{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"nbsphinx": "hidden"
},
"source": [
"# Characterization of Systems in the Spectral Domain\n",
"\n",
"*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Combination of Systems\n",
"\n",
"The representation of complex systems as combination of simpler systems is often convenient for their analysis or synthesis. This section discusses three of the most common combinations, the series and parallel connection of systems as well as feedback loops."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Concatenation\n",
"\n",
"When two linear time-invariant (LTI) systems are combined in series by connecting the output of the first system to the input of a second system this is termed as *concatenation* of two systems. Denoting the impulse responses of the two systems by $h_1(t)$ and $h_2(t)$, the output signal $y(t)$ of the second system is given as\n",
"\n",
"\\begin{equation}\n",
"y(t) = x(t) * h_1(t) * h_2(t)\n",
"\\end{equation}\n",
"\n",
"where $x(t)$ denotes the input signal of the first system. Laplace transformation of the respective signals and impulse responses, and repeated application of the convolution theorem yields\n",
"\n",
"\\begin{equation}\n",
"Y(s) = \\underbrace{H_1(s) \\cdot H_2(s)}_{H(s)} \\cdot X(s)\n",
"\\end{equation}\n",
"\n",
"It can be concluded that the concatenation of two systems can be regarded as one LTI system with the transfer function $H(s) = H_1(s) \\cdot H_2(s)$. Hence, the following structures are equivalent\n",
"\n",
"![Concatenation of two systems](concatenation.png)\n",
"\n",
"The extension to a concatenation of $N$ systems is straightforward. The overall transfer function is given by multiplication of all the individual transfer functions $H_n(s)$\n",
"\n",
"\\begin{equation}\n",
"H(s) = \\prod_{n=1}^{N} H_n(s)\n",
"\\end{equation}\n",
"\n",
"Applications of concatenated systems include for instance the modeling of wireless transmission systems and cascaded filters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Example**\n",
"\n",
"Concatenation of LTI systems can be used to construct higher-order filters from lower-order prototypes. Such filters are known as *cascaded filters*. This is illustrated at the [example of the second-order low-pass filter](../laplace_transform/network_analysis.ipynb#Example:-Second-Order-Low-Pass-Filter) introduced before. The transfer function $H_0(s)$ of the low-pass is given as\n",
"\n",
"\\begin{equation}\n",
"H_0(s) = \\frac{1}{LC s^2 + RC s + 1}\n",
"\\end{equation}\n",
"\n",
"where $R$, $L$ and $C$ denote the values of the resistor, capacitor and inductor. Concatenation of $N$ second-order filters leads to a filter with order $2 N$. Its transfer function reads\n",
"\n",
"\\begin{equation}\n",
"H_N(s) = \\left( \\frac{1}{LC s^2 + RC s + 1} \\right)^N\n",
"\\end{equation}\n",
"\n",
"The resulting transfer function is illustrated by its [Bode plot](../systems_spectral_domain/transfer_function.ipynb#Bode-Plots) for a varying number of cascaded filters using the normalized values $L = .5$, $R = 1$, $C = .4$. First the transfer function $H_N(s)$ is defined"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMQAAAAeCAYAAABzA7EiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHfklEQVR4Ae2bi3EUORCGb10OwJgMuAyMyQAyOHMRABmYIgIXl4HtCMDOwBCBD2eAM7jDGfj+T6cW0qw0+xjN7swyXSXP6NXqbvVL2vHs8fHxtwkmCeyyBGaz2Uvx916F5zvp/IXx6/s+qn6gcj6bDMJEMz13WQJS/FPx90LlpXT+Scyr77tW+/1e3DG9TxLYYQn8Lt7eqBzIAN42+HyKMdA2GURDMlN1ZyXwIKV/EHekS6RPWdjPto6oUdZO7vfBk/zMP9945kfEyURqXxKQjhwJ963HjzH8UNsf0pHrRt98hGCgCoePscBHMfbelxMR/a/Kt7EQ/6vTKV3jQNs3oM9fWMQ7SqKErRv66E8O1RiD2l5p0js6xwCimWsyaHYMq06U+K7yXG13Y+DhV6ZR+4X3xqm9apODjWsb4/u4RXLnARuruedqCzod6QhrojshhQopkwa51EOdzw3RSJ4w+vdIaJ3IbEhA+nYn3btSOdX7X43uUGWcKq1GEwbPv3B2CCBc91rvWg1ECedIrTNECA24UeOVBoc7Whs0pqf4gEnyQ24VJhiJBLRvFtUT5e1KvvASgZ5JHzCAAGq3TOIk7nMRwnceq2MpC9R4oglXV4yPGbgRjguPj9AVQhGUqN3ugknNAKyenL+KIQo/zIN7EFFuXTmJfpMV8iXHBfBkyBrZG5AKJBttHUN6+n25Ek2ksbG+xGSeq3KpwjmwCmhd5xyF7EHv91o7pNB6tyiRRAgOGSwOMeRxrt721DiU+od/HsRj1YYyQgTW/jbui9/Vx6Lf47au78KHxRPlEpq64l13vujoLCfWFvAHR5PsjdowfvpwJknfEOqiC8PFCNAtLjmgtbg39C0aswm+zCAgll/wioL1BKNwKHsbYwgAfISpOXxqt41cygBzOJptrKUSFMOvkV2/ObdZ11w8ctGYm+Obdc1lYzvLCbwCkxX5dU6WrFOUdW7OKm3C3UkWtpbw4Bygs6g3jBVgOGvL3tbr8tzz4QxiFh1Mv2rMsUpb2AMPXuFBRCUnfTo8WArAZnYG0Y8xYIRn8OL54aBNKrYOoNCUdaGWnFjfZJWG9Z+UHf587eWtqyxWJQodrJYyrbo44/dVEDr51QMNOZCSkQbhrTiAFMf5uSjiZ/+ee/xJo/CUNjk3p60Nr8LGJb89CH+4ZmubXLOvspwgzWQVcl+j1xs+e/JFvJacjw0fy5Ps4/U2icUg+OCpqOQSPB6YkIfRLHOAY3Pw2CVgE+c2uDSYdq9o//gxT/U8Ey2OZj2TD7X8mI0/epATPDiFbzLj1yIS80Fa1qO2yayJb0B19IJvjUitijrZJ70YBN4Vr14C87RtSh7mekayCi9GiUbA0tFBc0it+CXa4fQ4iFhGF/iGAEZPZznBTCQru3GimatkHBROh2hdkvNYZCY2EjA9hMcsb8noHioYxKFKW8i1K9KllbiFTrvWXer8IKVAMBz2Y+FwlYt3HBrUlBO8mazCL6+SB87rUsWMgnEJjExmCe2qWFRAJ7cCy0QII67NaALxbJqPEqEtenERQv0rGZdwYkAYAfmyKUqEdvVX4cSTW8SKETh+1W8eP+670/rZFEWDasqJNaEtuZzwcj0RbVzJfFBJfudRPcAqMutBFoGOFV8sQqw4re5wDqPhylJCT6731MdBR81pe66ucXjJo1wfbeBR+dbSz499yXWp6qRHzLNS7bo2R4fWgYfsNWduvLVpTjU5gVPAn7l9URtRItsX0VJFZlpnLVkYHfYUnmWvXYl88FbUIcPZ13NPiy8C583lRSB2EbwQoXF6E8ZrvnnjT6Fx/oUPrZJIpDrnh5mGEhmg5VS4UIqhQRU5wVQkq1xqaXIsetMRyay5h7avljo1+3uvYxAooBGSWxBvA1iO/H+t8VebyLizRnNctVQnmy5pPl4kKAD4VPC6DrTJ1dIlw1n5WUtOkGVpWe76mltBIMhGcjqiYYQyg+wYLO0sGns8uI/3fSG9VSEfzYIUkW8+2CC+SCSnTT7+UxuGwiaFq9AsIm9Qmj8XQdhIzcEg4itUPGFyY+PXuhCOrXmQAm/klJ3lJP5wTETi16V11B4MgTGaYxGD6qhkBsENgHd0bGv7SyqCEPHMT9oI8ZuF4jqi9QSwZPLcktdngy9VmOO8mJ7xbxlJu/CYZ2SjGR9vtqpOWIlB0lgTtC4Gzjmm+Cly23rryMnwaa5FGWviyTdfCc8ah6NAduxbcFJqryoz4esqCy5C0IFj/yQbwSHe5uTr+TqM9UBjNwru828Rwsd63GtnFXujFG15sa5KsGXyqy6/aVloPS54+II3cQBVmVqAbM/3k6tajr9gys53E663FrIHJt2NyULGQCQhwuXOTRsTi0UICPkqy4xz+I0RMS00SUAG4f6/ZpvpErsQ/8cc+d4nERTn+NNOTRLYiARkEFwWzF27b2TxaJHYIAhZRIlB/LdZROP0uuMS8NHhQLq31kVGTfEEgwCpCONWASvNfbZQc90J1yQBJwHpHLdlHKQHcYa1Q7UjTkSRLt2IyOZ1p+uf/kwS6EECON9w3d4D/pVQ/geIXmyQMkX0dwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$\\displaystyle \\left(C L s^{2} + C R s + 1\\right)^{- N}$"
],
"text/plain": [
" -N\n",
"⎛ 2 ⎞ \n",
"⎝C⋅L⋅s + C⋅R⋅s + 1⎠ "
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%matplotlib inline\n",
"import sympy as sym\n",
"sym.init_printing()\n",
"\n",
"s = sym.symbols('s', complex=True)\n",
"w, R, L, C = sym.symbols('omega R L C', real=True)\n",
"N = sym.symbols('N', integer=True)\n",
"\n",
"H0 = 1/(L*C*s**2 + R*C*s + 1)\n",
"HN = H0**N\n",
"HN"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The bode plot for the transfer function $H_N(j \\omega)$ is shown for $N = \\{1, 2, 3\\}$ (red, green, blue line)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyNS40NzMxMjUgMzYxLjE4Mzg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzVXE2z3LYRvO+v4NE+CMLgG0erHDuVS8qOKjkkOTi2rEglyaWoHF/y49MNkCC5HGmfWY42skvSe9M7IAYYzEwD4Mr08iLT88lOL/Hnl+mv09/x7w+TTF/jz/OLxW+vL8FFE7IXF/Hrq+2vPomR4kuOkNv9r/+8XH68PP4CzbyD2teXS0wmxa5WTMnCj6Fx8SbnK/GrndgGU5dWN41sxe1hbyftET5mI25yKRnBv/96Nv1lejM9/sKxY276AwyF8aas5l+sSdVKTTaXgJF4/OWzf7/4/tm3Xz+Zvn93yc6UEkt0OzM20m2/Ln+6fDO9XZ5mMdSHp3FwiNxuOBq/DM/lCebtl8tb/G2nRxatJjt/zmWXJ+dNjdP3ry9PnnISjU3BJgzL0x8uj7+SSez09MfLZ/L59PTlJRmfHHqd2LTlRz6zDRBnvPMuuD6Oprgiaxt508TvnmLw8RSbJ7pM/wnqxdk+G6bU3gq6hOF8+d2ff/7Td2/ePXr94s3P76Yvf7p8w/+njzODUuCmNlgfdiO9FZ+dwwc0/cFZFEx3/6Cttk7O7aex5hR/9TQmE2LBhJR5JpRZtMssfrxJcKXCu5yTtBuprfjsJDyg6Q9Ogiu2fzBiDuS3WUsPmAT5+JPgazYR3lbLbqS24rOT8ICmPzgJvpT+wYx45j/aSnAffxISwmwtAVF7O1Ab6UOmIClTcLPhtOZbTMBHszebivi2X5yr8LS1H272PraKRa2UXM6yzwcb8Vl7H9D0nWx2wUSpNuz9bis+bfPtpu9kM5pGrEp1369VetriWw3fyd6A6OyyyL6Y34pPW3y76TvZjPZsjTXtQ8xWfNrm203fyeYUDOJncVcd24hP23y76TvZnAFLSvZqzW3Ep22+3fS9bEZD4I7BXXVsFZ+3+WbT97HZiTepYH35PU3YiM/a/ICm72Szdyb77NzeAbfi0zbfbvpONodkXMwl7x1wKz5t8+2m72QzHpJDdHVfKG3Fp22+3fSdbE4glBJQKOw7thGftvl203eyOTsTY+V2265jG/Fpm283fS+b0bQPucpVx1bxeZtvNn0nmwuqomyDu0ooG/Fpm283fR+bvRNTahW/JwJb8VmbH9D0nWwO1tQYg+wdcCs+bfPtpu9kcwwm5GTjfs98Kz5t8+2m72QzWE5NDCn7jm3Ep22+3fSdbM7eRB4oXXVsIz5t8+2m72RzsSZntH3VsY34tM23m76XzdlYFoLuqmOr+LzNN5u+k80VVVEpCClXpx2r+LTNt5ve23x1kBJsNa6fpPOHduTRz1GWU1t+1I4fTB+rq4PaP/7j1Yu3Pz979NPrZ8+/+9gHtuszQjQVVbdN+5sDq/jXHVLpDUdv5FqqnhM646bgYCoCK/7yfVyn9UCqoIQqtZ0W9nMob8dR69vLYej/L07H12dgVQWYlsN+sFfx2cHeNrwO9q5dfbCLN8m7XEuMsdwebRc/odEWV0z1KLtlP9wb+dnx3jW9Dvi+ZX3E8TmDerimWKSkBwz5p+Tg3HcNPllbroZ8lZ8e8m3TmyHftfyeIYehyYOFeFsk3B5y+ZS83InA56rkq7tfG/nZId81vQ75vmV9yJ0tRkB1rfUhuAcM+afk5Q5jAat88FdDvspPD/m26c2Q71pW7tdwB8nDaBeqSSGGBDKWbw/7J+XoFfVeiPEqmq/i02O+aXgz5Nt2+4jvxjJ44/qQV4GrFzDBkmpZL8dMfVTRhUccTolcFjEuNet688b3qdtfvHG3Lt4cgFcNcBiX4udbgh34adYQKTLftOrA8+UOT/BzHx6J2d/F2l6kAsWPPonnJZ9dZ4LJLtvYrgFN1y3M9vynfdKj21U2fXj8lVs+8fv2icx7B30Grjrj5s68WZ5pK3ymdfs9z/zbZ/ND4V4+df+8furLfjFTeHSG5bV+Ym3l8/e08gCbXrxvTt4ss3i1IH9Y5GG+jtXFT3aXQjfLNFYz+r040v+MaHAxiYm7a80WLvzt+2/0usof83xCWXht1VoLeU6YQG/9HCp1iAd8mNsUM6iASxUWuhxnFR2Cissm1xgClmYKpliQ9zqrqBCPl1BExBozLW+rOaY8q6gQT2cywlaWxOCcDHy/uEVFhbjpLazHxSNgR6TQUmyaS34d4p6xNWJTRVxhZPco05ObVVSIKryhVQKbCmDxDiamRUWDoFKjwXgXqZBzWHxeuIgOgSxbMYg+4jAsiIQ2JVvmQdYhqoCOgDsnzFfASGK6hoaCQIGHuxLabHkw7QiiMndLh6iCX0L2jpdM273IulBYHeIWNVKJszUEyOH1mdRzVlEhqkC/IppCHA2ctrqhoSBQ8BgSsF4HAz0CSXCpLN1SIaoEw/kplDtuNMLJFxUNokpCjIquiyU5m4eGgvSdasnZ4YEO3ZC0bqboEFUQzADA1ZB+4HVc5ouKBlEFmQ/DXjGKDtWJE+uWaVQhqtAhkAcoB6UKydWyqGgQd6ARD7FOY2pyQWYM83rUIao4LDpB5TExMAR4UR0qGtT3uVtsohxhCqkwLx1TIaokU8DC6aquRQME10VFg6iCQi0hK/C+eoSjM3MsKhrEzWjYmLPAMMotosGYfBWiiiAvCf6DPBiEtbEDoUNU8SYi7dYut6Sxi/kq1HfJc5LCaIDlxIQTRsc0iCrJgPVKKU3uUHGExcdUiCoI7Ig0lcMCN4wQD1s0iCrwnv5KgGPmTMMpFYA737yn7qsrTY5h92MaVYgqfHkHa5uuilxVcl1ShA5RhX5XwyxHYEyL5RrSN+QxhCg+IbZYDj6n8QwNogrieEQl6po8JnxoPESDqILo50WCb3LJodpltFSIKtmg5AmNL1ZTBJXaEiRViCr0bWSO2uQB6TAMFQ2iCjMfyosmxoKT4Ska0jfzgyu1NYSqJ9YwjFchqmC4iwM3oRhrIYyVpSFUQIyFVbnLkUVk5AcVogp4h41YDU1ug7XDdBWiCrIA8j+kdHAUWos7KgA/Ho1UXv5vcrSCWL0oaBBVEJNCyVyfkItnAbyoaFBXQYUhzAGC4JYSQseqcoT6UUNlDMxNHpEAx0pUIaoUBA4rWZrc25LTUNEgqqBQRnLlGoXcRjCeMe8axPMAJDFkTjg2uBtCc3WLhoZQAak8kyE1ebJ2eLyGdIXCtRObGIEHEXDVOELzIUWoSGZNjnKUps4qGkQVBMrQXQ6UFrHJDjsUpCtUsCsuacgzd+NXhQNChYBIA7+OTRwljRikIVSASTFHKU3sUCCvGhrUVeA+1fXOiiAJuFXlCFEFPmOl+zU6jrgjw3IN6i/TQOxYKbUtBoTl0TEN2r1/024jCuuxdS/iNyBZoFiGRPCDNMvCXXrxhILVINazlGDJjlRmF8fVoc5/InO8b+WOKx6RaeU/R4j8pzTCxrTKtWlDXLicDpH/oJMhOgYNdAQRuhZZ+I8GkcwgwoJEecrBJZBjF5qhQyQz1iSsTvB3zEwomJ/BZRSEChnDaLFaIGesRf4ui4YGkcpwmwiJskyC6FFt2/mZuYwGdfaT4SDwGfgAI2Yc8VeFSGYcyURAABPEdDh1HGtdhaiCIBsx3mwKXsQyYVklKkQygwlGrEB4EebMEMpY7irUKRNCBRcm6n2MZJCxSlSIKnAEsKfKphABUfaunEmDqNIyuEcmE5QyqMPWKliFyIBQJGH9l9Df+8SkuUVFhagSTUR1X3I7SnDWcT3NKhpElWKQ6QtClKBWDFLWQK9CJDTCeSW/52FEruBiy1NUiCqsbxOvyEmKfFNjLGMd6kwrwFBHObwic3NpZVpHqDMtrE7u5SMzY9nCDZccr0JUqSw/XWZT0jZRwrBFg0hoSCHBCzBfYCOIJtEO2qRBnZylKih2JonVZBS+stiiQp2cYYp48Uoiy4C0EmAVogqGr3DXiW+GIB6UUT9qCBUyXydm7m/vkgSPwLNoaFBncxklHxiFcDsInG3Migp1NhcCCH6CnHE6g4qvbO4IdTaHWslZaXIsQRkdU6HO5pDDQqQcP6aSwuBAGtTZHB7NbCCYBRK2tLiLCnU2JwUcCUsCc43SHWaubO4IdTYXfYTPQg6fSCjOBgHUIKpUY7EmUCriwWB5YY0vKtQZHZYQyPTEV6FSRlZY5kWFOj1DEW4ZEAO3EitvKg9+doTmG1OplCZHBM4ujhpPhagS2eGWDyC3xY/UqkMzQYMrVAx+YLno4yjyVKgTNMRc12xELcet/Q1BO0KdoKGSKUholGPqkO1WgnaEOkGzqQQu78DUMIojFekEzRauVYidqSX6lTxpUCdoSGag6k2O3tuxu6ZCM0Wz3GkThN8MYjm40BHo9Myi1GIoZLhGjKqDcGjQTM9AO3lE3baQfYqDPGlQp2iIUJm+7eGo8OyxHadCnW8FwfKsTS7cQ91QtCPU+ZZH/cvl4PlGuKx7OCrU+RZWHKp9yDMv8CAXrnzrCHW+5eHgqEgp94JZGyoaNPMtLCBGA4+qGWl0pCIV6gQKU4xSvMltwkxvKNcR6gQKKY00VHwL8WHYokJdpSRB2UsxooKMTRkN6QQq2UB2IZ67gmHdJFWhTqEw/I4Bl9u73HAcxmtQZ0Qo/pg7vG9vBK3dUpDOhwTTQ1eFXBKiySA3GtRVCneOsR58y7qlbFSO0I4PUd7OSDfn4b8FHwIjkg+yIW4CwOgW56QWbsY6biI4ptswJlyH+IYVeXFttWKt3KINS0DRIdIhD0/AkJdWXaNcqOPURYX4rgvWS3T4DZUPFmi1PiwqKkQGBQYG7dKLJdSKmOaFQWkQGVREJkcY8C2TJ4tRXtigCpEQMZVFVPstlYEF2JVCaRBVCvISqI5rcdYG8OmFDaoQCVHgdUvr5gVachgb9ipEFUSOGjKjs8dICnLMUNEgEiKeWpPqTeL47m9dK08VokrBSDL9Q44MjR/DOEPSIFIVfpmGjWQKwqNILKKllFChTogSfII8kbtOlpM9+NABIetAuYN0SWYF9udKWOO2Cs1nSBbMEN21zLZwvUFUNKifIWXf0rjl62cZgkVDQahQefPfJZ6Xo03UY+szNKiToZJtZDKz8IjI08KVDB0hqgTDY8QyYdEhXZSVcRyBzmogRGU9IRrxHffBHTRk5jQx8/Cmts1QN84mNaQzmpx5Sj9hSVQe8Y6aXkE6OQHrilPlbfJSRzFwlPczI8wQuSNDWeW3Pi0fV5DOMVyMIbdLn+jsuIOkIp1hgDRzy4RRwPlxSKwinV9g3JCEUPBkC7oy6v4j0LkFMiOqp0I40NEGs7gG+PEIigJH9xPKwur9WvRpSKcIiFYgAhMqTzLA9QEK0gkC0ieS9ZR5tz3WsWWsIZ0euH5InLnZbdMoLTSkH/cgMgbEUB6jBNTPm9OeA9LZRMkZS2/iUY2zIW8Oew5IP7lhwkTxwNMgFDfjvFJDOpNAAmGlyS6gshm7QRrSeYRDUQptGBlRZK7MQ0FmFoFyVMqEYUzw4GHCEegMwvEII08J7otAv1IuBen8IVTMfpxSqyvWSTgCnT2UkLiKEnf/fQyb050D0rkDxXAqvnrKb3sb9bOCzFTA8SyZX6uAiiltzmmugf7xUl2BN7YD0uRGJNKQzhtQEDP6J1RVDtFzc65zQDprQLpjDc2V6FuIHqThgHTOgHGI7Rvuqpf1KE8BOl9w/LK5RDE+EweD05D5QKe/z8rdmYxaz68KB6TTi4TaALkbYnilG/sjGtLJBWq8DG+PpCmNsQxucUC6AkpuRCbu5Ugqsjn7uQY6E2nFf6RY4OsjpWlI5yHBp+QK69uYedl4pSEHZGYhKAVgDm8ESh13OxSgf7yKoIqk1Dk71r0CdP4R+Y0fbkJ2ScHb9YxIQTr7QDXI63uR380GN9uQjwMyc49YuZrajckNSdeQrpCwXPlgOC/3rjcHPgekMw8U2iFQioqTR/6Dd1wDM1FBSYKaF/kX1K24zecPyI6mRHh7ytp7RLyv2m+P2ge+QqPdKm2tju/tbG3pX9L5+r1f0nl5c1kutS7d+XXf/nnsgfq9nx/swTeX/wKAu1QjCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKNDUwMwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNzEgPj4Kc3RyZWFtCnicPVFBtsQgCNt7Co4gEBDP03mz6r//9gc7rwubVJQkmJUyxRY/aSHLtnx0aO5D/wZMD7sH6tkLTFmaEguSW+UaOUsy4zRItmqMlV1pxjupU/p+lAoiWIkw6d6hEExWc4lv78okK5dwYlIniNRkZZHxfFSJ1XzQqytkmqzkFJ28w8Xfa4AyVPFVnbIg3eekvd+QZBR2FOMqVOjxHk5PD4ndBDNk0ypNqVl35m3FZqwUpXzjY+YwxscK8ekMDHHrQcFN3DeD1tHz0IPX6+Aexr08XoxjhdXxED8GDqcZeALsBAZD2m9sqB63cajrQY6OlWZ0GGp8CEbZROvnwSLjaMHVmr7Xwet1cY/vP7SuZvUKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nD2NuRHAMAgEc6qgBIF4pH48juT+U5/wEwA77NxcunJjTaxUx0w+hCRm4UUao2iRSmPrDeT4PRQar/3CsKPzdjasrqOhW4Jk2kfIbVe9669bdN7JCxvOCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjUgPj4Kc3RyZWFtCnicNZLLcQQxCETviqITcJX4SopnXD7t5n91t9Y+wYCA5jEdhYlsfFmg42D1xLeNtI3teI84iZqILvhChMMMz/Bz8MVQx610/9hnWO/rmRcKJ5DOaBvW0RiLO81OMUrH86AKMScWDb+ewYlxNjs4ktVWG7k11Kio5oJPFjmLqbdySk6rTbCPobhBcC3ZZ8Sa10tlyihnoyI1vbiZLSQHp4QeSZPayg+H1/gn8hp5DNfOP/sB9BrGJ04m7+sZgRjLjfJsGWxKhB3HSlJykISzYV+Ie8sJS7TYsqPCQRHkE5utrK5ySyXSJ8Q3uZ2zcQpg9N2FVBZ5tRisj73kr7cZKWZFNMggtzKkmEtZdtrN93EtBVCQPFcd76YrZysj4urkJhW8O7Xl3H+3Cco3bcIfxqrvYswkN1+8p0Bxxj+wZ/z8AnNCdoEKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nD2Muw3AMAgFe6ZgBAPmM1CUiuzfGguRBk734LEHLhStwS7otvAhoGj8YGQCK6FtKyL7KSalzajb74c0leNbmyC95iThPTEgFqYKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1MiA+PgpzdHJlYW0KeJw9T8sRQyEIvFvFNsCMIILW8zI5mf6vAU08sbK4H/GBCmIWkFSHuMOt4sWFtaOr41OkHbQKi4PmBpa/ErGCvIHr1ukYPWabeIrnxhg6Y4awcMyRDFnaxTPuti9Fjg2Cu2FWoekplj7kemEbB1J6s7RdoaZwLqYiY4Zx22mfWyXSjtMvSv2ariK9w9SStYvGn31/Abz3NmcKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMyA+PgpzdHJlYW0KeJw9ULFxRTEI6z0FIxiQsD3Py6VK9m8j8/6lsMUhEIJK2LSkPlbpTfvyQS7LnPY7cFLUz8D8YImJ1dGxRBiWq5/CtBT7DCxarqNMWe794mEzZQj1qA5IA6feuUxeJRim6neo/8VnXB83iqski0H1yfUzwpWZYS7t5DbfQvl8hgfbbb7gcCOu6cj/yCVT3jmZORogU/RqCfaAzG2k1tNC9zJwNMpuxZs5p/UYul24GFKLHPY1IVON3kzdM6i+ZHOrpyBlNKOFa7ZiQkqf8z/j+w+d+05BCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTgxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDVQOQ4EIQzreYU/sBK5w3tG2mr2/+2GMFOgGBwHO4NJ8SHBb0Q2kIkUeILDcY1kiDGIDaoCWg7TKIKXNLoHv1xq9RIoZomlekhLKXVc4QyW2OUaMvsupiBdkAxIDbmGlnSje6gcTm3CCUZ5pLbmBq6zJpfPNrr/8nZK8Ih244WP09B8nEZl3FykdaoIemJGzco9NnoJRty1HLGctdRSpFSLOlFlsNUPczb/7vEa3z/mNz8eCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDY2IC9CIDcyIC9IIDEwMCAvZCAxMDUgL2kgL2ogMTEwIC9uIF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CIDE2IDAgUiAvSCAxNyAwIFIgL2QgMTggMCBSIC9pIDE5IDAgUiAvaiAyMCAwIFIgL24gMjEgMCBSID4+CmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU0ID4+CnN0cmVhbQp4nDM2NlcwUDA0MlfQNTI2VTAyNFAwNzNRSDHkgjFzwSywbA4XXCGECZLPgavM4UoDAEyQDxUKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTQgPj4Kc3RyZWFtCnicPVC7EUMxCOs9BQvkznztN8/Lpcv+bSScpEI2QhKUmkzJlIc6ypKsKU8dPktih7yH5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+tcvdS3O89HG+iiJR08K755fTLzy28Tj2ORLq9+YprcaY6CkRwRmryinRhxbLIQ6TVBDU9A2u1AK7eevk3aEd0GYDsE4njNKUcQ//WuMfrA4eKUvQKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjYgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgNTMgL2ZpdmUgMTAzIC9nIDEwOAovbCAxMTEgL28gMTI0IC9iYXIgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDI0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIzIDAgUiA+PgplbmRvYmoKMjQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNiAwIG9iago8PCAvYmFyIDI3IDAgUiAvZml2ZSAyOCAwIFIgL2cgMjkgMCBSIC9sIDMwIDAgUiAvbyAzMiAwIFIgL29uZSAzMyAwIFIKL3BhcmVubGVmdCAzNCAwIFIgL3BhcmVucmlnaHQgMzUgMCBSIC90aHJlZSAzNiAwIFIgL3R3byAzNyAwIFIgL3plcm8gMzggMCBSCj4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyNSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDIyIDAgUiAvRGVqYVZ1U2Fucy1taW51cyAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM5IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAxOTA2MDQxNjIzMzArMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjAuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4wLjMpID4+CmVuZG9iagp4cmVmCjAgNDAKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTM2NjYgMDAwMDAgbiAKMDAwMDAxMzQwMyAwMDAwMCBuIAowMDAwMDEzNDQ2IDAwMDAwIG4gCjAwMDAwMTM1NDUgMDAwMDAgbiAKMDAwMDAxMzU2NiAwMDAwMCBuIAowMDAwMDEzNTg3IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDQ5NzcgMDAwMDAgbiAKMDAwMDAwNzQyNiAwMDAwMCBuIAowMDAwMDA3MjE4IDAwMDAwIG4gCjAwMDAwMDY4NzMgMDAwMDAgbiAKMDAwMDAwODQ3OSAwMDAwMCBuIAowMDAwMDA0OTk4IDAwMDAwIG4gCjAwMDAwMDUzNDIgMDAwMDAgbiAKMDAwMDAwNTUwMiAwMDAwMCBuIAowMDAwMDA1OTAwIDAwMDAwIG4gCjAwMDAwMDYwNDcgMDAwMDAgbiAKMDAwMDAwNjI3MiAwMDAwMCBuIAowMDAwMDA2NTU4IDAwMDAwIG4gCjAwMDAwMTIxODUgMDAwMDAgbiAKMDAwMDAxMTk4NSAwMDAwMCBuIAowMDAwMDExNjAxIDAwMDAwIG4gCjAwMDAwMTMyMzggMDAwMDAgbiAKMDAwMDAwODU2MSAwMDAwMCBuIAowMDAwMDA4Njg3IDAwMDAwIG4gCjAwMDAwMDkwMDcgMDAwMDAgbiAKMDAwMDAwOTQxOCAwMDAwMCBuIAowMDAwMDA5NTM1IDAwMDAwIG4gCjAwMDAwMDk3MDUgMDAwMDAgbiAKMDAwMDAwOTk5MiAwMDAwMCBuIAowMDAwMDEwMTQ0IDAwMDAwIG4gCjAwMDAwMTAzNjQgMDAwMDAgbiAKMDAwMDAxMDU4NiAwMDAwMCBuIAowMDAwMDEwOTk3IDAwMDAwIG4gCjAwMDAwMTEzMTggMDAwMDAgbiAKMDAwMDAxMzcyNiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM5IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0MCA+PgpzdGFydHhyZWYKMTM4ODAKJSVFT0YK\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
"