{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Characterization of Systems in the Time Domain\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Eigenfunctions\n", "\n", "An [eigenfunction](https://en.wikipedia.org/wiki/Eigenfunction) of a system is defined as the input signal $x(t)$ which produces the output signal $y(t) = \\mathcal{H}\\{ x(t) \\} = \\lambda \\cdot x(t)$ with $\\lambda \\in \\mathbb{C}$. The weight $\\lambda$ associated with $x(t)$ is known as scalar eigenvalue of the system. Hence, besides a weighting factor, an eigenfunction is not modified by passing through the system.\n", "\n", "[Complex exponential signals](../continuous_signals/standard_signals.ipynb#Complex-Exponential-Signal) $e^{s t}$ with $s \\in \\mathbb{C}$ are eigenfunctions of linear time-invariant (LTI) systems. This can be proven by applying the properties of LTI systems. Lets assume a generic LTI system with input signal $x(t) = e^{s t}$ and output signal $y(t) = \\mathcal{H}\\{ x(t) \\}$. The response of the LTI system to the shifted input signal $x(t-\\tau) = e^{s (t-\\tau)}$ reads\n", "\n", "\\begin{equation}\n", "y(t - \\tau) = \\mathcal{H}\\{ x(t-\\tau) \\} = \\mathcal{H}\\{ e^{-s \\tau} \\cdot e^{s t} \\}\n", "\\end{equation}\n", "\n", "due to the implied shift-invariance. Now considering the implied linearity this can be reformulated as\n", "\n", "\\begin{equation}\n", "y(t - \\tau) = e^{-s \\tau} \\cdot \\mathcal{H}\\{ e^{s t} \\} = e^{-s \\tau} \\cdot y(t)\n", "\\end{equation}\n", "\n", "It is straightforward to show that $y(t) = \\lambda e^{st}$ fulfills above equation\n", "\n", "\\begin{equation}\n", "\\lambda e^{s t} e^{-s \\tau} = e^{-s \\tau} \\lambda e^{st}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "An LTI system whose input/output relation is given by the following inhomogeneous linear ordinary differential equation (ODE) with constant coefficients is investigated\n", "\n", "\\begin{equation}\n", "a_0 y(t) + a_1 \\frac{d y(t)}{dt} + a_2 \\frac{d^2 y(t)}{dt^2} = x(t)\n", "\\end{equation}\n", "\n", "with $a_i \\in \\mathbb{R} \\quad \\forall i$. In the remainder, the output signal $y(t)$ of the system is computed by explicit solution of the ODE for $x(t) = e^{s t}$ as input signal. Integration constants are discarded for ease of illustration." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAAAxCAYAAACS25YIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJGElEQVR4Ae2djXXUOBDHE14KCKQCQgchVAB0EO4qADpIXirI4zoAKgihA0IF5OiAdHCBDnL/n1bSk73+0Dr2eteeeU/R10ieGWk8ow9vdu/v73cMTAJdJLC7u/uv2r3RHLrt0n6b2+ya4mzz8I1Hu5RmX0//rfmzOx4V4z350XiPtidvuQReif6fW85DZ/LN4nQW3fQbyqp8EJf/KfxRuJN1+aqyQ6XfK5z48mvFl6qblRKZ4mjUDZYlIAX5qNIrKcS10kdKnyv9JmCqjPXNBcoUyuYUm+LMabRX4FWK8U3oTxRQoC9SEKxOBNWzq/S4XB4RJp4wxZn4AHdlz1uZ72rPJgBK81xK4nbPVMf6Bmv0WPEswTYHZjnszUxLMVjH3HrFeEZagTVNAFw31jY7wt33+KFuFrEpziyGucikn+wfFJ/68JGyBAs37Zi8tzIoiVMUygQo0w+XWqx97BzHC8OiiUpACoKbxbqFg0u3E6YyLMjfyp/BtvLvFN0psMYB3I7aIunq6YONAjYIbkI/oX4Osa1x5jDKnkcpBC7YL4X3muyfAusqP1X6p8pSqxKqLa6QwF5FmRVNVwJYGoB1Ccpy4HI7O99MabwkMiOzOJmCmgKalIUt5K9SkngeMwW+xuDBNgfGkPq4z5zdQn4IcZviDCHVze2zVmlkjdLt5s3lYEMoM8XZkIFYExncPWNHLIIUhvUOa59Z3TWLAuiY6GWNI8Efym+ufZsF2nLxAr7F/UtAYxA2Bbi86UBj909IW5wngQcrjh8ITplbL/sJl7fdkQ1U3uAY1uZK4EGumhQBv/ggR2kQgfDCNQ3zpzd3ThhlGRLobHGkNFzR+C5leF71HF/PyfJr4RTcONVR/lLlXB40MAlsnQQeYnFYaIYDtSrGccvq1j60o72BSWArJfAQi8P35rXXymVVUI7jBov0W/VPzeps5byZPdGdLI6UAmtScL8qJAlO090n2v9V0c6KTAIbLwGnOKxHFLhizvVytisj+LqrWLBIcGVjSSmE+0rhSoFr6YcKRz5f6HPRhWv/2qctMglslQT2PLV8T36mSc5u12eFdF8fq1DeBTtW2dL6Rn2gTHyjDv4r5ZsUg1u6WKVWUH88Kws36YzbvnYnKxGIJfuTwJ4mJZYhfJTERC+7YJSVrQs7anyvUQe0aTuJpn368VRdX2xj86sqBiaBjZEAFif9SAnrclGijjd9uYwPnJq2kmnTdiCKgqK0o4NeHvZzpqOPwnYRsKe3uVMATR4mOxYg/cCJLwMpK1scFVWD+gEfhWCd0wRtytfUttc6yWCWv0bZqxBn1hkWJwDrAdYFTpF8Icr0R2VltwtrgYJUAeufeEuANMpU6pdi2je5e+A4UHtb4wRhWLwREkgVByuRs76BcCZ8nZtVWN9o0rNRgOKlCqms+569/DzKl0BKZ2ucJalYwZgSSBWHSRx+nAErgbUhVE1aFOGFQhVEBcTSCIHbA1XrHa7qtLlzVf1bmUlgUAn4eXvuHxIMxNvUa4o3BzwyW9EoEFfO+Qkgfu3kmRoULINXqo8qB6cAquNBuFbu7Ec4cc2UIgqP7eile2wpjqVNAmNIQHOTuR0NBnnRwfFKnO9RccoECtl99CTkukucTPz4E0Pl9k159Y1y8QMRkZAmfKszCaxTApqf7LLyUnebYn6+Mt/5NVO8rZ1H/FEFNwa4sexAaVwsrE15G3qBsPiLYkWtTCsy0vx+l13yzBCUoYwiAeb1TdOTneIIgbXMZYKIy/ZJ2lW1NnFoqsMFO/TamDRtTnp81j2VLlxz62nWSiZcVeJFNTnYRt6YmwrpZhaKxMeaztowSGFzAAuAEnCnDPcJHy/n7IYtbNYy7KTlAv6iXYUpSgsLT5gibDVv0gnOMtkZLixZnOJISWotS9NIopXq+L3CO6VbLQh46o9fkUy1uekRVmcSGE0Cmq+sxVlSsLYpzNlgcToTpw7ZcWtVGh6Qo1ydCempoRcWFhhBsbvIS+VEtKcXX1W0OTAUzeqXSYMMgAMF/pFUYQK5moH/DMFfG2/+mR/Er/OmlMfycBlgscOsBBPawuK/b7PW4wM71mBOJkpz1sQuC7cfBpGT+sYVOO3Sv9oNQrP6hW9+WCXIgefgwq8kA7XpzBvPEvTOn/ps5E31btdXMcoSAkuMOAf2lDGQBPRG2VfEeu1MA5aeW5FmYVh40/o3lqrcG5kfLHG/9E/BuqADzfDIRV7c5YLPntKsfpk4nFvExbDy8OfO5lLcIdOr8Odxzz090A8UDi0pyOSNHWZkFXeaaSt5xF1kUxwksgDcEoT1xedDxBuvsAaU8J0LI0E69015dsU4l2rcJBGOO0gLHSfxE9KqjwOT1DV9V7QKzbw54QWAz1aAJyGhLNcj8AZ92fyBm05sL2smfuVZYRNv6qf2JwEgyoGQVjK9U8WXMHDRmPxRHsozwfAXePum5eBGN4Y6jxddvBS/La22ndwZtcumOdDgn/Ur5Oti4TFpYSwEJmaUQW7aP6+rG5rNn6czjpPyWB1oL4wTdAsezNsjepk76O2DghBS1wSx4NYwWeLWvHAZEHD/UJcAed7qa4FVaO5CkHjGZeVzC6wo/PNpPXyvBTrw13poGQjvgzdTnCDNRfyjmHXnTU6ZNJAnCkFpQLsr4ZJ3LlepfOhsDs3ZNIhH/sUh10sc8NJQaHRBA+5AcRZ/orH10LJP3kxxNNoSOtYCBUExHEjInDmRv1mU7LwQXrpp4ItjhNKs7Y3cE82R+CTBOoi1WATJAleyPDFj/RCJh/AnerH80FzeAOmNt70hmN7SPl+K7s8SOrcnOLO4VOBN6/7JrM8rii4aioLCBUBpmhQr4PUZ59K8yjPfCpnNDuQQgPOLqo2LUD9UvDJ/opuXHWuYpUNLlfXGmymOH3L/hqu6ClQoE96tBgeFqbIuzq3zXQ4e5dK8CiHqEx7WykcdfavyF5RG7ZxrqTyWJx5a9smbuWp1o9Zczk0JzL4DDRBpto27WhwUkTBFWAtvXmlwMS9QGK80WMm7IYRa+z3OEA+bUp8aGNwBgCspnBWwC7Wxk99PLCYSSs6bGOVnW3pjrxKJvmwQf2xd75cbiL9Bfojlf6GaVvOpmwYyAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = \\frac{e^{s t}}{a_{0} + a_{1} s + a_{2} s^{2}}$" ], "text/plain": [ " s⋅t \n", " ℯ \n", "y(t) = ─────────────────\n", " 2\n", " a₀ + a₁⋅s + a₂⋅s " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sym\n", "%matplotlib inline\n", "sym.init_printing()\n", "\n", "t, s, a0, a1, a2 = sym.symbols('t s a:3')\n", "x = sym.exp(s * t)\n", "y = sym.Function('y')(t)\n", "\n", "ode = sym.Eq(a0*y + a1*y.diff(t) + a2*y.diff(t, 2), x)\n", "solution = sym.dsolve(ode)\n", "solution.subs({'C1': 0, 'C2': 0})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercises**\n", "\n", "* Is the complex exponential signal an eigenfunction of the system?\n", "* Introduce $x(t) = e^{s t}$ and $y(t) = \\lambda \\cdot e^{s t}$ into the ODE and solve manually for the eigenvalue $\\lambda$. How is the result related to above result derived by solving the ODE?\n", "* Can you generalize your findings to an ODE of arbitrary order?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "The following inhomogeneous linear ODE with time-dependent coefficient is considered as an example for a **time-variant** but linear system\n", "\n", "\\begin{equation}\n", "t \\cdot \\frac{d y(t)}{dt} = x(t)\n", "\\end{equation}\n", "\n", "The output signal $y(t)$ of the system for a complex exponential signal at the input $x(t) = e^{st}$ is computed by explicit solution of the ODE. Again integration constants are discarded." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE30lEQVRoBeWZgVVVORCGfe9QgEc7wA7YtQPpQLcE7ABL8LAd4FawBzuQDlzoADtQ6ID9vphcc0Nyb+57gChzzrybO5mZTP5MJrmwur6+frItrVarXfx8mfPTqzfn51fuv20Mav7W2wKE00N87HX62Y36neq/l9pCrHonfwPTrRaVIF8z8nN26ceeCNA7VS/a9ZjcmQ4x7MGf4Av4MrLvJxmfZX0HKRhkAqnNIEt9rSe6i7Bq+SnlVUwRPtmEcf4UPmvZxv4Lnpbm0Rja2V/Kf8Y7cbyCPYNOauMbJ/wJPkr9tJPNcZJNPaOPJlZTtnlf9DOL6Qjs3MFcmwGO4YOWHn1mJt3jBfVdO7gLkJr9bcqIYxduLmqM14UdLTrv3UmJ7iRWvfPBTxem2yzq5VQwcSLN7KT/Eu4GZmqsbfqIYXZR9Q9tnITYTmLVG78xwLOYbnSmcj5YfuZuu+qEM5RnjbT/q9bxEGTOMc4zhWMJXkydWPX67cI0LCoDP4UP4WOf+Qix7ySX0X4D31gwdAXCi4YAuAO8jPg+8olc0n4/tB7mz+hGz24Kl0Hm4iUpXaBKXGozqWJVKuLzSJwi27bke6lcjmksLeESgA9r9qhU8O75h9qPs5F3LzobnafJT/TbLCVJzydk2fGCsIRHZ2DuL2/jM5VfjwMXSXZ+Dvwq183b9BnL7BjoTGKlT8hNsJf803ZHjso9783zNLNzrc52yAQn9RmW3DllWVVW7kqz6BvcIm3OW51Rrn3Ixhk9M+rtnM4t9J8yjrvK3SEmJtIUlTi1dCeximOZPDle73BWVoFuTNcYf8Nh+s70jPu3iM6sKc+TZ8iuCr38da72qysogvfgCDyM7agMLC5AKZ57n8Mq2OPbb+QDx2D8ffhD4bgb0zXGYXFwppFZNThD5rmirNypiOqEjfouVpkIpUHXZEuje3z/j7HkQIJNQ4xulWIC/Y1TfYdjhrFGCbUU050sQkvPeVrkKHegK2R5abDLTHbxavSnQmyGRDCowq8q2luCZwl7J7sUUOcSyunsABWFSryOPyxyxaQlmsIq2DCW5fYd83QM216Y3mcxLMJ0J3j9/mMmGkBOtfPUfhejVTpHtZ/gPOBNiis4J3dqOV7eP7SZ3H2cqcN4jcZb4hiqWEOnJm5iBTbuyNf4faEhTzfCKfJwe1IWaRGm62TFcwQwjs0auVZGXaSXcI2G5MBHKMUEO/Idjf7gWfNd83mXslbFGcaM4NeSeNYWJ1NYie/oQsZYboIPYJZvgkWYrjAOwccF+IcXF+ArbPZ4RX5RLgq6IRjkIcPQGYg+AzDQcHtDp5rd6PlJ4IWgtuCDv7tqML73BXeKpS0tTrowpmGdi2y/t+P9wk49S/Ib+vJFUB4I/SmsjMH+nDzuRpjhYxGmbvkqM4oTbn5H0ueiDN9WLT81OXYGeVHr+x1l22DVi0eO6ZoXv8v8S5IfyYFom5nu0vffJdVfF33Ts87LgPaPhbbBqhejH5iaCZC77jBlBW1L5/CvpiQvn+h4Jt7411qpl7+rr10uewztTbDqxaXENJyp7EwPZ8GWPCf989fwSRKklZ+4o9X1dtZF2JgIzTOoy8kvqLQJVr3TLDEdLkq9Dko9HJoM/plrdLiXer6ja0n3wvFTLke1mO5TtgSr3rhqmP4P0XNsce646VIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = \\operatorname{Ei}{\\left(s t \\right)}$" ], "text/plain": [ "y(t) = Ei(s⋅t)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ode = sym.Eq(t*y.diff(t), x)\n", "solution = sym.dsolve(ode)\n", "solution.subs('C1', 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note, $\\text{Ei}(\\cdot)$ denotes the [exponential integral](http://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.Ei). The response $y(t)$ of the time-variant system is not equal to a weighted complex exponential signal $\\lambda \\cdot e^{s t}$. It can be concluded that complex exponentials are no eigenfunctions of this particular time-variant system." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "A final example considers the following non-linear inhomogeneous ODE with constant coefficients\n", "\n", "\\begin{equation}\n", "\\left( \\frac{d y(t)}{dt} \\right)^2 = x(t)\n", "\\end{equation}\n", "\n", "as example for a **non-linear** but time-invariant system. Again, the output signal $y(t)$ of the system for a complex exponential signal at the input $x(t) = e^{st}$ is computed by explicit solution of the ODE. As before, integration constants are discarded." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAA/CAYAAACB6eBiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAVvUlEQVR4Ae2dS7LURhaGgWDUgw6DV9B2RC/A4FEPDTvgsQLMDkzcFRCwA+wVGNgBZgWAdwA97oHx3cHt/9PNzCup9C5Jlar6M0IlKZ8n/8yT5+jko65fu3btnq53uuruy8XFxfd1T79XEbh+/fp38nmlC7yeVkP9ZgSMgBFoR8DjRzs2DlkXAfXFTyrxh4ZSH94sed4vPfP4tfbu1xoCAvZneaEk/KHrWS0461fR/kYEPliCSClM15fI13kagWNC4JDjh/n/mHrSbHV5opxu13IrjAhJUdDgjrCzG4hAicl/3ZolIdD+TnQ/HFhdRzMCRmBGBA45fpj/Z2zII8pK8uDPenXUV87xu1EP8Hs/AgIvTjf8uTUlIdTuoej+tb+m/THAQhfWCTsjYAQGIJDB+GH+H9BOjnKFgBWFKyzGPEXBiKlmU06D1C8imOmSuRxrXD7MlZnzMQIngMDBxg/z/wn0rgWqmKYeFsj7KLMUo7HYgwtrwo6pZqlKq9xvlPdZyB+LBu6JaChMQ5evg37vK019PUpnwlDnuzFStEaEQYcFnH/o+YH838Y4vhsBI7CLQOCl0eOH0pn/d+G0z0oIWFEYD/TjkGTtNR0vJIjTrgoNHFgFWKU6eGeK0ky1Jjyl7NpgdU1+L+VXhI2H0SmMwEkiMHX8MP+fZHfJo9KeehjfDvFr/q/xSfdK8bOEMmb+6F7ogfUBfJ30uiDksSZM+ep/o/QoJpT5eyws5DnWohGT+24EThGBqeOH+f8Ue0smdbaiML0h1haQWBM+dpErwY3iwJbNJse0BYJ+xyHwdb3Q9Uu4Uh56Zz41nhHBFtA0BaFnFJeCJsVLaeS3mqPcQHNZiVqt/CUKAnNdmJrtjheBseOH+b/WF8z7NUAWfPXUw3RwVz1nQpaA+i4FBg4EeLFOQkyDoGTtAcL+tfzTQBSEzg/y2znrIYQxhcFK6JgXykEsDwvCPcWjvrcVJ/rr9Rrx7ysMJWHtqZhrKhe6n+tCWfmkdywmq9OhsmdzqgMWom9Uj9R+fZkrTVQAsXIxFYWZ+ktfOocfFAH4abCr8R3pTpr/zftXXWct/kfAqB9e8OOrBwNhhRC90MXivYPgpbIRJp91IVAqNMgP4YmgSP56Z9oARSH5xWf5U583vMthFkXo/BzDc71Do67PJbqpxw4eudLfRpfqwAEnjW3VlEZxae/UF/WMJYK+8V1TfPvt8sCamKhd9h4/lMdJ87/qb94PY7mwWJT/lf/fuh546kEobMlJe4zC/I4GuKavTr6wsSogMPjq5o7QKKwF+NUciuJXxYP5GICeK27ZalCLns0r1pOiTqIXywoWkSY8siG4jxC1Afifqx5tbVXJIrQZylFadxIw4B3l0O7IEFCbm/8vLacnzft06zX534rChgaSOEhIGGBiP9f7D8Ev1SIIDczOrEnAYSHYmXIoQi5/UCReKR0nTL4l31JY7o9fcydwJH19bVXPjpM1m5SKD/Jnuoi2tTsSBMz/lYY8dd4HjNX434pCpe/l+xIGCb4Sn+sZBYGvT+YpmxgGxYBFfsRhXUGTMFFQ4ZjT5yslOaVjG6XdiggIcyw7WBPGrC0orEENZEZlj3C7I0BA/QMeNf8fQVvWqzCR98lmNf6/WSfa79kiwFwUX4jck5NgQVmoOPm9Vefj6/S9rjuVwN0XtFJ2PNwOQZSR7dSD6ET5wVpSCMFIt+pc/G+F3qGfujNPj2NxH2swikWOCicdAy71ZZoGwfyjLvyZvugV1MqD/P/ShftWF9M1UTgXnhN+yLOow5C0oZ59UWOb9sVzeP4InDz/q88fnPfpJgvw/yjeDzQwzvW52fjfikIf1JmESxDdGkkKVgWmKDoFXxBwO8rGyLJWiy56sY48FLOyKIzFmUm4hoEE/0q95f+OMMV9qQuF4Xu9s3oTJQJ8UBywoqAsdCpJ5KU4zwIdDBqkgdE7MVQ8yiBuk/uHPP+pCzrL4Zz+mepXDtBzHASaFJRoZRoymNSy9WuOCKgfnDz/B547GO/TL6bw/wK8Dymr8r8VBSA/QiemYkFbWuR2hFVsqhJKAuss6soRShPbJ/8Igw1piXNP74WAV9gtPTcJXeIWTnEw/5KmPJVD3oXSchmr+TeW0xSqfPla/I/i1Oluij7GD2uH3QkioL50avy/KO/Thaby/4F4H5Jn438rCsC5kFPH4osO8/+YL7t0nkEkS/kUexfje+53MUbls3gNeoURZkkE+Yd6eaLnT4Xj/VhXFPIoBUkwK06nkkDi6JQXVgUGJhSPUf+bEfOId+WFleGj8km0xLCee7QaNEWLXxtxeqQpjv02goD6iPm/o62Ez2q8Dxlz8f8evA8Zq/K/FQUgX8gF4dO3RqC3dOWzuuDtJSq/CHFBZpfAZ0Apuy5mK8crnhHmYu6XeonTFAwaTGdgVZjqRs9PUhB9S2Xz2KSERr+xygf52WWGgPm/t0EW530oWID/J/F+oGVV/r/R2wSOYAS2gUAUilFINlEd48SwLqUixqncUQrCwI0lgfUO6cyKSsTai4T6K12fa9f/FO3fulibUA/jvW9KY2fHSig2WhSKBZw1UvxqBI4NgcjXi/I+oE3hf/HxErwPOavx/+IWBYHEYT+xIalcoxsarzGxPU8eAfUxphcQ/AjwytoM+WPex7GgcJJTHmj/nIBY/Fun7jApf689yCys+DuLHZWWtQk/KWy0whIqgSIBXXWHFYuFkFPzred3sHdh5PHjYOhvo2D180V5HxT24f+FeB+yVuP/RS0KAhcTbd3cSwWbHH9o5P37TcjYrwkBvh64yu4nvTxSP6r3OYQpUwRxfQJpmtLj3+ZQNiqKhsp5ID8OqhotkENa1iaMThsJVFp2aHCqJnQUTs/U65GuJ5c+2/1VXTx+bLf5lqS8iXeX5H3qMhv/z8H7ELQm/y9mUQhgfKvKMKfb6xSPrzMOEuKrrfJF2JvYEU4GAfqIKovg518s+ddLFha+o5/p4suCr+lnukcBzPwl0wWFGV7+MDxrCvBHqeDOyZR9fQ7By2mHZWWWA5J2LAWKN8SdKRKD276O+p6FepAXZ0JgpSgrRfhvyqk+KD8ePzbVassSqz5xKN6nYnPy/1y8D12r8D+roRg4GWhnWzCnBkXje688qcSOC+GYXSv73YmosH3NsTvlzekh+hBMYMbuhD7hMmfRs+aleiBsWRWPQP265brMCswKmQl7hOCPwnyfRZArUHqYIoSPx48FoTfvLwhuT9Zb433Ry59CPVlq6gEhVDHT1vBD0LbNPZKO9Lm624GwzX6xqfHBuPgK1/2jLrYN2q2HAF8Uz9crbnMlefxYqMnM+wsBOzzbTfL+UhaFv/W11HqSWOisdxWnzeKAFvMvhUfz8fBmWDimaGfxGibn1votTMLe2asOWEVQeFAYXueI896VzDQDYc+/dH4vzG1NaGkjYeTxowWbfb3N+/siOD39FnkfXlSN57coKGOsBX27HIjTtXWL9CzIysqFukHT66wIG09MnKNHUfiv6sU8vd06CIC9rQktWHv8aAFmPm/z/nxYjs1ps7zfO/UgxmXBGHvF2QtaXsjFegLC6nu9OZt+RwlQPBaCvdHF1yyCiYWLvFfyDMiTnm1uubk4JUKDb9IJb7D/EiwibPVDKUur5jdZqW0RzdqW7CxlS0Go/ubx4wrcg44f5v2rhjjQ02Z5/+YAwM4wk6qTIUx+01XexcBXf13I3JUfX6oVpzwQ/uxsID7n5XcpAvzzH1aHXqf8KGtQ3FJmXX+2U4p29ahyYHJW3T7d+ECPosZKfY4f5qTBol30brcCAsJ8s2tbJsLj8UPAZTJ+mPcnduI5km2Z9zsVBXVuvj4/BJAQ7PUpBfzq1gNWLH8NaZpupOkbLElPPr1O4E/dntabd4wgHFBusHywza7z3wVjmozvKDx85TFXjvuw5Q58WQX/5oiAx4/LVslo/DDv58goG6CpU1EQ/eVtc1gP6nOrfMnX/Vgk12VaJU3ftkIUEpSUgzsxOQrCma5Nb4eMQB6BohOr4nv+CHj8yGj8MO/nzzC5UnijizB1rELgS1gi3PnCT1/T8sMMj1/doiCvZqc0xEcBwATW5fqUja60c4dhsWBnQJ9yM3e5zs8IbBoBjx9F83n82HQvNvEg0GdRiCixQJF5/UJxCJ4oD2wTrE8jYA1AIWhyrF/g6MmkXKA81PIlCum7pi+IUzilX3qNAls436scDoLCqlCffrkkxL9GwAi0IeDxw+NHW9+w/wYQGKooYAWoC8im9QlUGQHfNm1QWZ8g4cvcP4pGWQHRa7HHv14e/jtOghuNfTEXlJg7QVH4pHuW5zssBoAzPnkE1OeblPkxuHj8uFQUPH6M6TWOmw0CNwZSUhHaGjiwJnA1TSEg+DlvvsmlAYPBRxHaTmfkK74p76Y81/LjXH5ofr9WgS7HCBwagcCnf+uORW2q8/hx+b8eHj+m9iCnOygCQxWF4twADRYvdLG4D1MiLk0hXL4Wvwh41i80OfKJK+4f6Wu9vNWyHB8lJKs1AcGyAL3FH1eVifWzEThWBEK/R9DDtwi6Kc7jx+W0rcePKb3HaQ6OwKQjnFEYRDlnIbQdwcw5CMznY10Y5ZQ3Vgf+h4DDgLJygTbqxoFF2dGXFVgm5qgQUN9nmpCzN873rZjHD48f+/Yhp18HAfHqsCOcFZETGZPZUc98VbAHv74tskw5isTUtQN8fZA+O6dBki8rBsrvAg7Z0WiCjMBCCPw4RUnw+HHVGh4/rrDw07YQGDL1wDTA76Vq/abnX9XpW6cGFMY2SoQp1oHBLsRn3ULahjk48XoRP4aiih0c6xXrkozAYRAISjF/ST7Fefyooubxo4qH3zaAwBBFIc4vFv/3oDq9kiAv/HrqxzqGnaOce9IQP65/6Il6sOBoesWyYrdRBCT8WGvCKnQW6o3tpweptehE+YbeeKrmWnR0rSfqo8HjRxUhjx9VPFZ/E/+Y90eifrMvfpfloCut0p2rQZ4yqA2xEITBb+v/o9AFyeQwYYNSwvTPfWFZWUE+OdMTSij8Xgi3inKrd9bPsO2VNScc8LUFh4WOvtC4NmipCgzh37aylbbV8tiWBn+l8/gRADL/d/WU7jDzfjc+Q0N7FYWhGTXFE7Mj1AZNI+wzGDWVfWR+mG/btpIeWVXnrY4Giihc2zLejOIlHuFP1W4hRNsqc0z+Hj9Sa5r/ExTDH8z7w7Hqizlk6qEvD4cvj0DloKrlizuqElitfzTuVJSEo2mweSpi/p+Go3l/Gm47qawo7ECSpQdfFE1nVmRJbC5E6YuC8zyy3EGTC0amYxMImP9HNpN5fyRgPdFv9oQ7+EAIqKMzOLDFlDlpzOcswHmjO38L3XZQlYJPwwkLcEEJYI0BjnMt3gibQqFSOF8TjwmQuxew4/l3xdmZN1c4GMcvEE4WbcQ5xGO9QypX+RVbgRVGm7EwkjUPbB9mWoO88GeRLnfSUhZhPBOX9Cg1rJvgr8yZYqCtoYdpBuJRL/xIy3kGadGv4pKWvIkLLrjHipPWMnTRfRndvzkhEPqS+b+hUYSNeT/gsibvM8BoTLngx1cPBsKKwfpC14M18KIcylujrK2UITwQjAhq1m2kPqt3TgX9peZHPHbqpHjl55CGdCy6LeLomfxp43r++HMASfLXMyeVfoppucvxg8JA2yHYeS/y151BjvdEZ8mPQ8wSnfKHrlRWyJv6oBBFWsmPA8pSuhgv+il8EN0xvu9VLOfEg7bTRfsPGj+IR/w5adhyXsLCvL8i7wtvxrsHN/RjlzcCnp/cbR8G27ca8OoLEfny5phxBpMx7q7ySotu9RxPFEWJLjvK5S/HU7l6bjqWl3CEfqSRBYhF/rqfKwyLxmNdhQt++CcrQQjiH1tTWcGv/n5X/nfDV1aIUtzKVpOhdJfT+zkPBMz/1XYw71/hsRrvW1G4An32JwZvXezV/zziqgs5hJXXJ4TWEY7gw1f6h+CVbhKqUcAnIZwCux8+tgTztV64UrnplNIYpjvlMsUQHUI/0sLnIO9lxwFmTCVRj2u689WIIpHOR5Af7Y5FodMpb/rGV12cr/BOF+edYIVAaSLviNcQuklilxcC5v/QHqW+bN4XJmvy/s28eOK4qAkCIs0Tj62dGANBhTDpFRhj895w/EK4iv668C1Xqa5slcOmPsdyOXshCfSQGdMMdWUD4d3o1C/eKg/oZw4agc7xyM/IVxcmaawBnJlRCHs99zn62JkuhArrNrCqcHoq+Y+lW0nsckBAbWj+rzZE7Mvm/StcVuF9KwpXgOf4hGkpao4FfQweEgBdjJJjPeakKZreGUTbXIyzEy78dg5f2onU7BHzZD1A2azfHLtbkSHNa10PRM9z3ePxyPgh3Ifkr2iFxYDB82tUKoJweSQ//qMFBWYs3UpilwkC5v9qQ8S+bN4XLuLv1Xj/RrUd/JYZApX5SXUMTNS3M6NxVXIkEDHpoyiBTcUJH76ocQjI6GZRqkrlNk5rlMqO5fbdoRFG/01XVAzwY4cGCyTLddBrq8N6kiwcovNcF9MY5Mnai4jXXHS3EuKA2REw/5cgLfVl8/4lLqvxvhWFUkfM8BFBUmjREh5o0cw9R606Q3JXI+knlfRImNSnGDC7vwwDSiSGOfziyyx61O5jFC/KRZBHhaTISu+UW24X2oqr1QUaSZPatOTH1sZyfvV86nmfhf5RjkecuLZlKN3l9H4+PALm/902MO9XMVmF96+rTAY9zKk82/UgoAGZVbd82T8UZvFLsCfVtGCVxUDBlyVlMgWRVubzfsouYMMc/nnAocBKGEXhmOAJbcY7wpetkl/kh5KBgKf/k8dHXeSHUhHPPCA+Ow/SboRQLulYgxDLjnmSF3mU8ySssZ8oLywH0QKgx8KcuOMX/CO9UemBXujinS8stk2iHOC+1QVPJyy66C5S+GcVBNQOg8eP0Gbm/1rLBFzM+yvwvrBme+QTKwq1Ttj3OobR+/JyuBEwAqeFgMeP02rvrdc2Kgo3tl4R028EjIARMAJGwAgsh4AVhfHYxm1vY+a2x5fiFEbACBwjAh4/jrFVj7xOVhTGN3A8uGZn5e34rJzCCBiBE0PA48eJNfgxVNdrFCa0ouZtOKudxYVeADoBPycxAqeMgMePU279bdXdaxT2a6/i3xsFIivU7YyAETACYxDw+DEGLcc9OAK2KExsAikJmBDZsnZHlgUOtbEzAkbACAxCwOPHIJgc6cAI2KKwfwNw8AcKAn/6xL55OyNgBIzAUAQ8fgxFyvEOjkBazChhd1G7OMDFrgUBWRE4KIc/5MCMyL/2pWN0W5LY2wgYASNQIODxwx0hNwQkw/joregBorE4xI2pBx7iaW9l2vmjGZvUy4i0PAtcpiBuC690El5LVHsbASNgBCoIePyowOGXAyEQ+2FD8R//D6NWXclS6qAzAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\left[ y{\\left(t \\right)} = \\begin{cases} - \\frac{2 \\sqrt{e^{s t}}}{s} & \\text{for}\\: s \\neq 0 \\\\- t & \\text{otherwise} \\end{cases}, \\ y{\\left(t \\right)} = \\begin{cases} \\frac{2 \\sqrt{e^{s t}}}{s} & \\text{for}\\: s \\neq 0 \\\\t & \\text{otherwise} \\end{cases}\\right]$" ], "text/plain": [ "⎡ ⎧ ______ ⎧ ______ ⎤\n", "⎢ ⎪ ╱ s⋅t ⎪ ╱ s⋅t ⎥\n", "⎢ ⎪-2⋅╲╱ ℯ ⎪2⋅╲╱ ℯ ⎥\n", "⎢y(t) = ⎨───────────── for s ≠ 0, y(t) = ⎨─────────── for s ≠ 0⎥\n", "⎢ ⎪ s ⎪ s ⎥\n", "⎢ ⎪ ⎪ ⎥\n", "⎣ ⎩ -t otherwise ⎩ t otherwise⎦" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ode = sym.Eq(y.diff(t)**2, x)\n", "solution = sym.dsolve(ode)\n", "[si.subs('C1', 0) for si in solution]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Obviously for this non-linear system complex exponential signals are no eigenfunctions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Transfer Function\n", "\n", "The complex eigenvalue $\\lambda$ constitutes the weight of a complex exponential signal $e^{st}$ (using complex frequency $s$) experiences when passing through an LTI system. It is commonly termed as [*transfer function*](https://en.wikipedia.org/wiki/Transfer_function) and is denoted by $H(s)=\\lambda(s)$. Using this definition, the output signal $y(t)$ of an LTI system for a complex exponential signal at the input reads\n", "\n", "\\begin{equation}\n", "y(t) = \\mathcal{H} \\{ e^{st} \\} = H(s) \\cdot e^{st}\n", "\\end{equation}\n", "\n", "Note that the concept of the transfer function is directly linked to the linearity and time-invariance of a system. Only in this case, complex exponential signals are eigenfunctions of the system and $H(s)$ describes the properties of an LTI system with respect to these.\n", "\n", "Above equation can be rewritten in terms of the magnitude $| H(s) |$ and phase $\\varphi(s) = \\arg \\{ H(s) \\}$ of the complex transfer function $H(s)$\n", "\n", "\\begin{equation}\n", "y(t) = | H(s) | \\cdot e^{s t + j \\varphi(s)}\n", "\\end{equation}\n", "\n", "The magnitude $| H(s) |$ provides the frequency dependent attenuation/amplification of the eigenfunction $e^{st}$ by the system, while $\\varphi(s)$ provides the introduced phase-shift." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Link between Transfer Function and Impulse Response\n", "\n", "In order to establish a link between the transfer function $H(s)$ and the impulse response $h(t)$, the output signal $y(t) = \\mathcal{H} \\{ x(t) \\}$ of an LTI system with input signal $x(t)$ is considered. It is given by convolving the input signal with the impulse response\n", "\n", "\\begin{equation}\n", "y(t) = x(t) * h(t) = \\int_{-\\infty}^{\\infty} x(t-\\tau) \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "For a complex exponential signal as input $x(t) = e^{st}$, the output of an LTI system is given as $y(t) = \\mathcal{H} \\{ e^{st} \\} = H(s) \\cdot e^{st}$. Introducing both signals into the convolution integral yields\n", "\n", "\\begin{equation}\n", "H(s) \\cdot e^{st} = \\int_{-\\infty}^{\\infty} e^{st} e^{-s \\tau} \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "which after canceling $e^{s t}$ (the integral depends not on $t$) results in\n", "\n", "\\begin{equation}\n", "H(s) = \\int_{-\\infty}^{\\infty} h(\\tau) \\cdot e^{-s \\tau} \\; d\\tau\n", "\\end{equation}\n", "\n", "under the assumption that the integral converges.\n", "The transfer function $H(s)$ can be computed from the impulse response $h(t)$ by integrating over the impulse response multiplied with the complex exponential function $e^{- s \\tau}$. This constitutes an integral transformation, which is later introduced in more detail as [Laplace transform](https://en.wikipedia.org/wiki/Laplace_transform).\n", "Usually the temporal variable $t$ is then used\n", "\n", "\\begin{equation}\n", "H(s) = \\int_{-\\infty}^{\\infty} h(t) \\cdot e^{-s t} \\; d t\n", "\\end{equation}\n", "rather than $\\tau$ which remained from the convolution integral calculus.\n" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "The notebooks are provided as [Open Educational Resource](https://de.wikipedia.org/wiki/Open_Educational_Resources). Feel free to use the notebooks for your own educational purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Lecture Notes on Signals and Systems* by Sascha Spors." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }