOcrUMS687tdnYipd9XMxv4GA/ynZIf8MWlnupE8k5jJVG/GS4X5GyABZbSMjQRSP9zJQ5QI9Mpk8bRAwIgOCbJEjY657H1Bbs2JsY6PkwFMZCvOYaa4XJBpjxSJj2RiWqc1XEmep7GL1xO4h1F3+8iay/mYTjleMv+7IP18bmVIoJvgmexcVPvBNMKUX3isswUSWoSyMrj5w+pBIA5oma4/B8NCIS7cLlvZMrUKGe0bJNg7Bo+kVwQufzxWcWljJ2Og9yu5pLFTRoHugSd6p1xdgl8zKOXoNxKj795q+/J2uZnSX4T6JDm0E+i83mGP5LnqPjAvaf5TgJonLWAj3n08zna4dFYklri8kFOWnolgzZI/GnSi6uWZEkEknEmSfq6rxWu1b5A/hN5dtu8t3gqB/JDUBNcyyArNNqFlGH+v5pdWU2Wn3M6WcarFWUYm+GSIhb56pv8zPk589NqyTfwI1fi6TvXAtfyTJYXHdmdyc+jz+5M8fLJx69ZVRcpZ2OeZ19cfwEGTnaSnBok/AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle e^{- t} \\sin{\\left(t \\right)} \\theta\\left(t\\right)$" ], "text/plain": [ " -t \n", "ℯ ⋅sin(t)⋅Heaviside(t)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sym\n", "%matplotlib inline\n", "sym.init_printing()\n", "\n", "s = sym.symbols('s', complex=True)\n", "t = sym.symbols('t', real=True)\n", "s_inf = -1 + sym.I\n", "\n", "H = 1/((s - s_inf)*(s - sym.conjugate(s_inf)))\n", "h = sym.inverse_laplace_transform(H, s, t)\n", "h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The impulse response is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMS4xNDUgMjk4LjI0MTI5MTUwNTcgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnichZhLrxs3DIX38yu0vFlEkaj3skGbAN0lvUAXbVd5NogDpCmav9+P45Hv2Jd2ElzY5tER9SAPORPdpyW6Dy64T/x9d3+4v/h866J7yd+HJfDrsGSJPubC98+n7zK6lxxlCMZw/vPjsrxfnv3EBN/gvFyWEnyupUpxsfjMIIYxbWi+9Avz571ZevRlzvowyZl5cyZHZx9YNlvxfbcZlqDIboKEh5xaYRE7Y/ZhNX5eluecyvfl+b179iK6GNz9+yU3L70MHSDiR3H3b5e78MTdf3K/3C+rxyVyOL2PCxd7620fMXbfwrhwIhdORvIppksnO+sPnIzgY0oXTvK5E6nZt9QunOytt51I5YpKu3BSz52kVH2s8cLJ3nrbSUrM3OOFk37uZBdOOyd76w/uPUQvsobdyUU83ftXCME9DYRdDmVOOby0Hvny5sBkmkWsc/UB+9kL2aa++1enWZjm1bZYM0Rz9ePCeOXQWalLybdce9sC1IeLGH1w0ZIvYcQyznw8WG84qcO3KNJTlyDTUbnmKIbhc8ul9jNPO/MNV5Fjra3VQfCFual4dVNok89pjFbPfT2Yb/nK0decYoi5hjZ9Xd8XOsSaUj+/pZ35lq/WfA29xICcba7k6rYkNp9aaCOfudqZb7iSyJ22NOJgZ/O65Oq2pCAlKElI574ezLd85eEL4iJtSMybr7TLF02Vp5o0aD7KqIEqTUhB9DyWUNouaXJQx+c583HNmcpSWh8rHo4j5jLu/rxbhyQ/AoLYVhfBzDyGSOhbaj6a5slDdn51j0vYcbGpNLbhpCJafP7zzv3uvjjEjwIUdIOEd5VWFuVv/xpIC6V3SUWGe/3SPfv53X9/v3n3+uVz9+bblUIlSG8IKFDnQCXltt7DbybA8EI9TqE7rT6ZohLjNtwAGN74LqkNtsd8vbUu23gLgcA1U9SyBnLnMpL0sREs5LBQEBpFO1cnIbArhvQjwUQgcDu1Dg1ydKL2kts23gAYXpEJdI9ZODU+EeBtvIVA6EyTSPU1Zlug5OSNYCGHpSEOiWDSVBieBYxcjwQTgZBplYg/DQ9EjPsOmwcTgUBYd00dzJ1TbD1vZ2QiEPg+Sqk4RpJzLseeSAkWclh68lLDSOXoeIwu26maCITuu5TW1vRnurLNb9gPCz1I7nhljgTeU4vb7CYCoZMirRWuhmisJYS0hamJ0OaEhPhzITimMOdR0pYGJqIE4rekllSXVcDGKS5sCEoU3zWsCPlK5SaM87YqGzqsjZsGFoEbiTERDeJJsSDtCjkSgky9C2HfpMRJMSGl0B4O4hGJIhVj7ZInw0Ag0NtALmO4jmrRysjcu4VAyLgj2jlEYpql59NhWYgSCu1GrqRgVZ1nDSeCgUAoaCOyT8UqurWgynIkWIgSqicsEWmXM8WOxnCOfwwwHGe15V6HS8Mj/yoUx/EWogTWGXpg/4mKpDPOiLIQCE17gpy4RfpPGXTd23gD0OHFj9xj5xkJnaNszTszAIbTPIRAVdLHHG0j8unKLEQJlfwLGlRCR4G4hXmgFqJPCpEykTPnjLnIg2aYiBKql1iTaknT/l9GmwQD4TGB/Bs0QFw9K00kSdlkzESUwPoIEYl6FkROLHP8Y4DhEfkknKidSRsZHG8LMhElDE+viuq4FNfePOdJMBAIwtUnxKTqVaYUkOiNYCEQlB1oYoo24DhGojeChShBg4v/Xc0DTSlxEgwEAgnYuREOTHOXa52BYSJK0M4k9ahNCnrYeph7sBAIKDnPdhq2+gg20qk2mIgStIEvwg/MxFee12YAx6fHHsjXoX1NQNKn4JkIBBIKRdcUwZwogKdDtRAlULlCU3faOSEJIU2CgUCgZaJfitrIEcCCKswlWYgSiHjiXdaVsuA+C6KJQBgaJTRN60qHxvI8JAtRApcTNUlWc81x9kkmwvMyik93E+RobnUbbth1sK4t1LTNwVNVnMMNBAIZFVR2juZ8yn0LYDj1Kg6kaT3nQdjPvtNElMCxUUyo7npsZcgMOhM5rA/9KsV5PTZCSzd4JFiIEmglCsov601WmuUyCQYCgXJCP69JsV49j7mbWpgIhKJPv1F7IMy15zzbNhNRQvXrC6G6mqmSp0uzEAhVaDaktzW4KqXytAcLUcJY8/R4FoUpZ1UwEQh0mERkKUdzbWGqhYlAoGXiiYBH6tVc0Kt5cRYCgeoi3D9ttZqT9uEbwUKUoNpMv7QengqczCVZyOHyVQ8q1LeLe+W+OnG/Ht9znr0cvPbktS+AO+tFl316yfl9fdFpvtE8XH2juXw5vbhc16RT2G+AjHdYln/zFelN/6+W/wGBKlg1CmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTc0OAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDEwNCAvaCAxMTYgL3QgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2ggMTYgMCBSIC90IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIKL2ZpdmUgL3NpeCA1NiAvZWlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE5IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE4IDAgUiA+PgplbmRvYmoKMTkgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMSAwIG9iago8PCAvZWlnaHQgMjIgMCBSIC9maXZlIDIzIDAgUiAvZm91ciAyNCAwIFIgL29uZSAyNSAwIFIgL3BhcmVubGVmdCAyNiAwIFIKL3BhcmVucmlnaHQgMjcgMCBSIC9wZXJpb2QgMjggMCBSIC9zaXggMjkgMCBSIC90aHJlZSAzMCAwIFIgL3R3byAzMSAwIFIKL3plcm8gMzIgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMCAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzMgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDYwNTE0MTQ1MiswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCAzNAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwOTQ5MiAwMDAwMCBuIAowMDAwMDA5Mjg3IDAwMDAwIG4gCjAwMDAwMDkzMzAgMDAwMDAgbiAKMDAwMDAwOTQyOSAwMDAwMCBuIAowMDAwMDA5NDUwIDAwMDAwIG4gCjAwMDAwMDk0NzEgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDAwIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjIyMyAwMDAwMCBuIAowMDAwMDAzMzEyIDAwMDAwIG4gCjAwMDAwMDMxMDQgMDAwMDAgbiAKMDAwMDAwMjc4MSAwMDAwMCBuIAowMDAwMDA0MzY1IDAwMDAwIG4gCjAwMDAwMDIyNDQgMDAwMDAgbiAKMDAwMDAwMjUzMCAwMDAwMCBuIAowMDAwMDA4MDU3IDAwMDAwIG4gCjAwMDAwMDc4NTcgMDAwMDAgbiAKMDAwMDAwNzQ3NCAwMDAwMCBuIAowMDAwMDA5MTEwIDAwMDAwIG4gCjAwMDAwMDQ0MDcgMDAwMDAgbiAKMDAwMDAwNDg3MiAwMDAwMCBuIAowMDAwMDA1MTkyIDAwMDAwIG4gCjAwMDAwMDUzNTQgMDAwMDAgbiAKMDAwMDAwNTUwNiAwMDAwMCBuIAowMDAwMDA1NzI2IDAwMDAwIG4gCjAwMDAwMDU5NDggMDAwMDAgbiAKMDAwMDAwNjA2OSAwMDAwMCBuIAowMDAwMDA2NDU5IDAwMDAwIG4gCjAwMDAwMDY4NzAgMDAwMDAgbiAKMDAwMDAwNzE5MSAwMDAwMCBuIAowMDAwMDA5NTUyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzMgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM0ID4+CnN0YXJ0eHJlZgo5NzA2CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sym.plot(h, (t, 0, 10), xlabel='$t$', ylabel='$h(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It can be observed that the amplitude of the impulse response decays exponentially with increasing time $t$. The absolute integrability of the impulse response is confirmed by noting that\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} | \\epsilon(t) e^{-t} \\sin(t) | \\; dt = \\int_{0}^{\\infty} | e^{-t} \\sin(t) | \\; dt < \\int_{0}^{\\infty} | e^{-t} | \\; dt = 1\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the impulse response of an **instable system** is investigated with $s_\\infty = 1 + j$, hence $\\Re \\{ s_\\infty \\} > 0$. Its impulse response is given as" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAAYCAYAAAAf1RgaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE4UlEQVRoBe2ZgVFUMRCGOcYCUDqADgArEDoA7QA6wKECBjvADhQ6gA4UOsAOlOsA/y8kb5Jckkvu5Ua8YWeW95Lsbv7NbjZ5x+Tp6WmtlSaTyZ10jqT7q1X3VX7cCkxaA6ZgbWjKR+lNxk39qr3ICqwvoLQvnfsF9F5VOqxAdcC0s7bEF5oTXuNdvNMBw9JMgLnGeK1cja0amdr5UnLVAeO8En8WoKn4nHfxi91pcvZUOGsTimREfuk0Fld1wDxPWIRbr938SuaIH8XHzcoVCrJ7KLFNJdR1hfia5Iw/Vq9GhQpzKqbKXImrEkNy43EJLICrWJ5wfnHhqJLPyVk7XE8vczKL9ssml6K7nL4df9BzK5ZBj/G4P25L5kZ8TD/y4odYJm5budG4mhZek1I2rjygM07HQHNtHMiNjemX3UuxWcyUHY2R5RqaTTr0xMUk0jhn+I2vrzaR2/H74neNd8HVGjAmPQWM6CIG9RLawlWsABrHh1KmP2o8mUzqp/Th/L7vq+079Pvid8l0wdV6hl1p4m3VYjLxm/hFkXBRsud9zCNTOoPR/5hx7Az7Csag751f7zI6nHfdcL3xJ5Fh6jGgftv+bT25DXIzZDcCdABLX4qsE4BED5vQJ+nvaoyrNoHneau+Iz1xiuylH8e/iyk9lC/ovfiHZL+YVv4PtmbwyTZYTsRgYd4d9TFXyib6B+Kv4oEkjy54uCn7hD2olCj9cGkRTFnUhDjFYTzUYt7FTaVP8jgW1HjmEAUHM22xOQ8dBitHSWIxTem1feDASPHM1DiXhoXOL4cBfey4tnuqj/MbDMP6WGwkVhGbxrvhMjtM2UOWcPM5EQj/24og0t9CexLeIyNla+opxlfsXEb+lA5nhNl56INJ9ngFT5D5dHpEsvzx2vErO8f3Lx6njT52YkIXOrNYnlvPu24qjDl/kOuGywRMBjmIoQ2BIZM2Tet5p8yUGDuWfAj4rWzgNN9Z6BLwa/XHpSSpbzsJWopSC+nLUU6nfkf0TsDjxIlETGlzZc4fIxGHEs6A/AMPZfKcdoG64XIBM45oUeedEQVMwdCuWpyF2KVk8IH5VfY5R/4J2cV1laSEIbe4BCeuNu5yUtr1pblc0KtxrXvWSlvaEyu/amFMdrKjxATurZhAHWuMs2iZhA+5XcgOcRcng8EG0bx7f9APyqonF5dTqgaJOPX0U6/dcLmAZYMlsGz5FiIow09OOCMmAylFZtFajDXKstAmYRJ6wfll/WI3xURfsB6pgHj6NaW+Gy4XMMoW5WsgskrM2RZn1SBTeOFgjjOddnwexjKYTC1iYapgCKx8AqSIQJpAWGzcOIPAWCWqQlz6GCLhTDJYfdbsQyqYCEfUDdfwD0yBcJcN9w1G+Wg+02SHwJPNXNtdQLjEcNXnQsIOxFm327hgcCNkMVziTPVOP9mLHOPYZYHvZWe4Qao9kJ2bn5b4fgxIY9gnAflkwLfkuSM5cB9oPAim+vEFfIxjn8+dQEZ9SeqJC+ArxVoxFjT4Vqr1UXoENfherNWdJ9cL17oMrRqxCxa9jbKj0V8GdcG1cgFTplPq+H8bu6WarDznWrJUVhvKCHbDNW8r/4/jWjPOm5mfx0q+II9eSWbsWA9cw6VDxlaK7I7hJ665O0ayfIbwK0bVJWLMQo3F9RfsKeg/q/wTmgAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle e^{t} \\sin{\\left(t \\right)} \\theta\\left(t\\right)$" ], "text/plain": [ " t \n", "ℯ ⋅sin(t)⋅Heaviside(t)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s_inf = 1 + sym.I\n", "\n", "H = 1/((s - s_inf)*(s - sym.conjugate(s_inf)))\n", "h = sym.inverse_laplace_transform(H, s, t)\n", "h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again the impulse response is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQzOS4wNTEyNSAyOTMuNTEyIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK1aS7MWxw3dz6+YJV7Q9FNqLUPZpio7bCpZxFm4MMamuLgIcfj7OZp+zcfo5ssCqoB7dea0NN1q6fTMhP3dFva3u9/f4e/n/R/7P/H/L3vYX+Dv283jt4ctJ3G+hFjw2/vTb1GSww+w+dPPv23br9uzv4D+Cde/2DaqLnGoXPbgHet4sbgsy/L+bIlMrh4DLd6y9cFjG/wtgkTgrp5Ch0tFzmyfXUxUiOD7bIbvZn6/bc8xD5+356/2Z98HRLW/+nWj4oLEFmYVRznWQF44769+2Z74b/ZX7/bvXm2H+y1gVljKxd+N/Y7DkMhRoMc8xluPMQQXg1w83tjveIy+Op/9Yx7zFx5rxBXp6vFsv+eRxWXKj3mkW4+pZOeJLx5v7Hc8poKxan3MY731eM7Es8cb+x2POYgLKZruwsybjyD6/alHDueY5obg4oS95HBQXj9gaN2GTmpOwDHGs+9jd/Tk3zrYhsFe9vBP6R1dQZC+atJnV7+0ztBPcURkDoLG3QmlKLnWFsDp3nT8Kp6OYnDcEKbDjzA+Igyvw2nE/QeM8OzbN+9+/tufP/784dPTh98//Plp//YPhHwNukTsc6kl3AS9rI8GnVGTYhQugpX5P4L2XzHomlzwKUi+CXpZzaDZlSK6oNgPyVNCqmCF70dev2LgISSXKpXEN5GfzP87dKSoK1WIoo8p3I+dvmbsOTkiqbfpvax3IkdVrpy8Lz6z3I88f83IOTkpKcZ0G/oy34mdvQuFUq6eI9+P/Wvuz9tWuqrKMtsVsRR4i610Qj+QhMf66MlXylAUIl5ufS3zY/XeSTpqZUwo1Pgn5RBjvJkM06E68ajb8dbhMt91SMF5bGbmkPkmcVrB14V8qrMeIC1iH51dgrRZhT4fa3db5387FpBcul3bFcOTn54clyCHPGREi9yb3QKXoO33dnIZ5pvVUT7uXyi3VBhhI2RyAf//683+9/3DHlyB/PJ6Q4UqRR0VLb7/YUwz+1JrTCXK/sOLHcn2n99fv/nhxfP99afHcotVwwSsdTdzpWNP/2gjICRXKeeQulkih06wEBAIyqdgOps5+0LSCRYCAiIVjmWYI264EyzkYUMHQGVnpm4u4vs9mAgI1WECM9dmLtgjsRMs5GGTrGbJ/dYQMzLjIJgI1Cj2n5Avuc8eUZJ+1zakFHKMXuC7by6Fy6BYECgBDTvV6b1iKOoUE1JKdaGiBoZmF2KfB8WCQDlEE2lWqT15znFQTEgp1eXoUUabPXBOcVAsSPU7tC2aRGoBowwQjxkzIaVUVyWlPi0pUWUeFAsCJQeHXRt7RiTUgDTuxYSUonPhAxKh2XOeM2ZCSik4i4RAPeCMhjwpFqQUbHnvJeZux14dq29CjYI9KXnameuiXCGlVMjSNJYr1xjHhFlIIwh8Ew97zrIYV0gpgknJSNFhJ5p3YkGNgpvyY7Wgh8eGtCFQcNiAVM1xrJb4uVtMqFF0f440yjLqiok0Ag4LJY1ZlBROjCuklID6jK0Tpp3SoFhQoyT8mSNlL4txQRqhFEjeeX9rTUyoUZgg2qfvXMOiXKFGkcwlTO/Fx0W5QkqJLlAk4WkPMzALapRUSp7OS6yLcUEaoWRf0xooLcIFaQROaJmngWgxrlCjoPlDtK5geVGukFL0FILyt+yDcAXa5RHluU5rnpXLhBoFEjoyr6U9Ua5QoxCqQKzTHhbjgjQC5EpKK0VPLi6IEjKOg2hmM9gU53JYUKOECtej0khcG9eCGiUxne3h5OUKNUqhInVOCWr1olyhRkFOlzyKOdZZFuUKKQXyEmKtruIkc49YUKOgk03n0L4nxgVphFpxVFxldlUUC1IKaSummQ81zApsQo3CUVRP9YZRU1iUK6QUtCWRNGae87oTA1EC9EWJJY0poVOlsyCl4PiIKlDHUDnMRmpCoOBoUKBzw7AHP3LYQpSQXPH6WGBIhVUbTUgpx7O11MV0CmUSrgAuh9DFebPUrsVYDzGdYEKgVFS/iHNnt4eK1OgUE1IKO2jpkaToUGk2URMCBerVo4+HZvfIuTKm14QetujRxXzwSTsMaoJw5U6xIaVAjDDWpxx2Ri2pNCgWpI9WUQRZjp6EJcjotD1TTEQJECOIsTbfSc9vcTAsCJRY9LboUMjJ+YrjSu89NgQKzrlUMnQV7KqvgfaFtCGlFEgLKJ5mJx9HgTQRECBDMQ10ZERUGRrGZFmIEgiHiJjbMEGfhY07txAQ0L4h2lWq6pJBw4WhH2xIKXogLeXY0tALOEmNImRDoGDvoI3hmHrYEQZusFNMSCnITfQ+n7odh4OxIibUKEmfMY6hcE1ZlCvUKThNkQw7Dx1oQ42ScWReQxGdKFeoUwhtfA5FQ0PYUKPgwCk0zIVpMS5IJ0AdHF282fNpvq5Qp4iebaZ9rYoFNQrpQ/Np9ifGBWkEnBz9oRUO+1RDNtQpFA6R1EY6XX9rbxdXHIllDlLCaaKuUKeg5wdZ03FycYUaRXyhcJr0vChXqFMyxPdaWH9ajyvUKYLT6rxDmpXOhJSC4pSS1OmdhxqyoUbB6b7wnJaaw6JcoUaJENM1jg3nw4lyhRqlVIQ9d3Uti3FBGkF8jnUkUJl1yEKUQPiZiXqwKAdhurAgpaAjC+cxJRBYaTqxIFAYs+iRmG3ia81lUkxIX8zhOIjCeegXLc0lzfZjQkohJ/rwp7W+EKBLRoEwIVAEvQiJGsejE5zXR36ZkFJwrOdD3kdfIAJyKmOvmNDDhplDwFRYU5XR1LTlNIoNKUVcqiFhL8fgNQXr2PE2BEpAQWchuIwBBzfGfuiB2ZBSBJMv+ggPZzY9sENjDooFgRJRodDEkKm4AmlUR280ERCSPgnAaQ2ToldEJPq4eRNSCrsIkaF6LB1PBfyQgzYESobWgWrTzoxLSIRLX3sbUgruUM/cGAqXIItimBQL0ne3KpCgvnGPuarwobGFbUgp1WHm9fEnrmBGyRqLYiEgoJVjo6mwUCEgKB5D39iQUlh1G0Hg62N8VOg0k8WEQOGI29LHt/uhHShPqWZDSoGwFkI1O94r8OgQhh0XY4/iDKlvNHUQNFqaKW9CSsGWQYPUBkveQQAUGuthQqAI9FvmYwojzvi1DoIB6OXs9IGiVmZ98wGJMY4ANvSwQUc5wcEg687RF/d+KBsTUYLoc3d9ngg9BSlO88GbDYES9IWNfj2x62cUyIbi+9za0MPxmh7bGbttx0GEUG1kMgzk9huAqGnXrn65f9zj/tf2Ec3NtyiPvuo4v5u33j8d485vaD4f39F8+dXMg/3VzPZhfh9zxKLUR16y2N86WL6vn+I87v3l9l8Voy4+CmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjQ5NwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDEwNCAvaCAxMTYgL3QgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2ggMTYgMCBSIC90IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ4IC96ZXJvIC9vbmUgL3R3byA1MiAvZm91ciA1NCAvc2l4IDU2IC9laWdodApdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTkgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTggMCBSID4+CmVuZG9iagoxOSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE4IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9laWdodCAyMiAwIFIgL2ZvdXIgMjMgMCBSIC9vbmUgMjUgMCBSIC9wYXJlbmxlZnQgMjYgMCBSCi9wYXJlbnJpZ2h0IDI3IDAgUiAvc2l4IDI4IDAgUiAvdHdvIDI5IDAgUiAvemVybyAzMCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9EZWphVnVTYW5zLW1pbnVzIDI0IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzEgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE5MDYwNTE0MTQ1MyswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjAuMykgPj4KZW5kb2JqCnhyZWYKMCAzMgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwOTUxOSAwMDAwMCBuIAowMDAwMDA5Mjg5IDAwMDAwIG4gCjAwMDAwMDkzMzIgMDAwMDAgbiAKMDAwMDAwOTQzMSAwMDAwMCBuIAowMDAwMDA5NDUyIDAwMDAwIG4gCjAwMDAwMDk0NzMgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjk2NyAwMDAwMCBuIAowMDAwMDA0MDU2IDAwMDAwIG4gCjAwMDAwMDM4NDggMDAwMDAgbiAKMDAwMDAwMzUyNSAwMDAwMCBuIAowMDAwMDA1MTA5IDAwMDAwIG4gCjAwMDAwMDI5ODggMDAwMDAgbiAKMDAwMDAwMzI3NCAwMDAwMCBuIAowMDAwMDA4MTAxIDAwMDAwIG4gCjAwMDAwMDc5MDEgMDAwMDAgbiAKMDAwMDAwNzUzNiAwMDAwMCBuIAowMDAwMDA5MTU0IDAwMDAwIG4gCjAwMDAwMDUxNTEgMDAwMDAgbiAKMDAwMDAwNTYxNiAwMDAwMCBuIAowMDAwMDA1Nzc4IDAwMDAwIG4gCjAwMDAwMDU5NDggMDAwMDAgbiAKMDAwMDAwNjEwMCAwMDAwMCBuIAowMDAwMDA2MzIwIDAwMDAwIG4gCjAwMDAwMDY1NDIgMDAwMDAgbiAKMDAwMDAwNjkzMiAwMDAwMCBuIAowMDAwMDA3MjUzIDAwMDAwIG4gCjAwMDAwMDk1NzkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzIgPj4Kc3RhcnR4cmVmCjk3MzMKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sym.plot(h, (t, 0, 10), xlabel='$t$', ylabel='$h(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The impulse response shows an exponentially increasing amplitude for increasing time. The impulse response is clearly not absolutely integrable and hence the system not stable in the BIBO sense. This may also be confirmed by computing the output signal $y(t)$ for the bounded input signal $x(t) = \\epsilon(t) \\cos(\\omega_0 t)$ via inverse Laplace transform of $Y(s) = H(s) \\cdot X(s)$ with $X(s) = \\mathcal{L} \\{ x(t) \\}$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAA1CAYAAADvVWKrAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAYjElEQVR4Ae2djdXVNtaFeVkpgCEdQAckqSChg5Cp4IMOwqICFumAmQoypANIBRnoIHwVkLwdMPsxkpfsa/v6R7ble7fW0rWtn6Nz9jmSfK5k++bz5893+sLNzc2PyrtVmXd9Zcaki849lXsRyj4Ix/8T3dsx9bvKiOZ7pT8RjY9d+U7bFgHreFu8925tDX3vLZPbNwJGYDsEPIdvh3WulqyzXEiaTgkIyJ5fyYd4XgIvc3m4kQCddSUcDtxj5T/rLDAhUbRep3S4VvUflPZwApm6qOrjFP6t+jd1ok92RcA63hX+zRvPre/NBXCDRsAI7IaA5/DdoJ/dsHU2GzpXLBQB2fQjsYYj97hQFs+ydberROisL1LHq6vchLSnovlDUv6Vzh8EAJPk0afQ+jC69I4FJWNceRzkYmy5QSL7Zl6tjlPYx+pxbLmUdmHnufW9uXh762Dv9jcH/GAN7q2fvdtfWV2HmcPBYawuxpZbGdu1yB9KZxGEsToZWy7S9XEYgb3xHNO+fBz8iDcq+/OwNOvkjuGRlofKdTpxqvNGkdWyXIHVvP8uJYYgijiARAR7pYgnXWQQbxjGWP6QbRdDygTeVeo4xc76TtEo+3yirtYS5uh9fi1cdqdr+1hHBcL1UHM4KEy0hYvr00fUWbTea9ddxGHr40Tc12JvVF+UI/cvMfBMPLPDb7MwEaNeWU6cOBFm5ejbIFgWgaClmD7/xg3/R6VNWk1TeeqwfxVaLzmfSiMKhJyKfys+jWk5j6LLdtSvxd9vY+iqXPXcYag3pkpRZcR/cTreEiDr+86sPr2ljmJbU3UV6+U+ltTnhQnj4esQ3+v4VnHsH1C5oRmkJ76KGrsHmV2QeYn2IZmyzeFAW5otWGcLDD5zVdnGYe/Bgl0fYjxuq20q7u36ua4n9kUWrf49p23J+7MiC0qs6I2aM1Uun21K0DtplBAIwx7RRnqua9FGyD8V782lqbo8yDe7Pu0qsDWAE57XyyqraOLRv++jG/LB4EG7DPXIb6cf6Vr8F6HjrTBDX+itr72Qb31n7md9eA+ln9PVUN0leSXbgHjjj7s3qXy6ZrcD4yPPLmcdH5fSg6fA2+Zj91Le++pLHsaQIscI8ZXdPoL+Fs9zorObLaht66ywsSH2r6CbQ87J4j17f4u4rH08h/ta7S/ti6H+ZL9C9d4qPkWuQOPPczKGctls82RyVgOrTdyijXEi9OzBW3UZtHmpyQnvU9OW8DHUlujiCFeK7SqnPLxwZZ3KQD3FxTcnogFOvTx0tZ0jTW0WpeMcMp2jgb6GsFbe6vo+x+Na+Tn0vRZvXXTP6aqrTo60km1AvLF9/mRMVtrfxBzy56bRxW+ONkR3sC/naKOLhtpddYwQ/dnzgepmtY/ASza7Er0T2+3CeGqa6A7agvJX1dlUftPy4q1onaW8rnG+t+7UfjH9bQ18+2iew72v3tJ0tbu4L4oGCyij75lVlj8636a86xr/6VGa1j5XftZxpeEI0XhgIvugKLqNfxdCWycrUW2B29eqx3Nj1b/GOvJP2GQabZq5r8XT4ASlfJQ45Ilz87RIB6qPUf+cW7YhemrvanSc4iC5d9d3ys9W57n0vRW/tHNOV2vxonZX7/NzeQcTRcBpjDm65kaQ9OLG2LmynqsnWQf78rn6c/PV7qr2Ifqz5wMwUcxmH6JV/ByOHpF7SJ/KX1VnQ22fy4N3xavTWcRlb92p/WL6W8Rki+M53NfiQe0u7ouBRsMp6+NXZaOv1NiponT63I999UhXyDqu3IViEvj3gD3rt0na4lPt/+TmHpBfsmc07BvlGZq/ZhDnswR/hHq8QbOo78RJtgrDM3JRZujbe8j00xkaRWVfk45T4K3vLH06hXS185G6Wqv9kvs8Y9HQuM+fZRcfbB+9Ks5tH0XP4aAw0hauqU8Xr7NovdZdRGLb40jc12IqR19kO/u3Ixl8oXLMmfV9vOTHsSPc/3I4/R2J0SRZvmo1852uBx04McEq2JNWvfpS+ThsbJnkQ9zxxSXVc15K41gH5ePINYLqc8MAQJ9CBoMHLzCJfPHv8BOVY9vhr6HMyUH5AAoY1IMm4Z+i803gETrw+k5plTyhDuko4T+KLJfyjwoBbP5Q2V+qq/4faNWKjcVEG16QF15oF2eWtrpoUp/vVvDWnM0DfEVMuhpXfhE6jryJHzBFV+g6BnCtXyqTlKGjErAr5Kx1pTK9NlPV6P6xvhNchOdJn47ZiQ720BNsdOoq4W+O3cfqJ0fJe4g+P9DX6Q/s1ojjODe3WTE6AU0JQ/1QeYw9m47dkcfcsovexdkHWEkuxuPFc3ig1Tsm72EL1tnwfRc6IwQb8Jz8BY5Jv1PG4zbhEnGPPIq3rHPHCn2Ree4eGEoH6T1KFKE6BozxC9ofCWduIgwtLHXegyySRczWWyrVOM5X73Ki8mD83FIhgrBmOHkrn+owqXGTXe8p5Vxx0otWVJ5J5EQOpTUeOuRaEcOqMeBcga0I3CjUMugcPsgc3Fqk/MF9tcoHQzXTbDO9Vj4Oau92y7Rs33lop+a/r1w7PdQrXseRb/GLvaGvmmedY0ekVXbEURFdN3Sna+y9wkjHUTYT241H1StC35GfqUfxv2qfjvyonV31BB9DuloTh0BbLKzb54foT80Tz3G8q8eQNTGK/KmNUf1Q5TYdu9eUPdAWBOvZR2ij1uVQW2PyRO/EPqinkGUOD7SKtIXA2ybz+BhdjC2zhc4CNruO9ZJz9zlZPGAfq/e3VPdqr1jcAx71PVrKdzwP/DOITMIt0BaZZeOn6MQxrfY/umjCnyJ8Nsrpmj8tSG/cZ6Y0lJfdNr8S0TTc18WQF/lYDPX+0w4h5X+UV8lq1RAdijaC6mCA3FQ/E436n19dMymQPiV8q8Lf4jGL1m1SsV6ZCWl9PPJNO/a64jVXAZ5Ej3P4GVohY+L5i4I9gRW2VL6uYtSHzh7hKDqO2OBss6yd6jZiF3VPmd9Upq1v/knhdeqsxmH7Y2xGxRrB+m7A0Xuxt55gbEhXs+xetsPATfikyCdF2v/OkVd6n4fHdkBffDYk3XmwJkax/VLH7jVlvwj7UF/IOYdjD6XaArxZZ6DQHfYe64fGeTi+CN11QF8y7kcYP+P9IveCQwH7IbwIPsGXqy+O+23HfWbM55jdNttOXG8DYhbnBSNpBKWz4hWFinn8S3rOUYll45Fn5ggsZ+Lpfl1dfVlRq7e8hbTBg/h5Jxo4QnwHjro4gdzEd91g9dHCkesKYDQUMIBoDF3lwDF1OLrK4GwwIZ4Nkg/coNkOlSEqv8vp/iAsagc1VlTZw+gYnsUvunikmN5o8kcC+FYYqwz5YPmHYiOoXHTM2Wb7XGXn2Mxm+g7y/i4hztlgKme6rTlNB7+19V21F/jeW0/w0qmruTioHg7cJ9lOZX/QUewaD7P1edFH99lsAFDaQW0wprDNvB47kE1pk8d/1RuLUcWG2ixu7N5A9pz2kW0+aNtFvO6yj5CXbQ6HXom2EDHQMafOdunTQZasOpNtXNucvGd/q82xZNwPNH5y/zcm8OdS/RgWFQL+P+r0JdcDofMeJCk/eVz5KqnM6a0ijXQFlg4bN8tinBuz9uoGdR+qbL1apXJj/q2umG+30cXIyLRvVO6FInRpn4/x8c9yfWOitE1DUHT8t3Ko7XOKruv2yaO2MCiWdRs6qyt2nxxNx9HRZRWkL8Qy2HZfwI4JWW0mt76lS2SAx1xhbX1HPqMOitSTmJyLA9uev49CSj84IHwkm35XjYsHsIHIfnUUv8jEDXR7nFwNowYDXy6y9sMO+lOTVpN9Bfto662SVe3MmQ9OcBqwD8rmnsOhWZotxBu2bPP4CuM6uNVhY50VPdZfWH+rdayTknE/yvgZfZ9zzhx/VLR3B8YXEdZ+T6qcMedzbfPuGOKhDC+CaAcG7YYwYiQaU1VW1/GfWF5OgkPBTU6jTkK0yyFMssedRh7UHm0yCfxDkcntqfLiDfs4YtNLIQNK7gp48NU/jDFT/HSVJe2cIUUSOY+H0XEQOtpLF98Rl1imC+e6zAKbsb6H+zQYRx3sqafIR5cddPE1OLYFe4HWLYSTwHU6xpTe52vWJRM3+vwBVzsCyBlkXROjlIdq/ihs7F5T9kuxj6jD2Nfj9exjsDvmS8/jM1E806cj1Ww6E8FIq6vPtNvrGovrMgv0Dw99tC+tv9V4hZMSce/iqcT5NdoMc3hnkE3GMh9aBdjlxyJRb91QPrtttp24oQaYzOubk3COg1ZvpQwCsuXmZWCYA//s1tshJSTnbDtqOHtKi51fp82gstxcTAnwWf2jTCWAVcRDZotd1YlJXyngfLVli0019mIHue7HzORIWi8eSbncp0fScaVXAUBn6tQp+Erv5NOxajvVeRWUz0BCYEvEXJuxvvv7dAUu/U8ne+sJXvp0Ncfu42AOzTRwnfbp0vt8xbv6Avb/nXTV3nLO2FvhFsqk5c+N/2MxqmiGn7n9MKUx99z20YPcCPugZu+cpfpT53DolWgL8HUpfRpZsuqskLG+rx9fmu6QpwqF436U+TXO29hPZwg4N/LC2Ebd9tzZKBcusttm24njuaHOG2Klf1D8XQyzLRFHjecyeK6K1a03itwI/7/i6yio0nBmmMi5iUsD1wzQaeCGIN5UV+mqz/Nx0KXtqYGHDuNNRKzLde1QhsR2GZKjMkORSQd4/a6nBnhUg2bgrd521SrP6mHfamWraNbLo+kY4bFBBonaaSdR19hTtJvvdf6T0rps7hfZayw31mZoIgbr+wsSXX06YsRxbz3BQ5+uSJ80tkGsJzB2pGNK6X2evgKPjOnVeKvr1yGSxoum0O2aGIl8I4zthynOkcAaY/easl+KfYB/7jkcmqXZAjxZZ6DQH/Ye6/vGeTi+JN21NVAq7kcZP7ENFnyY74YCi0GUjVurGfe+H1GPKvltUw2zolFFNYATxSsyeatjnc45aYo4FlzwmszqNZo68hISXudObLwaVNfcNJ/QUxovPnna0Qa0AIRjFdtlxlyrLnJAhxv7SKuaYIIs8IUskW/OkS+mwzN5pJMGnSg7vJ98liDypTzabnzKIMlD8dCB3on8STnaqPCNaVOPqs8/nw19nKOh8ofRcSpL4JsbThx+9Exs4Me1YppPed5Amtp+r83Ecu0jNBR313ebrzHX4nt1fad8hPZ20RN8KHTqaiYO2BNE23ZGWv0qZfIVN+nzKdZTzsUf4zl8d8XqUyfKm2MrozBKeVU7xY3da8ou2pvYh9qZPB9EvajuWftIymaZw6GnUJwtBL420VnEdM5xL51FXtU+48UuY32wm13nZPGwSX+LeMdjibgHnuL981jfYdTcIdrZ+qJocX/Ye2/fwpiyjHUcG/cAsVzXUWU770EoCx3FyfcKDUctEMJ5qW9uuxgZmyY6fU7cicM3luYRyklunDAe5jzB91ya6qHIzgHoXN00XzRmDyIpnXPnyKmIBTYcf11ftI5TXCTr7vpO+VnzXLIeWt9LdNXGNdh4o58rjb4welCHJuUVF/f5Nn8lXEsuxoHFGG0lC3po8zu37Vyyi85i+xCNTeaDuViVWE+YzbaFHDorEZOj8LS37q61vy3BvW1bopVl7hCdUeOnyuFg9i6utPmbe602so4rd0WwHf6jhJPnh9qFRl7fhnL3W+X5l6Z3L3ar7BEvWdGpXw4wUQD21VJ/aQD7iP9SWkP1YxvXpuMUkxL0nfKz5vnR9b1EV21cec6Wf9aqoC2InPP5jqljW64+Hzgp6pALo62EulT72Go+2EpPW7SzxBYuuU9vgf3SNvbW3bX2tyW4t3Wea+442xc1d99T4/xBjf+zdliC0YksN3iTaZAwCPK70nmj4+IgenjT7BdlL2gVlEajvAVt6s1OoFD+QTKyLMrzJKNlVB3+MeCZwlxO9CZAXauOU3Ct7+P06Tm6SnWdnosWAzLhkyJv4eJNetHRJX0wqP4h+/ygUK3MpRi1yK1+aftYHeLDNDDHFq6hTx9BgdbdPlqag3sfp6K1yfyqdnjEiQ+S81zh6mEORqrTea9w4sTBvQqzl/lXCVR9MHmJRKKFEhofxNX1K9Hm5R0XGyQ3nj37a0c7ZKqD48fHmUffBJYA4LXqOMXe+j5On56jq1TXOc+P2udzYlAaLdtHaRrZj585tuA+vZ++0patuxSN7c7n4L4Wd2P7osqxxREnbvSiyxKe52DUJ0ufE4cDwmpcFkdLjS/yppeAtWddyY3nzPOFLAsPBpXlnwC+Ar+JEQ0yMyPzWnWcQmV9H+fPhym6SnWc8/zofT4nFqXRsn2UppH9+JliC+7T++mpq2XrrguV9dOm4L4WN2P7YijHOx34jvVmYQpGQ7J0OnFIoUo8CI1nOvfZrs3AcENGwAgYASNgBIyAETACRsAIGIExCARH6nCPMKWy3U0v0nM5b2ylfCsh6wf303yfGwEjYASMgBEwAkbACBgBI2AEDogAi1SbPAe3Fja9K3FrNWi6RsAIGAEjYASMgBEwAkbACBgBIzAfgd6VuPkkXdMIGAEjYASMgBEwAkbACBgBI2AE1kLgRoSb3xhYqyXTNQJGwAgYASNgBIyAETACRsAIGIHFCHg75WIITcAIGAEjYASMgBEwAkbACBgBI7AdAt5OuR3WbskIGAEjYASMgBEwAkbACBgBI7AYATtxiyE0ASNgBIyAEdgSAb01+f2W7bktI2AEjIARMAKlIWAnrjSNmB8jYASMgBHoRUAO3M/KfNRbwBlGwAgYASNgBK4AATtxV6Bki2gEjIARuAQEwndLP16CLJbBCBgBI2AEjMASBOzELUHPdY2AETACRmATBOTA3VNDrMC926TBCY2It0eKrydUcVEjYASMgBEwAosQsBO3CD5XNgJGwAgYgY0QePr58+dfNmprajNvVOH+1EoubwSMgBEwAkZgLgJ24uYi53pGwAgYASOwCQJa5fpRDf2WqzHR+0HxaQ56osMzeg5GwAgYASNgBDZFwE7cpnC7MSNgBIyAEZiCgJykByp/X6twOZ+FY2smcVEQb2zvvA1xES1XNgJGwAgYASMwBYGvphR2WSNgBIyAETACGyOAs/VQDtOr0G7lfIXrP+TcZVuhmyHXP9X+c/HybEZdVzECRsAIGAEjMBsBO3GzoXNFI2AEjIARmIOAnJ43cn6e9NVVPqtvbxWfqNwHHYlVCHlshXypPFbBdgnig22UfpnJLui7USNgBIyAEfB2StuAETACRsAIbIaAnB+eb/t1RIM4cj+k5VQX5y06Tv8OtNIim5yrXXi7lROZc4vnJry7ESNgBIyAEbgMBLwSdxl6tBRGwAgYgaMg8FjOz+D2Q5wjOUq8ibLhJCn9X0oj7h2eiZfnezPh9o2AETACRuB6EbATd726t+RGwAgYgU0RkGPGyhqv428Epb+VU/S4kXjnzp+6rrdRtvJGXYouq3aN1bxQsfocgPK7nMkP4mVoq2e6GjiKDxcyAkbACBgBI5AbATtxuRE1PSNgBIyAEehD4JEcpMa33uRI8YbHxopbqPxQZRetuql+l5N2R22ypfNBm5c+pmO66rGN8p7qdfEbi/loBIyAETACRmB1BOzErQ6xGzACRsAIGIGAwMMOJFgp4yUmdQjOUn3NidLi2yk/6fJrOVJ7bGfEiftOvLRXE3FEH4T0jzvxJhYcjIARMAJG4FoQsBN3LZq2nEbACBiB/RHA0WE1rtomyblYwjljxa36VIDS+IQATtL3ilVQGmU+qV61iqdrPtbdtQUz1FjnoPbfiTKxEcTL30p4p/zebZiNCr4wAkbACBgBI7AQATtxCwF0dSNgBIyAERiNAM7b73J6cNri2ydxfN4ojefU/lL8SfG5HKL08wE8h1Y7dThTOHGKbIksYWsjjifRwQgYASNgBIzAJgjc3aQVN2IEjIARMAJGQN92Ewj/VeQbazhx38gJYwWOrZFsq8SB4/tv9bNwOGpKw0FKnTpdVtes5O0WxNtrxfeBgWp1UNfI5mAEjIARMAJGYFUEvBK3KrwmbgSMgBEwAhEBOWc4Yu23UN5ROtskGy88iXV0jCtcrNKlgWtW73YL4rvzxSm7MeSGjYARMAJG4GoQ8Erc1ajaghoBI2AELgoBHLjo4E0VDGeS6GAEjIARMAJG4JAIeCXukGoz00bACBiBq0EgOls4bfEc4e8pznoeTitoJy8ngaCDETACRsAIGIGjIOCVuKNoynwaASNgBK4QATlcOGo4bzht7cCLUhyMgBEwAkbACFwdAnbirk7lFtgIGAEjcDgEeNEJLz6pgl4ewvmH4OCFVB+MgBEwAkbACFwPAjeaBK9HWktqBIyAETACh0RAjlv6sW8+Gt7+DMEh5TLTRsAIGAEjYATmIPA/6ulupBGR2iUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle \\frac{\\left(\\omega_0^{2} e^{t} \\sin{\\left(t \\right)} + \\omega_0^{2} e^{t} \\cos{\\left(t \\right)} - \\omega_0^{2} \\cos{\\left(\\omega_0 t \\right)} - 2 \\omega_0 \\sin{\\left(\\omega_0 t \\right)} + 2 e^{t} \\sin{\\left(t \\right)} - 2 e^{t} \\cos{\\left(t \\right)} + 2 \\cos{\\left(\\omega_0 t \\right)}\\right) \\theta\\left(t\\right)}{\\omega_0^{4} + 4}$" ], "text/plain": [ "⎛ 2 t 2 t 2 \n", "⎝\\omega₀ ⋅ℯ ⋅sin(t) + \\omega₀ ⋅ℯ ⋅cos(t) - \\omega₀ ⋅cos(\\omega₀⋅t) - 2⋅\\omega₀\n", "──────────────────────────────────────────────────────────────────────────────\n", " \n", " \\omega₀\n", "\n", " t t ⎞ \n", "⋅sin(\\omega₀⋅t) + 2⋅ℯ ⋅sin(t) - 2⋅ℯ ⋅cos(t) + 2⋅cos(\\omega₀⋅t)⎠⋅Heaviside(t)\n", "────────────────────────────────────────────────────────────────────────────\n", "4 \n", " + 4 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w0 = sym.symbols('\\omega_0', real=True)\n", "\n", "Y = 1/((s - s_inf)*(s - sym.conjugate(s_inf))) * s/(s**2 + w0**2)\n", "y = sym.inverse_laplace_transform(Y, s, t)\n", "y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is straightforward to check that the output signal is not bounded for $t \\to \\infty$ due to the $e^t$ terms. The output signal is plotted for illustration with $\\omega_0 = 10$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ0Ni40MTA2MjUgMjkzLjAxMiBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJytWsmyFccR3d+v6CVaUNSQNeTShCQivEMQ9sLyQoEQEsHDgbFM+O99smu8t/LyNvCCgJenT2XWkFN1u+P9xR3vDnu8x98vxz+Of+LfXw93vMDfdxeL3x4uRMmQs8lH/Pph/dVzMNZ5CO3y/98vl98uz/6CAT6D8OKSo8nB4XFnTZbxgjclDsGHReBzMuUcZJCmqI3r67jvYCGsNmWxG9oEWcghGydDQ+0iDCadwg+Xy3MswJfL89fHsx8d7Dle/3bJ3sTo4jlBj/+zC9k6G93x+tfLE/vd8fr98cPry6n64rw1Id/qWqVfV+YcWHxXm7/RliIWedO2SB/Rlpwp4a42utbmLZsUb7Wt0q9r8xYnJd/Vlm60RTKeN22L9BFt0Rnn7morN9q4GN7OyCp9RBtDQ3Ylq8rczSkJFOTpG22r9OvaAlje3dV2c0pCKfL0rbZF+oi24sQf72m7OSWL9y7aVunXtZHHKeG72sYp+QSqPZ5a+D0F2we32DDHxPFkvHnA2BK2DBcKGBFDPPvRN01P/iNjXTDWy2b7iAnkTLAIYVEChTf+RjgsX4yArf7AjKNN+EE89FX9MrWCIFC4Rc56LuRPt+ITrLAynhjc/oMhnn3/9v0vf/vz1S8fPz99+OPjn5+P7/8Fizebi4V3cch+tXkKVZsLQhvLwiCqpuKJs8XP44aXb2i3cxJAYrG8Gr5Iv245XBybXziQxUQfNz19S9NjQfz0ntKV6VP6iOkRgTpEZAZbMj9uOn1L0xHarC2phCvTp/QR05nOCGSxQSk+brr/hqZfZfFu+RTqYSV5ycBnVEEAQvDzFO8l8atiIyRsU75SNaV3AmZC1jjjjZfiIRFcyyGMXa9EDWKyrE9lCXCM/eFTPqubGbjoXMTruPW/cyEjIl3mJFOy9YGu/8nPT84ngmHrQqrTtmrwwyOImS06bsN8NwPkp+O6bgsR6y0GJ2RZf/z77fH34+PhTET9ZYEg8ZbkZVBDqf3JWN9sI9Y+RM/HTy8ObPl//3jz9qcXz483n+/scDZwbPJlSknW/ZWOgIBDmqAkDXGN2K905OGCGMmZAuchTvV5DcDjKGxzjoGGNDeDVAQEuEpKdhlmEDQEhIgsQjkt4va8AuDxIlEkUhjS2CegISCwISIAU+wbQUMeLuyMTUEy3xA3i1QEBHiAzSn5LvauPa8AeBylCHaP05Q2g1QEBDYlcbFjpVFbNoKGoCa28P8Iz5t7z02FDgkFhYqXumfIS+kUDRIKGTiT98tQrlM0SCg4xYVoLogdShRECGxQJDKPTUVU6gwNAsWhFEYMSnNRQlsuHRKKN1jG5MquRYWEwiZ4F6Y71izySkekK8JAhP6Dp5wbQ4WEAo9BUE3zvJXcKRokFDhNZkeL0/TJqxAoKFYDTumcoaUWQnRIKNkg5KMGaXLi1OeiQkIpJqdQhi8QMmunaJBQGAk4ok4bcjcM0yBQCAHYI+m4Li9jxVRIKN4w4zD1o0p57KQKCYWldQHU5bGfFg0BQbqz7LIfi0JjiVVIKDgTiamMGUrOahQNEgrORAgz4pPvm6IhQsCJwKTsGGgEFh2Sbhsngq2lPlJAeGsUFRJKkl+Qvbs89gCsQ0JBZLYIAUMeqMcJFQIFtYflgM60y0fe0SGhIK65ENIYyg6PVCGhEA5RsmMk2/dEAeTxaBzb4MMQuz4PFaoU9jioXfMZ4AZlh4SSTEQF7vKQj6OiQkKBl6JGsXHI46BokFCKkTJnGOx5rK+CCAG+gN40TnP9mIkGgYIaJAeUS3OkXgzokFDQrhf45RyqFzQ6JBSUqcjcmaa877sKCSWgAQg5Lwb39VKhSikR85pLHxbKDgkFh4jxy9ROY/oaVCklIGT4uVtpUnZIKKi9z1u3IU9DiwZVSvJkSxny4idlh4SSjPXklpPH/eirUKWkEOWX7hI+T8oOVQoTfqZ8BFYVEkqW9Oxpyuf0NahSCgL19FVUUZOyQ0IpCFMcx9kLSA2dokFCYVSXTDPmeDsoGlQpOVg78nPwuUzKDoHCSIOOXPduuFRXoiFCcKg0pLvtcjR4naFBQvFyD8N+yNNUokFCgUtYqBzmlhFeVEgoiG2omqgbTDRyvQoJhQ1Hm0eYjjTCngrJhS/aHItk2zN6St3zdUgoxWBWbpRznHp1pEOgOEKhRaFr51Bym4sOgeKtsVR8rwKYY/dJHRKKpFv4al0Wb7Pr+6JDoAQLgynXKSLOIf00hoYIAc6NCZZqLlIPdb/XIVAIERRVYlsU1NejW9EhocilhDT7TY7c6zpFg4SC5oqKzU17iMkNLRokFJbXE8WWJkfzSp2iQZWSsPapa8eRKJOyQ3LJj93yiX2fIzrMfsJUqFJQaiEfdvk4+jpUKRFxqi8+/K4nPR2qlISkU4bBMSxadqhSMiHU0JD3Wk+HKgXBifNYyZhoUnaoUji40NKUyHuTo0ONUpzPc45lMWyHHs5XKgg78+xBPqavQY1SENnH4sfeEetQpWDpaU5xHDENaQQ0YmGRl4WxQZXig0/t3gLyZBezdqhRCtxoisPCuEUqAaW4G253VpCDsUONgoY0LfK0UDaoUnCG/FzFZJc92aFGKfCHrFM2qFIikm1klbJDjcKo/0mdyw5VSiJf1qGWrd+hRpG7FFa3ZYcqJfszzWh7v0ONkuESUT1hO1Qp0rxZVo/xDjUKIihNTy28UDaoUjgwUZ7y5YztUKPw6kR5mcqGCAHNIuV1oDyWWIMqxdmU5jGKKU7KDjVKJjdDTlwZt0gl+IyOaS5JKJOxQ5UScqA8I453k7JDlZIQDni4Ha0z2aFKkTaBZr6ZvqJBQglisHczEdKYiwbVF+HyqtF1H4oxDvfSIKFE2d8y3I7cqMJUCJQkG4yqJPcCxQ5fUSGhoNrwZeQbi8K8z0WFQMlSOJXcYpvLaIUaQ0OEgK6M0Ou3cs6n0i80dQiUIhWg43Zla+XWvStRIaEQbER1KScPrVNJsbcfOiSUYkrmdF6gJ/TavgxfUSH5xiCg1khs61AZThd6oFAhoWSDjiFHd8oTzkfohqnQwwXFslwPhrPDTAbx2nX/0iGhFLkajqXKfc6lHxcdAkUqc/SuKR21tIUTtbnoECiozOFFdF5FySFE4m37okNCQVJHyxNDk5M4VKNoUKUQcTX4lDvOk7JDjYL04dKQ9zskHaqUiFYjDe2ul7o61CjJFjuHopWyQY3Ccos85bRQNqhSkrSifsqX6e9Qo+Sc0lyW3hnpUKVkR7UQasuSJmWHGiWG2jOdct/vEXRIKEFeL/qzLxM5fH2smAYJBQcOYYCrH6HjGPc7OgRKwByjtectBqIW6q5et+qQUMDPSCLVwTO6ZRoUDZIvfuTsoRKo4Q2BJ3FfMRUSSoYcJ0EMRscVIse++yoEClIIoeeTN0nyDUvB2vcVUyGhoPf3WETMkQhbh1K1G6ZCoCQJvPWdBbpHHDzuxZsOgZKlqHMsToHMyMhtPbnqkFAQOhFupJmL8n4s5v6+TIfkQycySE1IBIfkLGjPvQ7XIVBY3vwiJohc5tjnvsvlYQTNIG+1IQyo6/2chQo9XAghF2GNsD0+4mjIS/pG0SGhZOliSW6vKKBKLbbXLjoEipMXm0GuYeEYaBS9a2FSRYSAhIlYAKdxHHFio+8RX4dAkU+0UJ0hALgor5OYh1kqJJR6p4goK1+bIFj3NwAqcvXtmEdya3vx8vh0+OOv9WPVq88+731UUMkP6ucd55DjI9Uv54eqNx+mPqgfpl4+jm9QTyOuvnBt92bbF3BdqmndvnS9q/fl5f8ozJvsCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjg0NwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOSA+PgpzdHJlYW0KeJw9j7ENxTAIRHumuAWQABsbz5PoV/77t8FxkgLxdKA78GEQsNUs6WhS4LXjVLIaYBf8yaSB1QTaLaEVaF1KKA5aOusIRNsW9ekHfa6TeORSsaRqL7W+KWK5O/SO0W1awKNnTvau0Obgck9GQSZOylPWoZM0fTaZB9QiyWU82vvQ/P6Z9LsAu7wt2wplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMTYgL3QgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC90IDE2IDAgUiAveSAxNyAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQKXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE5IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE4IDAgUiA+PgplbmRvYmoKMTkgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMSAwIG9iago8PCAvZWlnaHQgMjIgMCBSIC9mb3VyIDIzIDAgUiAvb25lIDI1IDAgUiAvcGFyZW5sZWZ0IDI2IDAgUgovcGFyZW5yaWdodCAyNyAwIFIgL3NpeCAyOCAwIFIgL3R3byAyOSAwIFIgL3plcm8gMzAgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMCAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1taW51cyAyNCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMxIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA2MDUxNDE1MjErMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgMzIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDk3OTYgMDAwMDAgbiAKMDAwMDAwOTU2NiAwMDAwMCBuIAowMDAwMDA5NjA5IDAwMDAwIG4gCjAwMDAwMDk3MDggMDAwMDAgbiAKMDAwMDAwOTcyOSAwMDAwMCBuIAowMDAwMDA5NzUwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDMzMTggMDAwMDAgbiAKMDAwMDAwNDMzMyAwMDAwMCBuIAowMDAwMDA0MTI1IDAwMDAwIG4gCjAwMDAwMDM4MDIgMDAwMDAgbiAKMDAwMDAwNTM4NiAwMDAwMCBuIAowMDAwMDAzMzM5IDAwMDAwIG4gCjAwMDAwMDM1OTAgMDAwMDAgbiAKMDAwMDAwODM3OCAwMDAwMCBuIAowMDAwMDA4MTc4IDAwMDAwIG4gCjAwMDAwMDc4MTMgMDAwMDAgbiAKMDAwMDAwOTQzMSAwMDAwMCBuIAowMDAwMDA1NDI4IDAwMDAwIG4gCjAwMDAwMDU4OTMgMDAwMDAgbiAKMDAwMDAwNjA1NSAwMDAwMCBuIAowMDAwMDA2MjI1IDAwMDAwIG4gCjAwMDAwMDYzNzcgMDAwMDAgbiAKMDAwMDAwNjU5NyAwMDAwMCBuIAowMDAwMDA2ODE5IDAwMDAwIG4gCjAwMDAwMDcyMDkgMDAwMDAgbiAKMDAwMDAwNzUzMCAwMDAwMCBuIAowMDAwMDA5ODU2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzEgMCBSIC9Sb290IDEgMCBSIC9TaXplIDMyID4+CnN0YXJ0eHJlZgoxMDAxMAolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sym.plot(y.subs(w0, 10), (t, 0, 16), xlabel='$t$', ylabel='$y(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Realizability\n", "\n", "A system is said to be realizable if it is a causal and stable system. Realizability is a prerequisite for the practical implementation of systems. Causality implies that the impulse response $h(t)$ of the system has to be a causal signal. Hence the region of convergence (ROC) of its transfer function $H(s) = \\mathcal{L} \\{ h(t) \\}$ is the half-plane located right of all poles. Stability and causality of a system with rational transfer function $H(s)$ implies that its poles are located in the left $s$-half-plane.\n", "\n", "Summarizing, a system with rational transfer function $H(s)$ is realizable iff all poles of $H(s)$ are located in the left $s$-half-plane not including the imaginary axis and the order of the numerator is lower or equal to the order of the denominator. The ROC is given by a right-sided $s$-half-plane including the imaginary axis. The locations of the zeros of the transfer function have no influence on the realizability of systems." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "The notebooks are provided as [Open Educational Resource](https://de.wikipedia.org/wiki/Open_Educational_Resources). Feel free to use the notebooks for your own educational purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Lecture Notes on Signals and Systems* by Sascha Spors." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }