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Preface

About the Book

This literature is more of like a personal handbook/notebook in the style of the book. The book
is for personal use, and is not for commercial purposes. All the source files can be found in the
github account, and all the references used are can be found in the reference sections of the each
chapter (Also, the general sources are credited below).
The book is just the collection of my notes about statistics and probability. I have organized all
of my notes into this piece. This is not supposed to be a proper book.
The book consists of 3 parts. Probability, Statistical Inference and Statistical Mod-
els/Data Mining. Each section have multiple chapters, references and exercises. Each exercise
subsection have R/Python simulation practices and machine learning examples with
visualizations

To learn the field and write this book, I used various books from known authors, countless
mathematics forums about statistics and probability, wikipedia (duh-duh) articles, and MIT Open-
CourseWare. These are all the major sources I used while learning the statistics and probability.

• Larry Wasserman - All of Statistics - A Concise Course in Statistical Inference.

• Probability and Statistics by Morris H. DeGroot and Mark J. Schervish.

• R for Data Science.

• An Introduction To Statistical Learning with R/Python (ISLR/ISLP)

• MIT OpenCourseWare Introduction to Probability and Statistics, spring 2022.

• Countless Wikipedia Articles.

The OpenCourseWare has its own license, you can find it here: https://creativecommons.org/
licenses/by-nc-sa/4.0/

Book’s source

This book is fully open source with its source code shared in author’s github. You may use the
source code for whatever purposes you want to use it for. If you have questions about the book or
its source code, you may contact me with my email: yusifmehdiyev55@gmail.com

Code source code

Note that the book is still being written, so you may not find that much code source.
In this book, I mainly used tidyverse packages to plot, visualize, model, clean data and more.
My IDE for R is RStudio. You can find R source code in my github, in src directory.
For Machine learning and other data science purposes, I used python library pytorch and related
libraries. I use Neovim/Vim for Python.
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Chapter 1

Introduction to Probability

The concept “probability” is used very often in everyday language to describe the chance of some-
thing happening. Mathematically, Probability is a language to quantify uncertainty. This chapter
will introduce necessary and basic concepts and namely, Probability Theory. We will start the
chapter about interpretations of probability.
We will introduce the concepts fast. since they are rather easy compared to next chapters.

Discrete Versus Continuous Concepts

Before we even begin with our concepts. we must learn the difference between the terms Discrete
and Continuous probabilities. Through the book, we will use these terms many times. The
Mathematics bluntly can be divided into two distinct categories: Continuous mathematics is the
study of the objects are uncountable values i.e real numbers, intervals of real numbers and so
on; Discrete mathematics are study of countable objects. Take probability for example. The
probability of simple head and tails experiment is considered discrete, while the probability of
weighting 150 kg from intervals 100kg and 200kg is continuous. We will dive deep into these
concepts later on, however it is nice to know these terms’ meanings beforehand.

1.1 Set Theory

Set Theory is a branch of mathematics that studies sets, which we will define shortly. This branch
is, like other parts of mathematics, very deep and complex. We will learn only the most important
concepts , which is in high-school level, needed to understand later sections and chapters.

We will quickly introduce the concepts and briefly explain them. The reader may skip this
section if they already know about sets and their basic properties.

Sets

A Set is a collection of different objects, which are called elements of the set. The sets are notated
as capital letters such as S. If x is an element of a set S, we write x ∈ S. Otherwise we write
x ̸∈ S. A set with no elements is called empty set and is notated as ∅.
If x1, x2, . . . , xn are the elements of the set S, we write:

S ∈ {x1, x2, . . . , xn}

If S is set of all even numbers smaller than 12, we can draw the diagram as:
We can specify our set as a selection from a larger set. If we want to write the set of all even

integers, we can write (Here the set of integers is the universal set):

S = {n ∈ Z :
n

2
is an integer}

If a set A’s elements are also the elements of B, we say that A is a subset of B. We can notate
it as:

A ⊆ B

If a set A is subset of B, but is not equal to B, we say that A is proper subset of B. We can
notate it as:

A ⊊ B

5



Chapter 1 – Introduction to Probability 6

Set operations

Union of sets A,B is a set that contains the elements of A and B:

A ∪B = {n : n ∈ A ∨ n ∈ B}

We can visualize the sets in 2D with circles and their intersections.
Intersection of sets A,B is a set that contains both the elements of A and B:

A ∩B = {n : n ∈ A ∧ n ∈ B}

For simplicity we also write A ∩B = AB.

Sample Space and Events

The Sample Space, usually denoted as S or Ω, is the set of all possible outcomes of an experiment.
It is also called universal set. Subsets of Ω are called events. A sample element of Ω is denoted
as ω.

Example 1.1.1. If we toss a six sided dice once, then Ω = {1, 2, 3, 4, 5, 6}, the event that the
side is even is A = {2, 4, 6} while ω ∈ {1, 2, 3, 4, 5, 6}

Example 1.1.2. If we toss a two sided coin twice, then

Ω = {(HH), (TT ), (HT ), (TH)} ∧ ω ∈ {(HH), (TT ), (HT ), (TH)}

Example 1.1.3. If we toss a 2 sided coin forever, then

Ω = {ω = (ω1, ω2, ...) : ωi ∈ {H,T}}

Example 1.1.4. Let E be the event that only even numbers appear in the six sided dice toss.
Then,

E = {2, 4, 6}

With the new definition, we can make more set operation: complement of the event A is a set of
elements Ω that do not belong to A.

Ac = {n : n ∈ Ω ∧ n ̸∈ A}

difference of the set A from B is a set of elements of A that do not also belong to B

A \B = A ∩Bc

we say that E1, E2, ..., EN are disjoint if

Ai ∩Aj = ∅

A partition of Ω is a sequence of disjoint events such that

∞⋃
Ei = Ω

Similar to monotone functions, we define monotone increasing sequence of sets A1, A2, ...
as the sequence of sets such that A1 ⊂ A2 ⊂ ... and limn→∞ An =

⋃
Ai

Moreover, we can define certain rules similar to the rules of algebra:

Commutative laws A ∪B = B ∪A

Associative laws (A ∪B) ∪ C = A ∪ (B ∪ C)

Distributive laws A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

6
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And lastly, DeMorgan’s laws states that(
n⋃

i=1

Ai

)c

=

n⋂
i=1

Ac
i

(
n⋂

i=1

Ai

)c

=

n⋃
i=1

Ac
i

Which is, in my opinion, very intuitive and can be easily understood with sketching venn diagrams.
These are all of the terminology and notations we will be using for learning the probability.

1.2 Probability Law

To show the probability of a event A, we assign a real number P (A) or P(A) in some textbooks,
called probability of A. In other words, P () is a unique function with unique properties that
inputs an event A, and outputs its probability.

To qualify as probability, P must satisfy 3 axioms:

Axiom 1 P (A) ≥ 0 for every A

Axiom 2 P (Ω) = 1

Axiom 3 If A1, A2, ... are disjoint:

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Let’s explain the axioms. The first axiom is very simple, a probability can’t be negative, since
the meaning of the word probability. Second axiom is also very simple, the probability of any
possible outcomes happening is 1, since there must be a outcome at the end of the experiment.
Third axiom, assume we have 2 disjoint sets. Then

P (A ∪B) = P (A) + P (B)

This is true simply because sets are disjoint. Similarly, we can use induction to prove the above
property for n sets. Proving for infinite sets are out of scope of this section, therefore we will skip
it.

We can derive many properties from these axioms. These are the most simple and intuitive
ones:

P (∅) = 0

A ⊂ B =⇒ P (A) ≤ P (B)

0 ≤ P (A) ≤ 1

P (Ac) = 1− P (A)

And a less obvious property:

Lemma 1.2.1. For events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. We can rewrite A∪B as union of A \B, B \A, and A∩B, since these are the slices of the
thing we want to begin with. Moreover, these slices are disjoint, therefore we can apply our third
axiom (P is additive):

P (A ∪B) = P
(
(A \B) ∪ (B \A) ∪ (A ∩B)

)
= P (A \B) + P (B \A) + P (A ∩B)

= P (A \B) + P (A ∩B) + P (B \A) + P (A ∩B)− P (A ∩B)

= P (A) + P (B)− P (A ∩B)

7
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1.3 Probability Distributions

There are two kinds of Probability Distribution: Discrete and Continous Discrete Probability
distribution is the mathematical description of probability of events, that are subsets of finite or
countable infinite set Ω. If each outcome is equal, then probability of getting 2 even numbers
from tossing a six sided dice, which is 1

4 ,is an example of this. We can generalize this for event A
of finite Ω,

P (A) =
|A|
|Ω|

This is the equation almost everybody gets taught in high-school. We can calculate probability
of getting heads from tossing a coin, getting a red ball from a box, getting a number from tossing
n sided coin and so on. To compute this probability, we first have to count |Ω| and |A|.

For simple experiments, it is rather easy just do count by finger. However, sometimes things
get rather complex and we have to use new tools to count them. For example, how many possible
outcomes are there from tossing a coin 1064

100

times? We use counting techniques, namely com-
binatorics. However, the book assumes the reader has knowledge of Combinatorics, therefore we
won’t introduce the concept here.

Continuous Probability Distribution is similar to its discrete counterpart, however the outcomes
are uncountably infinite. Consequently, any probability of selected outcome is 0. Only the events
that include these outcomes, making a countable collection of events, have probability themselves.

After we learn about Random Variables, we will talk about specific distributions.

1.4 Independent Events

If we flip a six sided dice twice, probability of getting 2 even numbers is 1
4 , which can be found

easily just by counting. However, one may guess that we can find the probability for one dice, then
square it, which gets the same answer, 3

6 × 3
6 = 1

4 .
This is a prime example of Independent Events. The first roll and the second roll are not

depended on each other. Whatever the results in first roll can’t influence the result in second roll.
The formal definition of independence is,

Definition 1.4.1. Two events A and B are independent if

P (A ∩B) = P (A)P (B)

But how can we know the events are Independent? Sometimes, it is rather simple, we know it
by logic. Probability of the author being successful is not depended on tossing a coin, it is just
simple logic.

In almost all cases, simple logic is enough to determine this property. Another property, is that
disjoint events are never Independent. Other than that, we have to manually check if the events
satisfy the above equation.

Example 1.4.1. Let A = {2, 4, 6}, B = {1, 2, 3, 4}. Since P (A)P (B) = P (AB), they are
independent.

Example 1.4.2. Let A = 2, 4, 6, B = {2, 4, 5}. Since P (A)P (B) ̸= P (AB), they are depen-
dent.

Note that even though A∩B ̸= ∅, in above examples, the result is not the same. The independence
merely shows that another event can’t change other event’s probability, even though intuitively it
makes no sense.

1.5 Conditional Probability

Conditional Probability, as the name implies, is the probability of an event with a condition. More
precisely, Conditional Probability is the probability of an event A, given that another event B

8



Chapter 1 – Introduction to Probability 9

is already occurred. In such probability, the sample space is reduced to B’s, while we want to find
probability of A from B’s space (Which increases of probability of A, since sample space is also
reduced). We can show this neatly in venn diagram:

Here are some examples:

Example 1.5.1. If we tossed a six sided dice one time, and we rolled an even number B,
what is the probability of getting number 2, event A?

Since the first toss’ result is already happened, we know that Ωreduced = {2, 4, 6} and A = {2},
then P (A)Ωreduced

= 1
3 .

If there wasn’t any condition, the probability of getting 2 would be 1
6 . Simply, in a simple

probability we defined a new condition and sort of updated our measurement to 1
3 . This is an

important idea in Probability and Statistics, which we will revisit shortly in Bayes’ Rule
We can show the conditional probability of A given B as:

P (A|B) =
P (A ∩B)

P (B)
for P (B) ̸= 0

If we revisit to our simple probability equation, this equation starts making sense since P (B)
becomes our reduced sample space, while P (A ∩ B) is our event fancily written for condition
property.

It is a very common mistake to think P (A|B) = P (B|A), which is easy to understand why just
by looking to either venn diagrams or the equations we defined. Moreover, if A and B are inde-
pendent from each other, then P (A|B) = P (A), which comes from the definition of independence,
B can’t effect A’s probability.

1.6 Bayes’ Theorem

In this section, we will learn about Bayes’ Theorem, an important concept about probability.
This rule is widely used by scientists and programmers. But, what is this rule exactly? Why is it
useful?

Bayes’ Rule, in simple words, helps to calculate conditional probabilities. It helps us to view
probabilities in a degree of belief. I highly recommend watching 3blue1brown’s video about this
concept (since visual teaching will always be more practical).

We firstly begin by introducing the simple version of the theorem:

Theorem 1.6.1 (Simplified Bayes’ Theorem).

P (A|B) =
P (A) · P (B|A)

P (B)

Proof. We apply the definition of conditional probability twice:

P (A|B) =
P (A ∩B)

P (B)
∧ P (B|A) =

P (B ∩A)

P (A)

Using above properties directly gives our theorem.

Let’s try to comprehend the theorem more practically. The theorem can be understood as
“Updating the probability of A with a new condition B”. You may think this is an obvious fact
and couldn’t be that useful. However, let’s give some examples that are actually very ambigious
without the theorem.

Example 1.6.1. Steve is a middle aged man living in USA and he is very patient and curious.
He also likes debate with people. Which is more likely about Steve: A known mathematician
that earned a noble prize or a plumber?

Majority of people would immediately answer “the mathematician”, however there is a
bigger chance he is a plumber. The reason people get wrong on these questions is because
they think that these specific attributes directly corresponds to a smart, wise man. However,
they also forget that the number of noble prize winner, middle aged mathematician men that
lives in USA is quite low (maybe even zero, I don’t really know). The attributes may be

9
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Chapter 1 – Introduction to Probability 10

likely to the mathematician, however there is also a low chance that a plumber can have these
specific attributes. Also considering there are almost 300k plumbers, the numbers add up.

To not make these kind of mistakes, we must think these attributes, or events as new
updates on our main probability, which is a man either being mathematician or a plumber.
That is the core idea of Bayes’ Theorem.

When using the Bayes’ Theorem, it is not always practical to directly calculate the P (A) or
P (B). Therefore we need another tool, called Law of Total Probability which states that.

Theorem 1.6.2 (Law of Total Probability). Let A1, A2, ..., An be partition of Ω. Then for
any event B,

P (B) =

n∑
i=1

P (B|Ai)P (Ai)

Proof. Let Ci = Ai ∩B. Then we know that C1, C2, ..., Cn are the partition of B. Therefore using
the partition property,

P (B) =

n∑
i=1

P (Ci) =

n∑
i=1

P (Ai ∩B) =

n∑
i=1

P (B|Ai)P (Ai)

Last step is consequence of conditional probability definition of P (B|Ai)P (Ai) = P (B ∩Ai)

This theorem becomes very handy in practical situations. Moreover, with the help of this
theorem we can generalize our Bayes’ Theorem,

Theorem 1.6.3 (Bayes’ Theorem). Let A1, A2, .., An be a partition of Ω such that P (Ai) > 0.
For P (B) ̸= 0 and for any i = 1, 2, ..., n,

P (Ai|B) =
P (Ai) · P (B|Ai)

P (B)
=

P (Ai) · P (B|Ai)∑n
i=1 P (B|Ai)P (Ai)

Proof. Similar to proof of Theorem 1.7.1, We use definition of conditional probability and lastly
apply Theorem 1.7.2 in the last step.

1.7 References

1. https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-
spring-2022/resources/mit18 05 s22 class01-prep-a pdf/

2. https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-
spring-2022/resources/mit18 05 s22 class01-prep-b pdf/

3. http://varianceexplained.org/r/birthday-problem/

1.8 Exercises

1. 6 card draw.
In a poker game, find the probability of: Two cards have one rank, two cards have another
rank, and the remaining two cards have two different ranks.

Solution:
In a 6 card draw, we have total

(
52
6

)
possibilities.

Drawing 2 ranks:
(
13
2

)
.

Drawing 2 card from ranks:
(
4
2

)
·
(
4
2

)
.

Drawing 2 different ranks again:
(
13−2

2

)
.

Drawing 1 card from each ranks:
(
4
1

)
·
(
4
1

)
.

Combining these results we get,

P (two pair) =

(
13
2

)
·
(
4
2

)2 · (112 ) · (41)2(
52
6

) ≈ 0.12

10

https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18_05_s22_class01-prep-a_pdf/
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18_05_s22_class01-prep-a_pdf/
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18_05_s22_class01-prep-b_pdf/
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18_05_s22_class01-prep-b_pdf/
http://varianceexplained.org/r/birthday-problem/


Chapter 1 – Introduction to Probability 11

2. Birthdays: counting and simulation
Consider a group of n people. Consider a set S that is sequence of n birthdays (not necessarly
distinct). An example element of S,

ω = (b1, b2, . . . , bn)

(a) Find the probability of ω.

(b) Consider 3 events A,B,C
A : A specific number β ∈ [1, 365] exists in the sequence.
B : There exists i, j ∈ N such that bi = bj .
Ck : There exists i1, . . . , ik ∈ N such that bi1 = . . .− bik where k ≤ n.
Find probabilities P (A), P (B), P (Ck).

(c) Calculate probability of P (Ck) for 2 ≤ n ≤ 50 via R simulation.

Solutions:

(a) there are total 365 days. hence,

P (ω) =
1

365n

(b)

P (A) = 1− P (Ac) = 1− 364n

365n

P (B) = 1− P (Bc) = 1− Pn
365

365n

For C, the exact formula for P (Cn) is complex, since we have to work with cases and
such. (That is why simulations are useful).

(c) This simultion is one of the most standard introductory simulations

library(tidyverse)

threshold <- 2:5

ourData <- crossing(trial = 1:3000, people = 1:200) %>%

mutate(birthday = map(people, ~ sample(365, ., replace = TRUE)),

multiple = map_int(birthday, ~ max(table(.)))

)

result <- ourData %>%

crossing(threshold = 2:5) %>%

group_by(people, threshold) %>%

summarize(chance = mean(multiple >= threshold))

result %>%

mutate(exact = map2_dbl(people, threshold,

~ pbirthday(.x, coincident = .y))) %>%

ggplot(aes(people, chance, color = factor(threshold))) +

geom_line() +

geom_line(aes(y = exact), lty = 2) +

scale_y_continuous(labels = scales::percent_format()) +

labs(x = "n",

y = "Ratio",

color = "k")

11
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Here, the lines with dots show the exact theorical ratio. As intended, the lines grealy
allign. We can extract whatever information we need from this exact plot.
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Chapter 2

Random Variables

“A random variable can be compared with the holy roman empire: The Holy Roman Empire was
not holy, it was not roman, and it was not an empire.” - Some random guy in internet

From the first chapter, we have been using events and sample spaces to develop the idea of
probability and calculating it. But, in practical world, we have to link the events and sample
spaces to data. This concept is called “Random Variable” or r.v shortly. A Random Variable, in
informal terms, places the Ω in real line so we can work with it more easily. There are still events,
but in terms on Random Variables now.
From now on, we may write Random Variables as r.v or r.v. or r.vs or r.v or r.vs shortly for
convenience.

2.1 Introduction to Random Variables

A Random Variable describes the data or the outcome ω as a real number. There is a reason this
concept exists, since it opens new concepts for practical applications.
Let’s begin with the formal definition of Random Variable.

Definition 2.1.1. A Random Variable X is a function,

X : Ω → R

That assigns a real number X(ω) to each outcome ω.
In layman terms, a random variable is a way to assign a numerical code to each possible
outcome. A r.v is neither random, nor a variable. It is just a function.

This concept is heavily used instead of sample spaces . From now on, sample space will be
mentioned rarely. Think this way, when we work on functions in algebra or sometimes in calculus,
we don’t think about about the domain of the function, but the properties of function itself. Here
are some examples to understand the concept better.

Example 2.1.1. Flip a coin. We know that Ω = {H,T}. A r.v X might assign X(H) = 1
and X(T ) = 0. That is, heads is “coded” as 1 and tails is “coded” as 0.

Example 2.1.2. Flip a fair coin n times. Let X represent the number of heads we get. Then,
X is a random variable that takes values {0, 1, 2, ..., n}.

Example 2.1.3. Toss a fair six sided dice 2 times. Let X be the sum of the two rolls we get.
Then, X is a random variable that takes values {2, 3, 4, ..., 12}.

13
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Example 2.1.4. A students wants to write a real number in intervals [0, 1]. Let X be the
number student writes. Then, X is also a random variable that takes any real numbers in
that interval.

As you may guess, this extremely looks similar to events. Random Variables also have Inde-
pendence, Conditional Random Variable, a probability function and so on. Additionally , Random
Variables can be either Discrete or Continous.

Discrete Random Variable’s range is finite or countably infinite. The first two examples we gave
are Discrete. Continuous Random Variables’s range is uncountably infinite like the third example

I want to emphasize that Random Variables are neither random or a variable, they are functions.
It is a bit hard to grasp the idea of this concept, so I highly recommend lurking in mathematical
forums and try to understand it ( that is what I did). But in short, we use Random Variables
instead of outcomes, since Random variables are numbers. Numbers are easier to work with, we
can process the numbers, do algebraic operations to them, also they have a structure that outcomes
do not. Turn Example 2.1.1 to in sample space and events language, which is easier to work
with? Bunch of H,T or just a number?

2.2 Distribution Functions c.d.f, p.m.f, p.d.f, p.p.f

c.d.f and p.p.f

We define Cumulative Distribution Function as,

Definition 2.2.1. The Cumulative Distribution Function or shortly c.d.f is a function
FX : R → [0, 1] such that

FX(x) = P (X ≤ x)

Remark : Every r.v (discrete and continuous) have c.d.f. For this reason, we can use c.d.f
for unified treatment of r.v properties (that is, generalized concepts for all r.v). Moreover,
c.d.f contains all the information about r.v, both continous and discrete ones. That is why
c.d.f is very useful, even in practical world.

In informal terms, c.d.f is the probability that X will take a value less than or equal to x. This
property holds both for continuous and discrete r.v.

Example 2.2.1. We toss a fair coin two times. Let X represent the number of heads we get.
Then c.d.f of X is,

FX(x) =


0 x < 0

1/4 0 ≤ x < 1

3/4 1 ≤ x < 2

1 x ≥ 2

The variable x can get any real numbers, such as 2, 4.14 and π. It is just that in discrete
case the probability equals to 0 (Which in other words converts discrete to continous function?).
It a bit tricky, they simply take the values from corresponding inequalities.
Now, let’s look at some properties of c.d.f,

Theorem 2.2.1. Let X have c.d.f F and Y have c.d.f G. If F (x) = G(x) for all x, then,

P (X ∈ A) = P (Y ∈ A) for all A

Theorem 2.2.2. the function F : R → [0, 1] is a c.d.f for some r.v if and only if F satisfies
three conditions:

1. F is non-decreasing

14
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2. F is normalized i.e
lim

x→−∞
F (x) = 0 ∧ lim

x→∞
F (x) = 1

3. F is right continuous.

Remarks. The first and second properties are simple and intuitive, therefore we will ignore
them ( I know it is not the mathematical way, but whatever ).

Third property, however, is worth having discussion about. This property directly follows
from the inequality ≤. We could even define c.d.f with strict inequality F = P (X < x), and
it would still work. It is matter of convention.

Definition 2.2.2. Quantile Percent point function, or shortly p.p.f, is defined as inverse
of c.d.f i.e,

Q(x) = F−1(x)

c.d.f and p.d.f

Similar to probabilities of Events, we can calculate probability of X , depending on discrete or Con-
tinuous with functions called Probability Mass Function andProbability Density Function,
shortly p.m.f and PDF respectively,

Definition 2.2.3. If X is discrete, and it takes countably values {x1, x2, .., xn} we define
Probability Mass Function of X as follows:

fX(x) = P (X = x)

Note that P (X = x) is a function, not a number. We have to specify x first to get a number.
Remark: {X = x} are disjoint events that form partition of Ω.

With the properties of probability, we have fX ≥ 0 for all x ∈ R and
∑

i fX(xi) = 1. Let’s
revisit our Example 2.2.1

Example 2.2.2. We toss a fair coin two times. Let X represent the number of heads we get.
Then c.d.f of X is,

fX(x) =


1/4 x = 0

1/2 x = 1

1/4 x = 2

0 otherwise

Moreover, for any set of real numbers, S, we have

P (X ∈ S) =
∑
x∈S

fX(x)

Since all {X = x} are disjoint.

We can apply similar rules to continuous r.vs,

Definition 2.2.4. If X is continuous, we can represent the probability distribution of X with,

P (a < X < b) =

∫ b

a

fX(x)dx

Function fX is called Probability Density Function or PDF as shortly.

Nothing new here really, we just change the properties of p.m.f that we can use it on continuous
r.vs. Now, let’s look at some examples,

You may noticed that c.d.f is similar to p.m.f and PDF. Indeed, the are related, c.d.f is just
sum of these functions we defined over some interval x.

15
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Definition 2.2.5. c.d.f is related to p.m.f and PDF. For discrete r.vs,

FX(x) = P (X ≤ x) =
∑
xi≤x

fX(xi)

And for continuous r.vs,

FX(x) =

∫ x

−∞
fX(x)dx

And fX(x) = F
′

X(x) for for all differentiable points x.

Note that this definition is heavily used instead of direct definitions above, since we can
work with c.d.f only, and derive it to get needed functions.

2.3 Important Random Variables and their distribution

Definition 2.3.1. If X has distribution A, we write

X ∼ A

Usually A depends on some fixed numbers to define properly, we call them parameters. For
example, the distribution Bernoulli(p) has parameter p. We show parameters in c.d.f and
p.m.f as,

f(x; parameters) and F (x; parameters)

There are some specific examples of r.v. that are very useful in practical applications. We will
show most important ones, and briefly discuss them. In later chapters, we will learn more about
them. Note that we will write the notation with the name of the distribution.

Degenerate distribution or Point mass distribution: X ∼ δa

Consider tossing coin or dice where all the sides show the same value. The p.m.f is ,

fX(x; δa) = 1 for x = a

You might guess why it is called degenerate sometimes. It is not random, but the distribution
satisfies the definitions!

Discrete Uniform distribution

This distribution is the one of the most known ones. When there are finitely many values and
each of them have the same probability, then p = 1

n . Simple coin tossing, dice rolling are prime
example of these. The p.m.f is,

fX(x) =
1

n
Where x ∈ {1, 2, ..., n}. Nothing new here. for other cases, fX(x) = 0.

Bernoulli distribution: X ∼ Bernoulli(p)

This distribution describes “Yes or No” type of experiments such as coin flipping. Therefore,
P (X = 1) = p, P (X = 0) = 1− p. We can also calculate p.m.f,

fX(x; p) = px(1− p)1−x for x ∈ {0, 1}

Binomial distribution: X ∼ Binomial(n, p)

This distribution is generalized form of Bernoulli distribution. Similar to Bernoulli, this dis-
tribution describes “Yes or no” type of experiments, but for n times of tries e.g tossing a coin n
times. Assuming tries are independent of each other, we can show p.m.f as,

fX(x;n, p) =

(
n

x

)
px(1− p)n−x for x ∈ {0, 1, ..., n}

Notice that Binomial(1, p) = Bernoulli(p).

16
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Geometric distribution: X ∼ Geom(p)

This distribution is also specified with Bernoulli. The geometric distribution describes the proba-
bility of the first occurrence of success requires after x independent trials e.g getting the first head
after x tosses. The p.m.f is,

fX(x; p) = (1− p)x−1p for x ≥ 1

Poisson distribution: X ∼ Poisson(λ)

This distribution is mainly used for counts of events like photons hitting a detector in a time
interval, number of car accidents, students achieving a low and high mark on exam, or number of
pieces of chewing gum on a tile of a sidewalk. its p.m.f is,

fX(x;λ) = e−λλ
x

x!
for x ≥ 0

Usually, λ = rt where r is average rate the events occur and t is the time interval. The r.v X
represents the number of events.

Unfiorm distribution: X ∼ Uniform(a, b)

The p.d.f of X is defined as,

fX(x; a, b) =
1

b− a
for x ∈ [a, b]

Normal (Gaussian) distribution: X ∼ N(µ, σ2) or X ∼ N (µ, σ2)

This distribution is one of the most popular ones even for non-mathematician, layman people. The
famous IQ graph, badly made “memes” are example of this. This distribution plays important role
in statistics and probability. Moreover, we can observe this distribution in nature. p.d.f is defined
as,

fX(x;µ, σ2) =
1

σ
√
2π

e−
(x−µ)2

2σ2 for x ∈ R

We will learn about µ and σ in later chapters. For now, just assume they are some random
parameters.
We define standart Normal distribution as N(0, 1), r.v as Z. This specific distribution is very
important, so much that we show its p.d.f and c.d.f with new notation, namely ϕ(z) and Φ(z).
There is no closed form expression for Φ(z). In modern days, the programming libaries calculate
them.
It can be shown that we can show any normal probabilities we want with Φ(z).

Exponential distribution: X ∼ Exp(λ)

This distribution is continous analogue of the geometric distribution. This distribution (and the
ones after this) has complex properties so we will be brief with this. We define its c.d.f as ,

fX(x;λ) = λe−xλ

Gamma distribution: X ∼ Gamma(α, β)

First, we start with a definition,

Definition 2.3.2. For α > 0, we define Gamma function as,

Γ(α) =

∫ ∞

0

tα−1e−tdt

It is generalized form of more simple and specific version,

Γ(n) = (n− 1)! for n ∈ N

17
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We define p.d.f of x as,

fX(x;α, β) =
1

βαΓ(α)
xα−1e−x/β x > 0

Notice that Gamma(1, β) = Exp(β). That is, exponentional distribution is a specific case of gamma
distribution. Gamma distribution itself is very useful and heavily used in this field. Moreover, we
can derive more advanced ( which I have difficulties understanding) distributions from the gamma
function. For now, we will end our discussion here.

2.4 Multivariate Distribution

In practical word, we often work with multiple r.v in the same experiment. This can be a medical
research with multiple tests, where tests are related with each other with the same sample space
Ω and the same probability.
First, we define a special vector,

Definition 2.4.1. Let X1, X2, .., Xn be r.vs. We call X = {X1, X2, ..., Xn} a random
vector.

Definition 2.4.2. If r.vs X1, X2, ..., Xn are independent an have the same marginal dis-
tribution with c.d.f F , we define these r.vs as independent and identically distributed,
shortly i. i.d, with notation,

X1, ..., Xn ∼ F

similarly, we show the p.d.f the same way. i.i.d property is very important in statistical field.

We can apply multivariate c.d.f as

Definition 2.4.3. For n r.v {X1, X2, .., Xn}, the multivariate c.d.f FX1,X2,...,Xn
is given by,

FX1,X2,...,Xn
(x1, x2, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

There is nothing fancy here, actually. We simply redefine c.d.f in general sense for n r.vs.
Similarly, we can define multivariate p.m.f as,

Definition 2.4.4. For random vector X,, the multivariate p.m.f fX1,X2,...,Xn
is given by,

fX1,X2,...,Xn
(x1, x2, ..., xn) = P (X1 = x1, ..., Xn = xn)

This is generalized form of p.m.f

Similarly, we define,

Definition 2.4.5. We know that c.d.f and p.d.f are related by derivative. Then, For random
vector X, the multivariate p.d.f fX1,..,xN

is given by,

fX1,X2,...,Xn
(x1, x2, ..., xn) =

∂nFX1,..,Xn
(x1, ..., xn)

∂x1∂x2...∂xn

The Properties and theorems are similar, but are generalized for n r.vs.

2.5 Marginal Distribution

If more than one variable is defined in an experiment, it is important to distinguish between the
multivariate probability of (X1, X2, .., Xn) and individual probability distributions of X1, X2, .., Xn

Formally, Marginal distribution is the probability of a single event (or r.v) occuring,
independent of other events. Therefore implementing marginal distributions are rather easy.
In multivariate distributions, we redefine the needed variable as a “constant” and work with other
variables only.

18
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Definition 2.5.1. If X is a random vector with p.m.f fX1,X2,..,Xn
, then we define marginal

distribution as,

fX1
= P (X1 = x1) =

∑
x1 constant

P (X1 = x1, .., Xn = xn) =
∑

x1 constant

fX1,X2,..,Xn
(x1, x2, ..., xn)

Similarly,

Definition 2.5.2. We define marginal p.d.f as ,

fXi
(xi) =

∫ ∫ ∫
...

∫
f(x1, x2, .., xn)dx1..dxi−1dxi+1...dxn

Similarly, c.d.f follows the same rule. FX(x) = F (x, a, b, c, ...).
Remark: Marginality and conditionality are not the same thing. They look similiar, but their
definitions are subtly different.

2.6 Independence

Similar to events, r.vs also can be independent,

Definition 2.6.1. Two r.vs X and Y are independent if, for every A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

The definition persists for multivariate distributions.

To check Independence, we need to check the above question for every subsets A,B. Additionally,
we have the theorem,

Theorem 2.6.1. Let X and Y have p.m.f fXy
. THen X and Y are independent only and

only if ,
fX,Y (x, y) = fX(x)fY (y)

The definiton persists for multivariate distributions.

2.7 Conditioning

Similar to events, r.v X can also have conditional distributions given that we have Y = y. We
show the conditionality with,

Definition 2.7.1. We can show conditional distribution of X respect to Y with,

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

Moreover we can also define conditional p.m.f as,

Definition 2.7.2. p.m.f of X conditional respect to Y can be written as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

2.8 Transformations of a Random Variable

In some applications, we really are interested in distributions of some function of X. We call this
concept Transformation of X.
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Definition 2.8.1. Let X be r.v with PDF/p.m.f fX and c.d.f FX . Let Y = r(X) i.e Y = X2

or Y = lnX. We call Y = r(X) transformation of x.

If Y is discrete, p.m.f is given by,

fY (y) = P (Y = y) = P (r(X) = y) = P ({x : r(x) = y}) = P (X ∈ r−1(y))

If Y is continuous, we first calculate c.d.f and find derivative of it.

FY (y) = P (Y ≤ y) = P (r(X) < y)

= P ({x : r(x) ≤ y}) = P (Ay)

=

∫
Ay

fX(x)dx

And the last step, fY (y) = F
′
(y).

We can also generalize this concepts for Multivariate distributions, which we just increase dimen-
sions we work with (too lazy, add this later). t

2.9 References

1. MIT

2.10 Exercises

1. Suppose Z is a standard normal random variable. Use R to:

(a) plot its p.d.f and c.d.f in the same plot

Solutions:

(a) R already has its own unique functions that would be extremely helpful for us

library(tidyverse)

# R already has functions pnorm() to calculate what we need

x <- seq(-4, 4, 0.01) # to help plot c.d.f and p.d.f

y_pdf <- dnorm(x) # gives the p.d.f of Z

y_cdf <- pnorm(x) # gives the c.d.f of Z

data <- data.frame(x_value = x, y_value_pdf = y_pdf, y_value_cdf =

y_cdf)

ggplot(data) +

geom_line(aes(x = x, y = y_value_pdf, color = "p.d.f")) +

geom_line(aes(x = x, y = y_value_cdf, color = "c.d.f")) +

labs(title = "p.d.f and c.d.f of normal distribution", x = "X", y

= "Value") +

theme_minimal()

20



Chapter 2 – Random Variables 21

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

X

V
al

ue

colour

c.d.f

p.d.f

p.d.f and c.d.f of normal distribution

21



Chapter 3

Expectations and Invariance

3.1 Expectation of a Random Variable

The distribution of X contains all the probabilistic data we need about X. However, we need
additional tools to describe these data more cleanly.

One of these tools is Expectation, or Expected Value or Mean of X.

Definition 3.1.1. The expected value of X is defined as,

E(X) =

{∑
xf(x) if X is discrete∫
xf(x)dx if X is continous

If expected value is infinite, we say that expected value of X doesn’t exist.
We can also combinte both the notations into a whole generalized equation with a notation,

E(X) =

∫
xdF (x) = µ = µX

We have discussed that dF (x) = f(X). in the second chapter. Important Note. Expecta-
tion, by nature, is a theorical mean of the variables we get. It is sometimes possible to get
mean that you can’t get in a practical settings.

By definition of probability, sum of all f(x) is is simply 1. Then, the above equation is weighted
mean of X, which is what we wanted to convey.

Example 3.1.1. Suppose that we have a discrete r.v X to describe the probability of getting
heads from tossing a coin 3 times. Let c.d.f of X be f . Then,

X =


f(0) = 1/8

f(1) = 3/8

f(2) = 3/8

f(3) = 1/8

Let’s use our above formula to calculate E(X),

E(X) =
1

8
· 0 + 3

8
· 1 + 3

8
· 2 + 1

8
· 3 = 1.5

This number shows that if we repeat our experiment for a very long time, the mean of the
heads we got woud be ( or approach to) 1.5.
Observe that weighted mean is equivalent to arithmetic mean. Because gettings X = 2 is
simply getting X = 1 two times.
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But, what if Y = g(X) and we want to compute E(Y )? We have a theorem for that,

Theorem 3.1.1 (Law of the Unconscious Statistician). Let Y = g(X). Then,

E(Y ) = E(g(X)) =

∫
g(x)dFX(x)

The general proof of this theorem is out of the scope of this book. Comparing this to original
expectation equation, we can see that the only thing that changes is g(x) and x, which intu-
itively makes sense if you think about it. In transformations, probabiltiies remains unchanged,
while the result of probabiltiies gets transformed by a function.
Moreover, for a special case g(x) = IA(x), where IA(x) ∈ {0, 1} depending on x ∈ A, then,

E(IA(X)) =

∫
IA(x)dFX(x) =

∫
A

dFX(x) = P(X ∈ A)

This means that probability is special case of expectation, which makes sense, considering
probability itself is some average by definition.

Definition 3.1.2. We call n-th raw moment of X as

µn = E(Xn) =

∫
xndFX(x)

If E(|Xk|) is infinite, then kth moment do not exist.
We also define k-th central moment as moments about its mean µ i.e E[(X − µ)k]. Addi-

tionally, k-th standardized moments as E[(X−µ)n]
σn .

The 1st moment, the 2nd central moment, 3rd and 4rd standarized moments are called
mean (expected value), variance ,skewness and kurtosis in order. We will learn more about
them in later chapters.

The moments are very useful and practical. Although there are infinitely many moments,
only smaller ones are important for practical purposes. We already know the first moment
and its significance.

Properties of Expectation

Theorem 3.1.2 (Non-negativity). If X ≥ 0 is a r.v, then E(X) ≥ 0.

Proof. By definition of expectation, we have

E(X) =

∫
xdFX(x) ≥ 0

since by definition, dFX(X) ≥ 0 and x ≥ 0.

Theorem 3.1.3 (Linearity). For any random variablesX1, X2, ..., Xn and constants a1, a2, ..., an,
we have

E
[ n∑

i

aiXi

]
=

n∑
i

aiE(Xi)
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Proof. We will first prove the theorem for n = 2 with X,Y .. n = 1 is trivial.

E
[
a1X1 + a2Y

]
=

∫
(a1x+ a2y)dFX,Y (x, y)

=

∫
(a1x)dFX(x) +

∫
(a2y)dFY (y)

= a1

∫
xdFX(x) + a2

∫
ydFX(y)

= a1E(X) + a2E(Y )

The second line is the direct consequence of marginality. With induction, n ≥ 3 is also true,
however I will omit the solution for the sake of briefity.

This theorem is very useful and very practical.

Theorem 3.1.4 (multiplicity). For independent r.v X1, X2, ..., Xn, we have

E
( n∏

i=1

Xi

)
=

n∏
i=1

E(Xi)

Proof. Similiar to last one, we will use induction. n = 1 is trivial. For n = 2, let r.v be X,Y .
Remember that independence has property dFX,Y (x, y) = dFX(x) · dFY (y).

E(XY ) =

∫
(xy)dFX,Y (x, y) =

∫
xydFX(x)dFY (y) =

∫
ydFY (y)

∫
xdFX(x) = E(X)E(Y )

For the sake of briefity, I won’t show the induction part.

3.2 Conditional Expectation

Suppose that we we want to calculate mean of X when Y = y. This is called conditional expecta-
tion, similar to conditional r.v and probability.

Definition 3.2.1. conditional expectation of X by Y = y is given by,

E(X|Y = y) =

∫
xdFX|Y (x|y)

Note that E(X|Y ) is a r.v itself since we don’t know value of Y beforehand, or more precisely
Y is a ”function”.

Theorem 3.2.1 ( Law of total Expectations). for all r.v X and Y ,

E[E(Y |X)] = E(Y ) and E[E(X|Y )] = E(X)

Proof. It is direct consequence of definition of conditional expectation and the fact that
dF (x, y) = dF (x)dF (y|x)

E[E(Y |X)] =

∫
E(Y |X = x)dF (x)

writelater

3.3 Variance

We have dicussed about the expectation, a way of showing a property of a distribution. However,
the expectation alone doesn’t convey much. We have another tool called ‘Variance’. Variance, in
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layman terms, describes how value of random variable varies are spread in the graph. Or in other
terms, the distance between the expectation value.

We can define variance ass,

Definition 3.3.1. Let X be a r.v with mean µ = E(X). The Variance of X, denoted as V(X)
or Var(X) or σ2 is the 2nd central moment and is defined by,

σ2 = E[(X − µ)2] =

∫
(x− µ)2dF (x)

We also define standart deviation as sd(X) =
√
σ2 = σ.

The standart deviation and variance convey the same information. They both represent the spread
of our data. The difference between them is purely mathematical. The variance is more useful
in mathematical applications, where standart deviation is very intuitive and practical. mathisfun
explains it very well.

Calculating variance directly can be complicated and tedious directly sometimes. We can derive
a theorem from the original definition for practical purposes.

Theorem 3.3.1. Let X be a random variable. Then,

σ2 = E([(X − µ)2]) = E(X2)− µ2

Proof. It is derived directly by algebraic manipulation and basic calculus,

σ2 =

∫
(x− µ)2dF (x)

=

∫
x2dF (x)− 2µ

∫
xdF (x) + µ2

∫
dF (x)

=

∫
x2dF (x)− µ2

= E(X2)− µ2

3.4 Conditional Variance

Definition 3.4.1. Let µ = E(X|Y = y). The conditional variance is defined as,

V(X|Y = y) =

∫
(x− µ)2dFX|Y (x|y)

The conditional variance tells us how much of spread is left after We use Y = y. Reminder
that V(X|Y ) is a r.v itself since Y is a sort of ”function” here.

Theorem 3.4.1 (Law of Total Variance). for any r.v X,Y , it is always true that,

V(Y ) = E
[
V(Y |X)

]
+ V

(
E[Y |X]

)
We have stated before that V (Y |X) and E(Y |X) are random variables, not numbers. There-
fore We compute variance and expectation of these random variables, and add them up to get
the variance V (Y ).

3.5 Covariance and Corelation

Ley X and Y be r.v. Covariance and Corelation describes the linear relationship between X
and Y .
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Definition 3.5.1. If X and Y are r.v with mean µX , µY and standart deviations σX , σY ,
we define covariance as,

Cov(X,Y ) = E
(
(X − µX)(Y − µY )

)
and corelation as,

ρ = ρX,Y =
Cov(X,Y )

σXσY

Notice that Cov(X,X) = V(X) and ρX,X = 1.

Similiar to variance, calculatig covariance can be tedious. We can derive a better formula by simple
algebraic manipulations,

Theorem 3.5.1. For all random variables with non-infinite means, we have

Cov(X,Y ) = E(XY )− E(X)E(Y )

Proof. Similar to Variance one, we have,

Cov(X,Y) = E
(
(X − µX)(Y − µY )

)
= E(XY −XµY − Y µX + µXµY )

= E(XY )− µY E(X)− µXE(Y ) + µXµY

= E(XY )− E(X)E(Y )

Theorem 3.5.2. For all random variables with non-infinite means, we have,

−1 ≤ ρX,Y ≤ 1

Proof. It is direct consequence of Cauchy-Schwarz inequality.

3.6 References

3.7 Exercises
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Chapter 4

Statistical Inequalities

Statistical Inequalities provide a means of bounding measures and quantities, which is very useful
practically and theorically. These inequalities are used for computations on Machine learning and
AI, developing new methods and techniques for practical purposes and so on. IMO, International
Mathematical Olympiads, also have a “Inequalities” section with questions that heavily use some
of the methods and techniques soon be discussed here.

4.1 Probability inequalities

Probability inequaltiies are useful for boundign quantities that is hard to compute. Moreover, they
are heavily used in the theory of convergence. Our first theory is,

Theorem 4.1.1. Let X be non-negative r.v and assume E(X) exists. Then Markov’s
inequality states that for any a > 0,

P (X ≥ a) ≤ E(X)

a

Proof.

E(X) =

∫ ∞

−∞
xf(x)dx =

∫ ∞

0

xf(x)dx

=

∫ a

0

xf(x)dx+

∫ ∞

a

xf(x)dx

≥
∫ ∞

a

xf(x)dx ≥ a

∫ ∞

a

f(x)dx

= aP (X ≥ a)

Theorem 4.1.2. Let µ = E(X) and σ2 = V (X). Chebyshev’s inequality states that,

P (|X − µ| ≥ a) ≤ σ2

a2
and P (|Z| ≥ k) ≤ 1

k2

Where Z is standard score i.e Z = x−µ
σ .

Proof. The theorem is the direct consequence of the markov ineqaulity

P (|X − µ| ≥ a) = P (|X − µ|2 ≥ a2) ≤ E([X − µ]2)

a2
=

σ2

a2

The second one is just a substituion.
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4.2 Expectation ineqaulities

Probably one of the most known ineqaulities of all time, that is also used in different field of
mathematics, Cauchy-Scwartz inequality Simply states that,

Theorem 4.2.1. Cauchy-Scwarz ineqaulity states that,

E2(|XY |) ≤ E(X2)E(Y 2)

Another form of this theorem is,

Cov2(X,Y ) ≤ σ2
Xσ2

Y

This theorem is also known with its vector form. Consequently, this ineqaulity is very useful
and practical, hence there are many unique and different proofs.
This ineqaulity is also popular on mathematical olympiads, with its familiar algebraic form.

Recall that a function f is convex if f is twice differentiable f ′′(x) ≥ 0. Moreover f is concave
if −f is convex. Another very well known and popular ineqaulity,

Theorem 4.2.2. Jensen’s ineqaultiy states that if g is convex,

Eg(X) ≥ g(EX)

If g is concave, the inequality symbol flips. Note that we used EX instead of E(X) for
asthetical purposes.

4.3 References

4.4 Exercises
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Chapter 5

Convergence, CLT and LLN

5.1 Introduction

We already know the caclulus definition of convergence. We say that xn converges to x if, for
every ϵ > 0.

|xn − x| < ϵ

as n goes to infinity.
However, there are multiple definitions of convergence in Probability and Statistics. The core idea
is simple, in layman terms, as we repeat a process for a long time, something approaches to a
thing. Mathematics requires regirousity, and hence there are multiple convergence definitions for
the use case. We will learn convergence in the next section

CLT, in other words, Central Limit theorem, states that, under correct conditions, the dis-
tribution of normalized verison of the sample mean converges in distribution to a standard
normal distribution. There are multiple types of CLT.

LLN, or Law of Large Numbers states that under right conditions, the sample average X
convergec in probability to the expectation µ = E(X). There are also types of LLN.

5.2 Types of Convergence

There are two main, most used types of convergence in the Statistics and Probability. The weakest
one is, the convergence in distribution

Definition 5.2.1. Let X1, X2, ... be a sequence of r.v with c.d.f F1, . . .. Fn is sait to be
converging in distribution or converge weakly to c.d.f F of a r.v X if

lim
n→∞

Fn(x) = F (x)

For every x that F is continous. Convergence in distribution may be denoted as

Xn
d→ X

Concept of convergence in distribution does not require Xn to be close to X.

More stronger covnergence, convergence in probability is defined as,

Definition 5.2.2. Let X1, X2, . . . be a sequence of r.v. Xn is said to be converging in
probability to r.v X if for all ϵ > 0,

lim
n→∞

P (|Xn −X| > ϵ) = 0
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Convergence in probabiltiy is denoted as,

Xn
p→ X

Visually, the converge in probability states that, as n grows large Xn tends to be inside the ϵ
brackets of X. However, it is still possible that Xn goes out of the bound for some
time, but very unlikely.
Almost surely converge is just stronger version of this converge, eliminating the “out of the
bound´´ chance.

And other two less commonly used convergences,

Definition 5.2.3. Sequence {Xn} converges Almost surely or strongly towards X if,

P

(
lim
n→∞

|Xn −X| = 0

)
= 1

Almost surely convergence is denoted as,

Xn
a.s→ X

We can also rewrite the definition as, (Ferguson 1996, p. 5)

lim
n→∞

P

(
sup
m≥n

|Xm −X| > ϵ

)
= 0

Notice how this equation similar is to probability convergence.
This converge states that, there exists a large number n that Xn will always be in the
bounds of ϵ. There is also stronger type of this version, called sure convergence. However,
it is rarely used and there is no practical difference between this and the weaker version almost
sure convergence. Therefore we don’t talk about it.

and lastly, convergence in mean,

Definition 5.2.4. For a real number r ≥ 1, Xn said to be converges in r-th mean to a
r.v X if,

lim
x→∞

E(|Xn −X|r) = 0

This convergence is also called Lr convergence or Lr convergence and is denoted as,

Xn
Lr

→ X

5.3 Properties of Convergences

Here is a basic diagram showing the chain of implications, from Wikipedia.

Ls

−→ ⇒
s>r≥1

Lr

−→

⇓
a.s−→ ⇒ p−→ ⇒ d−→

• Almost surely convergence implies convergence in probability

Xn
a.s−→ X ⇒ Xn

p−→ X

• Convergence in probability implies convergence in distribution

Xn
p−→ X ⇒ Xn

d−→ X

• Convergence in Ls implies convergence in Lr such that s > r ≥ 1.

Xn
Ls

−→ X ⇒ Xn
Lr

−→ X
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• Convergence in Lr implies convergence in probability.

Xn
Lr

−→ X ⇒ Xn
p−→ X

All of these are intuitively, from the definition, makes sense. No proofs shall be provided.

Theorem 5.3.1. Continous mapping theorem Let {Xn} be r.v sequence, and let X be
a r.v. Let g be a continous function. then, the below is true,

Xn
p−→ X ⇒ g(Xn)

p−→ g(X)

Xn
d−→ X ⇒ g(Xn)

d−→ g(X)

Xn
a.s−→ X ⇒ g(Xn)

a.s−→ g(X)

Note to myself: Add addivity and multiplicative property with its proof, Slutzky’s theorem.

5.4 LLN, Law of Large Numbers

There are strong and weak type of LLN, Law of large Numbers. However, both of them state
the same idea, Xn converges to µ as n goes to infinity.

Theorem 5.4.1. The weak Law of Large Numbers or shortly WLLN states that if
X1, . . . Xn are i.i.d r.vs, then,

Xn
p−→ µ

Proof. For the sake of simplicity, assume variance is finite. The theorem is the direct conse-
quence of Chebysev’s inequality.

P (|Xn − µ| ≥ ϵ) ≤ V(Xn)

ϵ2
=

V(X1)

nϵ2

Which right side obviously converges to 0.

Theorem 5.4.2. The strong Law of Large Number or shortly SLLN states that if
X1, . . . , Xn are i.i.d r.vs and µ < ∞, then,

Xn
a.s−→ µ

Proof is complex, so I will avoid giving it here.

Practically there is not much difference between WLLN and SLLN, therefore SLLN is preferred.

5.5 CLT, Central Limit Theorem

Theorem 5.5.1. Central Limit Theorem, or shortlyCLT states that for i.i.d r.vsX1, . . . Xn

with mean µ and variance σ2,
Xn − µ√
V(Xn)

d−→ N(0, 1)

5.6 References
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Chapter 6

Statistical Models and Statistical
Inference

Through the last chapter, we have talked about multiple probability distributions and their func-
tions such as c.d.f, p.d.f, and p.m.f. However, we have assumed that we already knew the distri-
bution and its properties. In practical world, it is not the case. We may try to find the average
salary of the country, the fatality rate of a virus, and so on. Statistical inference, in shortly, is
study of using the information sample we are given to deduce the characteristics of a population.
Since majority of population is defined with paramateres, our investigation is mainly on finding,
or estimating such paramteres.

6.1 Model and Inference

Assume that X ∼ N(0, 1) and Y ∼ N(0, 2). The X and Y don’t have the same probability
characteristics, more cleanly, they don’thave the same distribution. However, we generalize them in
a “group” called normal distribution. That is, there are infinitely many distribution with N(µ, σ2),
and to convey them in a more general way, we use statistical models

Definition 6.1.1. Statistical Model is a set of distribution such as,

F =

{
f(x; θ) : θ ∈ Θ

}
where Θ is a parameter space.
There are also nonparametric F.

In a parametric model, if we are interested in only one parameter θ, we call it target parameter
or estimand. The process of getting the estimand is called Statistical Inference. Majority
of inferental problems are divided into three types: estimation, confidence sets, hypothesis
testing.

6.2 Point Estimation

By convention we write the estimate of θ as θ̂. Since θ is constant and by definition θ̂ is a function,
θ̂ is a r.v. Remark that funtion of r.vs is a r.v. In more mathematical way,

Definition 6.2.1. Let X1, ..Xn ∼ F be i.i.d. A point estimator θ̂ is defined as,

θ̂ = g(X1, . . . , Xn)

We also define a very useful variable bias as,

bias(θ̂, θ) = E(θ̂)− θ

Here, θ is our target parameter, θ̂ is the function we use to estimate our target, or the
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estimator. We usually write bias(θ̂, θ) = bias(θ̂)
Bias, in a literal sense, tells us the bias of the estimator we use. That is, the error that we
may find when we estimate our parameter. We say that θ̂ is unbiased if,

bias(θ̂) = 0 ⇒ E(θ̂) = θ

We know that θ̂ is a r.v. We call this r.v’s distribution as sampling distribution. We also define,
standard error of θ̂ or standard deviation,

se =

√
V(θ̂)

It is logical to think that the estimator should converge (with more samples) to its target value,
we define such property as,

Definition 6.2.2. If a point estimator θ̂ converges to θ, we call that θ̂ is consistent

With bias alone, we can’t characterize the quality of the estimator. Because the values of θ̂
may be far away than real value θ, but still be E(θ̂) = θ. Therefore, we also have to measure the
variance in some way.
For such thing, we already have a tool,

Definition 6.2.3. The mean square error is defined as,

MSE(θ̂) = E([θ̂ − θ]2)

in similiar fashion to the Variance definition, we can rewrite this equation as,

MSE(θ̂) = bias2(θ̂) + V(θ̂)

MSE is function of both its variance and bias, hence it is a better way of showing the quality of
the estimator.

Example 6.2.1. Let X1, . . . , Xn ∼ Bernoulli(p). Let p̂ = n−1
∑n

i=1 Xi. We already know
that E(X) = p and V(X) = p(1− p). Our estimator is unbiased since,

E(p̂) =
1

n

∑
E(Xi) = p

Moreover, the estimator’s variance is,

V(p̂) = E(p̂2)− E(p̂)2 = p− p2

We can intutively guess some estimators that could be effective for our purposes. But for many
complex problems, it is not the case. We will learn new methods to calculate estimators in later
chapters.

6.3 Properties of Point Estimation: Efficienty, Consistency,
Sufficiency

Relative Efficiency

We already know that it is possible to have multiple estimators for one target parameter. We even
learnt a new definiion, MSE to convey the quality of such estimators. If we have two unique and
unbiased estimators θ̂1 and θ̂2, it is logical to pick the estimator that has the lowest variance, since
the lower the MSE, more efficient the estimator is. To convey such idea, we use,

Definition 6.3.1. Given two unbaised estimators θ̂1 and θ̂2, then the efficiency of θ̂1
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relative to θ̂2, denoted as eff(θ̂1, θ̂2), is defined as,

eff(θ̂1, θ̂2) =
V(θ̂2)
V(θ̂1)

Note that if t1: w, t2 is bigger than one, then it is true that θ̂1 is relatively more efficient
than θ̂2.

Consistency

We have already talked about consistency before, we say the estimator is consistent of it converged
to the target parameter,

Definition 6.3.2. The estimator θ̂ of θ is consistent if for any positive number ϵ,

lim
n→∞

P (|θ̂n − θ| ≤ ϵ) = 1

That is, θ̂
p−→ θ

The graph (below) from latter exercises is also consistent, since visually it becomes a straight line
where it equals to the target parameter.

Since consistent estimators converge to the target parameter, it is logical to think the variance
also converges to 0. Think in a way that the graph of the estimator has to become straight from
long wavy and curvy lines i.e it is direct consequence of convergence (real analysis stuff?). Indeed,

Theorem 6.3.1. The unbiased estimator θ̂ of θ is a consistent estimator if,

lim
n→∞

V(θ̂n) = 0

Sufficiency

We know that the value X (average value) is a unbiased estimator for mean µ of X. At this point,
we no longer need the sample data to estimate the µ, since we can summarize the information just
with the estimator X. But, do the X retain all the information about X?. If it does, we call such
estimator sufficient. That is all the sufficiency is for.

We can mathematically convery this property as conditional distribution of our sample data,
given the estimator. If the distribution is dependent on our target parameter, it can’t be sufficient.
In more mathematical way,

Definition 6.3.3. A statistic is a function of data (Remark: all estimators are statistic but
not all statistic are estimators). A statistic U = t(X1, .., Xn) of θ is sufficient if conditional
distribution of X1, ..., Xn given U is not dependent on θ.

If conditional distribution is dependent on the target parameter, it is intuitive to think the
statistic does not contain all the information.

Sufficiency is useful since it helps us to assessing information on the entire population without the
need of all the data.
Say you get your grade on an exam and you want to know how well you did compared to your
classmates. If you are given a sample mean and variance, you can do this without asking everyone’s
grades.

6.4 Confidence Intervals

Let’s assume we are a scientist that want to measure the mean of the specific kind of mice’s weight.
It is unrealistic to measure all of the mice, hence we catch a small amount of them, probably in
hundreds, measure them and gather the data in a datasheet. We bootstrap (we will learn what
that term is in later chapters) the sample data, and find the sample mean. Now, we repeat the
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bootstrapping process thousands of times, which now we have a sample mean data.
Now, let’s find numbers a, b such that 95% of our sample mean data resides in interval [a, b]. That
is what confidence interval basically is.

Definition 6.4.1. LetX be a random vector. The 1−α confidence interval for a parameter
θ is an interval [a, b] and a = a(X), b = b(X) functions such that,

P (a ≤ θ ≤ b) ≥ 1− α

Note that θ is unknown constant value, while a and b are random variables.
Taking the above example, α = 0.05, which is a mathematical standard number used majority
of time. 1−α is called confidence coefficient. We also call lower and upper confidence
limits to a and b, sometimes also donated as θL and θU .

It is also possible to form one sided confidence interval, i.e,

P (θL ≤ θ) ≥ 1− α or P (θ ≤ θU ) ≥ 1− α

The confidence intervals may be closed or open. For our purpose they are indifferent.

Theorem 6.4.1 (Normal-Based Confidence Intervals). Let zα/2 = Φ−1(1−α/2). Then, there
is 1− α chance that the below interval,

θ̂ ± zα/2 ŝe

will containt the real value θ.

Proof. Let the above interval be C. Then,

P (θ ∈ C) =P (θ̂ − zα/2 ŝe < θ < θ̂ + zα/2 ŝe) =

P (−zα/2 <
θ̂ − θ

ŝe
< zα/2)

d−→

P (−zα/2 < Z < zα/2) = 1− α

6.5 Hypothesis Testing

Please read the Hypothesis chapter instead.

6.6 References

1. https://math.stackexchange.com/questions/1767877/in-laymans-terms-what-is-the-
difference-between-a-model-and-a-distribution

2. https://stats.stackexchange.com/questions/3911/when-are-confidence-intervals-useful

3. https://mason.gmu.edu/~alaemmer/bio214/sampling-distributions.pdf

6.7 Exercises
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Chapter 7

Methods of Estimation
(Parametric Inference)

In later chapter we have shortly talked about the point estimation. The estimator θ̂ of a target
parameter θ is a function of random variables of a sample, and therefore it itself is a random
variable. The estimator has its own probability distribution, sampling distribution. We already
know about unbaised estimators i.e E(θ̂) = θ and the consistent estimator. In this chapter, we will
learn more deeply about the mathematical properties of the point estimators. Additionally, we
will learn new methods to derive estimators, since until now we listened our intuition.

7.1 Method of Moments

Until now, we have used our intuiton to find estimators. For example, it is logical to think that
X would be an ideal estimator for µ of X. However, in practical world we have to generate the
parametric estimators more “mathematically”. First, we introduce with a new simple definition,

Definition 7.1.1. k-th sample moment α̂k is moment of sample i.e

α̂k =
1

n

n∑
i=1

Xk
i

In section 3.1 we talked about raw moments. Raw moments convey the properties of the distri-
bution i.e raw moments are some functions of the desired parameters. The first raw moment is the
mean µ1 = µ, the second raw moment is expression of variance µ2 = σ2 + µ2 and so on.

The idea method of moment is we can use α̂k as good estimator of µk, and from µk we can
derive expressions for our target parameter.

Example 7.1.1. Let X1, . . . , Xn ∼ N(µ, σ2). We have that E(X) = µ and E(X2) = σ2 +µ2.

α̂1 = µ̂

α̂2 = µ̂2 + σ̂2

Solving the system equation will give us estimators for µ and σ.

7.2 Method of Maximum Likelihood

The method of moments are very simple and intuitive, but it is unefficient. We have a better and
sophisticated method called method of maximum likelihood. There is a great video by Josh
Starmer that explains the method very well.

Assume that we have a sample data, and we want to estimate parameters of the distribution that
describes the sample data. The idea is that we find such estimator that maximaze the likelihood
of getting our sample data relative to the parameter.
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Definition 7.2.1. The Likelihood function is defined as,

Ln(θ) =

n∏
i=1

f(Xi; θ)

Also we define log-likelihood function as,

ℓn(θ) = logLn(θ)

At last, we define the maximum likelihood estimator MLE denoted by θ̂n as the value of
θ that maximizes Ln(θ), or better ℓn(θ), since working with logs are easier that multiplicative
functions for maximizing.

We already know that θ is a unknown constant we want to estimate. The Ln(θ) describes the
likelihood of each sample data, respect to θ. Since it is intuitive to maximize the likelihood
(because the sample data is already happened and should be maximized), it should also estimate
our value θ.

7.3 Properties of MLE

Will write later.
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Chapter 8

Estimating Statistical Functions
(Non-Parametric Inference)

8.1 Emprical Distribution Function, e.d.f

Definition 8.1.1. let X1, . . . , Xn ∼ F be i.i.d sample with F as c.d.f .
We can estimate F with empriical distribution function or shortly e.d.f F̂ ,

F̂n(x) = n−1
n∑

n=1

I(X ≤ x)

Theorem 8.1.1. e.d.f F̂n coverges almost surely to F , or is consistent that is,

F̂n(x)
a.s−→ F (x)

It also estimates F with no bias, that is,

E(F̂n(x)) = F (x)

Theorem 8.1.2. Dvoretzky–Kiefer–Wolfowitz–Massart inequality (DKW)
Let X1, . . . , Xn ∼ F . Then,

P

(
sup
x∈R

|F (x)− F̂n(x)| > ϵ

)
≤ 2e−2nϵ2 ∀ϵ > 0

This inequality is useful for constructing confidence intervals such that,

P

(
F̂n(x)− ϵ ≤ F (x) ≤ F̂n(x) + ϵ

)
= 1− α ∀ϵ =

√
1

2n
log

(
2

α

)

8.2 Statistical Functionals

Statistical functionals are functions of data, that is T (F ). Examples are mean, variance, median
and so on.

Definition 8.2.1. plug-in estimator of θ = T (F ) is defined as,

θ̂n = T (F̂n)

That is, plug in F̂n to estimate our statistical function T (F ).
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Definition 8.2.2. T is linear functional if T (F ) =
∫
r(x)dF (x). Linear functional T

satisfishes linearity properties, that is,

T (aF + bG) = aT (F ) = bT (G)

8.3 References

1. https://en.wikipedia.org/wiki/Empirical distribution function

2. https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz inequality
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Chapter 9

Hypothesis Testing and p-value

9.1 To-learn and write

wald test, z-test, t-test,chi, various methods and distributions.

9.2 Null and Alternate Hypothesis

The hypothesis testing is very similar to the scientific method. Scientists across the different fields
use scientific method for their academical purposes. The observe, formulate a theory, experiment
and test the theory. There is a similar method called hypothesis testing for statistical inference.
First, we will introduce some notations and definitions,

Definition 9.2.1. Null Hypothesis, denoted by H0, is the hypothesis to be tested.
Alternate Hypothesis, denoted by H1, is the hypothesis contradictory to the null hypoth-
esis. We usually try to support, since this way we could use proof by contradiction. If our
evidence (data) favors the alternative hypothesis, we reject the null hypothesis. Formally, we
wish to test,

H0 : θ ∈ Θ0 or H1 : θ ∈ Θ1

Where Θ0 and Θ1 are disjoint sets of parameter space Θ.

Example 9.2.1. Let X1, ..., Xn ∼ N(µ, σ2) with known variance σ2 and uknown mean µ.
We wish to test the hypothesis,

H0 : µ = µ0 or H1 : µ ̸= µ0

In order to test the hypothesis, it is logical to calculate X and compare it with µ0. It is reasonable
to reject H0 if X is far away than µ0. But how much far away exaclty?
Rejection or Critical Region is a set denoted by R to describe “how far away” the result can
be. If the result is in the set R, we reject the hypothesis.

Definition 9.2.2. The Critical Region is defined as,

R =

{
x : T (x) > c

}
Here, c is called critical value, and T is a test statistic to help testing our hypothesis. The
main question in hypothesis testing is find appropriate T and c.

In above example, X is our T . We will learn about finding c now.

A hypothesis in the form of θ = θ0 is called simple i.e θ has only one value, while in the form
of θ > θ0 or θ < θ0 is called composite i.e θ has multiple values

There are 4 different possibilities we can conclude from our test. See the table for the brief
introduction.
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If H0 is true, and we reject it, we call this error type I error. Similarly, if H1 is true and we keep
the H0, (or reject H1) we call this error type II error. Summarize this in table,

Retain Null Reject Null
H0 true (1− α) type I error (α) signifi-

gance level of the test
H1 true type II error (β) power of the test (1− β)

Definition 9.2.3. The power function of a test with critical region R is a function defined
as,

β(θ) = Pθ(X ∈ R)

that is, β(θ) represents the probability of rejecting H0 if θ ∈ Θ0 ∪Θ1 i.e H0 or H1 true. It is
very general
The size of the test is defined by,

α = sup
θ∈Θ0

β(θ)

that is, for θ that H0 is true, α is the worst case scenario probability, representing type I
error (if the test is simple).
We also define significance level of the test as α if its size is less than or equal to α. That
is, upper bound for incorrectly rejecting H0. Significance level is chosen independent of data
or the tests, usually as 0.05. Note in particular that both size and level don’t relate to the
sample.

If we are conducting pointwise test, for example µ = µ0, then significance level, the size
of the test, and type I error coincide, that is they are equal. However, for some special cases
they may differ. Similarly, power,1- type II error may also differ. So, we must be careful on
our definitions when our test is not simple, that is, is composite.

9.3 p-value

The size of the test and power of the test is not that much related to our sample data. That is
where p-value comes in.
The p-value is the probability under the null hypothesis of obtaining a real-valued test statistic at
least as extreme as the one obtained, more rigirously,

Definition 9.3.1. Suppose for every α ∈ {0, 1} we have a rejection region Rα. Then p-value
is defined as,

p = inf

{
α : T (X) ∈ R

}
That is, the p-value is the smallest level at which we can reject H0. We can calculate p with,

p = sup
θ∈Θ0

Pθ(T (X) ≥ T (x))

Notice that the expression contains sample data x.

9.4 Learn andWrite missing sections about Hypothesis Test-
ing(*)

9.5 References

1. https://en.wikipedia.org/wiki/Statistical hypothesis test#Definition of terms

2. https://stats.stackexchange.com/questions/183800/how-to-understand-the-size-of-
hypothesis-tests?rq=1

3. https://stats.stackexchange.com/questions/299873/differences-between-p-value-level-
of-significane-and-size-of-a-test

4. https://en.wikipedia.org/w/index.php?title=P-value&oldid=554910098
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Chapter 10

Statistical Decision Theory

Statistical Decision Theory is widely used in machine learning fields, for example training neural
networks and other statistical models via computers.
There are multiple methods of generating estimators. Decision Theory helps us decide which
method is more suited for our job.
The “relationship” between θ and θ̂ can be measured with a loss function L(θ, θ̂). The examples
are,

Squared Error Loss (θ − θ̂)2

absolute Error Loss |θ − θ̂|1

LpLoss |θ − θ̂|p

We kind of already studied these functions before.

10.1 Risk Function

To judge the estimators, we use average of loss, or risk.

Definition 10.1.1. The risk of an estimator θ̂ is,

R(θ, θ̂) = E
(
L(θ, θ̂)

)
Notice that if our loss function is squared error,

R(θ, θ̂) = MSE(θ, θ̂)
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Statistical Models
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Chapter 11

Linear Regression

Given the data with random vectors X,Y of the form

(X,Y) ∼ FX,Y

Regression is a method finding a linear function to fit properly our data. This way, we can predict
the value of Yi, or estimate in other words.

11.1 Simple Linear Regression Model

Definition 11.1.1. We can write the simpliest linear regression as follows,

Yi = β0 + β1Xi + ϵi

Here, ϵi is called error variable, disturbance term, or error term. Error term represents
factors other than x that affects y. It is normall assumed that ϵi ∼ N(0, σ2). That is,

E(ϵi|Xi) = 0 ∧ V(ϵ|Xi) = σ2

We work with conditionalities in linear regression, since the idea of the regression itself is
conditional i.e Y depends on X.

The unknown variables in our model are intercept β0, slope β1 and our ϵi. We can estimate
ϵi with residual ϵ̂i. In practice we would like to minimize the values of,

Definition 11.1.2. Residual Sums of Squares or shortly r.s.s or RSS, which measures
how our model works with our data, defined as,

RSS =

n∑
i=1

ϵ̂i
2

We also define least square estimates, that are values β0 and β1 such that minimizes RSS.
We can derive an expression for least square estimates. In later chapters, we will also work
with multivariate versions of the same topic.
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Theorem 11.1.1. The least square estimates are given by,

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

β̂0 = Y − β̂1X

σ̂2 =

(
1

n− 2

) n∑
i=1

ϵ̂2

The last estimator is also called residual standar error or shortly RSE.
All of these estimators are unbiased. We usually denote the least square estimators as

matrices i.e β̂T = (β̂0, β̂1)
T , for convenience.

Proof Sketch. Notice that

RSS =

n∑
i=1

(Yi − β0 − β1Xi)

Therefore it is enough to minimize the right expression, which is trivial via derivatives,
and solving the system equations. We will later see the multivariate proof of the theorem
via matrices and such.

11.2 Maximum Likelihood and Least Square Estimators

Assume that Y is normally distributed. It is very practical, and holds true in practice. The
likelihood function is then,

n∏
i=1

f(Xi, Yi) =

n∏
i=1

fX(Xi)

n∏
i=1

fY |X(Yi|Xi) = L1 · L2

We can use maximum likelihood method to estimate our parameters β1, β2. L1 doesn’t include
our target parameters, so we will treat it as a constant. We wish to maximize L2. Using the
log-likelihood and our normal distribution assumption,

ℓ(β0, β1, σ) = −n ln(σ)− 1

2σ2

n∑
i=1

(Yi − (β0 + β1Xi))
2

Note that we used the p.d.f of normal distribution and the fact that µ = β0 + β1Xi. To maximize
the log-likelihood, we have to maximize MLE of (β0, β1)

RSS =

n∑
i=1

(Yi − (β0 + β1Xi))
2

Which is the least square estimator. In fact, we have the following theorem,

Theorem 11.2.1. As long as we have the normality assumption, the least square estimator
and likelihood estimator are equivalent.

11.3 Properties of Least Sqaure Estimators

We begin with the expectation and variance of least square estimators. Remember that we work
with conditionals on X.

Theorem 11.3.1. The least square estimator matrix β̂ is unbiased i.e

E(β̂|X) =

(
β0

β1

)
Proof Sketch. We already derived a way of writing least square estimators in the latter chap-
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ter, Theorem 12.1.1. Using that fact and E(ϵ|X) = 0, it is matter of manupilating the
expectation until we get our result.

Theorem 11.3.2. Following properties are true:

1. Consistency: β̂
p−→ β

2. Asymptotically normal:
√
n(β̂ − β)

d−→ N(0, 1)

3. 1− α confidence intervals:
β ± zα/2 ŝe(β)

11.4 Multivariate Regression

Suppose that, now we have multiple input variables X1, . . . Xk i.e

X =


1 X11 . . . X1k

1 X21 . . . X2k

...
...

...
...

1 Xn1 . . . Xnk


In this notation, we have k variables with total n datas for each variable. Similarly we define,

Y =


Y1

Y2

...
Yn

 β =


β0

β1

...
βk

 ϵ =


ϵ1
ϵ2
...
ϵn


Then we can write our simple regression model with matrix notations, i.e

Y = Xβ + ϵ

It is very convenient to work with the matrices. The next theorem, which is the generalization of
the least square estimate expressions, shows that

Theorem 11.4.1. Assume that XTX is invertible, then

β̂ = (XTX)−1XTY

V(β̂|Xn) = σ2(XTX)−1

Proof-Sketch. Let S =
∑n

i=1 ϵ̂i
2

Assuming the inverse of XTX exists, we wish to minimize

S(β) = (Y −Xβ)
2

Opening the paranthesises, taking the derivative and equating to 0, (note that S is convex)
proves the first part of the theorem.
Second theorem uses the definiton variance and matrix manipulation (simply put).

11.5 References

1. https://stats.stackexchange.com/questions/221891/difference-between-residual-and-
disturbance-epsilon

2. https://stats.stackexchange.com/questions/46151/how-to-derive-the-least-square-
estimator-for-multiple-linear-regression

3. https://igpphome.ucsd.edu/~cathy/Classes/SIO223A/sio223a.chap7.pdf
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4. https://en.wikipedia.org/wiki/Proofs involving ordinary least squares#Unbiasedness and variance of %

7F’%22%60UNIQ--postMath-00000037-QINU%60%22’%7F

5. https://stats.stackexchange.com/questions/124818/logistic-regression-error-term-
and-its-distribution

6. https://stats.stackexchange.com/questions/23479/why-do-we-assume-that-the-error-
is-normally-distributed

7. https://stats.stackexchange.com/questions/148803/how-does-linear-regression-use-
the-normal-distribution
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Chapter 12

Classification

In linear regresison models, it is assumed that response variable Y is quantative, that is, it issome
real number. In practical world, Y can be qualitative e.g blood type, eye color and so on.
Study of predicting qualitative responess are called classification.

12.1 Logistic Regression

Assume our response variable Y takes binary values i.e Y ∈ {0, 1}. There is a method called
logistic regression that models the probability that Y belongs to a particular category, in this
example 0 or 1, that is,

P (Y = 1|X) and P (Y = 2|X)

Trying linear regression model, we see that the value is not in the interval [0, 1], e.g it sometimes
takes negative values. To avoid this problem, we use logistic function.

Definition 12.1.1. Logistic function, sometimes called sigmoid function, is defined by
formula,

σ(x) =
1

1 + e−x
=

ex

1 + ex
= 1− σ(−x)

Note that σ in this formula do not represent the variance, but rather the logistic function.

Using this function, we can derive a statistical model caleld logistic regression,

Definition 12.1.2. Logistic regression is defined as,

p(X) ≡ P (Yi = 1|X = x) =
eβ0+

∑n
i=1 βixi

1 + eβ+
∑n

i=1 βixi

With simple algebraic manipulation, we can find that,

ln

(
p(X)

1− p(X)

)
= β0 +

n∑
i=1

βixi

The log expresison in the left side is usually called logit, that is,

logit(p(X)) = ln

(
p(X)

1− p(X)

)
There are subtle differences between linear regression and logistic regression. (A chapter about
this?+bernoulli+error term distirbution so on)

12.2 Estimating Logistic Coefficients

It is possible to generate the coefficient via MLE. Since Y is binary, the data is in binomial
distribution, that is,

Y |X ∼ Bernoulli(p)
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therefore we wish to maximize,

ℓ(β0, β1) =

n∏
i=1

p(xi)

n∏
i=1

1− p(xi)

Statistical softwares such as R and python libraries can easily compute the MLE. There are also
multiple algorithms, one of them being Gradient Descent, a very useful technique used heavily
in Deep Learning.

12.3 Multinomial Logistic Regression

Assume our dependent variables Y get more than 2 values. It is possible to use logistic model,
with minor changes, for this purpose. This model is called Multinomial Logistic Regression.
Let the number of classes (dependent variables) be K. The idea is choose a class as “pivot”, in
this example Y = K, and other K − 1 outcomes are logictic regressed against the pivot. That
is, we apply binary logistic regression multiple times, e.g (We wont write conditional part of the
probabilities for the sake of the simplicity)

ln
P (Yi = k)

P (Yi = K)
= βk ·Xi, k < K

Note that here βk is a matrix.
Afterwards, we use the fact that all the probability sum up to 1, then

P (Yi = K) = 1−
K−1∑
j=1

P (Yi = j) = 1−
K−1∑
j=1

P (Yi = K)eβjXi

With basic algebraic manipulation, we derive that

P (Yi = K) =
1

1 +
∑K−1

j=1 eβjXi

Then other non-pivot probabilities are,

P (Yi = k) =
eβkXi

1 +
∑K−1

j=1 eβjXi

This statistical model works, and we estimate K − 1 coefficients to generate our model. However,
this model is not symmetrical i.e Kth class is “being ignored”. There is a better method, first we
introduce softmax function, generalization of the logistic function

Definition 12.3.1. Softmax Function takes input matrix X = {x1, . . . , xK} ∈ RK and
converts the value to probabilities,

σ(X)i =
exi∑K
j=1 e

xj

Intuitively, this function is also called normalized exponential function, because this is
what basically the function does. Moreover, the sum of all the components adds up to 1.

Using the above function,

Definition 12.3.2. Softmax Multinomial Logistic Regression, for all K classes, we
have

P (Yi = k) =
eβkXi∑K
j=1 e

βjXi

12.4 Estimating Multinomial Logistic coefficients

We can either use multinomial logit, or generalized maximum likelihood for joints of coefficients,
which is out of the scope of my knowledge and the book.
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12.5 Linear Discriminant Analysis, l.d.a or LDA

12.6 QDA

12.7 KNN, write the above chapters after finish learning(*)

12.8 References

1. https://stats.stackexchange.com/questions/124818/logistic-regression-error-term-
and-its-distribution

2. https://en.wikipedia.org/wiki/Multinomial logistic regression#

12.9 Exercises
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Chapter 13

Resampling Methods

13.1 Bootstrap

Bootstrap is a technique about generating more sample data from existing data. It is used for
computing confidence intervals and estimating standard errors. The idea is simple. We have
sample data X1, . . . Xn from unknown distribution F . First we estimate F with F̂n, then we draw
random resamples from F̂n multiple times and calculate our wanted statistical functions.

13.2 Basic Introduction

Definition 13.2.1. Bootstrapping
Let X = {X1, . . . Xn} be our sample data from unknown distribution F . That is,

X1, X2, . . . Xn ∼ F

Let’ s assume we are interested in T (X). In practical statistical problems, we need to know

about the distribution of T (X). We can estimate our unknown distribution F with F̂n, and
draw random samples from that known distribution, that is,

X∗
1 , X

∗
2 , . . . , X

∗
n ∼ F̂n

and compute T ∗
n from these samples.

13.3 References

1. https://stats.stackexchange.com/questions/26088/explaining-to-laypeople-why-bootstrapping-
works

2. https://ocw.mit.edu/courses/14-384-time-series-analysis-fall-2013/2fdf997bca65d6ed82ba7a94f6cdc970 MIT14 384F13 lec9.pdf
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Chapter 14

Deep learning
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Chapter 15

Unsupervised Learning

55


	I Probability
	1 Introduction to Probability
	1.1 Set Theory
	1.2 Probability Law
	1.3 Probability Distributions
	1.4 Independent Events
	1.5 Conditional Probability
	1.6 Bayes' Theorem
	1.7 References
	1.8 Exercises

	2 Random Variables
	2.1 Introduction to Random Variables
	2.2 Distribution Functions c.d.f, p.m.f, p.d.f, p.p.f
	2.3 Important Random Variables and their distribution
	2.4 Multivariate Distribution
	2.5 Marginal Distribution
	2.6 Independence
	2.7 Conditioning
	2.8 Transformations of a Random Variable
	2.9 References
	2.10 Exercises

	3 Expectations and Invariance
	3.1 Expectation of a Random Variable
	3.2 Conditional Expectation
	3.3 Variance
	3.4 Conditional Variance
	3.5 Covariance and Corelation
	3.6 References
	3.7 Exercises

	4 Statistical Inequalities
	4.1 Probability inequalities
	4.2 Expectation ineqaulities
	4.3 References
	4.4 Exercises

	5 Convergence, CLT and LLN
	5.1 Introduction
	5.2 Types of Convergence
	5.3 Properties of Convergences
	5.4 LLN, Law of Large Numbers
	5.5 CLT, Central Limit Theorem
	5.6 References
	5.7 Exercises


	II Statistical Inference
	6 Statistical Models and Statistical Inference
	6.1 Model and Inference
	6.2 Point Estimation
	6.3 Properties of Point Estimation: Efficienty, Consistency, Sufficiency
	6.4 Confidence Intervals
	6.5 Hypothesis Testing
	6.6 References
	6.7 Exercises

	7 Methods of Estimation (Parametric Inference)
	7.1 Method of Moments
	7.2 Method of Maximum Likelihood
	7.3 Properties of MLE

	8 Estimating Statistical Functions (Non-Parametric Inference)
	8.1 Emprical Distribution Function, e.d.f
	8.2 Statistical Functionals
	8.3 References

	9 Hypothesis Testing and p-value
	9.1 To-learn and write
	9.2 Null and Alternate Hypothesis
	9.3 p-value
	9.4 Learn and Write missing sections about Hypothesis Testing(*)
	9.5 References

	10 Statistical Decision Theory
	10.1 Risk Function


	III Statistical Models
	11 Linear Regression
	11.1 Simple Linear Regression Model
	11.2 Maximum Likelihood and Least Square Estimators
	11.3 Properties of Least Sqaure Estimators
	11.4 Multivariate Regression
	11.5 References

	12 Classification
	12.1 Logistic Regression
	12.2 Estimating Logistic Coefficients
	12.3 Multinomial Logistic Regression
	12.4 Estimating Multinomial Logistic coefficients
	12.5 Linear Discriminant Analysis, l.d.a or LDA
	12.6 QDA
	12.7 KNN, write the above chapters after finish learning(*)
	12.8 References
	12.9 Exercises

	13 Resampling Methods
	13.1 Bootstrap
	13.2 Basic Introduction
	13.3 References

	14 Deep learning
	15 Unsupervised Learning


